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Abstract. Let F' be a non-archimedean local field and G be the group GL(N, F')
for some integer N > 2. Let m be a smooth complex representation of G lying
in the Bernstein block B(7) of some simple type in the sense of Bushnell and
Kutzko. Refining the approach of the second author and U. Stuhler, we canon-
ically attach to m a subset X of the Bruhat-Tits building X of G, as well as a
G-equivariant coefficient system C[r] on X,. Roughly speaking the coefficient
system is obtained by taking isotypic components of 7 according to some repre-
sentations constructed from the Bushnell and Kutzko type of m. We conjecture
that when 7 has central character, the augmented chain complex associate to
C(m) is a projective resolution of 7 in the category B(m). Moreover we reduce
this conjecture to a technical lemma of representation theoretic nature. We
prove this lemma when 7 is an irreducible discrete series of G. We then attach
to any irreducible discrete series m of GG an explicit pseudo-coefficient f, and
obtain a Lefschetz type formula for the value of the Harish-Chandra character
of m at a regular elliptic element. In contrast to that obtained by U. Stuhler and
the second author, this formula allows explicit character value computations.

Résumé. Soient F' un corps local non archimédien et G le groupe GL(N, F'), pour
un entier N > 2. Soit 7 une représentation lisse complexe de G appartenant au
block de Bernstein B(mw) d'un type simple au sens de Bushnell et Kutzko. En
affinant ’approche que proposent le second auteur et U. Stuhler, nous attachons
canoniquement a 7 un sous-ensemble X, de I'immeuble de Bruhat-Tits X de
G, ainsi qu’un systeme de coefficients G-équivariant C[r] sur X,. Grossiérement
parlant, le systeme de coefficients est construit en prenant des composantes iso-
typiques de 7 selon des représentations construites a partir du type de Bushnell
et Kutzko de w. Nous conjecturons que lorsque 7 possede un caractere central,
le complexe de chaines augmenté associé a C(m) est une résolution de 7 dans la
catégorie B(m). De plus nous réduisons cette conjecture a un lemme technique
en théorie des représentations. Nous démontrons ce lemme lorsque 7 est une
représentation irréductible de la série discrete de G. Nous attachons ensuite a
toute représentation irréductible 7 de la série discrete de G un pseudo-coefficient
explicite f, et obtenons une formule de type Lefschetz pour la valeur du car-
actere de Harish-Chandra de 7w en un élément elliptique régulier. Contrairement
celle obtenue par U. Stuhler et le second auteur, notre formule permet des calculs
explicites.
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Introduction

Let I’ be a non-archimedean local field and, for some integer N > 2, let G denote
the locally compact group GL(N, F') and X its Bruhat-Tits building The aim
of this work is to refine the construction of [SS] (also see [SS2]) to attach to cer-
tain representations of G new equivariant coefficient systems on the Bruhat-Tits
building. These representations belong to the Bernstein blocks of the category of
smooth complex representations of G corresponding to simple types in the sense
of Bushnell and Kutzko [BK1]. Let (m,V) be a smooth complex representation
of G. In [SS] an equivariant coefficient system C() is constructed by attach-
ing to each simplex o of X the space of vectors fixed by a certain congruence
subgroup of level e of the parahoric subgroup of G fixing . Here the integer e
is such that V is generated as a G-module by its vectors fixed by the principal
congruence subgroup of level e of some maximal compact subgroup of G. In [SS]
it is proved that the augmented chain complex Co(X,C(7)) — V of X with co-
efficients in C(r) is exact. If one moreover assumes that (7,)) admits a central
character y, then Co(X,C(7)) — V is a projective resolution of (m,V) in the
category of smooth representations of G with central character x. In [Br], the
first author gave another proof of this fact for Iwahori-spherical representations.
In [SS2], the second author and U. Stuhler draw some important consequences
concerning the harmonic analysis on G as well as the homological algebra of
the category of smooth representations of G. Among other things they prove
that these projective resolutions give rise to pseudo-coefficients for discrete se-
ries representations (generalizing the pseudo-coefficient constructed by Kottwitz
in [Kot] for the Steinberg representation) as well as a Lefschetz type character
formula for the Harish-Chandra character of any smoooth representation. Note
that if the construction of [SS] is restricted to the group G, [SS2] gives a gener-
alization to any connected reductive F'-group G and most of its results are valid
without restriction on G (but sometimes F' is assumed to have characteritic 0,
and G(F') to have compact center).

If the construction and results of [SS], [SS2] have important theoretic conse-
quences, they do not allow explicit calculations. Indeed in general the coeffi-
cient system C(m) cannot be explicitely computed (except may be in the level
0 case, but this is nowhere written). Indeed the only explicit way to be given
an irreducible smooth representation of G is to specify its Bushnell and Kutzko
type. This is why it is natural to seek for a refinement of [SS] based on Bushnell
and Kutzko theory.

In this paper, for technical reasons, we restrict to representations belonging to
Bernstein blocks of G attached to simple types. These Bernstein blocks are
exactly those containing discrete series representations. We fix a simple type
(J,A) and denote by R,(G) the category of smooth representations of J that
are generated by their A-isotypic component. We fix a smooth representation
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(m,V) of G lying in R)(G). To the datum (J, A), in a non canonical way, one
may associate a field extension E/F of degree dividing N whose multiplicative
group E* is embedded in GG. The centralizer Gg of E* in G is isomorphic
to GL(N/[E : F|,E). Using a result of the first author and B. Lemaire [BL],
we may view the Bruhat-Tits building Xz of Gg as being embedded in X in
a Gpg-equivariant way. We show that hidden in the properties of Heisenberg
representations constructed in [BK1]§(5.1) and in the mobility of simple char-
acters established in loc. cit. §(3.6), there is a geometric structure allowing to
attach to m a Gg-equivariant coefficient system Cg[r] on the first barycentric
subdivision sd(Xpg) of Xg. More precisely, in a non canonical way, we attach
to (J,\) a collection of pairs (J!(o,7),n(0,T))ocr, Where o and 7 run over the
simplices of X satisfying o C 7. Here J!(o, 7) is some compact open subgroup
of G and 7n(o, 7) a Heisenberg representation of J! (o, 7) as considered in loc. cit.
(5.1.14) (but Bushnell and Kutzko do not use this language nor this notation).
Moreover the collection (J!(o,7),n(0,7))ocr is Gr-equivariant. Exploiting the
compatibility relations among the various n(o, 7) proved in loc. cit. §(5.1), and
by taking isotypic components of V' according to the Heisenberg representations
n(o, T), we construct our equivariant coefficient system Cg|r].

We then show that the subset X[E] of X obtained by taking the union of
the ¢g.Xg, where g runs over G has the structure of a Gg-simplicial complex
containing X as a subcomplex. We naturally attach to Cg[n] a G-equivariant
coefficient system C[r] on the first barycentric subdivision of X[E] and show
that it actually derives from a coefficient complex on X[FE], still denoted by
C[r]. We prove that the simplicial complex X[E] and the coefficient system
C[n] are actually independent of any choice made in their construction: these
are objects canonically attached to m. Moreover the support X, of C[r] maybe
explicitely determined. In [BK1]§5, the Hecke algebra of (J, \) is described using
a non canonical unramified field extension L/FE. It gives rise to a general linear
group G C Gg C G, to a Bruhat-Tits building X; € Xg C X and to a
simplicial complex
XL =] g.XLCX[E].
e

Then the support of C[n] is X, = X[L].

We then consider the augmented chain complex of X, with coefficients in C[n|:
(%) Co(X,Clm]) — V.

We show that this complex lies in the category R (G). We cannot in general
prove its exactness that we consider as a conjecture. However we propose a
strategy to tackle this exactness that generalizes the approach that the first
author uses in [Br|. Indeed if (7, V) has level 0 then X[L] = X and the coefficient
system C[r] coincides with that constructed in [SS]. In [Br], for Iwahori-spherical
representations (they have level 0), one proves the exactness of (%) using type
theory and an argument of geometric nature.
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Let us explain how this generalized approach works. Let H(G) be the Hecke
algebra of locally constant complex functions with compact support on G. It
is equipped with the convolution product * coming from a fixed Haar measure
on G. Let ey be the idempotent of H(G) attached to A so that for any smooth
complex representation W of G, ey x W = W is the M-isotypic component of
W. One basic fact of type theory is that the functor

RA(G) — ex x H(G) ey — Mod , W — W

induces an equivalence of categories. It follows that in order to prove the exact-
ness of (%), we are reduced to proving the exactness of the chain complex ()
in ex.H(G).ex-Mod obtained from (%) by applying the functor W — W*:

() Co(Xr,Clm])} — V.

In fact we shall not work with the type A, but with an equivalent type A’ defining
the same Bernstein block; to make things simpler we ignore this difficulty in the
introduction. Then generalizing [Br] we prove that modulo a conjectural tech-
nical hypothesis (Conjecture (X.4.1)), as a complex of C-vector spaces, (xx) is
canonically isomorphic to the augmented chain complex of a certain apartment
Ap of X1 with constant coefficients in V. Of course Ay, being a finite dimen-
sional euclidean space, it is a contractible topological space, and its augmented
chain complex with constant coefficients in any abelian group is exact.

We prove Conjecture (X.4.1), whence the exactness of (x), when the represen-
tation 7 belongs to the discrete series of G. Indeed in that case we are able
to entirely compute the coefficient system C[r] by using some technical lemmas
proved by the second author and Zink in [SZ]. We actually prove that there ex-
ists a G-equivariant collection of pairs (G,, A, ) such that the coefficient system
is given by C[rn], = V*¢ (isotypic component), where o runs over the simplices
of X, G, denotes the stabilizer of o in G, and A\, is an irreducible smooth
representation of G,. Moreover for any simplex o of X[L], the restriction of A,
to the maximal compact subgroup of G, only depends on (J, \) but not on 7.

Closely following [SS2], we attach to the coefficient system C[n] an
Euler-Poincaré function ffp on G and prove that it is a pseudo-coefficient of
m. This pseudo-ceofficient should be very close to that constructed in [Br2] by
the first author using an entirely different approach (but also based on Bushnell
and Kutzko type theory), however the comparison has to be done. In contrast
with that of [Br2], the pseudo coefficient fZp is given by a formula adapted to
explicit computations. In particular by computing certain orbital integrals, we
derive a Lefschetz type character formula for the value of the Harish-Chandra
character ©, of m at a regular elliptic element v of G. This formula takes the
form:

(* * *) @71'(’)/> =Tr (7 ) EPH*(X;I?C[W]) )
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where EP H* (X, C[r]) denotes the homology Euler-Poincaré module of the re-
striction of C(m) to the fixed point set X of v in X,. We cannot expect to make
formula (x* =) entirely explicit. Indeed if «y is an element of G there is no known
easy description of the fixed point set X7. Nevertheless when the elliptic regular
element ~y is minimal over F' in the sense of Bushnell and Kutzko, then X7 is
either empty or reduced to a point. In that case the Lefschetz formula for © ()
takes a striking simple form and allows explicit computations. In particular, in
that case we recover the two character formulas obtained in [Br2]. However our
approach gives a much more general result.

The paper is organized as follows. In section I we establish some crucial prop-
erties of the embedding Xp — X, where E/F is a field extension such that
E> embeds in G. In sections I and III we review the main properties of simple
characters and of their endo-classes. The construction of the G g-equivariant
coefficient system Cg[n| on Xp is given in section IV and its extension C[r] to
a G-equivariant coefficient system is done in sections V and VI. The canonic-
ity of the coefficient complex C[n] is studied in sections VII and VIII. To state
this result the right language is that of endo-classes (Propositions (VIL.2) and
(VIIL.1.2)). The support of C[x] is described in Proposition (VIII.2.6). In sec-
tion IX we prove that the chain complex attached to C[r] actually lies in the
Bernstein block of 7 (Proposition (IX.2)). In section X we reduce the acyclicity
of the augmented chain complex attached to C[r] to a technical lemma (Conjec-
ture (X.4.1)). For an irreducible discrete series representation, the conjecture is
proved in section XI (Theorem XI.2.7). The last section XII is devoted to ap-
plications. We first construct an explicit pseudo-coefficient for any irreducible
discrete series representations (Theorem (XII.2.3)) and then derive an explicit
character formula for the Harish-Chandra character of such a representation
(Theorem (XII.3.2)). For elliptic minimal element the formula simplifies a lot
(Proposition (XII.4.4)) and give a new proof of formulas already obtained in
[Br2].

We shall assume that the reader is familiar with the formalism of [BK1]. Indeed
this work may be somehow viewed as a geometric reformulation of Bushnell and
Kutzko’s construction of the discrete series of G.

We want to thank Shaun Stevens for his help. Proposition (XI.1.2) and its proof
are due to him as well as the proof of Lemma (X.4.4).

This work has a long story. Both authors started to collaborate as the first one
was in post-doctoral stay in Muenster in 2000/2001. Results from sections I to
IX where obtained already in 2004.
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I. Field extensions and centralizers.

I.1 Vector spaces and orders.

If K is a non-archimedean local field we shall denote by oy its ring of integers
and by px the maximal ideal of 0x. Once for all we fix such a field F'.

Let E/F be a finite field extension and V' a finite dimensional E-vector space.
Then V is naturally an F-vector space. We write A = EndpV, G = AutgV,
B = EndgV and Gg = AutgV. We have a natural inclusion of F-algebras
B C A and the group Gg is naturally a subgroup of G. As an F-algebra F
embeds canonically in A and its centralizer is B. Similarly, the left action of F
on V allows us to see E* as a subgroup of G; its centralizer is Gg.

Let Her(A) (resp. Her(B)) denote the set of hereditary op-orders in A (resp.
hereditary op-orders in B). These sets are posets (for inclusion) and G and
G respectively act on them by conjugation. We have a natural map jorder:
Her(B) — Her(A), defined as follows. If B is in Her(B), it is the stabilizer in
B of an og-lattice chain £ in V; this lattice chain may be seen as an op-lattice
chain in V' and jorder (%B) is the attached order in A. We shall use the notation
Jorder(3B) = A(*B). The map jorder is Gp-equivariant and, by [BK1] (1.2.1), its
image consists of those orders in Her(A) that are stabilized by E*.

1.2 Buildings.

We keep the notation as in (I.1). Let X (resp. Xg) denote the semisimple affine
building of G (resp. Gg). The following fact will be crucial for our construction.

(I.2.1) Theorem. ([BL] Theorem 1.1). There exists a unique affine and Gg-
equivariant map

It induces a bijection Xp — XE*,

We are going to give a more precise version of this theorem. Recall that the
building X is triangulated in a canonical way: it is the geometric realization
of a G-simplicial complex that we still denote by X. Let F(X) be the set of
simplices of X. It is a poset for inclusion and is equipped with an action of G
via poset isomorphisms. It is a standard result (compare [BT] Cor. 2.15) that
we have an anti-isomorphism of posets, compatible with the G-actions:

Her(A)°P? — F(X)
A s F(A)

where F'(2) is the unique simplex stabilized by the normalizer of 2 in G. Simi-
larly, we have an anti-isomorphism of posets, compatible with the G g-actions:

Her(B)°P? — F(Xg)
B — F(B)
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where the notation is obvious. We write jsimp for the morphism of G g-posets
F(Xg) — F(X) obtained from jo,der through the two previous isomorphisms.

Let sd(X) (resp. sd(Xg)) be the first barycentric subdivision of X (resp. of Xg).
This is the flag complex attached to the poset F/(X) (resp. F'(Xg)). Since jsimp
is increasing, it induces a G g-equivariant simplicial map sd(Xg) — sd(X).

(I.2.2) Proposition. The map jsimp: sd(Xg) — sd(X) induces jg on the
geometric realizations.

Proof. Let us denote by jsq the map Xp — X induced by jsimp on the geometric
realizations (constructed with standard affine simplices). By construction jsq is
affine and G g-equivariant. By unicity in Theorem (I.2.1), it must coincide with

JE-

In the sequel we shall use the language of hereditary orders instead of simplices.
In particular a g-simplex o in sd(X) is a strictly decreasing sequence of orders
o= DA D...DA). The map jg = jsimp i then given by

JE(Bo D B1 D ... DBy = (A(Bo) DA(B1) D ... DA(B,)).
We shall also see sd(Xg) as being embedded in sd(X) : jg is now an inclusion.

The map jg enjoys another property that is not proved in [BL]. Recall that
X g and X have invariant metrics which are unique up to a > 0 factor. Since
G (resp. Gg) acts transitively on the apartments of X (resp. of Xg) fixing a
metric on X (resp. on Xg) amounts to fixing it on one of its apartments.

(I.2.3) Proposition. There exist normalizations of metrics on Xg and X such
that the map jg is an isometry.

Proof. By invariance it suffices to prove that the restriction of jg to some
apartement Ap of Xp is an isometry. By [BL](5.1), jg(Ag) is contained in an
apartment A of Xg. Set n = Dimg (V') and consider R™ and R™/EF] aquipped
with their standard euclidean structures. Then by the proof of Lemma (4.1) of
[BL], one may choose the apartment A and metrics on X g and X such that :

— A identifies to the orthogonal of (1,1,...,1) in R"

— Ag identifies to the orthogonal of (1,1,..,1) in R™/[F+F]

— the map jg is given by the restriction of the following linear map:

J ot RYEFL S R (2, o tymr) = (@0)€ 4 1) izt n)(B2F), =1, F)

where e is the ramification index of E/F and the u; are some real constants. It
is clear that up to a scalar J is an isometry. Our result follows.
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I.3 Some properties of the embedding sd(Xg) — sd(X).

We keep the notation as in (I.1) and (I.2). We need first some more notation
and facts on orders. If 2 is a hereditary op-order in A, then its multiplicative
group is a compact open subgroup of G that we denote by U (2() (this is indeed
a parahoric subgroup of G). Let B be the Jacobson radical of 2. Then the
quotient A/ is a semisimple IF-algebra, where IF is the residue field of F'. In
particular the multiplicative group (2(/3)* is the group of IF-points of a product
of general linear groups defined over IF. The subgroup U! (1) = 1+ of 1-units is
a normal subgroup of U (2() and the quotient canonically identifies with (24/53)*.

For 9B a hereditary order in B, the symbol N (B) denotes the normalizer of B
in Gg, while if 2 is a hereditary order in A, N (2l) denotes the normalizer of 2
in G.

(I.3.1) Lemma. For any hereditary order B in B, we have

Proof. Let (Ly)recz be an og-lattice chain in V' defining B. Let vy ) : A — Z
be the the valuation map given by

va(a) = miff a € P\P"T . meZ

where B is the radical of A(*B). Write vy for the similar map B — Z defined
by the powers of the radical of 8. From [BK1]§1, we have

(1.3.2) (va)|p = v and N (A(B)) NG = N(B).
Let tZ, t > 0, be the image of the group homomorphism
vy N(A(B)) — Z.

Then N(A(B)) = 22U (A(B)) for any z in N(A(B)) with A-valuation t. A
similar statement holds for N (8). Now from [BF] one knows that ¢ is the
smallest positive period of the map k +— dimgLy/Lg11. So t is also the smallest
positive period of k — dimg, Ly /Lj+1, where IFg is the residue class field of E.
Together with (I.3.2) this implies that we can actually choose z in N'(B) and
the result follows.

(1.3.3) Lemma. Leto = (B D ... D B7) and 7 = (BF D ... D BY) be
two q-simplices in sd(Xg). Assume that o = gt for some g € G. Then there
exists gg in Gg such that o = gg7. In particular any g as above can be written
9 = grgr with gg € Gg and g, € Stabg(7).
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Proof. First we need to recall the classification of conjugacy classes of hereditary
orders in A (cf. [BF] or [Rei]). Let 2 be such an order and let (Ly)kez be a
lattice chain in V' defining . To 2 we attach the sequence of integers d(2); =
dimgLy/Lgy1, kK € Z. Then two hereditary orders 21, 2 are conjugate if and
only if the sequences d(2l;) and d(2(3) coincide up to a translation of the indexing.
We use the notation dg for the sequences attached to hereditary orders in B. If
B is such an order, attached to an og-lattice chain (Lg)kez in V, we have:

d(A(B))r = [Fg : Fldg(B); , k € Z.
We deduce:

(1.3.4) Let By and By be hereditary orders in B. Then they are G g-conjugate
if and only if the orders A(B1) and A(Bz) are G-conjugate. In other words
Lemma (1.5.3) holds when q = 0.

Now let us turn to the general case. By using (1.3.4), we may replace T by a
conjugate under Gg so that B7 = B7 =: B,. By assumption there exists a g €
G such that A(B7) = A(BT)9 for i = 0,...,¢. In particular A(B,) = A(B,)?,
and, thanks to (I.3.1), we may, by replacing 7 by a Gg-conjugate, assume that

o=g7 , By =B =B, and g € U(A(B,)).

But then g € U((%8;)) for any i = 0,...,q which means that g fixes 7, i.e.,
that o = 7.

It is not possible to characterize the image of sd(Xg) using numerical invariants
attached to simplices. But we are going to give a criterion for a simplex of sd(X)
to belong to:

X(E):= | gsd(Xp) .
geqG

Here sd(Xg) is of course seen as being embedded in sd(X).

Let (Lk)rez be an op-lattice chain in V' and 2 be the attached order in A.
Write e = e(2) for the period of 2. The sequence of positive integers defined by
d(), = dimgLy /Ly is e-periodic and we have the partition:

n=dimV =d@®)+ ...+ dA)e_1 .

We denote by p(2l) the least positive period of (d(2A)x)recz. We can rephrase
[BK2] Prop. (1.2) as follows.

(I.3.5) Proposition. The order 2 has a conjugate normalized by E* if and
only if the following assertions hold:

i) f(E/F) divides d() for all k € Z;
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it) e(E/F) divides e(A)/p(2).

In other words the vertices of sd(X) which are in X (E) are exactly those vertices
which correspond to hereditary orders 2 satisfying conditions (i) and (ii).

We remark that the simplicial complex X (F) is not simply connected in general.
For instance take G = GL(4, F) and E/F quadratic unramified. Then sd(Xg)
is the building of Gg = GL(2, F') which is 1-dimensional. Using the criterion of
(I.3.5), we get that any vertex of X belongs to X(E). On the other hand the
barycenter of an edge in X attached to a 2-periodical op-lattice chain (Ly)rez
in V lies in X(F) if and only if dimg(Ly/Li+1) = 2 for all k. Any given
chamber of X therefore has exactly two opposite edges oy and o; that lie in
X (F). If we consider all chambers in an apartment of X which contain oy then
the corresponding edges opposite to oy form a cycle in X (E).

II. Simple characters and their endo-classes

Here we recall some basic facts about simple characters. References are to be
found in [BK1] and [BH]. We continue to use the notation of (I).

I1.1 Simple pairs and their realizations.

Recall that a simple pair [0,] ([BH](1.5)) is a finite field extension E/F,
equipped with a generator 5 (i.e. E' = F((3)) and satisfying the following con-
ditions:

(SP1) B & o,
(SP2) k,(8,A(E)) < 0 (cf. [BK1]§1).
For each finite dimensional E-vector space V, and for each B € Her(B), we

have a simple stratum [2A(8), nsy, 0, 5] in A, called a realization of [0, 8] ([BH]
p. 133). Here ng is the valuation of 5 € A with respect to 2A(B).

Attached to [2((B), nw, 0, 5] (so to [0, 8], V and B), we have the following data:

— Two open compact subgroups of G: U(B) C H'(B) C JL(B) C U(A(B));
they are both normalized by N ().

— A finite set of simple charactersC($B) = C(21(B), 0, 8) of H*(B); each character
in C(B) having a G-intertwining given by J'(B)GgJ!(B).

— Moreover, for each 8 € C(8), there exists (up to isomorphism) a unique
irreducible representation 7(f) of J*(B) such that 7(6)|g1 () contains 6. The
intertwining of 7(0) is again J!(B)GgJ!(B) and the representation Indﬁl(?;))Q

is a multiple of 7(#).

In addition we need the degenerate simple characters ([BK1] p. 184). To have a
uniform notation we in this case set F := F and B := A; for any B € Her(B) =
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Her(A) we let H'(B) := J1(B) := U(B) and let C(B) denote the one element
set consisting of the trivial representation 11 (g3 of H'(B).

If we need to keep track of the E-vector space V we some times write H(V,B),
JYH(V,B),C(V,*B) instead of H'(B), J1(B),C(B), respectively.

I1.2 Potential simple characters ( cf. [BH] §8).

Let [0, ] be a simple pair and V;, V5 be two finite dimensional E-vector spaces.
Write B; = EndgV;, A; = EndgV;, 1 = 1,2. For i = 1, 2, fix a hereditary order
B, € Her(B;). Recall ([BK1] (3.6)) that we have a canonical bijection (called a
transfer map):

TB1,B5,8 + C(Vi, %1) — C(Vé, %2)

These transfer maps satisfy the properties:

. _
TB1,8B2,8 = Tw, 3,8 0 781,83,8 = T81,B2,8 © T82,B3,5-

Write R, 5] = JC(V,B), where C(V,B) runs over the sets of simple characters
attached to all possible realizations of [0, 3]. We say that 6, 05 € R[],
attached to (V;,B;), i = 1,2 are equivalent if 62 = T, o, 301. This is indeed
an equivalence relation and the equivalence classes are called potential simple
characters (or ps-characters) supported by [0, A].

In addition we let all possible degenerate simple characters form a single class
which will be called the degenerate ps-character.

Remarks. (i) To be given a ps-characters amounts to fixing some 6 € C(V,B) in
some realization.

(ii) A ps-character © may be seen as a function of the pairs (V,B): to (V,B) we
attach the simple character 6 € © that lies in C(V,®8). We shall also say that
O(V,B) is a realization of © associated to (V,B).

I1.3 Endo-classes of ps-characters (cf. [BH|§8).

Let ©;, for ¢ = 1,2, be two ps-characters. Then each ©, is either supported
by a simple pair [0, 3;] (with E; := F(f;)) or is degenerate (with £ := F).
We say that two realizations ©1(V1,81) and O5(V3,B2) are simultaneous if
[Eq : F] = [E5: F| and if the F-vector spaces Vi and V5 are the same.

(I1.3.1) Definition ([BH](8.6)). Two ps-characters ©1 and O are called endo-
equivalent, denoted ©1 ~ O, if there exist simultaneous realizations ©1(Vy,B1)
and O5(Va,B9) that intertwine in AutpV, where V.=V, = V5. We shall sum-
marize this condition by saying that ©1 and O2 intertwine in some simultaneous
realization.

The following proposition shows that ~ is indeed an equivalence relation.
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(I1.3.2) Proposition (cf. [BK1|(3.6) and [BH] pp. 154-157). (i) If © is a
ps-character then any pair of simultaneous realizations of © intertwine.

(ii) If ©1 and Os are ps-characters, they intertwine in some simultaneous real-
1zation if and only if they intertwine in any simultaneous realization.

A class for ~ is called an endo-class of ps-characters.

We shall need the following two facts.

(I1.3.3) Proposition ([BH] (8.11)). Let ® be an endo-class of non-degenerate
ps-characters and © € O supported by [0, 3]. Then the following integers only
depend on ©: k.(8,A(F)), ve(B), e(E/F) (ramification index) and f(E/F)
(inertial degree).

(I1.3.4) Proposition ([BK1] (3.5.11)). Let ©® be an endo-class of ps-characters
and O1, Oy € O. Let 6 = O1(V1,B1) and 0y = O5(V2,B3) be simultaneous
realizations. Assume that A(B1) = A(B) =: A. Then there exists x € U ()
such that 02 = 07 .

ITI. Ps-characters and pairs of orders

II1.1 Extensions to mixed groups.

We fix a simple pair [0, 5], a ps-character © supported by [0, 3], as well as a
finite dimensional E-vector space V. We keep the notation as in (I) and (II).

The ps-character © gives rise to a function 6; it maps an order 8 € Her(B)
to the simple character 0(B) = O(V,B) of C(B). For each B € Her(B), let
n(B) = n(V,B) be the Heisenberg representation of J*(8) which contains 6(B)
when restricted to H!(B).

For each pair of hereditary orders B, C B in Her(B), we have U(81) C U(*85)
and U (By) C UL(B,). Since U (B1) C U(B>) and U(B,) normalizes J (B),
one may form the group

T (B, Bs) = UL(B1)J*(Bs).

(I11.1.1) Proposition ([BK1](5.1.14-16), (5.1.18), (5.1.19)). There exists a
unique family of irreducible representations {(J'(B1,B2),n(B1,B2))}s,cs,
(determined up to isomorphism) which extends {n(B)}x in the following sense:

(i) n(*B,B) = n(*B) for any B in Her(B);
(ZZ) 77(531,532)‘]1(%2) =~ 77(%2) fO’f’ all 531 - %2 m Her(B);
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(iii) the following induced representations are irreducible and equivalent:

LB LA
Ind(jl((%g) Di(B1) =~ Ind(jl((%gﬂ%lxn(%l’%) '

Moreover we have:

(iv) The compatibility condition: n(B1,B3)|51(m,,3,) = 1(B2,Bs), for any
triple B, C By C B3 in Her(B);

(v) the intertwining formula:

Zo(n(B1,B2)) = JH(B2)GrJ " (Bs) -

Note that the representation
U'(A(B
N(A(B)) = n(V, A(B)) = Ind, (31 'n(B)
is irreducible for all 8. Its intertwining is given by

Te(n(A(B)) = U (A(B)GpU" (A(B)) -

(II1.1.2) Proposition. For all g in Gg and B1 C Ba, we have [J1(B1,B2)]9 =
JY(BY,89) and the representations n(B1,B2)? and n(BY,BY) are isomorphic.

First we need the following result. Let V'’ denote the F-vector space V equipped
with a possibly different E-vector space structure. We then find an element = €
G such that B’ := EndgV’ satisfies B’ = B* := xBz~! and hence Her(B') =
{B” : b € Her(B)}.

(I11.1.3) Lemma. a) For any B € Her(B) we have:

i) HY(V',8%) = HY(V,8)% and JY(V',B%) = JYV,B)~.

ir) If § € C(V,B), then 0% € C(V',B").

b) For g € Gg and B € Her(B) we have 0(8)9 = 0(BY).

Proof. The point a) follows immediately from the inductive definition of simple
characters and groups (cf. [BK1] §3).

We need to recall the characterization of the transfer maps 793, 9, s for a pair
of orders B;, i = 1,2, in Her(B) ([BK1](3.6)): If 6; € C(*B;), i = 1,2, then
02 = T3, 3,801 if and only if 1 € G g intertwine 6; and 05.
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Consider the two characters #(89) and 0(8)9 of H'(8Y). Since g intertwines

0(B), we must have 0(B){y w)nmi(msy = 0(B) i (w)nm (ms)- So 0(B)? €

C(BY) coincides with 7 99, 3(6(B)), that is with §(B9) by definition of ©.

Turning to the proof of Proposition (II1.1.2) the Gg-equivariance of the family
{(J1(B1,B2),n(B1,B2)) }»,cm, follows now from that of {0(°B) }sener(B) by

a unicity argument.

I11.2 Extensions to 1-units of orders.

We now quote some properties of the representations n(A(8)). In the following
we abbreviate 2(8,) = 2, for any subscript “x”. Let 8; C B be hereditary
orders in B.

We first note that
JY(B1,B,) CUNDB)U N (A) C U AL) .
So we can consider the irreducible representation

1 1
77(2[1, 912) = Ind(jl ((§117)§2)(9[2)77(531, ’BQ) .

(I11.2.1) Proposition a) The representation n(Ay,2As) satisfies
(i) n(A1, Aa) o1 () = n(Az);

. Ut (A
(1i) IndUlg%ll))Ul(%)n(Qll, As) ~n(2Ay).

b) Moreover for any triple of hereditary orders 81 C By C Bs, we have

n(A1, A3) |01 (1,)01 (25) = N(™A2,A3)

Proof. Assertion a) (ii) is a consequence of Proposition (III.1.1)(iii). We must
prove b). By Mackey’s restriction formula and since the double quotient

UH(B2)U (A)\U (B1)U (As) /U (B1) T (B3)
is reduced to one element, we get that the restriction in b) is

U (82) U (215) _ gV (B0 @)
Indirs(o.).71(9)00 (92)0 (215) 1B Bs) = Il o5, 11, 1(B1, Bs)

Now the result follows from Proposition (III.1.1)(iv).
I11.3 The degenerate case.
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The constructions of (III.1) and (III.2) trivially extend to the case where © is
the degenerate ps-character. Indeed, in that case, we set £ = F and for all pairs
of orders B; C By in Her(B), we set:

- Jl(%l,%g) = Ul(%l)Ul(%g) = Ul(ﬂl)Ul(ng) = Ul(Qll);
= n(B1,B2) = n(2A1,A2) = 1y (a,)-

IV. The coefficient system on sd(Xg)

As in the previous section, we fix a ps-character ©. It is either degenerate
(E := F) or supported by a simple pair [0, 5] (E := F(5)). We also fix a finite
dimensional F-vector space V.

Let V be a smooth complex representation of G = AutgV. In a first step, we
are going to construct a Gg-equivariant coefficient system C,(V) = C,(0,V,V)
on sd(Xg). We shall first construct this coefficient system on the stars of the
vertices of X and then extend it to any simplex.

We call a simplex 0 = (B D ... D B,) semistandard if it belongs to the star of

some vertex in X g, that is if B is a maximal order.

(IV.1) Definition. i) For any semistandard simplex o0 = (Bg D ... D B,) of
sd(Xg), we set

V(o) = Y1(Bg:Bo) ’
the n(By, Bo)-isotypic component of V.

i1) For an arbitrary simplex o of sd(Xg), we set

V(o) = > V(7).

T semistandard, Do

(IV.2) Proposition. i) The previous definition is consistent.
ii) For any pair of simplices o,7 of sd(Xg) with o C 7, we have V(1) C V(o).

Proof. We only need to prove the second assertion in the case of semistandard
simplices o, 7. Suppose therefore that o = (B9 D ... D B,) is semistandard.
The stars of two distinct vertices being disjoint, the simplex 7 must then have
the foom 7 = (By D ... D B,) containing (By O ... D B,) as a subflag.
By (IIL.1.1)(iv), we have 1(B,., Bo)|J* (B,, Bo) = n(B,, Bo). So V1(E~To) C
VY1(Ba:Bo) and the result follows.

By taking inclusions as transition maps, the family C,(V) = (V(0)),, o running
over the simplices of sd(Xg), is then a coefficient system of C-vector spaces over
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(IV.3) Proposition. For the obvious action of Gg on the V(o), o simplex of
sd(Xg), Co(V) is naturally endowed with a structure of G g-equivariant coeffi-
cient system.

Proof. We must prove that gV (o) = V(go), for all ¢ € Gg and o simplex of
sd(Xg). Also we may clearly reduce to the case where o and 7 are semi-standard.

Let 0 = (By D ... D B,) be semistandard and g be in Gg. Then go = (B D
... D BY) and

g]}(g) = gyn(%qv%o) and V(ga) — Vn(‘Bg,‘Bg) ‘

By (II1.1.2), this last vector space is V(P4 B0)’  Now our result follows from
the following observation. Let (K, p) be a smooth irreducible representation of
a compact open subgroup K of G and let g € G. Then gV? = V*’, where p9 is
the representation of K9 = gKg~! given by p9(k) = p(g~'kg).

V. The coefficient system on sd(X)

We keep the notations from the previous sections. As in (I) we see sd(Xpg) as
a subcomplex of sd(X). We are now going to construct a coefficient system

C(V)=C(0,V,V) on sd(X).

For any subscript “«”, we shall write 2, for 2A(*8,). In particular, if (B9 D ... D
B,) is a flag of orders in Her(B) then (B D ... D By), (A(Bo) DO ... D A(By))
and (g O ... D A,) denote the same object, i.e. a simplex of sd(Xg) seen as a
simplex of sd(X).

We shall need the two following lemmas.

(V.1) Lemma. Let (p, W) be a smooth irreducible representation of some com-
pact open subgroup K C G and let VP denote the p-isotypic component of V.
Then VP is invariant under any subgroup of Ng(K) which intertwines p.

Proof. Let v € V# and g € G be an element normalizing K and intertwining
p. By definition, there exist ¢ in Hom,(W,V) and w € W such that v = p(w).
Since gKg~! = K and p? ~ p, and since p is irreducible, there must exist an
intertwining operator ¢ € Aute(W) such that p9(k) = v~ Lop(k)op, for all k €
K. Tt easily follows that g ~! belongs to Hom, (W, V). So gv = [gety™](¢(w))
and gv € VP, as required.

(V.2) Lemma. Let H C K be compact open subgroups of G. Let ny be

an irreducible smooth representation of H and assume that ng = IndgnH 18
irreducible as well. Then V1% = KV"H
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Proof. Let ® € Hom(ng, V). We may see ng as an H-submodule of 1 so that

k= B knu -

keK/H

So
(nk) = Z k®(nm)

keK/H

with ®(ngy) contained in V" since ® is H-equivariant. This gives the inclusion
YiE C KV Conversely, since the smooth representations of H are semisimple,
V"H decomposes into a direct sum

Vi =i,
iel
each V; being isomorphic to g as an H-module. Now each K.V; C V is isomor-

phic to nx as a K-module and the opposite inclusion follows.

(V.3) Definition. For o a semistandard simplex in sd(Xg), we set

Vo= >  gV(e)CV.

g€EStabg (o)

(V.4) Lemma. Leto = (B D ... D By,) be a semistandard simplex of sd(Xg).
Then

Stabg (o) = EXU(2,) .

Proof. The group E*U(2,) certainly normalizes (8o D ... D B,) = (Ao D
... D 2,) and lies in Stabg(o). Conversely if g € Stabg (o), then g normalizes
the principal order 21y and must lie in its stabilizer which by (1.3.1) is equal
to EXU(p). Write ¢ = Ah, with A € EX and h € U(2). Since A is in
N@,) = N(B,)U(,), so is h. Now h must be in the maximal compact
subgroup of N (B,)U(2,), that is U(2,), and the lemma follows.

(V.5) Proposition. Let 0 = (By D ... D B,) be a semistandard simplex of
sd(XEg). Then:

Vo = > W)=Y g,
geU(Ag) /U (B 4)J (Bo) geU(2Ay) /Ut (2Ay)

Proof. The subgroup U(B,)J!(By) normalizes J*(B,, Bo) = U (B,)J (Bo).
Moreover it intertwines 1(B,,Bo) by (II1.1.1)(v). As a consequence of (V.1),
(V.4), and the definition of V(o) we therefore obtain the first equality in

Vo = > gV(o) = > gv(o) .

EXU(Aq)/U(Bq)J (Bo) U(Rq)/U(Bq)J (Bo)
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The second one is immediate from the fact that E* stabilizes V(o). Now,
using (II1.1.1)(iii), we may apply (V.2) with H = J'(B,,B), K = U'(2,),
na = 1n(By, Bo), nx = n(A,) to get the second equality in the proposition.

(V.6) Proposition. Let o and T be semistandard simplices of sd(Xg) with
o CrT. Then V; CV,.

Proof. Writeo = (Bp D ... D B,)and 7 = (By D ... D B, ), with By maximal.
By (IV.2)(ii), we have V(1) C V(o). Moreover U(2(,) C U(2,). Our inclusion
follows now from the first equality in (V.5).

(V.7) Proposition. Let o and 7 be semistandard simplices of sd(Xg), and
assume that T = go for some g € G. Then gV, = V.

Proof. Write 0 = (B§ D ... D> B7) and 7 = (Bf D ... D B7). Using (1.3.3), we
can decompose ¢ as grJ,, 9g € GE, go € Stabg (o). By construction we have
9o Ve =V,. So gV, = gpV,. We get:

Vo= Y. 98995 985V(0).
geU(A(BY))

By (IV.3), we have ggV (o) = V(7), and it follows that

Vo= > hV(r).

heU(A(B9))E

Now the result follows from the G'g-equivariance of the map B — U((B)) and
from the definition of V.

(V.8) Definition. A simplex of sd(X) is called E-semistandard if it is conjugate
to a semistandard simplex of sd(Xg). We define a vector space V,, for each
simplex o of sd(X), as follows:

i) If o0 = gt, for T semistandard in sd(Xg) and g € G , then V, = gV
it) If o is an arbitrary simplex of sd(X), then

VO‘ = Z VT .

7 E—semistandard,7Do

(V.9) Proposition. i) The previous definition is consistent.

it) For any pair of simplices o C 7 of sd(X), we have V. CV,. In particular, by
taking inclusions as transition maps, the collection C(V) := (Vy)o is a coefficient
system of C-vector spaces on sd(X).

i11) For the obvious action of G, the coefficient system C(V) is equivariant.
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Proof. 1) By (V.7) the definition of V, in (V.8)(i) does not depend on the choice
of g.

To prove that the definition (V.8)(ii) is consistent, we must prove that if o and
7 are F-semistandard simplices of sd(X) satisfying 7 O o, then V, CV,. Write
0 = go,, T = h1, with gh € Gand o, = (B D ... D By), 7 =( D ... D
¢,) semistandard in sd(Xg). By definition V, = gV, and V, = h)V,, .

The hypothesis 7 2 o implies B; = g~ h€;(;) for some j(0) =0 < ... < j(q) <
r. By (V.6) and (V.7), we have

V= hVTO = hv(@gj...j@,n) - hv(éj(o)j...DQ = hh_lgvao = gvao =V .

(@)

ii) We can obviously reduce to the case where o and 7 are F-semistandard, and
the inclusion has just been proved in i).

iii) We must simply prove that gV, = V., for any simplex o of sd(X) and
g € G. We may reduce to the case where ¢ is F-semistandard where the result
follows trivially from the definition of C(V).

By construction the coefficient system C(V) is supported on

X(B) = | gsd(Xp)
geG

viewed naturally as a simplicial subcomplex of sd(X). But C(V) has the following
additional constancy property.

(V.10) Proposition. Let the verter o, = (B) in sd(Xg) be the barycenter
of a simplex o of Xg; then V, = V,_ for any simplex o in sd(Xg) such that
o, Co Co.

Proof. Put 2 := A(B) and

Vom Y g

geUuR)/Ut(A)

If o is semistandard then V, =V, by (V.5). Consider therefore the case that
o= (BoD... DB, with B, = B is not semistandard, and let 7 be any E-
semistandard simplex in sd(X) such that 7 O 0. We have to show that V. C V,.
Write 7 = g7, with g € G and 7, = (€ D ... D €,.) semistandard in sd(Xg).
By (I.3.3) we may assume that 70 2 g~'o = 0. We then have B; = €;;) for
some 0 < j(0) < ... < j(q) < r. Since 7 is semistandard whereas ¢ is not the
order € is maximal but By is not. This means that 0 < j(0). It follows that
71 = (€ D By D ... D By) is a semistandard simplex in sd(Xg) such that
0 2 71 2 0. Hence 7 = g9 D g7 2 go = o. Since 7 O g7 both are E-
semistandard we know from the proof of (V.9)(i) that V. C V.. On the other
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hand, by (1.3.1) we may write g = hg’ with h € N(8) C Gg and ¢’ € U().
We obtain that gm = h7y in fact is semistandard in sd(Xg). Using (V.5) we
conclude that V. C Vyr, = Vi, = V.

This result is best expressed in the following way. The simplicial structure of
Xg (before subdivision) can be described in terms of the simplicial structure of
X as follows: The interiors o of simplices o of X are precisely the (nonempty)
subsets of the form 7° N X g for some simplex 7 of X.

Suppose now that o1, 0y are simplices of Xz such that
g(a1)°N(o2)°#0  for some g € G .

Write (0;)° = (7;)° N Xg with simplices 7; of X. Then ¢(71)° N (72)° # 0 and
hence g7; = 7o since the G-action on X is simplicial. In particular, g maps the
barycenter of 77 into the barycenter of 75. Since both barycenters lie in Xp we
conclude from (I.3.3) that there also is an element gp € G which maps the
first barycenter into the second one. It follows that ggoy = 02 and ggT1 = To.
Hence gggl fixes 7o and, by (I.3.1) applied to its barycenter, can be written
ggjg1 = hgh with hg € G fixing 5 and h € G fixing 75 pointwise. We obtain

9(61)° = 995" (02)° = hph(52)° = hp(d2)° = (52)°

¢ From this fact one deduces in a straightforward way that X (F) carries a simpli-
cial structure where the simplices are the subsets of the form go for o a simplex
of Xp and g € G. We write X [E] for X (F) equipped with this simplicial struc-
ture. Similarly as for Xpg the interiors of simplices of X [E] are the nonempty
intersections 7° N X [E] for 7 running over the simplices of X. The barycentric
subdivision of X[E] is X (E).

The Proposition (V.10) (together with G-equivariance) says that C(V) in an
obvious way derives from an equivariant coefficient system C[V] = C[O,V, V] :=
(V[o])s on X[E] given by

V(o] := Z th"(m)

geUuR)/Ut(A)

for any simplex o of X[E]| where o is the image under some h € G of a simplex
of Xp with barycenter (8) and where 2 := 2A(B).

VI. The degenerate case

We recall that in the degenerate case we have E = F, B = A, H'() = J}(A) =
UL(R), and 0(A) = n(A) = 1. The coefficient system C(V) = (V,)o on X
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associated with a smooth complex representation V of G is given by the fixed
vectors

V, = VU@ for o = F(2).

This is precisely one of the coefficient systems considered in [SS] (namely the one
corresponding to “level” n = 1). From loc. cit. we therefore have the following
result.

(VI.1) Theorem. The oriented chain complex of C(V) is an exact resolution in
the category of all smooth complex G-representations of the subrepresentation of
V generated (as a G-representation) by VU ) for some vertex F(y). More-
over, if the center of G acts on V through a character x then this resolution is
a projective resolution in the category of smooth G-representations with central
character x.

VII. Dependence on the endo-class

We fix a finite dimensional F-vector space V. Let ©,, for ¢ = 1,2, be two ps-
characters with simultaneous realizations in A = AutgV. So for each 7 we are
in one of the following cases:

1) The ps-character O, is supported by a simple pair [0, 5;] and V' is an E;-vector

space, where F; = F'(3;), and as such will be denoted by V;. Following previous

notations we have the centralizer B; of F; in A, the centralizer G, of EiX in

G = A*, the affine building Xg, of Gg,, and X[F;| = U 9X g, equipped with
geG

the simplicial structure defined in (V).

2) The degenerate case.

(VIL.1) Lemma. If ©; and ©y are endo-equivalent then X[E1] = X[E3] as
sets and simplicial complexes.

Proof. 1t suffices to prove that the barycentric subdivisions X (F) and X (E>)
coincide as simplicial subcomplexes of sd(X). Being the fixed points sets of
groups acting simplicially on sd(X) they are full subcomplexes. Hence they
coincide if they have the same vertices. For i = 1,2, a vertex () of sd(X) lies
in X(FE;) if and only if the order 2 € Her(A) satisfies the numerical criterion of
(1.3.5). But by (I1.3.3), since ©; and O4 are endo-equivalent, we have f(F,/F) =
f(Es/F), e(E1/F) = e(E3/F) and the numerical criteria for X (F;) and X (E3)
are the same.

(VIL.2) Proposition. Let V be a smooth representation of G. If ©1 and ©-
are endo-equivalent, then the two coefficient systems C[O;, V;, V] coincide.
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Proof. If ®; and ©5 are endo-equivalent, then they are both supported by
simple pairs or are both degenerate. In this latter case the coefficient systems
in question coincide for trivial reasons. So we may assume in the following that
©;, for i = 1,2, is supported by a simple stratum [0, 3;] and use the notations of
case 1). Recall that the ps-character ©; gives rise to the simple character valued
function 0, := ©;(V;,.) on Her(B;). We write 7;(V;,.) for the representations
corresponding to 6; which were introduced in (II1.1).

We now fix a simplex o of X[E;| = X[F»] and write 0 = h;0; with h; € G and
o; a simplex of Xg,. Let (98;), for B; € Her(B;), be the barycenter of o; and
put A; :=A(*B;) € Her(A). We have to show that the identity

() gy =m0 Y gy

geU(RU1)/Ut (A1) geU(RU2) /Ut (As2)

holds true. Since A}* and AL both correspond to the barycenter of o they are
equal. Hence setting h := hl_lhg the above identity can equivalently be written

as
Z gvm(\/i,%h) — Z ghvng(VQ,%) )
geU(R1) /Ut (A1) geU(RUy) /Ut (A1)

It therefore suffices to find an z € U(2ly) such that
m(Vi, 21)" 22 (Va, 2g)" .
For this in turn it certainly is sufficient to show that
01(B1)" = 02(B5)" .

Let VJ* be the F-vector space Vo = V with the new Es-vector space structure

given by Es > Endg, Vs ™5 EndpV. By (IIL1.3)(a) we have O (Va, Bo)" €
C(VJ,9B%). Hence there is a unique ps-character ©% supported by [0, 32] such
that ©4(VJ, BL) = O9(V2,B2)". Obviously Oz(Va,Bs) and O4(VH BL) are
simultaneous realizations which intertwine in G. Therefore ©, and ©% and
hence ©; and O} are endo-equivalent. Since A(BE) = AL = A, = A(B;) we
may apply (I1.3.4) to ©; and ©F and obtain an x € U(2l;) such that

©1(V1,B1)" = O (V', BE) = 0,(V5,B2)" .

VIIL. On the support of C(©,V,V).

We fix a simple type (J, A) in the sense of [BK1](5.5.10). Recall that this means
one of the following two possibilities.
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(a) There are given a simple pair [0, 5], an E-vector space V where E := F(f3),
and a principal order B, in Her(B) where B := EndgV. The representation
A of the group J := J(B,) := JL(B,) - U(B,) is of the form k ® p, where x
is a [-extension to J of a simple character 6, € C(V,B,) (cf. [BK1](5.2.1))
and p is the inflation of an irreducible cuspidal representation of J/J!(B,) of
the following kind. Recall that J/J'(B,) identifies with GL,, /.(IF5)*¢, where
n := dimgV, e is the period of the og-lattice chain corresponding to B,, and
IF z denotes the residue class field of E. Then the condition on p is that, as a
representation of GL,, /.(IFg)*¢, it is of the form p2¢, where p, is an irreducible
cuspidal representation of GL,, /. (IFg). We let ©, denote the unique ps-character
supported by [0, 5] such that ©,(V,B,) = 6,.

(b) We are in the degenerate case. There is given an F-vector space V and a
principal order A, in A := EndgV. The representation A of the group J :=
J(,) := U(2,) is the inflation of an irreducible cuspidal representation of
U(2,)/U*(2,) of the following kind. We have U(,)/U* (o) = GL,, /¢ (Fp)*¢,
where n := dimpV and e is the period of the og-lattice chain corresponding to
2,. Then \ = p%¢ for some irreducible cuspidal representation p, of GL,, se(Fp).
In order to have a notation consistent with the case a), we set £ := F, B :=
A, B, = Uy, k= 15, 0, := Ly, p = A, and we let O, denote the
corresponding degenerate ps-character.

Let R(G) denote the category of smooth complex representations of G :=
AutpV. Recall that the full subcategory R )(G) whose objects are the repre-
sentations generated by their A-isotypic component is stable under the formation
of subquotients. It coincides with a Bernstein component of R(G) attached to
a single point in the Bernstein spectrum of G (cf. [BK1] and [BK3](9.3)).

Throughout this section we fix a nonzero representation V in R »)(G).

Remark. The coefficient systems C,(0,,V,V) and C(0,,V,V) are nonzero.

Proof. Choose a maximal order 8 in Her(B) containing B, so that o := (B D
B,) is a semistandard simplex of sd(Xg). It is a consequence of (ITI.1.1)(iii)
that V(o) and V%) generate the same U (2A(B,))-invariant subspace of V. But
the latter contains the isotypic component V* which is nonzero by assumption.

VIII.1 Endo-classes.

Let © be an arbitrary ps-character which can be realized in an E’-vector space
V'’ which as an F-vector space coincides with V. We assume that ©' is either
degenerate or supported by a simple pair [0, §]; in particular £/ = F or £’ =
F(p"). Let B’ := Endg/(V’) and let n(...) = n(V’,...) denote the various
representations attached to ©" and V' as introduced in (IIL.1).

(VIIL.1.1) Lemma. Assume that there exists € € Her(B’) such that V con-
tains the simple character ©'(V',&y). Then there exist a € € Her(B'), a f'-
extension k' of the Heisenberg representation n(€) attached to © (V' &), and
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an irreducible cuspidal representation p’ of the F g -reductive group U(€)/U(€)
such that V' contains the representation k' ® p’ of J(€).

Proof. (This fact actually is a consequence of the proof of [BK1](8.1.5), p.
268/269. We shall nevertheless give the argument, for the context of loc. cit. is
slightly different.)

Take € minimal among the orders of Her(B’) such that V contains ©'(V’, ).
Then V must contain the Heisenberg representation 7(€) associated to ©'(V’, €)
and a fortiori an irreducible representation A of J(€) such that )\1 J1(¢) contains
n(€). By [BK1](5.2.2) such a representation )\ is of the form N = k' ® p’, where
k' is a ('-extension of n(€) and p’ is (the inflation of) an irreducible represen-
tation of J(&)/J'(¢) = U(€)/U(¢). It remains to prove that the minimality
condition on € implies that p’ is cuspidal. Assume therefore that p’ is not cus-
pidal. Then there exists a proper parabolic subgroup P of U(€)/U*(€), with
unipotent radical U, such that p{u contains the trivial character. There is a
uniquely determined hereditary order €; C € such that IP (resp. U) is the im-
age of U(€;) (resp. U'(€;)) in the quotient U(€)/U'(€). Since IP is proper,
the containment €; C € is strict. Let n(€;) be the Heisenberg representation
associated to ©’(V’, €;). We show that V contains 7(€;), hence also ©'(V’, &),
which contradicts the minimality assumption on €.

The representation V' contains

(K" @ p')jor(en @) = Kuien i@ © Plute) (o)

which contains

’ifUl(&)Jl(C) ® Ly (e i) = “fUl(cl)Jl(e) .

Hence our claim follows from [BK1](8.1.6) which says that the representations
of U(2(€,)) induced by 7(€;) and KT U1 (ey)1 () are irreducible and equivalent
to each other.

(VIII.1.2) Proposition. If the coefficient system C(©', V', V) is nonzero then
the ps-characters © and ©, are endo-equivalent and C[O', V' V] = C[O,, V., V].

Proof. The second part of the assertion is a consequence of the first part by
(VIL.2). If C(©',V’,V) is nonzero then there is a vertex (€) of sd(Xg/) such
that V1(2(®) £ 0. Let v be a nonzero vector in this isotypic component, let
Vo be the G-subrepresentation of V generated by v, and let V; C V), be the
largest G-subrepresentation which does not contain v. Then Vy/V; is an irre-
ducible G-representation in the category R(sx)(G). By construction we have
(Vo /V1)"H®) =£ 0 and hence C(6,V’,Vy/Vy) # 0. In order to show that ©’
and ©, are endo-equivalent, we may therefore assume in the following with-
out loss of generality that )V is irreducible. By definition if C(0',V' V) is
nonzero then C,(©’,V’ V) is nonzero, too. In particular there exists a semi-
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standard simplex (€y O ... D €,) of sd(Xp) such that V7(€a:%) =£ (. Since
n(€q, €o) i1 (ey) = 1(€o), we have V1(€) =L (). On the other hand the condition
that V lies in R(;)(G) implies that Vo) —£ (0. Since V is irreducible it fol-
lows that the representations (J1(8,),7(6,)) and (J*(€g),n(€p)) intertwine in
G. Moreover 0(6,)|m1(,) (resp. 1(€o) 1 (e,)) is a multiple of 6, = ©,(V,B,)
(resp. of ©'(V’,&y)); so these simple characters must intertwine as well. Hence,

for the endo-equivalence of ©, and ©’, it remains to establish the equality [E :
F]=[E": F].

Applying (VIIL.1.1) we have that V contains a pair (J(&), s’ @ p'), where € €
Her(B'), r’ is a (’-extension of the Heisenberg representation n(€) attached to
©'(V',€), and p’ is an irreducible cuspidal representation of U(€)/U(€). Write

U(©)/UN(Q) ~ ﬁGLmi(lFE’) :
=1

where €’ := e(€/op/) and the m; are integers > 1. Then p’ writes pj ® -+ ®
p.,, where, for i = 1,...,¢/, p; is an irreducible cuspidal representation of
GLy,, (Fg/). The pair (J(€),k’ ® p’) is either a simple type or a split type
in the sense of [BK1](8.1), according to whether the p} are equivalent to each
other or are not. When it is a split type it has level (0,0) ([BK1](8.1.2)) or level
(—va(e)(8')/e(A(€)/or),0) ([BK1](8.1.4)), according to whether ©' is degener-
ate or not.

Assume first that (J(€), <’ ®p’) is a simple type. Since V is irreducible, it then is
a type for the same Bernstein component R »)(G) of R(G). By [BK1](7.3.17)
the pairs (J,A) and (J(€),x’ ® p') must be conjugate in G, and in particular
e =¢e(B,/0g) = e(€/og) = € (cf. the proof of loc.cit.). Setting n := dimgV
and n’ := dimg/V it follows that

GYL”/E(":E)><6 = J/J(sBO) = J(Q)/JI(Q) = GLn’/e’(IFE’)Xe/ = C;Ln’/e(lle’)Xe

and hence that n = n’, i.e., that [E: F] = [E': F].

Assume now that (J(€), k' ® p’) is a split type. In this case we need to consider
the cuspidal support of the irreducible representation V. From the point of view
of the simple type (J,A) in V we know from [BK1](7.3.12) that the cuspidal
support of V is of the form (M, pu) where p = 3 ® ... ® pe is a supercuspi-
dal representation of the Levi subgroup M = Autp(W)*¢ corresponding to a
decomposition V.=W & ... & W (e factors) of the E-vector space V. More-
over each supercuspidal representation p; contains “the maximal type” (j , X)
attached to (J,\) ([BK1](7.2.18)(iii)). We do not repeat the definition of (J, )
but only recall that its underlying simple pair still is [0, 5].

On the other hand, from the point of view of the split type (J(€),x’ ® p') in V
we deduce from [BK1](8.3.3) and (6.2.2) that the cuspidal support of V must be
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of the form (M’, p’) where ¢/ = pj ® ... ® ., is a supercuspidal representation

of the Levi subgroup M’ = [[;_, Autz(W;) corresponding to a decomposition
V=W &...05 W of the E-vector space V. Moreover each supercuspidal
representation p; contains a simple type (J;, A;) with underlying simple pair
[0,5]. By unicity of the cuspidal support, the pairs (M, u) and (M’', ') are
conjugate in G. So after conjugation, we may reduce to the case where, e.g., the
representation p; = p} contains two simple types with underlying simple pairs
[0, 8] and [0, B'], respectively, and we may conclude as in the first case.

Let Coeff;(sd(X)) denote the category of G-equivariant coefficient systems on
the simplicial complex sd(X). The Proposition (VIIL.1.1) together with the
above Remark imply that, given a simple type (J, A), the functor

C(J’)\) : R(J’)\)(G> — Coeffg(sd(X))

YV — C(0,,V,V)

is independent of any additional choices. In order to be able later on to show
that this functor in fact is a fully faithful embedding we first have to analyze
the support of these coefficient systems.

VIIIL.2 The support of C[O,,V,V].

As in (IV) and (V) we write C,(0,, V., V) = (V(0)), and C[O,, V,V] = (V]o])s.
To start with we fix a simplex 09 = (Bmaz O - - - D Bimin) of maximal dimension
in sd(Xpg) such that B, € B, C Byee. Recall ([BKO](5.2.2-5)) that the g-
extension k gives rise to a compatible family of S-extensions x(8) where (‘B)
runs over the vertices of 0. These k(B) are characterized as follows:

(a) The induced representations

U(BYU (A(B U(BYU (A(B
IndJ((%)) (21 ))/{(ZB) and IndUE%%Jl((%;al))“(meaw)

are isomorphic (and irreducible);

(b) k(B,) = k.

Set & = U(Bmaz)/U (Bmaz) ~ GL,(Fg). Following [SZ]§5, we define the
G-module V(B,,42) := Homji(ss,,,.)(K(Bmaz), V), using the obvious action of
J(B,nqz) and the canonical identification

J(Bmaz)/ T (Bmaz) ~ U(Bmaz)/U (Bmaz) -

Recall (loc. cit.) that for B, C B C B,nae the image of U(B)J (B,,4z) in
J(Bmaz)/ I (Bmaz) is a parabolic subgroup Py of & whose unipotent radical

Wy is the image of UY(B)J(B,n4e) and whose Levi quotient ILy canonically
identifies with U(B)/U*(%8).
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(VIII.2.1) Proposition. For any B, C B C Biuee we have linear isomor-
phisms

V(sBmowv)L"B =~ HomJl(%,%mam)(n(%7 SBm(m): V) = HOHIJl (%)(77(‘3% V) 5

where V(B maz)V? denotes the Jacquet module with respect to the parabolic sub-
group Psys.

Proof. According to the proof of Lemma 2 in [SZ]§5, we have:
V(%mam>u% ~ HomJ1(%’%mM)(fi(’Bmam), V) ~ HomJl(%)(KJ(%), V) .

So we must simply prove the isomorphisms:

/{(%max)‘Jl(%7§BnLam) = TI(%’%max) ) K/(%)L]l(%) = n(%) ‘

The second one is clear by definition of a S-extension. Write

Tlmam = H(%mam>|J1(%,%mam) .

Using Mackey’s restriction formula, the restrictions to U (2%(*B)) of the isomor-

phic representations Indg((g)wl(m(%))m(%) and Indgggljllgfii))m(%mw) are

U (A(B)) N U (A(B))

Moreover by definition of a [-extension 7,45 |71(B,m..) = 1(Bmaz). So by
definition of (B, Bynas) (cf. (IIL1.1) and [BK1](5.1.16)), we have fmaes =~
77(‘3, %max), as required.

We shall also need the following fact from.

(VIII.2.2) Proposition ([SZ|§5 Prop. 3). Any irreducible constituent of the
G-module V(B az) has cuspidal support (L, p).

As a corollary of the last two propositions we obtain the following result.
(VIIL.2.3) Proposition. Let 0 = (Bpar O ... DO By) be a semistandard
simplex contained in og. Then V(o) = V1 BaBmez) oL 0 if and only if (B
contains a Levi subgroup conjugate in G to Ly, . In other words, if the invariant
of the conjugacy class of L3, is the unordered partition (ni,...,ns) of n, we
have V(o) # 0 if and only if n/e divides n; for anyi=1,...,s.
As in (1.3.3) we introduce, for any 8 € Her(B), the integers

dE(’B>k = dimIFELk/Lk+1
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where (Ly)rez is an og-lattice chain in V' corresponding to 8. The condition of
the proposition can be read off the sequence [dg(B,)r|kez and, of course, only
depends on the G g-conjugacy class of B,.

(VIIL.2.4) Corollary. Let o0 = (B9 D ... D B,) be any simplex of sd(XEg).
Then V(o) # 0 if and only if n/e divides dg(B4)r for any k € Z.

Proof. By definition V(o) # 0 if and only if their exists a semistandard simplex
7 containing o such that V(7) # 0. So V(o) # 0 if and only if their exists
B € Her(B) such that B C B, and (n/e)|dg(B) for any &k € Z. But this
implies that (n/e)|dg(B,)r for any k € Z, since any opg-lattice occurring in a
lattice chain defining B, occurs in any lattice chain defining ‘B.

(VIIL.2.5) Corollary. Let o be a simplex of X [E|; write o as the image under
some h € G of a simplex of Xg with barycenter (B), B € Her(B). Then
V(o] # 0 if and only if (n/e)|dg(B)r for any k € Z.

Proof. By G-equivariance, we may assume that h = 1. We have

Vl= Y. g™,
GEUR)/U ()

where 20 = 2A(B8). So if B4, is any maximal order in Her(B) containing B, by
(V.5), we have

Viol= Y gV(Bmaz O B))
geu )

and the result follows easily.

We are now going to describe the support of C[0,, V, V] in terms of an auxiliary
building. Thanks to (1.3.5), we find an unramified extension L of E contained
in B, of degree n/e, and such that L* normalizes 8,. Write C := End,V ~
M(e, L) for the centralizer of L in B. From (I.2.1), we have a canonical G-
equivariant embedding j;, of the semisimple affine building X; of G, into Xg.
Since L/FE is unramified, this embedding is actually simplicial; indeed in that
case if € € Her(C') is maximal (i.e. corresponds to a vertex in X ) then the cor-
responding order B(€) € Her(B) is maximal as well. We see X, as a simplicial
subcomplex of X and sd(X) as a simplicial subcomplex of Xg. So as in (V),
we may consider the simplicial complex X[L]; this is a G-invariant simplicial
subcomplex of X[E].

(VIIL.2.6) Proposition. For any simplex o of X|FE], we have V[o| # 0 if and
only if o lies in X[L].

Proof. By G-equivariance we may assume that o actually lies in sd(Xg). We
then must prove that V[o] # 0 if and only if 0 € Gg(Xy). By the crite-
rion of (1.3.5) (applied to “E/F”"=“L/E”), this latter condition is equivalent
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to f(L/E)|dg(®B) for any k € Z, where B is the barycenter of o. But
f(L/E)=n/e. So we are done using (VIII.2.5).

We therefore may and will view the functor C(; ) introduced at the end of
(VIIL.1) as a functor

C(J’)\) : R(J’)\) (G) — Coeffg(X[L]) .

IX. The chain complex attached to C(; (V)

As in the previous section we fix a simple type (J,A) in G = AutpV where
A = K ® p, with ps-character ©, having a realization in V, and a smooth
complex representation V in R (G). We also keep most of the other no-
tations introduced in (VIII). We consider the G-equivariant coefficient system
C:=C[O,,V,V] = (V]o]), that we see as a coefficient system on the G-invariant
simplicial subcomplex X|[L] of X[E]. This complex has dimension

d:=dimX[L]| =dimpV/[L: F]|-1=e—1

where e is the divisor of dimgV fixed in (VIII). We denote by X[L], the set
of g-simplices of X[L] for ¢ =0, ...,d. The following considerations are copied
from [SS].

An ordered g-simplex in X[L] is a sequence (o, ...,0,) of vertices such that
{00,...,04} is a g-simplex. Two such ordered simplices are called equivalent if
they differ by an even permutation of the vertices; the corresponding equivalence
classes are called oriented g-simplices and are denoted by (oo, ...,0,). We let
X[L](g) be the set of oriented g-simplices of X[L]. The space C9*(X[L],C) of
oriented g-chains of X[L] with coefficients in C is the C-vector space of all maps

w X[L](q) — )

such that:

— w has finite support,

~w((00,...,0¢)) € V{0oo,.-.,0¢},
—w({o,(0) -+ 0uq))) = sgn() - w({oo, ..., 0,)) for any permutation .

The group G acts smoothly on C2*(X[L],C) via

(gw)({o0,-..,04)) == g(w({g™"00,..., 97 "0g))) -
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With respect to the G-equivariant boundary maps
0« CoL(X[L],C) — Cgr(XI[L],C)

w = [o0,...,0¢) — > w((o,00,...,0¢))]
{0,00,...0¢}€X[L]g+1

we then have the augmented chain complex in R(G):
(IX.1) cor(x(r),c) -% - % cor(X[L),C) = v

where €(w) = Z w(o) e V.

ceX|[L] (0)

(IX.2) Proposition. For all ¢ = 0,...,d, the G-module CJ*(X[L],C) lies in
R (G). In particular the complex (IX.1) is a chain complex in the category
R (G).

To prepare for the proof we let o¢, for any € € Her(C), denote the simplex of
X1, with barycenter (€). Moreover let <og> be a fixed oriented simplex with
underlying simplex o¢ and let <og> denote that oriented simplex with the same
underlying simplex o¢ but with the reversed orientation (for vertices we have
<og> = <o¢>). The order B, defining J = J(B,) corresponds to a minimal
order €,,;, of C. We write B,,;, := B, = B(Cnin) and put Appin := A(Bomin)-
We fix a maximal order €,,,, of C' containing €,,;,, and put B,,4. = B(Craz)
and Wz = A(Biaz) We have Uiy C Upnae and B C Bae and since
L/FE is unramified, 9B,,,, is a maximal order of B. Note that %B,,;, in general
is not a minimal hereditary order of B.

Any simplex in X[L] lies in the G-orbit of a simplex o¢ with €5, C € C €00
Hence

Cr(X[L],€) = > Cy (0¢,C)

CininCCCECmas,dimoe=¢q

where
Cy (0, C) == {w € CJ"(X[L],C) : w has support in G<oe>U G<oe¢>}

and we are reduced to showing that the G-subrepresentations C¢*(o¢,C), for
Cinin € € C €haq, are generated by their A-isotypic components. In the follow-
ing we fix such an order €,,;, C € C €4, and put B := B(C€) and A := A(B).
We may embed V[o¢] in a U(2l)-equivariant way into Cp*(o¢,C) by

Vloe] — Cg(0e,C)
Vo Wy
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where
+ov if L =<oe>
wy():=¢q —v ifg>0and .=<oe> ,
0 otherwise .

In the following we view this embedding as an inclusion. Clearly V[o¢| generates
Cy'(0¢,C) as a G-representation. According to (V.10) and (V.5), we have

V[JQ:] = V(%mazj%) — Z gvn(%v%mam) .
geUuR)/U(B)J (Brmax)
and hence
(IX.3> Cgr(o‘ez,c) = Z gvn(%v%mam) .
QGG/U(%)Jl (%maz)

Having fixed a compatible family of 5-extensions x(.) as in (VIII.2) we in partic-
ular have k(B,,q4z) as a representation of J(Bmaz) = JH(Bmaz)  U(Bmaz). We
then may form the representation A\ae = £(Bmaz) @ p of U(Bmin) I (Bimaz)-
Both factors in this tensor product are irreducible, the second factor by as-
sumption and the first factor since it restricts to the irreducible representation
N(Bmaz) on JH(Bynae). Therefore, by the argument in the proof of [BK1](5.3.2),
the representation A, is irreducible.

(IX.4) Lemma. i) A smooth G-representation lies in Ry (G) if and only if
it is generated by its Apqas-iSotypic component.

ZZ) We ha’Ue V"’](%mina%wula;) — VAH’LLL’L’ .

Proof. i) According to the proof of [BK1](5.5.13) we have the isomorphism

:[rldU(%'m,zn)Jl(%'rnaa:))\,rnam - IndJ(%mzn) )\

So by Frobenius reciprocity, the U(B,,in)U (Umin)-submodules in a smooth
G-representation W generated by W>mas and W, respectively, coincide.

ii) According to the proof of (VIII.2.1) we have
K<%max)|J1(‘Bmin,‘Bmam) = n(%mina %max) .

Hence A\az | 71(Bim B mas) 15 1(Bmin, Bmaz)-isotypic which shows that VAmer C
Y1 Bmin,Bmaz)  But it also implies that Vi1(Bmin,Bmaz) ig the image of

K(%mam) & HOHIJl (Bmin,Bmaz) (’i(%mam)y V)
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under the canonical map into V. For the reverse inclusion YN (Bmin,Bmaz) C
VAmas it therefore suffices to prove that Homji(ss, . ,...)(K(Bmasz), V) as a
U(Bnin) /U (Bmin)-module is p-isotypic. But by the first formula in the proof
of (VIIL.2.1) this latter module is the Jacquet module V(B ,,qq)U%min (nota-
tion of (VIII)) of the U(Bmaz)/U" (Bmaz)-module Hom (s, ) (5(Bmaz), V)-
From (VIII.2.2) we know that the latter representation has cuspidal support
(L, .. ,p). Since our p is of the form p ~ p®¢ it follows that the Jacquet
module V(%max)u%mm indeed is p-isotypic.

In order to prove that the G-representation in (IX.3) is generated by its A-
isotypic component, it suffices to prove that it is generated by its A, ..-isotypic
component. Since the right hand version of this representation visibly is gener-
ated by V1(B:Bmaz) and since V1 Bmin:Bmaz) C P1(B.Bmaz) by (111.1.1)(iv), we
are finally reduced to establishing the following fact.

(IX.5) Lemma. V"(B:Bmas) s g U(B)J' (Bnae)-module, is generated by
V"’](%'mina%wula;)‘

Proof. We first of all note that V7(®:Bmas) by (I11.1.1)(v) and (V.1), in-
deed is U(B)J (B2 )-invariant. In the proof of (IX.4)(ii) we have seen that
V1(BminBmaz) is the image of

K(Bmaz) @ HomJl(%mm,%maz) (k(Bmaz), V)
under the canonical map into V. Analogously V7(®:Pmas) ig the image of

K(%mam) X HomJ1 (%’%maz) (/{(%mam>a V) y

and this in fact in a U(B)J(B,,42 )-equivariant way since U (B)J (B4, ) nor-
malizes J! (B, B4z ). We therefore are reduced to proving that

Homjl(%min,%maz) (K(%mam)7 V)

generates
HOH]Jl (%7%'mam) <K<%max); V)

as a U(B)J!(B,,42)-module. But in that proof we also have seen (with the no-
tations of (VIII)) that the former is the Jacquet module V(B,,44)Y®min and
the latter is the Jacquet module V(B,,4,)Y® of the G-module V(Baw) =
Hom j1(s3,,..)(%(Bmaz), V). Hence we are further reduced to showing that the
module V(B,,4,)Y% for the Levi group ILy is generated by its Jacquet mod-
ule V(B nae)V2min. For this it suffices that all irreducible constituents of the
ILs-module V(B,,4.)V® have cuspidal support on L . . Because of the spe-
cial form of the group g, this follows from the fact (cf. (VIIL.2.2)) that
any irreducible constituent of the G-module V(B,,,.) has cuspidal support on
ILos

min *
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This finishes the proof of Proposition (IX.2).

X. Acyclicity of the chain complex: a strategy

In this section we consider the augmented complex (IX.1). We reduce its ex-
actness to a technical hypothesis (conjecture (X.4.1)) that we cannot prove. In
the next section we shall prove this hypothesis for irreducible discrete series
representation.

X.1 Some lemmas on )\, -isotypic components.

As in §IX we fix a simple type (J,A) in G and a smooth complex represen-
tation V in R(‘]’)\)(G). We keep the same notation. We abbreviate Jy.x =
U(Bmin) S (Bumax) and write A for the representation space of Apay.

We fix a Haar measure p on G and let H(G) denote the (convolution) Hecke
algebra of locally constant functions with compact support on G. For ¢ € H(G)
and g € G, we also define 99 € H(G) by Yp(z) = p(g 1z). We also recall
the Schur orthogonality formula: if (p, ) is an irreducible representation of a

compact subgroup K of G, with contragredient representation (p, W), then

(w, ) (v, W), v,wEW, v, €W,

where (—, =) : W x W — € denotes the canonical pairing.

The irreducible representation Apax gives rise to an idempotent ey of H(G)
defined as follows: it has support Jyax and is given by

€max (]) = N(Jmax>_1dim()\max>Tr()\max (]_1)>

for j € Jmax (cf. [BK1] §4.2) Note that enax may be considered as an idempotent
of the Hecke algebra H(Jmax) := {f € H(G) ; Support(f) C Jmax}. If ((,U) is
a smooth representation of G' (resp. of Jmax) then (¢,U) extends to a represen-

tation of H(G) (resp. H(Jmax)) on U, and we then have ((emay) * U = U max
(the A\pax-isotypic component of U).

For x € G, we denote by A\* = 2 Jmaxx L in the

max

space A given by A2 (2jx7 1) = Anax(4), 7 € Jmax-

max

the representation of J7 .

(X.1.1) Proposition. i) Any non-zero function f in the scalar Hecke algebra
emax * H(G) * eémax has support in the G-intertwining Ig(Amax) 0f Amax-
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i1) Let x be an element of G such that © & Ig(Amax) and let (m,V) be a smooth
representation of G. Then the linear map p, : VYV max — VAmax  given by

P (V) = T(emax) © T(x) 0 T(Emax)-v is zero.
Remark. These facts are certainly well known but we could not find a reference.

Proof. 1) Let H(G, Amax) be the Hecke algebra of Ay ax-spherical functions on G

([BK](4.1)). Recall that if (Apax, A) denotes the contragredient representation
of (Amax, A), then H(G, Apax) is the convolution algebra of compactly supported

functions ® : G — Endg(A) satisfying :

q)(]lg]2> - /\max(j1> o @(g) © /\max(j2> ) .71 S Jmax , g€ G.

JFrom [BK](4.1.1), any non-zero ® € H(G, Amax) has support in Ig(Amax)-
Moreover by [BK], proposition (4.2.4), we have an algebra isomorphism

Y : H(G, Max) @¢ Endg(A) — emax * H(G) * émax -
Identifying Endg(A) with A ®¢ A, Y is given by
Y(®®@w®w)(g) = dim(Amax) Tr(w @ ®(g)w)
forge G, we A, welA, ®cH(G, \ax)- In particular we have:
Support (Y (® ® w ® w)) C Support(®) , w € A, w € A, & € H(G, Amax) -

It follows that any non-zero element of €,,,x*H (G)*x€max has support in I (Amax)
as required.

ii) Recall that, for ¢ € H(G) and g € G, we write 9p € H(G) for the function
Ip(x) = p(g~tx). Then straightforward computations show that 7(emax) ©
7(x) o T(emax) = T(€max * “€max) and that emax * Temax € €max * H(G) * €max-
Moreover epmax * “emax clearly has support in Jyax®Jmax, whence is zero since
T & Ig(Amax)- S0 pr = T(€max * “€max) iS the zero map.

(X.1.2) Proposition. Let x be a fixed element of IG(Amax)-

i) There exist m > 1, Uy, ..., U, V1y.eey U € Jmax, Y1y 5 Ym € €, such that
m
Z Yi €max * it €max
i=1

is an invertible element of emax * H(G) * €max-
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i1) There exist m > 1, U1, ..., U, U1y ey U € Jmaxs Y1y -, Ym € €, such that, for
(m,V) any smooth representation of G

m

Z Vi T(Emax) © T(u;zv;) 0 T(Emax)
i=1

induces a C-linear isomorphism V.. — V2. .

Proof. To make the notation lighter, we shall set K = Jyax, p = Amax, € = €max-

Since
E ~v; w(e) o m(u;xv;) = E viex “itlie

assertion ii) is a consequence of i).

Via Y71 exH(G)xe — H(G, p) ®¢ Endg(A), an element ¢ € e x H(G) x e
corresponds to the element of H (G, p) ®¢ Endg (A) given as follows (see the proof
of [BK] Proposition (4.2.4), pages 149-150). Fix a basis {wy, ..., w,} of A and
let {1, ...,1,} be the corresponding dual basis of A, so that (Wi, W;) = 04
(Kronecker’s delta symbol). For each pair of indices (i, j) and for g € G, define
an operator ®;;(g) € Endg(A) by the formula:

(1) (w, ®;;(g)w) / / (kgl){p(D)w;, w)(w, p(k~H)w;)dkdl ,
for all w € A, w € A. Then the function g — ®;;(g) lies in H(G, p), and we have

dim(p)

1 o
Y (p) = (K

E Z Dy @ wj ®W; -

1,j=1

Assume now that ¢ € exH(G) xe has support in Kz K. Then from formula (1),
the ®;; have support in Kz K. We need the following result.

(X.1.3) Lemma. i) The C-vector space
{® € H(G, Anax) ; Support(®) C JmaxTJImax }

has dimension 1.
i1) Any non-zero ® in H(G, Amax) with support Jyax®JJmax s invertible.

Proof. By [BK1|(5.5), the G-intertwining of A and Apa.x are JGrJ and
JmaxG L Jmax respectively, where L/FE is the unramified extension introduced
in §VIII and G, the centralizer of L in G. Moreover by [BK1](5.5.13), there
is a canonical algebra isomorphism H(G,\) — H(G, Amax) which preserves
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supports in the following sense: if y € G and ¢ € H(G, \) has support JyJ,
then its image ¢ € H(G, Amax) has support JpaxyJmax. Moreover consider
the Iwahori subgroup of G given by I, = U(€hpin) = U(Bmin N G, and let
Ho = H(GL,IL) be the corresponding affine Hecke algebra of type A formed
of (locally constant) bi-I-invariant compactly supported functions on G;. By
Theorem (5.6.6) of [BK1], the algebras H (G, A) and H, are isomorphic in a sup-
port preserving way: there is (a non-canonical) isomorphism of C-algebras W:
Ho — H(G, \) such that for all y € G, and for all ¢ € Hy with support I yl,
V() has support JyJ. As a consequence, there exists an algebra isomorphism
U’ Ho — H(G, Amax) enjoying the same support preservation property.

Now assertions i) and ii) of our lemma hold for the corresponding assertions
hold true for the standard affine Hecke algebra Hy. Indeed if y € G, we have:

i) {¢ € Ho ; Support(p) C I ylL} is the line spanned by the characteristic
function of I yly,

ii) it is a standard fact that any ¢ € Ho with support Iyl is invertible.

Let us fix a non-zero element @y in H(G, p) with support Kz K. Then

1y, o) - dim(p)
O = L wy

Do @ (Y yijw; © ;)
i,j=1
where ~;; is defined by ®;; = 7;;Po, ¢,5 € {1,...,n}. For the same reason, for
all u,v € K, there exists a vector ((u,v) € A ® A such that
_ dim(p)

Y ek BTV = R Do @ C(u,v) .

(X.1.4) Lemma. For all u,v € K, we have

C(u,v) = [p(u) ® pv™)I¢(1,1) .

Take this last lemma for granted. Since the representation p ® p of K x K in
A ® A is irreducible, it is generated by the non-zero vector ((1,1). We may find

m > 1, u;,v; € K,v €C,i=1,...,m, such that Z%C(ui,vi) is an arbitrary
i=1

element of A@A ~ Endg(A). In particular we may choose this element invertible

in Endg(A). It follows that

T_l(z myex 1 e)
i=1
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is invertible. This finishes the proof of Proposition (X.1.2)(ii).

Proof of Lemma (X.1.4). The proof is somewhat technical but straightforward.
It is inspired from the calculation of [BK], pages 232-233.

Write @} € H(G, p) for the functions attached to ¢ = ex “*’e via formula (1).
For g € G, we have

90(9)ILGp(y)ep((uwv)‘ly‘lg)dy

dlm
F 3 [ ot ) ol ey

b,c=1

So for w € A and w € A, we have

p(K)? Wy
dim(p)? {w, ®i5"0) =

I R R O A R L KM
b,c=T

Integrating with respect to | and using the Schur orthogonality relation, we
obtain:

1K) wv sy
Z /K2 wbv wb)(ﬂ(g_lk_lyuxv)wm W) (w;, We) (w, ﬁ(k_l)wj>dkdy
b,c=1
= Z/Kz “Hwy, ) (p(g ™ R yuav)wi, ) (w, pk T )w;)dkdy

We now make the change of variable (k’)~! = k~lyu and this last expression
becomes:

Z /K (o™ Y, ) g™ () )0, ) o, () ™yl dy

= 3= oty oty 0 )00 a0

Using again the Schur orthogonality relation, we obtain:
(w, 2 (g)w) Z/ wy, ;) (p(uk)w, ) (p(g (K " o) w;, w)dk’
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= [ (ot ) ol hp(oys, w)

Let (Vi) (vesp. (Uij)) be the matrix of p(v) (resp. p(u~')) in the basis {w;}
(resp. in the basis {w;}). We have

n

(w, @77 (g)w) = a;lVaiUﬁj /K<P(y)w,ﬁ)ﬁ)(ﬂ(g_ly_lx)wa,fv>d7€

= Y VaiUgj{w, @) .

a,B=1

In other words, we have proved that

U = Z Vailgi® s = | ) Vaillgjvas | @o -

7/8 1 OL,,B:].
Hence we obtain:
(uzv) dlm( ) - - ¥,
T (6* 6) CIDO & Z Z Vngﬂagwj & W;
p(K)? ij=1a,f=1

d1m ‘I)o® Z%ﬁ ZUﬁjwj ® Zvaiwi
i1

dim(p o
_M(K())q)ma%:l%ﬂp ) (wp) © plo ) (i50)
_dim(p)

— =5 P0 @ [p(w) @ po™] | D Yapws © s

- u(K)? 5

as required. (We have used that the matrix of p(u) with respect to the basis
{w;} is the transpose of the matrix of p(u~!) with respect to the dual basis
{w;}.) This finishes the proof of Lemma (X.1.4).

X.2. Orientation of X|[L].

In order to work with a simpler version of the chain complex of §IX, we are
going to show that, as a simplicial complex, X[L] has a G°-invariant labelling,
where

G° ={g € G ;Det(g) € 0}
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Recall [Brown] that a labelling of a d-dimensional simplicial complex Y is a
simplicial map 1 : Y — Ay, from Y to the standard d-dimensional simplex,
such that dim(1(¢)) = dim(o) for any simplex o of Y.

Fix a chamber C' of X. It is classical that the action of G° on X has the following
property: any simplex o of X has a unique G°-conjugate that lies in (the closure
of) C. In particular the stabilizer of C' in G° fixes C' pointwise. Even though
X[L] is not a building in general, its maximal simplices have the same dimension
and we call them chambers.

We now fix the chamber C so that C' N X # (). It is false in general that G°
acts transitively on the chambers of X[L]|. For instance, if L/F is a maximal
unramified extension of F' in A, then X[L] is O-dimensional and consists of the
vertices of X. But the action of G° on the vertices of X is not transitive.

Let us notice that C'N X[L] is a sub-simplicial complex of X [L]. Indeed, passing
to the first barycentric subdivisions, we first have that sd(C) N sd(X[L]) =
sd(C) N X (L) is a sub-simplicial complex of X(L). To get our assertion, it
suffices to prove that if sd(C') N X (L) contains a vertex x, corresponding to the
isobarycenter of a simplex ¢ of X[L], then ¢ C CNX|[L]. The interior ¢° of o is
of the form ¥°NX[L], where ¥ is some simplex of X. We have z, € ¢° C ¥° and
ze € CNX[L] C C. In particular X° N C # 0 and this forces the containment
3. C C. Therefore o C C as required.

(X.2.1) Lemma. The simplicial subcomplex C N X|[L] of X|[L] is a disjoint
union of f(L/F) chambers of X[L].

Proof. First we prove that any vertex of C'N X[L] is contained in a chamber of
X|[L] which is itself contained in C. Let s be such a vertex. There exist a field
extension L'/F C A and an order 2 C A such that:

—e(L'/F) =e(L/F) and f(L'/F) = f(L/F),
~ the order 2 lies in Her(A)""™,
— s is the vertex of X, attached to the maximal order 2 N Endz. (V).

Let (Ng)rez be a chain in V corresponding to 2. It must have oy/-period 1,
whence it has op-period e(L’/F'). Assume that C corresponds to a lattice chain
(Lk)kez in V of op-period N. There exists an integer k, such that:

Ny = Ly, ykNje(/r) » K €Z .
Since f(L/F) divides N/e(L/F'), we have the containments:

{Lk,+k.N/em/r) s k € ZY C{Lk,skpyr) s K E€EZY C{Ly; k€ Z} .
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By the numerical criterion of (I.3.5), the set of lattices {Ly 4rf(r/r) ; k € Z}
corresponds to a chamber Cp, of X[L] and the previous containments mean that

se(C cC.

Let Cf, be a chamber of X[L]. There exist a field extension L'/F C A and an
order 2 C A such that:

—e(l//F) =e(L/F) and f(L'/F) = f(L/F),
~ the order 2 lies in Her(A)X"",
— (', is the chamber of X, attached to the order A N End (V).

Let (My)rez be a chain in V' corresponding to 2 and 8. It has op/-period
N/[L : F]. So it has op-period e(L/F).N/[L : F| = N/f(L/F). Moreover, for
all k € Z, we have:

dimIFF(Mk/Mk—i—l) == f(L/F)dim":L,(Mk/M]H_l) == f(L/F)l == f(L/F) .

Assume now that Cp lies in the chamber C' of X. According to the previous
discussion, there exists a coset I' of f(L/F)Z/NZ in Z/NZ, such that:

{My; keZ}={L;;l€Z andl mod NZecT}.

Conversely, using proposition (1.3.5), we have that for all such coset I, the
lattice chain whose lattice set is given by {L; ; | € Z and | mod NZ € T}
correspond to a chamber of X[L] contained in C. Indeed if FT is the simplex of
X corresponding to the lattice set {L; ; | € Z and | mod NZ € I'}, then the
corresponding (closed) chamber of X[L] is Fr N X[L]. When I" runs over the
f(L/F) cosets of f(L/F)Z/NZ in Z/NZ, the corresponding (closed) chambers
are disjoint, as required.

Since the simplicial complex X[L] N C' is a disjoint union of (closed) chambers,
it is trivially labelable. Let us fix a labelling 1o : X[L]| N C — A¢, where Agx
is the standard simplex of dimension dimX[L] = N/[L : F|—1. For any simplex
o of X[L], we define a simplex 1(¢) of A¢x by (o) = lc(o¢), where o¢ is the
unique simplex of X[L] N C which is a conjugate of ¢ under the action of G°.

(X.2.2) Lemma. The map 1 : X[L] — A¢ is a labelling. It is invariant
under the action of G°.

Proof. Obvious from the properties of the action of G° on X.

From now on, we fix the G°-invariant labelling 1 of X[L] (by fixing l). It gives
rise to a G°-invariant orientation of the simplicial complex X [L] as well as G°-
invariant incidence numbers [0 : 7] for any pair of simplices 7 C o of X[L] with
7 of codimension 1 in o.
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X.3 Another chain complex.

We fix a smooth complex representation (7,V) in R(;)G and consider the
coefficient system C = (V[o])s = C(sx) (V) of §VIIL

For¢q=0,...,N/[L: F]—1, let X[L], denote the set of g-simplices of X[L]|. The
space Cy(X[L|,C) of (unoriented) g-chains of X[L] with coefficient in C is the
C-vector space of all maps w : X[L], — V such that w has finite support and
w(o) € V]o], for all 0 € X[L],. The group G acts smoothly on C,(X[L],C) via
(gw)(0) := g(w(g~to)). The orientation of X[L] gives rise to boundary maps:

9+ Cp(X[L,0) — Cy(XI[L],C)

w = [ o > [0 T]w(T) ]
T7€X[L]q , TCo

We obtain an augmented chain complex of G°-modules:
(X.3.1) Cnyipr—1(X[L],C) 25 - L5 Co(X[L),C) = V

where e(w) =3, cx(r), w(0) € V.

(X.3.2) Lemma. As augmented chain complexes of G°-modules, the complexes
(IX.1) and (X.3.1) are canonically isomorphic.

Proof. By standard arguments.
X.4 Jyax-orbits of simplices.

Fix ¢ € {0,...,N[L : F]—1}. For any subset ¥ of X[L],, we denote by Cy(%,C)
the subspace of Cy(X[L],C) formed of those ¢g-chains with support in X.

Let €, be the set of orbits of Jyax in X[L],. As a Jyax-module, Cy(X[L],C)
decomposes as
xir),c)= [ cq(=.0)
e,

Fix 3 € Q,. There exist € € Her(C) satisfying €pin C € C Cpax and z € G
such that ¥ = Jyaxx.0¢.We have the disjoint union:

Y= U {jzoe},

jeJmax/Jmame(m)w

42



where 2 = 2((8) and B = B(¢), from which we deduce the following isomor-
phisms of J.-modules:

C,(2,C) = 1T C,(jroe,C) = 1T jzCy(0e,C) .

jeeJn’lax/Jmaxm(J(Q[)z jeeanax/anaxm(J(Q[)z

We have a natural Jyax-homomorphism Sy, : Cy(X,C) — V, given by

In other words:

Sy ( @ Jjaw;) = Z jaw;(oe) , wj € V]oe] .

jeJmax/Jmame(m)w jEJmax/JmaxﬂU(Q()’v’

We set Ky = KerS,. We have the following exact sequences of Jy,.x-modules
and C-vector spaces respectively:

0 — Ky — Cy(%,0) Z]Q’JVO’Q

.7 E Jrn ax

00— KA““”‘ — Cy(%, C max —> Z jxV| O’@ Amax — 0
J€JImax

Moreover, by lemmas (IX.4) and (IX.5), we have

Vioe] = > gVmeBed =y gy

geU(Q[)/Jmax geU(Q[)/Jmax

Therefore we have

Z jxV|oe] = Z Z jrgVrmex Y

.jejxnax Jejmax gEU(Ql)
By proposition (X.1.1), for all j € Jyax, g € U(2A), we have

A AP
y >\max — V max lf jxg 6 IG(/\max)
Cmax * {jgV ) = { 0 otherwise

We deduce that

. Amax [ Ve if g€ URA), 7 € Jmax 8-t 129 € Ig(Amax)
Z jJ?V[O'Q]) N { 0 otherwise

j e Jmax
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Since the G-intertwining of Anax iS Jmax G, Jmax, this may be rewritten:

| A [V i 1 € Jax GLU(R)
( g: jaVioel) - { 0 otherwise
] max

(X.4.1) Conjecture. For any ¥ € Q,, we have Kg‘“‘”‘ =0.
(X.4.2) Corollary. Assume that conjecture (X.4.1) holds.

i) If XN X # 0, then Sy induces an isomorphism of C-vector spaces:
Cq(z’(/’))\max — VArnax.

i) If SN Xy, =0, then Cy(X,C) max = (.

Indeed we have Jyaxroe N Xp # 0 if and only if there exist ¢ € Her(C) and
J € Jmax such that jxog = o¢/. By lemma (1.3.1) and (I1.3.3), this is equivalent
to the existence of z € G, and g € U(2) such that jx = zg, as required.

From now on we fix an apartment A; of X containing the chamber o¢

(X.4.3) Lemma. Let ¥ € Q. Assume that XN Xy # 0. Then XN Ap # 0

and the intersection % N Ay, is reduced to a single simplex. Moreover ¥ N X, is
a single U(Cppin)-orbit.

If XN Xy # 0, then ¥ = Jyax.op for some o, € (X1),. Since J,, contains
the Iwahori subgroup U(€nin) (of Autz(V)) and that (Agr), is a system of
representatives of the U(€py;y,)-orbits in (X ),, we have ¥ N Ap # 0. At this
stage we need the following technical result.

(X.4.4) Lemma. Let o, T be simplices of X1,. Then if they are conjugate under
the action of U(Amin), they are conjugate under the action of U(€pin).

Lemma (X.4.3) follows from the previous lemma by observing that J.x is con-
tained in U(€min) U (Amax) C U(Lmin)-

Proof of Lemma (X.4.4). Let Cy be the chamber of X, fixed by U(€pin). Fix
an apartment Ay of X containing Cy and o. Let x, the barycenter of o. Then
there exists a point zp € C§ such that the geodesic segment [zg,z,) C AfL
does not intersect any simplex of X of codimension greater than or equal to 2.
Indeed consider the subsets of Ay of the form C* = Cvx{z,, F}\{z,}, where
F' is a simplex of codimension greater than or equal to 2 in Ay, and where Cvx
denotes a convex hull. The set of such subsets is countable. Moreover these
subsets have empty interiors and by Baire’s theorem their union has empty
interior. It follows that this union cannot contain Cj as required.

Let T" be the set of chambers D in Ay, such that DN[zg, z,) = D°N[xg, x5) # 0.
Then it is easy to see that there exists an indexation I' = {D; ; i =0, ..., 7} of
the elements of I" such that (D;)io,.. » is a gallery satisfying: Dy = Cy and D,
contains x,, whence contains ¢. We can be more precise: for ¢ = 0,...,7 — 1,
D1 is the unique chamber adjacent to D; and intersecting [y, z], where [z, y] =
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[z, 2] (Uj=o0,...;D;). Moreover, for i =0, ...,r—1, let H; be the wall separating
D; and D;,1. It defines two roots H f (half-spaces with boundary H;), such that
H.” contains z¢ and H;r contains x. Then the gallery (D;);—o,...» is constructed

in such a way that U D; C H; and U D; C H}.
=0 j=it1

Let g € U(€min) be such that go = 7. Then g fixes Cy pointwise. Recall that
by (I1.2.3), there exist normalizations of metrics on X and X such that the
embedding X C X is isometric. It follows that the set g[zg, x| is the geodesic
segment in X linking g.z9 = ¢ and g.z, € Xr. Recall that X is a simplicial
subcomplex of sd(X). For i =0,...,7, gD; is a simplex of sd(X) whose interior
intersects Xr. So this simplex belongs to Xr. It follows that (¢D;)i=o,..., is a
gallery in X, satisfying gDy = Cy and gD, D 7.

We are going to prove by induction on t € {0, ..., r} that there exists g; € G, such
that g:D; = gD;, i =0, ...,t. We will then have g; € U(€pnin) and gt_lgDT =D,.
Since g, lgeU (Crmin) is a compact element of G, it must fix D, pointwise. It
will follow that g, lgo = o, that is g,0 = 7, as required.

The result is obvious when ¢ = 0. Assume t € {0,..,7 —1} and that the result is
proved for t. Replacing 7 by g, Lr g by 9; lg, we may assume that ¢D; = D;,
1 =0,...,t. The chamber D;;; does not belong to H, and has a codimension 1
face contained in H;. The chamber gD, has a codimension 1 face contained
in H; and does not belong to H, , otherwise this would contradict the fact that
glzo, T, is a geodesic segment. Let ¢ be the codimension 1 simplex H; N Dyq =
H; NgD;1,. Then the pointwise fixator of H, in G acts transitively on the
set of chambers containing ¢ and not contained in H; (an easy exercise left
to the reader). It follows that there exists gy fixing H, pointwise such that
gt+1D¢11 = gDy 1, as required.

X.5 Comparison of chain complexes

As in the previous section, we fix an apartment A; containing o¢_, . As a
subcomplex of Aj, the topological space Ay is equipped with its canonical
triangulation. We denote by Y@= the constant coefficient system on Ay, such
that for any simplex o, PAmax [0] = VAmax_ It gives rise to the chain complex
Co(Ap, V'), with an augmentation map: C,( A, V'mex) =Ly PAmax This
complex is exact since the topological space Ay, is contractible (more precisely
it is homeomorphic to a finite dimensional affine space). We shall denote by Jr,
the boundary maps of that complex.

Denote by Co(X|[L],C)* max —=5 YAmax the augmented chain complex obtain by
applying the functor of A,.«-isotypic components to the augmented complex
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(X.3.1) (or equivalently to the augmented complex of (IX.1)). It lies in the
category of left enyax * H(G) * emax-modules. Since the functor

Run(G) —  emax * H(G) *x emax — Mod
w — WAmax

is an equivalence of categories, we have, using proposition (IX.2), that the com-
plex is exact if and only if Cy(X[L],C) max S5 VAmax ig exact.

(X.5.1) Proposition. Assume that the representation (mw,V) satisfies conjec-
ture (X.4.1). The augmented chains complexes Cq(X[L],C)Mmax — YAmax and

Co(AL, ZA‘“‘”‘) —5s YAmax gre then naturally isomorphic as complexes of C-vector
spaces.

Remark. There is maybe a more precise result to prove. Indeed there should be
a natural action of the scalar Hecke algebra on Cy(Ap, Y m=x) —< PAmax such
that the complexes are isomorphic as complexes of eyax * H(G) * emax-modules.

As a corollary, we have:

(X.5.2) Theorem . Let (J,\) be a simple type of G. Let (7,V) be a smooth
complex representation in Rj ) (G) satisfying conjecture (X.4.1). Then the
augmented chain complex

Co(X[L],Cin(V) —V

is a resolution of V in the category Rj ) (G). In particular, as a G-module, the
space V is given by the homology module Ho(X[L],C(5x)(V)).

Proof of proposition (X.5.1). We are going to construct a natural isomorphism of
complexes from Cy(X[L],C) mex — PAmax to Cf(Ap, Y max) —5 YAmax This
is a collection of isomorphisms : [(¢q)4>0, %], Where

¢q € Homg (Cy(X[L],C) e, Cy(Ar, V™)) , ¢ € Homg (Wmex, Yhmax) |

and where the obvious square diagrams are commutative. We first take 1 to be
the identity map of V*max. To define ¢,, we note that

xir),c)= [ cq(=.0)
3eQ,

and that, by corollary (X.4.2)(ii), we have:

Cxmepe= [ ey

SeQ, , SNXL#0
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For any simplex o of A, we let X, denote the Jy,.-orbit of simplices through
o, so that:

Co(X[L),C) o = [ Co(Sq,C)
oce(Ar)g

We now define ¢ : Cy(X[L],C)*mw — Cy(AL, V) by
¢q(w)(0) = Sx, (W] Bo) ,0 € (AL)q -

By corollary (X.4.2)(i), the map ¢, is clearly an isomorphism of C-vector spaces.
(X.5.3) Lemma. Under the assumptions of Theorem (X.5.2), for
g=1,...,N/[L: F]—1, the following diagram is commutative:

Co(X[L],C) L5 Cy 1(X[L],C) Amax

Pq \L \L Pg—1

Cy(AL, V) 25 O (AL, V)

Fix w € Cy(X[L],C)*max. We have

and

(E1)  Or(pg(w))(e) = > { Y B:alw(r), a€ (AL)g1 }-

BG(AL)Q ) BDO‘ TEEﬁ

On the other hand we have

dw(o)= Y [0:0]w(0),0€ X[L],,

0eX[L]q, ,6D0

(F2)  pa@)(@={ 3 [iow®), ae (At}

o€X¥a 0€X[L]y , D0

Fix a € (Ar)q—1- The set © of § € X[L], containing some o € ¥, in general
strictly contains the set of 7 in X[L], such that there exists 5 € (AL)q, 8 D «
and 7 € ¥3. However the first set © is stable under Jy.x and splits into two
disjoint subsets:

— the subset ©1 of those 6 whose J,ax-0rbits intersect Ay ;

— the complementary subset ©s.
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Let 6 € ©1 and o € X, such that 6 D 0. We have 6 € ¥z for some simplex
of Ap. The simplex 3 contains a Jyax-conjugate of o lying in Ap. By unicity
in lemma (X.4.3), that simplex must be . In other words 6 lies in ¥z for some
B € (AL)q containing o and there is a unique o € ¥, such that 6 D o: if
0 =3B, j € Jmax, then 0 = ja. Since the action of J,.x preserves the incidence
numbers, we must have [0 : o] = [3 : a].

From the previous discussion, we deduce:

Pg-1(0w)(@) = drlpgw)@)+ Y { Y [0:0lw(d)} .

c€Xy 0€0O3 , D0

Note that if 0 is a simplex of X [L], there is at most one o € ¥, such that § D o.
Indeed two such simplices contained in § must be equal since they have the same
label. In other words in the sum o depends in a Jya-equivariant way from o;
we shall write o = (). Let ©Q,(02) be the set of Jyax-orbits in ©2. We may
write:

P-1(0w)(@) = d(pgW)(@) = > > 18:0(6)lw(®)

Y€Qy(02) 08
= > @) w),
$eQ,(02) Pex
where € is a sign depending only on . For ¥ € Q,(©3), the restriction map:

Co(X[L],C) — Cy(%,0)
w — >

is Jmax-equivariant and its restriction to Cy(X|[L],C)*m> must have image in

C,(%,C) max. Since X N Ay = 0, by applying corollary (X.4.2)(ii), we obtain
that Cy (%, C)*mex = 0, whence Z w(f) =0, for all ¥ € Q,4(O2). Finally we get

0ex
Yq—1(0w)(a) — 0L (pq(w))(a) = 0 and the commutativity of the diagram.

Using a quite similar proof we have the following result.

(X.5.4) Lemma. Under the assumptions of Theorem (X.5.2), the following
diagram is commutative:

Co(X[L],C)Amax £y PAmax
©o 4 I 1d
CO(AL7 £>\max> E_L) VAmax

This finishes the proof of proposition (X.5.1) and theorem (X.5.2).

XI. Acyclicity in the case of a discrete series representation.
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The aim of this section is to prove conjecture (X.4.1) when the representation is
irreducible and lies in the discrete series of G. More precisely we shall assume
that our representation (m,V) is an unramified twist of a (irreducible unitary)
discrete series representation of G containing our fixed simple type (J,A). In
that case the chain complex attached to C(; x)(V) may be entirely computed.

XI.1. Determination of the chain complex.

We keep the notation as in section IX. Let € be a hereditary order of the L-
algebra C' satisfying €,i;n C € C Cax, and let o¢ be the corresponding simplex
in X, C X[L]. We want to understand the U (2l)-module structure of

Vioe] = Z g VB Bmax)

geUR)/U(B)J (B max)

Let W an irreductible constituent of the U(%B)J'(Bmax)-module V(B Bmax),
By Frobenius reciprocity VW embeds in a representation of the form kpyax ® 7,
where 7 is an irreducible representation of U(B)U!(8) seen as a representation
of U(B)J(Bmax) trivial on UL(B)J(Bax). The following result implies that
W actually has the form Ky ® 7.

(XI.1.1) Lemma. If 7 is an irreducible representation of U(B)/U(B), then
the U(B)J (B max)-module kyayx @ T is irreducible.

Proof. By Schur Lemma, it suffices to prove that Endy(g)s1(8,..,) Fmax @ T
is one-dimensional. For this we closely follow the proof of [BK] Proposition
(5.3.2)(ii), page 176. Write X for the representation space of kmax and Y for
the representation space of 7. Let ¢ € Endy ()1 (3,,..) fmax ® 7 that we write
= Zj S;®Tj, where S; € Endg X, Tj € End¢ Y, and where the T} are linearly
independent. For h € J1(B,.x) we have

(“max ® T)(h) cCp=o (“max ® T)(h) .
Since J1 (B ax) C Ker (€), we obtain
> (max(h) 0 8; = Sjrimax(h) @ Tj =0
J

Since the T} are linearly independent, we obtain that S; € End ji(s,.. ) 7(Bmax)
for all j. But since 7(Bmax) is irreducible, we have that End j1(x, . ) 7(Bmax)
and Endy (g1 (98,,.,) Fmax are equal and one-dimensional. So we may as well
take j = 1, so that ¢ = S®T, where S € Endy ()1 (3,,..) fmax and T' € End¢ Y.
Now any h € U(B)J! (Bmax) must satisfy

(Sohmax ()@ (T'0E(h)) = (Fmax(h)0F)@(T0&(h)) = (kmax(h)0S) @ (£(S)eT) .
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But this implies that 7' € Endy(g) 7 and our result follows from the irreducibility
of 7 and Schur Lemma.

First consider the case € = €.y, so that we have U(B)J! (Bmax) = J (Bmax)
and 7(Bmax, Bmax) = N(Bmax) = (Fmax)[J1(Buae)- Since V is admissible,
V1(Bmax) is finite dimensional and, as a J(Bmax)-module, decomposes as a
finite sum of irreducibles submodules. By lemma (XI.1.1), these irreducible
representations have the form k.. ® 7, where 7 is an irreducible representa-
tion of J(Bmax)/J(Bmax) = U(Bmax)/U (Bmax). Moreover by [SZ] (see the
discussion preceeding Lemma 2, page 176), for such a 7, we have:

(1)  Homy(m,,..) (Kmax ® 7, V) = Homy(e,,,..) /U (Bamax) (75 V(Brmax)) -

Recall that V(B ax) is the U(Bmax) /U (B max )-module Hom j1(s,,..) (Fmax, V)-

By considering Legs, = U(Bg)/U'(Bg) as a Levi subgroup of G = U(Buax)/
U (Bax), we may form the generalized Steinberg representation St(Bmax, p)
with cuspidal support (L., /)). It may be defined in several ways. In particular

it is the unique generic sub-G-module of the representation of G parabolically
induced from (Ls,, p). We then have the following crucial result.

(XI.1.2) Lemma. ([SZ], Proposition 6, page 179.) As a G-module, V(B max)
is isomorphic to St(Bmax, p)-

It follows from (1) and the previous lemma that the space Hom j(s3, . ) (Fmax ®
7, V) is zero except when 7 ~ St(Bax, p) Where it is 1-dimensional. We have
proved the following result.

(XI.1.3) Lemma. We have an isomorphism of J(Bmax)-modules:

Vn(%xnax) >~ Kmax ® St(%mwm p) .

Similarly, as a U(B)J" (B max)-module, V(B Bmax) ig a finite sum of irreducible
submodules of the form Kp.x ® 7, where 7 is an irreducible representation of
U(B)/U(B). For such a 7 we have:

Homy () 1 (8 pay) (Amax®@7,V) = Homm%)ﬂ(%max)(T’HomUW%)Jl(ﬁmaxf (oma, V)
= HomU(‘B)Jl(‘Bmax)(Tﬂv(%max)U (B)J (‘Bmax))

HOM (33) 11 (38 ) (T Y (Brmax) %)
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where V(B a¢)V® is the Jacquet module of V(B max) With respect to the unipo-
tent radical Ugs of the parabolic subgroup Py of G given by U(8)J (B nax)/
JY(Bmax). Hence we have:

Homy ()71 (8 ) (Fmax @ 7,V) = Homy ()11 ) (T, V(Bimax) '*)
HOHIP% (7', V(%max>u%)
= HOI’I]“_% (7', St(%max7 p)U(B)

Denote by St(®B, p) the generalized Steinberg representation of ILy with cuspidal
support (L, p). It is classical that

St(Bumax, p) U= =~ St(B, p)
as ILy-modules. It follows that

. 0 if 7 2 St(*8,
Dim HomU(‘B)Jl(%max) (fimax ® T, V) = { 1 if 7 i Stg% z;

As a consequence we have an isomorphism of U (B).J! (2B ax )-modules:

VU(%’%’“&X) >~ Kmax & St(%a /)) .

(XI.1.4) Proposition. (i) The U()-intertwing of kmax @ St(B, p) is equal to
U(B)J (Bmax)-

(ii) The representation of U(2A) given by

AR) = Indpigy) 1., Fimax @ SE(B, p)

18 irreducible.

(iii) We have
Vios] = V) ~ A(Q),

where the isomorphism is an isomorphism of U(2l)-modules.

Proof. The restriction of Kmax ® St(B,p) to U (B)J1(Bax) is a multiple of
n(B, Buax), so by Proposition (II1.1.1)(v), we have

I6 (Kmax @ St(3B,p)) € I (Bumax)B* I (Brax) -
In particular we have
IU(Q() (/{max ® St(%7 P)) = U(%)Jl(%max) )
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and point (i) follows. Point (ii) is a consequence of Mackey irreducibility criterion
and point (iii) of Lemma (V.2).

XI.2 Proof of conjecture (X.4.1) for irreducible discrete series repre-
sentations.

Let € be as before and z be an element of G. Write ¢ = Dimo¢. Let X be the
Jmax-orbit Jyaxxroe. We must prove that Kg’“‘”‘ =0.

Recall that we have the exact sequence of Jy,.-modules
0— Kgmax — Cq(E,C)’\“‘ax — Pmax 4 ()
if € JnaxGLU (), and
0 — Kgm> — Cy(%,C) mx — 0

if 2 & JoaxGLU ().

Since (7, V) is a discrete series representation, A\pax occurs in V with multiplicity
1, so that VAmax ~ )\ .. (see e.g. the discussion in [SZ] following the proof of
Lemma 4, page 178). So we are reduced to proving the following result.

(XI.2.1) Proposition. We have

1 if 2 € JnaxGLU(R)

Dim HOHIJrnax ()\maxv Cq(z7 C)> < { 0 otherwise

The rest of this section will be devoted to the proof of this proposition. Recall
that

Cy(2,C) = 1T j2C4(0e,C) = Ind ™ o). ®Cq(0¢,C) .

jEJrnax/Jmame(Q()w

Using Proposition (XI.1.4), we obtain:

o U
zCy(o¢,C) = Indiﬂame(Q()x xIndUE%))Jl(%Inax)/imax ® St(*B, p)
Jmax U(Q[)m x X
= Ind7™™ 5 ane Indpig)e 108,000 Kmax © St(B, p)* .

Mackey’s restriction formula gives

(g (5303 (58 )= Fimax © SEB, 0)) 5 vy
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_ TmaxU ()" e i
- ®UGU IndjmaxﬂU(Q[)zmU(%)umJl(%max)uz K’max ® St(%7 p)

JmaxNU (A ®
= @ueU IndJmaxﬂUEﬁB))uxJl(%max)ux R @ St(B, p)™* .

where U is the double coset set
U = Jmax NUERD\U ()" /U(B)* T (Bax)” -
By Frobenius reciprocity we have:

HOHlJ (/\maX7 Cq(E,C)>

max

= D Hom,,..nv(m) 52 71 (B (Amars K @ SEB, p)™)
uelU

By definition of the cuspidal support of a representation of U(8)/U'(B), we
have that Kmax @ St(B, p) embeds in

IndU(‘B)Jl(%max)

_ U(B)J" (Bmax)
U(B0) T (Brnay) Fmax & P = Ind; A

max

as a U(B)J!(Bmax)-module. It follows that Hom

max (/\maX7 Cq(z, C)) embeds
in the C-vector space

) uacjl B)ur wr
@ Homjmame(%)um Jl(sBmax)uQC (Amaxy IndJ'Sm ) ( ) )‘max)

uelU
Using Mackey’s restriction formula again, we obtain:

U(B)“* JH(BY | uz
(Indjr%g;x )\Hla,X))|JrnaxﬁU(%)'“‘z J1 (%max)um

— @ Indjmame(b)ua:Jl(%max)um A’U’U/.’E

maxNU(B)"® JH(Bmax)“TNJ54uE ' max
veEV,

— @ IndJmame(%)uzjl(%max)um )\’UUCL’

TmaxNJ2LE max

veEV,

where

Vu — Jmax N U(%>umJ1(;Bmax>um\U(;B>umJ1(%max>um/Jum

max °

Hence it follows by Frobenius reciprocity that Hom,_, (Amax, Cq(%,C)) embeds

1mn
vux
@ @ HomeameI’%:i (AmaX7 )‘max) *
uelU UGV'U
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asz a C-vector space. As a consequence, if Homj__ (Amax, Cq(2,C)) is non-zero,
there exist u € U, v € V,, such that vux intertwines Jy,.x, that is

VUx € Jmax G Imax -

—1 and

For such u and v, we have u € U ()z
v € uzU(B)J (Bmax)z u™!
so that

vuz € uzU(B) I (Bumax) C 2U @)U (B)JH(Brax) = 2U () .

Hence we have zU () N JnaxGrJmax # 0, that is © € JuaxGrU(RA). As a
consequence Proposition (XI.2.1) holds when = & J,.xGLU ().

Now let us assume that x € JnaxGLU (). Writing z = jxpu, j € Jmax, 21 € G
and u € U(2), we have that

X = Jrnaxxo-é = f]maxxLo'Q
so that we may as well assume that x € G.

1

Assume that for some u € zU (2A)z~", we have

Hom . (v (®)ue 71(8 nar)ue (Amaxs Kmax @ St(B, p)"™) #0 .

Then by the preceeding discussion, there exists u € uzU(B)J(Bmax)(ux) ™t
such that

vur € urU(B)J (Bumax) N JmaxGr Jmax -
This implies that
uzU(B)J (Bmax)2 ™' N TnaxGr % 7 0
that is 4 € JuaxGLU(B)®J1 (B nax)®. So without changing the double class u

of uw in U, we may as well assume that v € Jy,.xGr. Let us write u = jgy,
J € Jmax, 91 € Gr. Since u € zU(A)x~!, we have

u(xoe) = xoe = j(grxoe) .
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So xog and grroe are simplices of X, conjugated under the action of Jy.x C
U(Apin). By Lemma (X.4.4), there exists i € U(€nin) such that xoe = igrxoe.
Hence igr, € UR)* NG = U(€)* and as a consequence gy, € U(Cppin)U(C)7.
It follows that u € JuaxU (Cmin)U(€)* = JiaxU(€)7, and u € (Jymax N U(2A)®).
U(€). But this implies that the image @ of u in

U = Jinax NUR)"\U () /U(B)* T (Brnax)®

is 1. We have proved the following:

(XI.2.2) Lemma. For all x € G, we have
Homy,,.. (Amax, C¢(2,C)) = Homeame(%)le(%max)m (Amaxs Kimax ® St(B, p*)
= HomU(%O)Jl(%max)mU(%)mJl(%max)m (K’max ® p’ /ilxnax ® St<%7 IO)X) *

We next prove:

(XI.2.3) Lemma. For all x € G, we have

Dlm HomU(%O)Jl (%max)ﬂU(%)IJI(%max)z (’imax ® p’ ’ilxnax ® St(%7 p)X)
= Dim Homy(s3)nu ()= (0, St(B, p)*) .

Proof. It is inspired from that of [BK](5.3.2), page 176. Abreviate py =
St(p,B). Write Y (resp. X, X) for the space of kmax (resp. p, ps). Let
¢ € Homg (Y ® Xo,Y ® X) = Ende(Y) ® Homg(Xo, X ) and write

SOZZSZ‘@)Ti
iel

where S; € Endg (Y), T; € Homg (Xo, X ), and where the T; are linearly inde-
pendent. Then ¢ intertwine xKmax ® p and &%, ® pg if and only if

max

D (S50 Fmax(w) @ (T 0 p(u)) = D (Kiax (1) © S;) @ (i (u) o T5)

1€ iel

for all u € U(Bo)J (Bmax) N U(B)®JH(Bmax)®- In particular if ¢ intertwines
these representations, for v € J'(Bmax) N JH(Bmax)®, we must have

D (S 0 Fmax (1) — £ (w) 0 S;) @ Ty = 0

icl
Since the T; are linearly independent, we obtain
Sl 6 HOmJI (%rnax)mcjl(%xnax)z (’imaX7 anax)

95



= Hom j1(3,.,.)nJ1 (Brmax)® (Mmaxs Tmax) -

By [BK](5.1.8) and (5.2.7), the spaces

xT
Hom‘](%max)ﬂJ(%max)w (K’ma)“ /{max)

and

Hom j1(93,.,..)n" (B mar)® (Tmaxs Timax)

are equal and 1-dimensional. It follows that any ¢ in
HomeaxﬁU(%)mJl(‘B)’J (Amax7 /{fnax ® p%)
z o) and T €

Homg (X, X ). Writing that such a S ® T' does intertwine the representations,
we easily obtain that

writes ¢ = S ® T, where S € HomJ(sBmax)mJ(%max)m,(K/max,/im

T € Homy (s )nu(s)= (psps) -

It follows that we have a canonical isomorphism of C-vector spaces:
HomeaxﬂU(%)le(%)m (/\mam Kinax @ p%)

= Hom j(,,,)n (B o) (Fmax: Finax) @ Homy wg)no(s)= (0, 0%) 5
with
Dim Hom (3, )nJ (8 mae)* (Kmaxs Fiax) = 1
and the lemma follows.

To obtain Proposition (XI.2.1), we are now reduced to proving the following
result.

(XI.2.3) Lemma. For all x € G, we have

Dime Homy(ss,)nu(s)= (p, St(B, p)*) < 1.

Fix a level 0 discrete series representation (mp, Vo) of G belonging to the Bern-
stein component of Gg defined by the type (U(By), p). Applying the results

of section (XI.1) to (m, Vo), we have that p ~ Véjl(%()) as U(Bp)-modules and

St(B, p)* ~ Véﬂ(%)x as U(B)*-modules. Hence the statment of the lemma
rewrites:
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Let 81 be a hereditary order lying in the image of the canonical map Her(C') —
Her(B). Then

. U'(»s U'(s
D1m¢ HomU(%O)mU(%l) (VO ( O),VO ( 1)) S 1.

We may write this in the language of simplicial complexes. For o a simplex
of Xg, write U, for the parahoric subgroup of Gg fixing o and U} for its
pro-unipotent radical. Write oy = og,. Then our lemma is equivalent to:

(XI.2.4) Lemma. For all simplex T lying in the image of the canonical sim-
plictal map X;, — Xg, we have

. Usy UL
Dim¢ Homy, nu, (Vy 7 Vo ") < 1.

Fix an apartment Aj, of X containing oy and 7 (we see X;, — Xp as an
inclusion). According to [Br| Lemma 4, there exists a unique chamber o of Ay,
such that we have the containments

Elog, 7] D0 DT

where E[o, 7] is the enclos of o U T in the sense of [BTI] Definition (2.4.1).
Moreover by [Br] Lemma 5, we have that the simplex o lies between oy and 7 in
the sense of [SS] §2. This means that there exists points z,, in |0y|°, z, in |o]°,
and z, in |7|° such that z, belongs to the geometric segment [z,,,x,]. Since
the embedding X; — X is simplicial and affine, we have that, as a simplex
of Xp, o lies between g and 7. We may then apply Proposition (2.5) of [SS]:

(XI.2.5) Lemma. The image of Ul = UL N U, in U,/U} is contained in the
image of Uy, NU; in U, /UL

Next fix an L-basis (v1, ..., ve) of V corresponding to the apartment A;. More-
over fix a basis ((1, ..., () of the og-module oy,. Set

V;' = Lvi = VectE<iji N ] = 1,...,T> N 1= 1,...6 y

and write M for the Levi subgroup of Gg corresponding to the decomposition
V et ‘/1 @ e @ ‘/-e

(XI.2.6) Lemma. Let 6 be a simplex of Ar, (seen as a simplex of Xg).
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(i) The intersection Uy N M does not depends on 0. We denote it by M°. It is
given by

where the ith copy of GL(r,0g) is the mazimal compact subgroup of Autg (V;)
which is standard in the basis ((v;); of V;.

(ii) Assume moreover that 0 is a chamber of Ar. Then we have the Iwahori
decomposition
Uy = (Ug N M)U; .

Proof. This is an easy exercice in lattice chain theory and we only sketch the
proofs.

The simplex 6 corresponds to a certain op-lattice chain N' = (Ng)rez in V. The
fact that 6 lies in A, exactly means that the chain £ is split by the decomposition
V=@V, ie. for kin Z we have:

Ny =@PNi, Ni=N.NVi, i=1,..e

Let g € Up N M that we write g = @ ¢g;, g; € Endg V;, i = 1,...,e. Then we get
giNi =N}, ke Z,i=1,..,e, that is g;opv; = ov;, i = 1, ..., e, and point (i)
follows easily.

Assume moreover that 6 is a chamber in Ay,. Since the identity of (ii) is invariant
under the action of the affine Weyl group of this apartment (since it stabilizes
M), we may as well assume that 6 is the standard chamber attached to the lattice
chain N defined by N, = @ N} as above and, for k = 0,...,e — 1, N} = oy,
ifi € {0,....,e —1—k}, N, =prv;,i€{e—1—k+1,...,e—1}. Then by a
straightforward computation, we obtain that an element ¢ € Endg V, with a
block matrix ¢ = (guv)u,v=1,....c in the decomposition V' = @ V;, lies in Uy if
and only if we have gy, € GL(r,0g), u =1,...,€, guy € M(r,0g), if v > u, and
Juv € PEM(7,0E), if u > v. It is then classical that such a matrix has an Iwahori
decomposition as described by the identity of (ii).

1

U
We have M°® C U,, N U, and, as a M%module, V,"° is isomorphic to the
irreducible representation p®¢. So in order to prove Lemma (XI1.2.3), it suffices,

by Schur Lemma, to show that Im ¢ = <p(V0 %) is independent of the choice of

Usy +,U2L
a non-zero intertwining operator ¢ in Homy, nu. V7%, V7).

Ul
Let ¢ such a non-zero intertwining operator. Then W := ¢(V, “°) is a sub-M°-

module of Vé] : equivalent to p®¢. The groups U(}O N U, and U} act trivially
on W. Moreover by Lemma (XI.2.5), U; C (Us, N U;)U}. Tt follows that U}
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acts trivially on W and that the action of U, /U}! on that space is the action
inflated from the representation p®¢ of U, /U}; write p, for the corresponding
representation.

As a U,-module, Vé] : is equivalent to the generalized Steinberg representation
with cuspidal support (Mg, p®¢), where My is the image of My in the quotient
U,/UL. Tt is well known that this Steinberg representation occurs with mul-
tiplicity 1 in the parabolically induced representation Indg; po- It follows by

Frobenius reciprocity that p, occurs in Vo with multiplicity 1. It follows that

W is the unique sub-U,-module of VO isomorphic to p, and Lemma (XI.2.4)
is proved.

We have unconditionnaly proved the following result.

(XI.2.7) Theorem. Assume that (7,V) is an unramified twist of an irreducible
unitary discrete series representation lying in the Bernstein block R jx). Then
the augmented chain complex (IX.1) is ezxact.

XII. Explicit pseudo-coefficients for discrete series representations.

Let (m,V) be an irreducible (unitary) discrete series representation of G. In this
section, following [SS2]§I1.4, we show that Theorem (XI.2.7) leads to an explicit
pseudo-coefficient ¢, for w. We then show how to derive an explicit formula for
the value of the Harish-Chandra character of 7 at an elliptic regular element.

XII.1 The coefficient system C(7).

Recall that, with the notation of §XI, the coefficient system C = C(7) canonically
attached to 7 is given on a part of X by V[oe] = VA ~ \(2A), where

— 0 = o¢ is any simplex of X satisfying €pin C € C Cpax,
- 2A =2A(C),
< M) = Indy () 1o, Fimax @ SE(B, p).

Since the coefficient system C is G-equivariant, for any order 2l as above, the
representation \(2l) extends to a representation of K(21) = Ng(o) that we still
denote by A(21). In the sequel we shall also write

Ng(o) = Ky and () = A, .

By equivariance, we may define an irreducible smooth representation A, of IC,
for any simplex o of X[L], and by equivariance of C we have V[o] = V*¢ ~ ).
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XII1.2 Euler-Poincaré functions.

Let x be the central character of 7. All representations that we consider will lie
in the category S, (G) of those smooth representations admitting a central char-
acter equal to x. If V', V" € S8, (G) with V' of finite length and V" admissible,
we define the Euler-Poincaré characteristic :

EP(V, V") =Y (-1)!dimExt} ) V', V).

q>0

We denote by Z the center of G' and fix a Haar measure pg,z on G/Z. We
denote by #, (G) the convolution Hecke algebra of locally constant functions f :
G — C satisfying

~fzf)=x""2)flg9),z€ Z,g€G,

— f has compact support modulo Z.

Representations in S, (G) are naturally left #H, (G)-modules. The character of
an admissible representation (7’,V’) in S, (G) is the functionnal

Tryr @ Hy(G) — €, o — tr (7' (v))

where 7/(1)) is the endomorphism of V' attached to 7’; it is formally given by
the integral
' (Y) = W(9)'(9) dpcyz (9) -

G/Z

We set d = dim X[L]. For ¢ = 0,...,d, we fix a set F, of representatives of
G-orbits in the set X[L], of ¢-simplices in X[L]. If 0 = o¢ is a simplex of X[L],
we denote by ¢, : K, —> {£1} the abelian character defined as follows. If
g € Ko, €5(g) if the sign of the permutation of the vertex set of o induced by
the action of g. Moreover for such a simplex o, we denote by 7Y the character
of the representation (K., ;). For all simplices of X|[L] we extend the class
functions €, and 7Y by zero to functions on G. Following Kottwitz [Kot] and
Schneider and Stuhler [SS2], we define the Euler-Poincaré function attached to
(m,V) by the formula:

fEP —ZZ MG/Z’C/Z) ;j € -

q=0c0€F,

Remark. The Euler-Poincaré function f¥p does depend on the choices of rep-
resentative sets F,, ¢ =0, ..., d.
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(XII.2.1) Proposition. For all admissible representations (', V') in S, (G),
we have

Try: (f¥p) = EPs @) WV, V) .

Proof. We have the decomposition.

C& (X, CV) = @ C&(Go,Cc(V))

o€Fy

where C2'(G.0,C(V)) denotes the G-space of oriented chains with support in
GA{(0,01),(0,02)}, 01 and 02 denoting the two possible orientations of o. Since

& (X(0),C(V)) —V

is a projective resolution of V in S(G),, Lefschetz formula gives :

d
EPs(c), (V. V) => (-1)? Y dimHomg (C*(G.0,C(V)),V) .

q=0 o€Fy
By definition of compact induction we have:
Co(G.0,C(V) =c—Indg_ C(0,C(V)),

where CS"(0,C(V)) denotes the IC,-space of chains withs support in
{(0,01), (0,02)}. Moreoer, again by definition, we have the isomorphism of
K,-modules:

C(0,C(V)) = Ao R €p -

Using Frobenius reciprocity for compact induction, we obtain
Homg (CS"(0,C(V)), V') = Homy, (A\y ® €5, V') .

Moreover dim Homg (A, ® €5, V") is nothing other than the multiplicity of A, ®
€, in the isotypic component (V')*e®<:

1

dim Homy, (A\y ® €5,V') = T

dim (V')A"@E" .

Hence we have obtained

d
( o 60'
EPS(G)X v,V = Z Z dlm)\ dlm ) Beo

q=0o0€cF,
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We need to compare this with Try (f¥p). For this we have to compute
try/ (7Y .€,), for all ¢ and o € F,. Recall that for such ¢ and o,

1

Bypi=——
NG/Z(ICU)

7V ey.dim (\y€s)

is an idempotent of H(G),, and that E, seen as an endomorphism of V' is the
projection of the A, ® e,-isotypic component (1')*®¢ . Hence we have that
Try (E,) = dim (V')**®¢ and the proposition follows.

We shall need the following result.

(XII.2.2) Theorem. Let V' be an irreducible tempered representation in S, (G).
Then :

0 otherwise.

. !~
EPSX(G)(V,V,) — {1 lf V — V 9

Proof. 1t is shown in [SZ2] Prop. 9.3 and subsequent remark (based upon a
result of R. Meyer in [Me]) that

EXtZ‘X(G) (V, V,) = EXtZ;e'mp(G) (V, V/> y

where Sf(emp(G) denotes the category of all tempered smooth representations
with central character x. But by a variant of [SZ2] Prop. 2.3 the representation
V is a projective object in SI*"P(G).

Recall that a function f € H(G), is a pseudo-coefficient of (w, V) if for any
irreducible tempered representation in S, (G), we have

. ey
Trv/(f):{l lfV—V,

0 otherwise.

As a consequence of (XII.2.1) and (XII.2.2) we have :

(XII1.2.3) Theorem. The Euler-Poincaré function fyp is a pseudo-coefficient
of (m, V).

In [Br2], the first author obtained pseudo-coefficients for discrete series repre-
sentations of G using a quite different approach (but also based on Bushnell and
Kutzko type theory). Our pseudo-coefficients are likely to be very close to those
of [Br2], but the comparison has yet to be done.
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XII.3. An explicit character formula.

If v € H(G), and h € G is a regular elliptic element, the orbital integral

b= W hg)dpe, ()
G/Z

is known to converge (see e.g. [SS2], page 140 in the case of a reductive group
with compact center, the non-compact case being similar).

Let ©, denote the Harish-Chandra character of (7, V). This is a locally constant
function on the set G**® of regular semisimple elements of G. The following result
relates values of ©, with the orbital integral of a pseudo-coefficient of .

(XII.3.1) Theorem. (Kazhdan-Badulescu) Let fo be a pseudo-coefficient of
(m,V). Then for all regular elliptic element h of G, we have

Remark. This theorem is due to Kazhdan ([Kal, Prop. 3, page 28) for a reductive
group with compact center when F' has characteristic 0. It is due to Badulescu
([Ba] Théoreme (4.3)(ii), page 64) for our group G without restriction on F'.

Let h € G be a regular elliptic element. To obtain a formula for ©,(h) it
suffices to compute (f¥p)Y (A1) explicitely. For this we closely follow the proof
of Lemma (I11.4.10) of [SS2] where a similar computation is done.

If | X| denotes the geometric realization of the building of G, it is known that
| X |* is compact (see e.g. [SS2], page 141). Hence so is |X[L]|" the set of h-
fixed points in the geometric realization of X[L] since the subset X|[L] C X
is closed. Let us sketch the proof of this latter fact. Let z,, = g¢,.c, be a
converging sequence of points in X[L] with limit « where, for all n, g, is in
G and ¢, lies in some fixed (closed) chambre Cp of X;. Then (¢,) has a
convergent subsequence and replacing (z,) by a subsequence we may assume
that ¢,, converges to some ¢ € C',. Let d be a G-invariant metric on GG. we have
d(z, gn.cn) = d(g; .z, c,) — 0. Hence d(c,, G.x) — 0 and d(c, G.x) = 0. But
it is an easy exercice in Bruhat-Tits theory (left to the reader) that the G-orbit
of any point of X is closed in X. Hence ¢ € G.z, that is x € G.c C X[L] as
required.

It follows that their exists a finite number of simplices ¢ in X[L] such that
h.c = o. For such a o, the intersection o N|X|[L]|" is non-empty. The collection
of o(h) where o runs over the simplices of X|[L]| globally fixed by h endows
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the compact topological set |X[L]|" with a simplicial structure. As noticed by

Kottwitz ([Kot], page 635), it is an easy exercise to check that for all o in X[L]
fixed by h we have
GU(h) _ (_1)dima—dima(h) )

(XII.3.2) Theorem. For all reqular elliptic element h of G, we have

dim | X[L]|"

@ﬂ(h) = Z Z (_1)11 Tr (h’7 )‘U) ’
q=0 o(h)e|X[L]|k
where | X [L]|? denotes the set of g-simplices in | X [L]|".
Proof. We have to prove that

d
(fep)" Z Z (—=1)%75(h) .

9=00(h)elX[L]|}

Let ¢ € H(G), be any function with support in IC,, for some g-dimensional
simplex ¢ of X[L], such that ¢, is a class function. Let (G.o)" be the set
of simplices in the G-orbit of o that are fixed by h. Finally let GG}, denote the
centralizer of h in G. Following [SS2|, page 141, we write

V(g hg)dpc)z(9) = Z V(g hg) e z(GroKo/Z)
ge€EGR\G/Ks, g~ ThgeK,

= > (g h9uez(Ke/Z).[Gh : G N Kyol
go€Gp\(G.o)r

= nz(Ko/Z). > (g hg) .

goe(G.o)h

G/Z

We then apply this to each component of our Euler-Poincaré function fyp:

d
(f¥p)" Z Z Z (75 -€5) (97" hg)

q=00€F, gaG(G.h)h

I
|
=
Q
o
q
—~
>
SN—
Q\L:
—
>=
SN—

4=0 o€ (X[L],)"

dim | X [L]|*

_ Z Z (_1)dima(h)‘7:;/(h>

q=0 o(h)e|X[L]|h
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and we are done.

XII.4 The character of discrete series representations at minimal elements.

In this section we prove that the character formula of theorem (XII.3.2) takes a
striking simple form under a simple assumption on the regular elliptic element

h.

Let v € G satisfying: the algebra K := F[y] C A is a field (we shall assume
later that the extension K/F' is separable, but we do not need this hypothesis
for the moment). Let vk denote the normalized valuation of K. Following
[BK1](1.4.14), one says that « is minimal over F if it satifies:

(i) ged(vk (v), e(K/F)) = 1,

(ii) w;vK(W)ve(K/F) + px generates the extension of residue fields IF g /IF.
Here wr is some uniformizer of F' that we fix once for all.

. From [BK1], Exercice (1.5.6), page 44, we have the following result.

(XII.4.1) Lemma. Assume that v € G is minimal over F' and let 2 be a
hereditary order of A. Then v normalizes 2 if, and only if, K* normalizes 2.

Our next result is a more precise version of this lemma.

(XII.4.2) Proposition. Assume that v € G is minimal over F.

(i) We have X7 = XX (fized points set in the geometric realizations). In
particular X7 coincides with the canonical image of Xk in X (cf. Theorem

(1.2.1)).

(ii) In particular, if K/F is a mazimal subfield extension of A, then X7 re-
duces to a single point x., isobarycenter of simplex corresponding to the unique
hereditary order 2L, normalized by K> (it has op-period e(K/F).

Proof. We use the lattice model of the geometric realization of X given in [BL]
§1. Let us describe this model. Let L(V') denote the set of op-lattices in V. Let
LattiF(V) denote the set of functions A : R — L(V) satisfying:

— A is non-increasing, that is A(r) C A(s), if r > s,
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— A is periodical, that is A(r +1) = ppA(r), r € R,

— A is left-continuous for the discrete topology on L(V): for all » € IR, there
exists € > 0, such that A is constant on the segment [r — €, r].

We let G acts on Latt, (V) by

(9-M)(r) =g.A(r), g€ G, reR.

We define the set Latt,, (V) of lattice functions in V as the quotient
Latt, (V)/ ~ for the equivalence relation defined by A; ~ As, if there ex-
ists s € IR such that A;(r) = Aa(r+s), for all » € R. Then Latt, . (V) is a G-set
in an obvious way.

The point of [BL] §1 is that, as a G-set, the geometric realization of X is naturally
isomorphic to Latt, . (V).

Let A be a lattice function, with representative A € LattiF(V). Assume that
v.A = A. We must prove that A is fixed by K*. Consider the lattice chain
L ={A(r); r € R}, and let (L) and o, be the associate hereditary order and
simplex respectively. Then by [BL] Proposition (3.1), A lies in the interior of
the simplex o,. It follows that o is stabilized by v and therefore that (L) is
normalized by 7. Applying Lemma (XII.4.1), we obtain that (L) is normalized
by K*. In particular it follows that L is a chain of og-lattices in V', and that for
all 7 € IR, A(r) is fixed by 0. Hence A is fixed by 0. By condition (i) in the
definition of a minimal element, there exist integers r, s such that wg = wpy*
is a uniformizer of K, and it follows that A is fixed by wyx. Hence it is fixed by
K* = (wg)oj, as required.

With the notation as above, we fix an unramified twist of an irreducible discrete
series representation (m,)) of G with type (J,\). Its coefficient system C(m)
has support X[L]. We also fix an elliptic regular element v € G assumed to be
minimal over F. In other words, + is minimal over F' and the field extension
K/ F is separable and maximal. In particuler the fixed point set X7 is reduced to
a single point ., isobarycenter of simplex o, attached to a principal hereditary
order 2(, with op-period e(K/F).

(XII.4.3) Lemma. With the notation as above, we have that x, € X[L] if, and
only if, f(L/F)|f(K/F) and e(L/F)|e(K/F).

Proof. Using the numerical criterion (I1.3.5), we have that x, € X[L] (that is 2L,
has a G-conjugate normalized by L*) if, and only if, with the notation of §I, we
have:

66



i) F(L/F)d(A,)k, for all k € Z,
i) e(L/F)le(2y/or)/p(Ay).

But 2, being principal with period e(2(,/or) = e(K/F), we easily see that
(d(2A ) is constant with value f(K/F) and that p(2(,) = 1. The lemma follows.

As a straightforward consequence of the previous lemma and theorem (XII.3.2),
we obtain the following simple formula for the value of the Harish-Chandra
character at a minimal element.

(XI1.4.4) Proposition. The Harish-Chandra character of the discrete series
representation (m,V) satisfies :

0. () = {Tm, Ao,) i F(L/F)|f(K/F) and e(L/F)|f(K/F),

0 otherwise.

In some particular cases, the same formula was obtained by the first author in
[Br2] using a different approach.
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