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Algebraic vs. topological vector bundles on spheres

Aravind Asok∗ Jean Fasel†

Abstract

We study the problem of when a topological vector bundle on a smooth complex affine

variety admits an algebraic structure. We prove that all rank 2 topological complex vector

bundles on smooth affine quadrics of dimension 11 over the complex numbers admit algebraic

structures.

1 Introduction

If X is a smooth complex algebraic variety, write Vn(X) for the set of isomorphism classes of

rank n algebraic vector bundles on X, and V
top
n (X) for the set of isomorphism classes of rank n

complex topological vector bundles on Xan := X(C) viewed as a complex manifold. There is a

function “forget the algebraic structure”

Rn,X : Vn(X) −→ V
top
n (X).

A complex topological vector bundle of rank n on Xan is called algebraizable if it lies in the image

of Rn,X .

It is a classical (and difficult) problem to construct indecomposable vector bundles of low rank

on “simple” smooth algebraic varieties. Rather than attempting to make the notion of “simple”

precise, we focus on an example. Let Q2n−1 be the smooth quadric hypersurface in A
2n cut out by

the equation
∑n

i=1 xiyi = 1. The underlying complex manifold Qan
2n−1 is homotopy equivalent to

the sphere S2n−1. The goal of this note is to establish the following result.

Theorem 1. The map R2,Q11
is surjective, i.e., every rank 2 topological vector bundle on Q11

admits an algebraic structure. In particular, there exist indecomposable rank 2 vector bundles on

Q11.

Remark 2. With some additional analysis, it is possible to prove that Rr,Q2n−1
is actually surjective

for arbitrary r and n ≤ 6. “Stable” versions of results like Theorem 1 are classical [Fos69]. There

are also some unstable results for spheres of small dimension [Moo71]. From a modern point of

view, all of these results are easy to establish; see for example the introduction of [AFH15] for a

discussion of the algebraizability problem for arbitrary smooth varieties of small dimension.
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†Jean Fasel was supported by the DFG Grant SFB Transregio 45.
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2 1 Introduction

Remark 3. For a general smooth complex affine X the map Rr,X need not be either injective or

surjective: injectivity can fail for r = 1 on smooth complex affine curves, and surjectivity can

fail for r = 1 on smooth complex affine surfaces. Indeed, by Grauert’s Oka-principle [Gra58],

the classifications of analytic and topological vector bundles on a Stein manifold, e.g., a smooth

complex affine variety, coincide. On the other hand, it follows from the long exact sequence in

cohomology attached to the exponential sheaf sequence that smooth affine curves of positive genus

have no non-trivial analytic line bundles, even though they have plenty of non-trivial algebraic line

bundles.

Remark 4. One reason why the case r = 2 and n = 6 is especially interesting is as follows.

It is an open problem to determine whether, when X = P
n, n ≥ 4, all rank 2 vector bundles are

algebraizable (see, e.g., [OSS11, Chapter 1 §6.5]). There is a smooth surjective morphism Q2n−1 →
P
n−1. While we do not know, e.g., whether all rank 2 vector bundles on P

5 are algebraizable,

Theorem 1 implies that any rank 2 topological complex vector bundle on P
5 becomes algebraic

after pullback to Q11. The problem of whether the original bundle on P
5 is algebraizable can then

be viewed as a question in descent theory.

The set V
top
r (Q2n−1) is, by means of the homotopy equivalence Qan

2n−1
∼= S2n−1, in bijec-

tion with the set of free homotopy classes of maps [S2n−1, BU(r)]. Because BU(r) is sim-

ply connected, the canonical map from pointed to free homotopy classes of maps is a bijection,

i.e., π2n−1(BU(r)) → [S2n−1, BU(r)] is a bijection. On the other hand, for n ≥ 3, the map

π2n−1(BSU(r)) → π2n−1(BU(r)) is an isomorphism. In the special case where r = 2 we know

that π2n−1(BSU(2)) ∼= π2n−2(SU(2)) ∼= π2n−2(S
3).

Fix a field k and write H (k) for the Morel-Voevodsky A
1-homotopy category of k-schemes. F.

Morel gave an algebraic analog of Steenrod’s celebrated homotopy classification of vector bundles:

there is an A
1-homotopy classification of algebraic vector bundles on smooth affine schemes; see

[AHW17, Theorem 1] for a precise statement. As explained in the introduction to [AF14a], by a

procedure analogous to that described in the previous paragraph, there is a canonical bijection

V
o
r (Q2n−1) ∼= π

A1

n−1,n+1(SLr),

where V o
r (X) is the set of isomorphism classes of oriented vector bundles on a smooth scheme X

(see also [AHW15, Theorem 4.1.1]), i.e., vector bundles with a chosen trivialization of the determi-

nant.

The comparison between the results of the previous two paragraphs is facilitated by “complex

realization,” which provides a homomorphism π
A1

n−1,n+1(SL2)(C) → π2n(S
3). To establish the

result above, it suffices to prove the displayed homomorphism is surjective. Thus, the above alge-

braizability question boils down to a question regarding A
1-homotopy sheaves of SL2. Theorem 1

is then a consequence of the following result.

Theorem 5 (See Theorem 3.2.1). The homomorphism

π
A1

4,6(SL2)(C) −→ π10(S
3) ∼= Z/15.

is surjective.

The above result suggests the following question (which has a positive answer for primes p ≤ 5).
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Question 6. If p is a prime number, is the homomorphism

π
A1

p−1,p+1(SL2)(C) −→ π2p(S
3)

surjective on p-components?

That π10(S
3) ∼= Z/15 is classical (see, e.g., [Tod62]), so to establish Theorem 5 it suffices

simply to produce a lift of a generator. The group π10(S
3) is especially interesting because it is the

first place where 5-torsion appears in homotopy groups of S3. To prove the main result, we intro-

duce a spectral sequence whose E1-page involves A1-homotopy sheaves of punctured affine spaces

and that converges to the A
1-homotopy sheaves of the stable symplectic group; this is achieved in

Subsection 2.2. In Section 3, we analyze the “symplectic spectral sequence” constructed above to

produce the lift of a generator of π10(S
3). Finally, Section 4 begins to study the problem of explic-

itly constructing the rank 2 algebraic vector bundle whose existence is guaranteed by Theorem 1.

We show that any rank 2 algebraic vector bundle whose associated classifying map corresponds to

an element of πA1

4,6(SL2)(C) not lying in the kernel of the map in Theorem 5, remains non-trivial

after adding a trivial bundle of rank ≤ 3, but becomes trivial after adding a trivial summand of rank

4.

Notation/Preliminaries

Throughout we fix a base-field k. This note uses much notation from [AF14a, AF14b] and [AF15],

and our conventions and notation will follow those papers. We write Smk for the category of

schemes that are separated, finite type and smooth over Spec k, and Spck for the category of simpli-

cial presheaves on Smk (objects of this category will be called k-spaces). As usual, given X ∈ Smk

we view X as a simplicial presheaf by considering the simplicially constant object associated with

representable presheaf on Smk defined by X. We write H•(k) for the Morel-Voevodsky pointed

A
1-homotopy category; this category is obtained as a Bousfield localization of Spck.

We write Si for the constant presheaf defined by the usual simplicial i-sphere. It will be useful

to remember that the quadric Q2n−1 ⊂ A
2n defined by

∑
i xiyi = 1 is isomorphic in H•(k) to

A
n \ 0 by projection onto the x-variables. It follows, for example, that the map SL2 → A

2 \ 0
corresponding to projection onto the first column is an A

1-weak equivalence. Moreover, An \ 0 is

A
1-weakly equivalent to Sn−1

∧G
∧n
m . Also, P1 ∼= S1

∧Gm, and thus (An−1 \ 0)∧P1 ∼= A
n \ 0 as

well.

If (X , x) is a pointed simplicial Nisnevich sheaf on Smk, we define πA1

i,j (X , x) as the Nisnevich

sheaf on Smk associated with the presheaf

U 7−→ HomH•(k)(S
i
s∧G

∧j
m ∧U+, (X , x)).

We write K
Q
i for the Nisnevich sheafification of the Quillen K-theory presheaves U 7→ Ki(U),

and GW
j
i for the Nisnevich sheafification of the Grothendieck-Witt groups GW j

i (U,OU ), K
M
i

for the unramified Milnor K-theory sheaves and K
MW
i for the unramified Milnor–Witt K-theory

sheaves (see [Mor12, Chapter 3] for a detailed discussion of the latter notions). We freely use the

identification π
A1

n−1,j(A
n \ 0) ∼= K

MW
n−j [Mor12, Corollary 6.43].

If ι : k →֒ C is a fixed embedding, then there is an induced “complex realization” functor

Rι : H•(k) → H , where H is the usual homotopy category. For a more detailed discussion of this

construction, we refer the reader to [MV99, §3.3.2] or [DI10].
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2 Some spectral sequences

The goal of this section is to describe some spectral sequences whose E1-pages are homotopy

sheaves of punctured affine spaces and that converge to algebraic K-theory sheaves or Grothendieck-

Witt sheaves. These spectral sequences are the algebro-geometric cousins of the “orthogonal spec-

tral sequence” studied by Mahowald (see the discussion just subsequent to [Rav86, Diagram 1.5.14]).

2.1 The linear spectral sequence

For any integer n ≥ 2 consider the inclusion GLn−1 →֒ GLn sending a matrix X to the block-

matrix diag(X, 1). We write GL = colimnGLn with respect to these inclusions. The quotients

GLn/GLn−1 are isomorphic to Q2n−1 by the map sending an n× n-matrix to its first row and the

first column of its inverse. Since Q2n−1 is A1-weakly equivalent to A
n \ 0, one deduces that there

are A
1-fiber sequences of the form

GLn−1 −→ GLn −→ A
n \ 0.

For any integer j ≥ 0, these A
1-fiber sequences induce long exact sequences in A

1-homotopy

sheaves of the form

· · · −→ π
A1

i,j (GLn−1) −→ π
A1

i,j (GLn) −→ π
A1

i,j (A
n \ 0) −→ π

A1

i−1,j(GLn−1) −→ · · · .

Putting these sequences together yields an exact couple of the form

⊕
n≥1,i≥0 π

A1

i,j (GLn) //
⊕

n≥1,i≥0 π
A1

i,j (GLn)

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

⊕
n≥1,i≥0 π

A1

i,j (A
n \ 0)

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

.

Since taking homotopy groups commutes with filtered colimits (this is classical for simplicial sets),

we conclude that colimn π
A1

i,j (GLn) = π
A1

i,j (GL). Using this fact, we summarize the structure of

the associated spectral sequence in the next result.

Proposition 2.1.1. For any integer j ≥ 0, there is a spectral sequence with

E1
p,q(j) := π

A1

p+q,j(A
p \ 0)

and converging to π
A1

p+q,j(GL) = K
Q
p+q−j+1.
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Proof. Since we observed colimn π
A1

i,j (GLn) = π
A1

i,j (GL), and since π
A1

i,j (A
p \ 0) vanishes for

i ≤ p−1, the convergence statement follows immediately from the classical convergence statement

for exact couples [Wei94, Theorem 5.9.7]. The identification of the homotopy sheaves of the stable

general linear group with Quillen K-theory sheaves follows from A
1-representability of algebraic

K-theory [MV99, §4 Theorem 3.13].

2.2 The symplectic spectral sequence

We now analyze a variant of the above spectral sequence replacing the general linear group by the

symplectic group. As before, there are standard “stabilization” embeddings Sp2n−2 →֒ Sp2n. Write

Sp := colimn Sp2n with respect to these embeddings. The quotients Sp2n/Sp2n−2 exist and are

isomorphic to Q4n−1. As a consequence, for any integer n ≥ 1, there are A
1-fiber sequences of the

form

Sp2n−2 −→ Sp2n −→ A
2n \ 0.

For any integer j ≥ 0, these A
1-fiber sequences induce long exact sequences in A

1-homotopy

sheaves of the form

· · · −→ π
A1

i,j (Sp2n−2) −→ π
A1

i,j (Sp2n) −→ π
A1

i,j (A
2n \ 0) −→ π

A1

i−1,j(Sp2n−2) −→ · · · .

Putting these sequences together, we get an exact couple

⊕
n≥1,i≥0 π

A1

i,j (Sp2n)
//
⊕

n≥1,i≥0 π
A1

i,j (Sp2n)

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

⊕
n≥1,i≥0 π

A1

i,j (A
2n \ 0)

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

Once again, colimn π
A1

i,j (Sp2n) = π
A1

i,j (Sp). Using this fact, we may analyze the spectral sequence

associated with the above exact couple. We deduce the following result, whose proof is formally

identical to that of Proposition 2.1.1.

Proposition 2.2.1. Assume j ≥ 0 is an integer.

1. There is a spectral sequence with

E1
p,q(j) := π

A1

p+q,j(A
2p \ 0)

and converging to π
A1

p+q,j(Sp) = GW
2−j
p+q−j+1.

2. For any j ≥ 0, E1
p,q(j) = 0 for i) p < 0, and ii) q ≤ p− 2.

Proof. Convergence is established exactly as in Proposition 2.1.1. The identification of the A
1-

homotopy sheaves of the stable symplectic group with the higher Grothendieck-Witt sheaves fol-

lows from the Schlichting-Tripathi representability theorem for Hermitian K-theory [ST15, Theo-

rem 8.2]. The second statement is an immediate consequence of [Mor12, Corollary 6.39].

The above vanishing statement, together with the identification π
A1

1 (A2 \ 0) ∼= K
MW
2 immedi-

ately implies the following result.
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Corollary 2.2.2. There are low-dimensional isomorphisms GW
2
1
∼= 0 and GW

2
2
∼= K

MW
2 .

Remark 2.2.3. This sheaf GW
2
2 is by definition the second symplectic K-theory sheaf K

Sp
2 . That

this sheaf is identified with K
MW
2 is essentially a result of Suslin [Sus87]; see [AF17, Theorem

4.1.2] for more details.

2.3 The anti-symmetric spectral sequence

Consider the inclusion map Sp2n →֒ GL2n. The quotients GL2n/Sp2n exist as smooth schemes

and we set Xn = GL2n/Sp2n. There are evident stabilization maps Xn → Xn+1 induced by the

stabilization maps GL2n−2 → GL2n and Sp2n−2 → Sp2n. We set GL/Sp := colimnXn.

For any integer n ≥ 1, the stabilization maps fit into A
1-fiber sequences of the form

Xn −→ Xn+1 −→ A
2n+1 \ 0;

(see [AF15, Proposition 4.2.2] and note the same argument works when one replaces the special

linear group by the general linear group). These A
1-fiber sequences yield, for any integer j ≥ 0,

long exact sequences in A
1-homotopy sheaves of the form

· · · −→ π
A1

i,j (Xn) −→ π
A1

i,j (Xn+1) −→ π
A1

i,j (A
2n+1 \ 0) −→ π

A1

i−1,j(Xn) −→ · · · .

One can put these sequences together to obtain an exact couple, and regarding the associated spectral

sequence, one has the following result.

Proposition 2.3.1. Assume j ≥ 0 is an integer.

1. There is a spectral sequence with

E1
p,q(j) := π

A1

p+q,j(A
2p−1 \ 0)

and converging to π
A1

p+q,j(GL/Sp) = GW
3−j
p+q−j+1.

2. For any j ≥ 0, E1
p,q(j) = 0 for i) q ≤ p− 3, ii) p < 0, and iii) p = 1 and q > 0.

Proof. Again, the proof is essentially identical to Proposition 2.1.1, though this time the identifica-

tion of the higher A1-homotopy sheaves of GL/Sp with higher Grothendieck-Witt sheaves follows

from [ST15, Theorem 8.3].

The above result, together with π
A1

0 (Gm) ∼= Gm, and Morel’s computation π
A1

2 (A3 \ 0) im-

mediately implies the following result.

Corollary 2.3.2. There are low-dimensional isomorphisms GW
3
1
∼= Gm, GW

3
2
∼= 0 and GW

3
3
∼=

K
MW
3 .

Remark 2.3.3. The identification GW
3
3
∼= K

MW
3 is that analyzed in [AF17, Theorem 4.3.1].

3 Some results on odd primary torsion in A1-homotopy groups

Serre showed [Ser53] that, if p is a prime, then the first p-torsion in the higher homotopy groups of

S3 appears in π2p(S
3). The classical proof of this result relies on an analysis of the Serre spectral

sequence for the fibration BS1 → S3〈3〉 → S3 and Serre class theory. The goal of this section is

to begin to lift this computation to unstable A
1-homotopy theory, in which, at the time of writing,

neither of the two tools just mentioned are available.
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3.1 Odd primary torsion and the topological symplectic spectral sequence

If Sp(2n) is the compact real form of the symplectic group, there are topological fiber sequences of

the form

Sp(2n− 2) −→ Sp(2n) −→ S4n−1.

Putting the long exact sequences in homotopy groups associated with these fibrations together yields

an exact couple and an associated spectral sequence with

E1
p,q = πp+q(S

4p−1) =⇒ π∗(Sp(∞)).

By analogy with the “orthogonal spectral sequence” mentioned before, we will refer to this spectral

sequence as the topological symplectic spectral sequence. The differentials appearing in this spec-

tral sequence will bear a superscript “top” to distinguish them from those appearing in the spectral

sequence constructed in Subsection 2.2. The homotopy groups of Sp(∞) are known by Bott pe-

riodicity and we now use this to interpret the p-torsion in π2p(S
3) in terms of differentials in this

spectral sequence.

Proposition 3.1.1. Suppose ℓ is an odd prime. The generator of the ℓ-torsion of π2ℓ(S
3) is the

image of an element of π2ℓ+1(S
2ℓ+1) under the differential dtop(ℓ−1)/2 in the topological symplectic

spectral sequence.

Proof. First, note that if F → E → B is a Serre fibration, then there is a corresponding long exact

sequence in homotopy groups mod n for any integer n [Nei80, Proposition 1.6]. In particular, the

exact couple associated with the long exact sequence in homotopy of the fiber sequences Sp(2n −
2) → Sp(2n) → S4n−1 yields a mod n topological symplectic spectral sequence:

E1
p,q = πp+q(S

4p−1;Z/ℓZ) =⇒ π∗(Sp(∞);Z/ℓZ).

Classical results allow us to completely describe the E1-page in a range and Bott periodicity allows

us to understand precisely to what the spectral sequence converges.

In more detail, π4p−1(S
4p−1,Z/ℓZ) = Z/ℓZ. On the other hand, if n is an odd number and

k > 0, the first non-trivial ℓ-torsion in πn+k(S
n) appears in degree k = 2ℓ− 3 [Ser53, Proposition

11 on p. 285]. In particular, the E1-page of the mod ℓ symplectic spectral sequence takes a rather

simple form. On the other hand, since ℓ is an odd prime, Bott periodicity [Bot59, Corollary to

Theorem II] implies that the ℓ-completion of πi(Sp(∞)) is non-trivial if and only if i is congruent

to 3 mod 4. In particular, π2ℓ(Sp(∞),Z/ℓ) = 0 since 2ℓ is even. Combining these observations,

we deduce that the mod ℓ topological symplectic spectral sequence is particularly degenerate: the

only non-trivial differential that lands on π2ℓ(S
3) is dtop

(ℓ−1)/2
, and this differential is necessarily an

isomorphism since π2p(Sp(∞),Z/p) is trivial.

Lemma 3.1.2. The map

ker(π11(S
11) → π10(S

7))
dtop
2−→ π10(S

3)/ im(π11(S
7))

is surjective. Moreover, π10(S
3) is generated by dtop2 (24ι), where ι is a generator of π11(S

11).
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Proof. The proof of this fact amounts to recalling some classical computations of homotopy groups

of spheres. Let νtop : S7 → S4 be the usual Hopf map. We abuse terminology and also write

νtop : Sn+3 → Sn for any n ≥ 4 for the maps obtained by iterated suspension. It is well known that

for n ≥ 5, νtop generates πn+3(S
n) ∼= Z/24. Likewise, following Toda, we write (ν ′)top : S6 → S3

for the class obtained from the classifying map of S7 = Sp(4)/Sp(2) → BSp(2) by adjunction.

Serre observed in [Ser53, p. 285 Remarques (2)] that the generator of π9(S
3) is precisely the

composite of a 2-fold suspension of the Hopf map νtop, generating π9(S
6), and (ν ′)top : S6 → S3.

By [Tod62, Proposition 5.15] and [Ser53, p. 285 Corollaire] one knows that π10(S
3) ∼= Z/15 and

by [Tod62, Proposition 5.8] π11(S
7) = 0.

Granted the computations mentioned in the previous paragraph, to establish the result, it suffices

to show that d2top is surjective after reduction modulo 3 and reduction modulo 5. The statement after

reduction modulo 5 follows immediately from Proposition 3.1.1. After reduction modulo 3, observe

that d1 : π10(S
7,Z/3) → π9(S

3,Z/3) is a map Z/3 → Z/3. Since the d1 differential at this stage

is by construction of the symplectic spectral sequence induced by composition with the connecting

map, it follows that d1 is an isomorphism after reduction modulo 3. Therefore, it follows that the

induced map π11(S
11) → π10(S

3) is surjective after reduction modulo 3 as well.

Remark 3.1.3. The group π14(S
3) ∼= Z/84 × Z/2×2 is not cyclic; see, e.g., [Tod62, Theorem

7.4] for the computation of the 2-component. Therefore the differential dtop3 cannot be surjective

integrally.

3.2 Lifting some odd primary torsion from topology to A1-homotopy

Complex realization does not, in general, preserve fiber sequences. Nevertheless, since a) Span2n
is homotopy equivalent to the compact symplectic group Sp(2n) and b) the Qan

4n−1 is homotopy

equivalent to S4n−1, the complex realization of the A
1-fiber sequence Sp2n−2 → Sp2n → Q4n−1

is the topological fiber sequence Sp(2n− 2) → Sp(2n) → S4n−1. Therefore, complex realization

determines a morphism from the exact couple giving rise to the symplectic spectral sequence we

considered in Subsection 2.2 evaluated on complex points to the exact couple that gives rise to the

topological symplectic spectral sequence described in Subsection 3.1. As a consequence, there is

an induced morphism of spectral sequences. By the discussion of the introduction, the next result

implies Theorem 1 from the introduction.

Theorem 3.2.1. If p = 3, 5, then the homomorphism π
A1

p−1,p+1(A
2 \0)(C) → π2p(S

3) is surjective.

Proof. For p = 3, this is worked out in [AF14b, Theorem 7.5] (take n = 1 and observe that

Sp2(C) = SL2(C) is homotopy equivalent to S3). We treat the case p = 5. We study the map from

the E2-page of the symplectic spectral sequence to the E2-page of the topological symplectic spec-

tral sequence whose existence is guaranteed by the discussion just prior to the theorem statement.

In particular, there is a commutative diagram of the form

ker(πA1

5,6(A
6 \ 0)(C) → π

A1

4,6(A
4 \ 0)(C))

d2 //

��

π
A1

4,6(A
2 \ 0)(C)/ im(πA1

5,6(A
4 \ 0)(C))

��

ker(π11(S
11) → π10(S

7))
dtop
2 // π10(S

3)/ im(π11(S
7)).
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We now analyze this diagram.

Observe that dtop2 is surjective (with a precise generator identified) by Lemma 3.1.2. It follows

from [Mor12, Corollary 6.39] that for any integer n ≥ 1, πA1

n,n+1(A
n+1 \ 0)(C) ∼= K

MW
0 (C) ∼= Z

and a generator of the group π
A1

n,n+1(A
n+1 \ 0)(C) is sent to a generator of π2n+1(S

2n+1) under

complex realization, so the left vertical map is an injection. We will show that it is split injective.

Now, recall that the connecting homomorphism in the long exact sequence in homotopy sheaves

associated with the A
1-fiber sequence SL4/Sp4 → SL6/Sp6 → A

5 \ 0 determines a morphism of

sheaves πA1

4,5(A
5 \ 0) → π

A1

3,5(A
3 \ 0); equivalently, this is the d1-differential in the anti-symmetric

spectral sequence of Section 2.3. Now, by construction, the connecting homomorphism is induced

by a map Ω(A5 \ 0) −→ A
3 \ 0. The unit of the loop-suspension adjunction determines a map

Σ3
G

∧5
m → Ω(A5 \ 0); this morphism is an isomorphism on πA1

3 so the map on homotopy sheaves

we consider is induced by applying π
A1

3,5(−) to a morphism Σ3
G

∧5
m → A

3 \ 0. Taking the P
1-

suspension of this morphism, we obtain a commutative diagram of the form:

π
A1

3,5(Σ
3
G

∧5
m )(C) //

��

π
A1

3,5(A
3 \ 0)(C)

��

π
A1

4,6(Σ
4
G

∧6
m )(C) //

π
A1

4,6(A
4 \ 0)(C))

,

where the top morphism coincides with the d1-differential in the anti-symmetric spectral sequence

under the isomorphism π
A1

3,5(Σ
3
G

∧5
m )(C) ∼= π

A1

4,5(A
5 \ 0).

The left hand vertical map is an isomorphism by appeal to [Mor12, Corollary 6.39]. On the other

hand, πA1

3,5(A
3 \ 0)(C) ∼= Z/24, generated by a class δ by [AF15, Proposition 5.2.1]. Moreover,

by analyzing the proof of [AF15, Proposition 5.1], one observes that δ is the image of a generator

ι of πA1

3,5(Σ
3
G

∧5
m )(C) as a GW (C) = Z-module under the top horizontal map; in other words, ι is

sent to a generator of Z/24. Now δ is stably non-trivial: indeed, complex realization sends δ to a

generator of π8(S
5) = Z/24 and thus δ differs from Σν, which is classically known to be stably

non-trivial, by a unit in Z/24. It follows that ΣP1δ is non-zero in π
A1

4,6(A
4 \ 0)(C)) under the right

vertical map and commutativity shows that ΣP1δ is the image of ΣP1ι.
We also observed in [AF15, Corollary 5.3.1] that δ is sent to the suspension of νtop under

complex realization, and by compatibility of complex realization and suspension, it follows that

complex realization sends the P
1-suspension of δ to a threefold suspension of νtop. This provides

the splitting mentioned in the previous paragraph. Combining these two observations, we obtain the

splitting mentioned two paragraphs above.

The generator 24ΣP1ι of 24Z ⊂ π
A1

4,6(Σ
4
G

∧6
m )(C) is sent to a generator of 24Z ⊂ π10(S

10)

under complex realization. Under the isomorphism π10(S
10) → π11(S

11), the latter is sent by dtop2

in the topological symplectic spectral sequence to a generator of π10(S
3), it follows that d2(24ΣP1ι)

lifts this generator in π
A1

4,6(A
2 \ 0).

3.3 Complements

It is possible to establish a result like Theorem 3.2.1 using the anti-symmetric spectral sequence.

Since the proof is essentially identical to proof of Theorem 3.2.1 it will only be sketched.
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Theorem 3.3.1. The homomorphism π
A1

5,7(A
3 \ 0) → π12(S

5) ∼= Z/30 is surjective.

Proof. If Γn := U(2n)/Sp(2n), then there are fiber sequences of the form Γn → Γn+1 → S2n+1.

The long exact sequences in homotopy fit together to yield an exact couple that is the topological

analog of the anti-symmetric spectral sequence considered in Subsection 2.3. This spectral sequence

converges to the homotopy groups of U/Sp, which are known by Bott periodicity. Observe that

π2i(U/Sp) ∼= π2i−2(Sp) and so vanishes by explicit computation. Again, complex realization

yields a morphism from the anti-symmetric spectral sequence to its topological counterpart.

Consider then the commutative diagram:

ker(πA1

6,7(A
7 \ 0)(C) → π

A1

5,7(A
5 \ 0)(C))

d2 //

��

π
A1

5,7(A
3 \ 0)(C)/ im(πA1

6,7(A
5 \ 0)(C))

��

ker(π13(S
13) → π12(S

9))
dtop
2 // π12(S

5)/ im(π13(S
9)).

Again, π13(S
9) = 0 and one observes that dtop2 is surjective in a fashion identical to Lemma 3.1.2.

The remainder of the analysis is analogous to the end of the proof of Theorem 3.2.1.

4 Building explicit representatives

Given the existence of at least 15 non-isomorphic rank 2 algebraic vector bundles on Q11 it would

be interesting to construct explicit representatives of these bundles. It follows from the results of

[AF14a], which we review below, that all such bundles are stably trivial. Corollary 4.2.2 demon-

strates that non-trivial rank 2 algebraic vector bundles on Q11 whose associated topological bundles

are non-trivial, remain algebraically non-trivial after forming the direct sum with trivial bundles of

rank ≤ 3.

4.1 Stable triviality results

The inclusion of M ∈ SLn(R) in SLn+1(R) as block diagonal matrices of the form diag(M, 1)
gives a morphism of spaces BSLn → BSLn+1. If X is a smooth affine scheme, then the induced

map

[X,BSLn]A1 → [X,BSLn+1]A1

corresponds to the operation of adding a trivial rank 1 bundle. By means of the identifications

mentioned in the introduction, when X = Q2i−1, the above function corresponds to a morphism

Φ1,n : πA1

i−1,i(BSLn) → π
A1

i−1,i(BSLn+1).

Write Φm,n for the composite morphism Φ1,n+m−1 ◦ · · · ◦Φ1,n+1 ◦ Φ1,n.

To answer the question of whether a bundle on Q11 becomes trivial after successively adding

trivial bundles of rank 1 amounts to studying whether a class ξ ∈ π
A1

5,6(BSL2)(C) is sent to 0 under

Φm,2. The next result shows that Φm,2 is the zero map for m ≥ 4.

Lemma 4.1.1 ([AF14a, Corollary 4.7]). If n ≥ 1, and m ≥ n, Vm(Q2n−1) = ∗.
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4.2 Adding trivial summands of small rank

The topological analog of the sequence of homomorphisms considered in the previous section can

be analyzed using classical results. Precisely, we have the following result.

Proposition 4.2.1. The homomorphisms π11(BSU(2)) → π11(BSU(m)) are injective for 3 ≤
m ≤ 5.

Proof. We begin by recalling various computations of homotopy groups of special unitary groups.

One knows that π11(BSU(2)) = π10(SU(2)) = π10(S
3) ∼= Z/15 [Tod62, p. 186], π11(BSU(3)) ∼=

Z/30 [MT64, Theorem 6.1], π11(BSU(4)) ∼= Z/2⊕Z/5! [Ker60, Lemma I.6], and π11(BSU(5)) ∼=
Z/5! [Bot58, Theorem 5]. For injectivity when m = 3, consider the portion of the long exact se-

quence in homotopy groups associated with S5 → BSU(2) → BSU(3)

π11(S
5) −→ π11(BSU(2)) −→ π11(BSU(3)).

We know that π11(S
5) ∼= Z/2 [Tod62, p. 186], so the left hand map is zero. Therefore, the map

π11(BSU(2)) → π11(BSU(3)) must be injective.

Next, consider the long exact sequence in homotopy groups associated with S7 → BSU(3) →
BSU(4). In that case, we have

π11(S
7) −→ π11(BSU(3)) −→ π11(BSU(4)) −→ π10(S

7).

In this case, π11(S
7) = 0 [Tod62, p. 186], so the map π11(BSU(3)) → π11(BSU(4)) is injective.

Combining with the conclusion of the previous paragraph, injectivity for m = 4 is settled.

For the case m = 5, first observe that since π11(BSU(2)) ∼= Z/15 its image in π11(BSU(4)) is

necessarily contained in the summand isomorphic to Z/5!. Kervaire’s computation of π11(BSU(4))
mentioned above proceeds by analysis of the long exact sequence in homotopy attached to the fiber

sequence S9 = SU(5)/SU(4) → BSU(4) → BSU(5). Indeed, this exact sequence takes the

form:

π11(S
9) −→ π11(BSU(4)) −→ π11(BSU(5)) −→ 0,

where the left hand group is Z/2 and so the map π11(BSU(4)) → π11(BSU(5)) is the projection

onto the summand isomorphic to Z/5!. The result follows.

The next result is a straightforward consequence of Lemma 4.1.1, Proposition 4.2.1, Theorem

3.2.1 and the functoriality of complex realization.

Corollary 4.2.2. If ξ is an element of πA1

5,6(BSL2)(C) that does not lie in the kernel of the (sur-

jective) complex realization map π
A1

5,6(BSL2)(C) → π11(BSU(2)), then the image of ξ under the

homomorphism

Φm,2 : π
A1

5,6(BSL2)(C) −→ π
A1

5,6(BSLm)(C)

is non-trivial for 3 ≤ m ≤ 5.
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Classics. Birkhäuser/Springer Basel AG, Basel, 2011. Corrected reprint of the 1988 edition, With an appendix

by S. I. Gelfand. 2

[Rav86] D. C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure and Applied

Mathematics. Academic Press Inc., Orlando, FL, 1986. 4

[Ser53] J.-P. Serre. Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. (2), 58:258–294, 1953. 6, 7, 8
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