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6 General random walk in a random environment

defined on Galton–Watson trees

A. D. Barbour∗ and Andrea Collevecchio†

Universität Zürich and Monash University

Abstract. We consider a particle performing a random walk on a Galton–Watson

tree, when the probabilities of jumping from a vertex to any one of its neighbours is

determined by a random process. We introduce a method for deriving conditions un-

der which the walk is either transient or recurrent. We first suppose that the weights

are i.i.d., and re-prove a result of Lyons & Pemantle [10]. We then assume a Marko-

vian environment along each line of descent, and finally consider a random walk in a

Markovian environment that itself changes the environment. Our approach involves

studying the typical behaviour of the walk on fixed lines of descent, which we then

show determines the behaviour of the process on the whole tree.
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1 Introduction

We consider the behaviour of a random walk in a random environment, which consists

of a randomly sampled Galton–Watson tree, with the jump probabilities at each vertex
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being prescribed by a further random mechanism. We derive conditions on the envi-

ronment under which the walk is transient — that is, the event that the walk never

returns to the root has positive probability — and under which it is recurrent, when

the probability of returning to the root is 1. Our approach, which has its roots in that

of [1], involves studying the typical behaviour of the process on fixed lines of descent,

which we then show determines the behaviour of the process on the whole tree. We

combine these ideas with suitable large deviation principles, and an analysis of the

resulting variational formula, enabling rather satisfactory results to be obtained under

relatively weak conditions.

The Galton–Watson tree is sampled first, starting from a root ̺. Given the tree,

positive weights are then assigned at random to its edges, and the jump probabilities

are determined from the weights. In Section 2, we suppose that the weights are i.i.d.,

and recover a result of Lyons & Pemantle [10], in Theorem 2.1. A different proof

of the Lyons–Pemantle theorem is contained in [12]; see also [7] for the multitype

Galton-Watson case. In Section 3, we extend the argument to an environment in

which the values of the weights evolve as a Markov chain along rays, giving sufficient

conditions for both transience and recurrence in Theorem 3.6. Finally, in Section 4,

we illustrate the power of our method by considering a random walk in a Markovian

environment that itself changes the environment; see Theorems 4.1 and 4.4. The results

of this section should be compared to the behaviour of once-reinforced random walk;

see, for example, [1], [2] or [6], and the general survey of reinforcement in [15]. The

model that we discuss is a strong generalization of the once-reinforced walk, and it

exhibits multiple phases (see Theorem 4.4), whereas the once-reinforced walk on the

supercritical Galton–Watson tree is always transient (see [1] or [2]). This should be

compared to results obtained in a recent preprint by Kious & Sidoravicius [9].

Let G be an infinite tree with root ̺. We augment G by adjoining a parent ̺−1 to

the root ̺. If two vertices ν and µ are the endpoints of the same edge, they are said to

be neighbours, and this property is denoted by ν ∼ µ. The distance |ν − µ| between

any pair of vertices ν, µ, not necessarily adjacent, is the number of edges in the unique

self-avoiding path connecting ν to µ. We set |̺−1| = −1. For any other vertex ν, we

let |ν| be the distance of ν from the root ̺. We denote by b(ν) the number of neighbors

of ν at level |ν| + 1, its offspring number, and we use ν−1 to denote the parent of ν.

We write ν < µ if ν is an ancestor of µ.
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For ν a vertex of G, we write

Aν = (Aν1, Aν2, . . .)

to denote the (finite, positive) weights on the edges between ν and its offspring. For

simplicity, we index the weight associated to edge e by the endpoint of e with larger

distance from ̺. The environment ω for the random walk on the tree is then defined,

for any vertex ν with offspring νi, 1 ≤ i ≤ b(ν), by the probabilities

ω(ν, νi) :=
Aνi

1 +
∑

1≤j≤b(ν) Aνj
; ω(ν, ν−1) :=

1

1 +
∑

1≤j≤b(ν) Aνj
. (1.1)

We set ω(ν, µ) = 0 if µ and ν are not neighbours. Given the environment ω, we define

the random walk X = {Xn, n ≥ 0} that starts at ̺ to be the Markov chain with

Pω(X0 = ̺) = 1, having transition probabilities

Pω(Xn+1 = µ1 | Xn = µ0) = ω(µ0, µ1).

Moreover, we assume that ̺−1 is an absorbing state for the walk. The environment is

random in two respects. First, the Galton–Watson tree G is realized; then, for each

vertex ν ∈ G, the weights Aν are realized. The combined probability measure from

which the environment is realized is denoted by P and its expectation by E, and the

semi-direct product P := P×Pω represents the annealed measure. The details of the

probability measures used to construct the environment are given in the subsequent

sections.

We use [ν,+∞) to denote a generic infinite line of descent from ν.

2 Random walks in i.i.d. environment.

In this section, we assume that G is a Galton–Watson tree with offspring mean b > 1.

Given the realization of the tree, we assume that the sets of weights (Aν, ν ∈ G) are

independent, and that, for each ν, the weights (Aνi, 1 ≤ i ≤ b(ν)) are exchangeable,

with the distributions of the Aν1, ν ∈ G, all identical. Under these assumptions, we

prove the following theorem, first given by Lyons & Pemantle [10], as part of a sharp

result.
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Theorem 2.1 Assume that G and the environment are distributed as above. If

infλ∈[0,1] E[A
λ
̺1] > b−1, then X is transient; that is, with positive probability, X does

not hit ̺−1.

Our proof relies on the Mogulskii large deviations principle.

We assume that X is recurrent and find a contradiction. We consider the behaviour

of the random walk X observed along any infinite line of descent σ = [̺−1,∞), if one

exists. Such lines exist with positive probability, since b > 1. We call this restricted

process X(σ). Note that, by our assumption of recurrence, the process X(σ) has the

following transition probabilities:

Pω[X
(σ)
n+1 = σr+1 |X

(σ)
n = σr] =

Aσr+1

1 + Aσr+1

; Pω[X
(σ)
n+1 = σr−1 |X

(σ)
n = σr] =

1

1 + Aσr+1

,

where we denote the successive vertices in σ by σj , j ≥ −1, with σ0 := ̺ and σ−1 := ̺−1.

We define T−1 to be the first timeX(σ) hits ̺−1, and Tn the first time the process hits σn.

Note that the P-distributions of T−1 and Tn are not affected by the choice of σ.

Proposition 2.2 If

lim sup
n→∞

1

n
lnP(T−1 > Tn) > − ln b, (2.1)

then X is transient.

Proof. We mimic the proof in [1]. Assume that X is recurrent. By assumption,

there exists an n∗ such that bn
∗
P(T−1 > Tn∗) > 1. We now construct a branching

process as follows. Set τ := inf{i > 0: Xi = ̺−1}. We color green the vertices ν at

level n∗ which are visited before time τ . Define

Sν = inf{n ≥ 0: Xn = ν}.

Under our assumptions, Sν < ∞ a.s. for each ν. A vertex ν at level jn∗, for some integer

j ≥ 2, is colored green, if its ancestor µ at level (j − 1)n∗ is green, and (Xj, j ≥ Sµ)

hits ν before it returns to µ−1. The green vertices evolve as a Galton–Watson tree,

with offspring mean bn
∗
P(T−1 > Tn∗) > 1. Hence this random tree is supercritical, and

thus the probability of there being an infinite number of green vertices is positive. But

this contradicts the assumption that X is recurrent.

4



Proof of Theorem 2.1. In view of Proposition 2.2, it is enough to show that (2.1)

is satisfied. We use a well-known formula for the hitting probability for random walk

in random environment (see, for example, Sznitman [16], Equation 44),

P(Tn < T−1) = E

[( n∑

r=0

r∏

j=1

A−1
σj

)−1
]
.

Denote by ⌊x⌋ the integer part of x. Then it follows directly, because

(
nmax

r≤n

r∏

j=1

A−1
σj

)−1

≤
( n∑

r=0

r∏

j=1

A−1
σj

)−1

≤
(
max
r≤n

r∏

j=1

A−1
σj

)−1

,

that

lim inf
n→∞

1

n
lnP(Tn < T−1) = lim inf

n→∞

1

n
lnE

[( n∑

r=0

r∏

j=1

A−1
σj

)−1]

= lim inf
n→∞

1

n
lnE

[
min
r≤n

r∏

j=1

Aσj

]

= lim inf
n→∞

1

n
lnE

[
eminr≤n

∑r
j=1 lnAσj

]

≥ lim inf
n→∞

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 lnAσj

]
.

(2.2)

Denote by D[0, 1] the space of functions f : [0, 1] → R, which are right-continuous, have

limits from the left and have f(0) = 0. Endow this space with the uniform convergence

topology. We writeAC for the subspace ofD[0, 1] consisting of all absolutely continuous

functions. By the Mogulskii theorem (see [4], Theorem 5.1.2), the distribution of

{(1/n)
∑⌊nt⌋

j=1 lnAσj
, t ∈ [0, 1]} satisfies a large deviation principle in D[0, 1]. The rate

function for this large deviation principle is

I(f) :=

∫ 1

0

sup
λ

{
f ′(t)λ− lnE[Aλ

̺1]
}
dt,

if f ∈ AC, and I(f) = +∞ if f /∈ AC. Note that I(f) is lower semicontinuous, but

does not necessarily have compact level sets, so that it is not necessarily a ‘good’ rate

function.

The function g : AC → (−∞, 0] defined by g(f) = mint∈[0,1] f(t) is continuous in AC.

By the lower bound in Varadhan’s lemma (see [4], Lemma 4.3.4), we get

lim inf
n→∞

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 lnAσj

]
≥ sup

f∈AC

{
min
t∈[0,1]

f(t)− I(f)
}
. (2.3)
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Since the function φ(λ) := lnE[Aλ
̺1] is convex, it follows from Proposition 5.1 in the

Appendix that the solution to the variational formula on the right hand side of (2.3)

is given by

sup
f∈AC

{
min
t∈[0,1]

f(t)−

∫ 1

0

sup
λ
{f ′(u)λ− lnE[Aλ

̺1]} du
}

= inf
λ∈[0,1]

ln E[Aλ
̺1]. (2.4)

Combining (2.2), (2.3) and (2.4), it follows that (2.1) is satisfied, proving Theorem 2.1.

3 Markovian environment

We now show that the proof used in the previous section allows us to treat more general

dependence between the weights, provided that we have a suitable large deviation

principle.

Let σ be an infinite line of descent [̺,∞). In this section, we assume that there is a

process {Mσi
, i ≥ 1} in a Polish space Σ, such that the pair Γσi

:= (Aσi
,Mσi

), with

i ≥ 0, is a Markov chain on Σ′ = (0,∞)× Σ, with transition kernel

K(x,B) := P
(
Γσi

∈ B | Fi−1 ∩ {Γσi−1
= x}

)
, (3.1)

for any B ∈ B := B(Σ′); here, Fi, i ≥ 1, is the natural filtration of the process Γσi
,

i ≥ 1.

Remark 3.1 We assume, for each ν, that the random variables (Γνi, i ≥ 1) are gener-

ated from some joint distribution whose marginals, conditionally on Γν and the further

past, are equal to K(Γν , ·). Note that we do not need to assume independence among

the (Γνi, i ≥ 1). The construction can proceed sequentially along the tree, using any

initial condition for Γ̺ ∈ Σ′.

For any vertex ν, recall that the set of vertices which are descendants of ν consists

of those vertices µ such that ν lies on the shortest path connecting µ to the root ̺. We

deem ν to be its own descendant. We are motivated by examples where the process

{Aσi
, i ≥ 0} is determined as a functional of Markov processes defined on rays.

In order to make use of a uniform large deviation principle for Markov chains, we

make the following assumption. It is somewhat reminiscient of the requirement for
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Harris recurrence, but is much stronger, in that many specific measures must be dom-

inated. We also make use of the assumption to construct regeneration events for the

environment.

Assumption 1. There exist integers 0 < ℓ ≤ N and a constant κ ≥ 1 such that, for

all x, y ∈ Σ′ and B ∈ B, we have

K(ℓ)(x,B) ≤
κ

N

N∑

m=1

K(m)(y, B), (3.2)

where K(ℓ) stands for the ℓ-th convolution of the kernel K.

Note that i.i.d. {Aσi
} satisfy Assumption 1, and so does any finite state space irre-

ducible Markov chain (Aσi
,Mσi

), but there are of course many other possibilities.

Although the classical results on large deviations require the finiteness of all moments

(see condition (Û), page 95 of [5]), we do not assume that the support of the Aσi
is

either compact or bounded away from zero; nor do we make any assumptions on the

moments of Aσi
. Instead, we use truncation in order to apply the general results. We

nonetheless need one further assumption. Setting

ηε,r := 1− inf
y∈Σ′

P
(
ε < Aσ1 ≤ r |Γσ0 = y

)
, (3.3)

we require:

Assumption 2. For η := lim infε↓0,r→∞ ηε,r, we have η < 1.

The following example shows that, even when Aσi
itself is a Markov chain, Assump-

tion 1 does not in general imply Assumption 2.

Example 3.2 Suppose that K(x, ·) is the mixture (1 − α)Exp (1) + αExp (x̂), where

x̂ := x∨ 1, 0 ≤ α ≤ 1 and Exp (λ) denotes the exponential distribution with mean λ−1.

Then it is easy to check that η = α, and that K(2)(x, ·) has a density k(2)(x, ·) satisfying

(1− αe−1)e−w ≤ k(2)(x, w) ≤ 3e−w,

uniformly in x, so that Assumption 1 is satisfied with ℓ = 2, but Assumption 2 is not

satisfied if α = 1.

For all x ∈ Σ′ and for all B ∈ B(Σ′), define Σ′
ε := (ε,∞)× Σ and

Kε(x,B) :=
K(x,B ∩ Σ′

ε)

K(x, (ε,∞)× Σ)
;
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note that Kε is a probability kernel on Σ′
ε, and that it satisfies Assumption 1 for all

ε such that ηε,∞ := 1 − infy∈Σ′ P
(
Aσ1 > ε |Γσ0 = y

)
< 1. To prove the latter fact,

observe that, for all Borel sets B ∈ B(Σ′
ε), we have

K
(ℓ)

ε (x,B) ≤ (1− ηε,∞)−ℓK(ℓ)(x,B) ≤
κ

(1− ηε,∞)ℓN

N∑

j=1

K(j)(y, B)

≤
κ

(1− ηε,∞)ℓN

N∑

j=1

K
(j)

ε (y, B).

(3.4)

For any 0 < ε < 1, and for some x∗ ∈ [1,∞)× Σ, define the measure βε on Σ′ by

βε(·) := K
(ℓ)

ε (x∗, ·), (3.5)

where ℓ is the same as in Assumption 1. Set β(·) = limε→0 βε(·) = K(ℓ)(x∗, ·).

Proposition 3.3 Under Assumptions 1 and 2, if

lim inf
ε→0

lim inf
n→∞

1

n

∫

Σ′

lnP
(
T−1 > Tn | Γ̺ = y

)
βε(dy) > − ln b, (3.6)

then X is transient.

Proof. Under the assumption that X is recurrent, we construct a random subtree of

G, consisting of green vertices, that contains a number of vertices stochastically larger

than the number of vertices in a supercritical Galton–Watson tree. These green vertices

are such that the random walk X visits them before it first reaches ̺−1. The fact that

this random subtree is infinite with positive probability implies a contradiction, and

hence that X is transient.

A direct calculation shows that, for any y ∈ Σ and 1 ≤ j ≤ N ,

pεj(y, B) := P

(
j−1⋂

l=1

{Al ≥ ε}, Γj ∈ B
∣∣∣ Γ0 = y

)

≥ (1− ηε,∞)NK
(j)

ε (y, B),
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for allB ∈ B(Σ′
ε). It thus follows, from (3.4) and (3.5), that if U is uniformly distributed

on {1, 2, . . . , N}, independently of Γ, then, for all y ∈ Σ′ and B ∈ B(Σ′
ε),

pεy(B) :=
1

N

N∑

j=1

pεj(y, B) = P

(
U−1⋂

l=1

{Al ≥ ε}, ΓU ∈ B
∣∣∣ Γ0 = y

)

≥ κ−1(1− ηε,∞)N+ℓK
(ℓ)

ε (x∗, B) =: δεβε(B), (3.7)

with δε > 0 for all ε small enough, since ηε,∞ < 1 for all ε small enough, in view of

Assumption 2. Because of (3.7), δεβε is absolutely continuous with respect to pεy, and

δε
dβε

dpεy
(y′) ≤ 1 =

N∑

j=1

f ε
j (y, y

′),

where

f ε
j (y, y

′) :=
1

N

dpεj(y, ·)

dpεy
(y′), 1 ≤ j ≤ N.

Hence, if we set gεj (y, ·) := δε
dβε

dpεy
(y′)f ε

j (y, y
′), 1 ≤ j ≤ N , it follows that 0 ≤ gεj (y, y

′) ≤

f ε
j (y, y

′) for all y′ ∈ Σ′
ε and

∑N
j=1 g

ε
j (y, y

′) = δε
dβε

dpεy
(y′).

This justifies the following construction. Starting at a vertex ν that has an infinite

line of descent, let Γ0 denote the value y ∈ Σ′
ε at ν. Realize U = Uν uniformly

distributed on {1, 2, . . . , N} and a random variable U ′ uniformly distributed on [0, 1],

independently of all else. Because there is an infinite line of descent from ν, there

is at least one line of descent from ν of length U ; if there is more than one, choose

one at random. Denote it by ν1, . . . , νU , and set ν0 := ν. Independently, realize the

chain Γ along this line of descent, starting from Γ0 at ν. Say that the event Eν occurs if

Aj ≥ ε, 1 ≤ j ≤ U −1, and if U ′f ε
U(y,ΓU) ≤ gεU(y,ΓU). In this way, the distribution βε

is obtained as the distribution of ΓU on an event Eν of probability δε, and with Aj ≥ ε,

1 ≤ j ≤ U . For any pair of vertices ν, µ, with µ a descendant of ν, denote by X(ν, µ)

the process X restricted to the finite graph consisting of the vertices in the finite ray

[ν−1, µ] and the edges connecting them. A vertex ν ′ is green if it has an infinite line of

descent, and is descended from a green vertex ν in the following way. Eν must occur,

and then X(ν, νU) has to reach νU before hitting ν−1; the latter event has probability

at least {ε/(1 + ε)}N . Finally, ν ′ should be a descendant at distance n from νU , and

X(νU , ν
′) should reach ν ′ before it hits ν−1

U , an event of probability
∫

Σ′
ε

P(T−1 > Tn |Γ̺ = y)βε(dy).

9



Thus the expected number of green ‘offspring’ of a green vertex ν is at least

bnδε{ε/(1 + ε)}N
{∫

Σ′
ε

P(T−1 > Tn |Γ̺ = y)βε(dy)

}
(1− q), (3.8)

where q denotes the probability of the extinction of the underlying Galton–Watson

tree. Next, we show that (3.6) implies that we can choose ε small enough and n

large enough that the quantity in (3.8) becomes larger than 1. By taking the natural

logarithm of (3.8) and dividing by n, we have

1

n
ln
(
δε{ε/(1 + ε)}N(1− q)

)
+ ln b+

1

n
ln

∫

Σ′
ε

P(T−1 > Tn |Γ̺ = y)βε(dy). (3.9)

Fix ε > 0 such that

lim inf
n→∞

1

n

∫

Σ′
ε

lnP
(
T−1 > Tn | Γ̺ = y

)
βε(dy) > − ln b,

as we may, in view of (3.6). Then, for this choice of ε, the liminf of (3.9) as n → ∞

is larger than 0, proving that the quantity in (3.8) is larger than 1 for our choice of ε

and for n large enough.

By construction, the distribution of the number of green offspring is the same for

all green vertices. Hence, choosing an appropriate ε, and then n large enough that

the quantity in (3.8) is larger than one, the Galton–Watson tree of green vertices is

supercritical.

The proofs that follow rely on large deviations results. These cannot be directly

applied to A, so we need to consider truncations. For this reason, it is convenient

to introduce the large deviations results that we shall use applied to a generic pro-

cess W := (Wi, i ≥ 0), which, together with a process M̃ on Σ, makes Γ̃ defined by

Γ̃i := (Wi, M̃i) a Markov chain on R× Σ. Let K̃ denote the kernel of this process.

Define

Λ(K̃)(λ) := lim sup
n→∞

sup
ỹ∈R×Σ

1

n
lnE

[
eλ

∑n
i=1 Wi | Γ̺̃ = ỹ

]
, Λ∗

K̃
(x) := sup

λ
{λx− Λ(K̃)(λ)},

(3.10)

and let

S(K̃)

n (t) :=
1

n

⌊nt⌋∑

j=1

Wi, t ∈ [0, 1].

10



Theorem 3.4 Fix 0 < C < R < ∞, and assume that Wi ∈ (C,R) a.s., for each i. If

K̃ satisfies Assumption 1, then, for any Θ ∈ B+, we have

− inf
x∈Θ◦

Λ∗
K̃
(x) ≤ lim inf

n→∞

1

n
ln inf

y∈Σ′
P(S(K̃)

n (1) ∈ Θ | Γ̺̃ = y)

≤ lim sup
n→∞

1

n
ln sup

y∈Σ′

P(S(K̃)

n (1) ∈ Θ | Γ̺̃ = y) ≤ − inf
x∈Θ

Λ∗
K̃
(x).

Proof of Theorem 3.4. The kernel K̃ satisfies condition (Û), page 95 of [5]. Hence,

the theorem is a consequence of the more general Theorem 4.1.14, page 97 of [5],

combined with (4.1.24) page 100 of [5], to identify the rate function.

Recall that AC denotes the space of absolutely continuous functions f defined on

[0, 1], with f(0) = 0 and D[0, 1] the space of functions f which are right continuous

and have limits from the left, and have f(0) = 0. Both spaces are endowed with the

uniform convergence topology. The following result is due to Dembo & Zajic [3].

Theorem 3.5 Under the hypotheses of Theorem 3.4, the sequence {S(K̃)
n (t), t ∈ [0, 1]}

in D[0, 1] satisfies a large deviations principle with the good, convex, rate function

I∗
K̃
(f) :=

{∫ 1

0
Λ∗

K̃
(ḟ(u)) du, if f ∈ AC

+∞, otherwise.

Proof. In virtue of Theorem 3.4, S(K̃)
n (1) satisfies a uniform large deviations principle.

We can then use Dembo & Zajic ([3], Theorem 3a) to conclude that {S(K̃)
n (t), t ∈ [0, 1]}

satisfies an LDP with rate function I∗
K̃
(·).

Note that, since (Aσi
,Mσi

) is a Markov chain in (0,∞)× Σ, then (lnAσi
,Mσi

) is a

Markov chain on R× Σ. Define the kernel

Kln((ũ, z), B) := K((eũ, z), E(B)), ũ ∈ R, z ∈ Σ, B ∈ B,

where E(B) := {(eũ, z) : (ũ, z) ∈ B}. Note that, if K satisfies Assumption 1, then so

does the kernel Kln.

For R ∈ (0,∞) and C ∈ [−∞, 0), define the probability kernel QC,R on (C,R]× Σ

by

QC,R

(
ỹ, (dũ, dz)

)
:=

Kln

(
ỹ, (dũ, dz)

)

Kln(ỹ, (C,R]× Σ)
, (3.11)

and set QR := Q−∞,R.
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Theorem 3.6 If K satisfies Assumption 1, then

(i) If Assumption 2 holds, the condition

lim sup
min{−C,R}→∞

inf
λ∈[0,1]

Λ(QC,R)(λ) > − ln b− ln(1− η) (3.12)

implies transience of X on G. The constant η is the one introduced in Assump-

tion 2.

(ii) The condition

inf
λ∈[0,1]

Λ(Kln)(λ) < − ln b (3.13)

implies positive recurrence of X on G.

Remark 3.7 In the case of an i.i.d. environment, (3.12) coincides with the condition

infλ∈[0,1] Λ
(Kln)(λ) > − ln b, which is then also the same as that of Theorem 2.1.

Corollary 3.8 In the uniformly elliptic case, i.e. if there exists ε > 0 such that

inf
x
K
(
x, (ε, ε−1)× Σ

)
= 1,

so that then η = 0, we have the following sharp transition:

(i) The condition

inf
λ∈[0,1]

Λ(Kln)(λ) > − ln b (3.14)

implies transience of X on G.

(ii) The condition

inf
λ∈[0,1]

Λ(Kln)(λ) < − ln b (3.15)

implies positive recurrence of X on G.

The following examples show particular ways to compute bounds for Λ(Kln).
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Example 3.9 Suppose that Aσi
evolves as a discrete irreducible aperiodic Markov

chain, with state space Ξ = (a1, a2, . . . , aℓ), where ai ∈ (0,∞) for all i, and with

transition matrix K = (ki,j, 1 ≤ i, j ≤ ℓ). Note that, in the finite case, Λ(Kln)(λ) coin-

cides with ln ρ(λ), where ρ(λ) is the Perron-Frobenius eigenvalue of the matrix whose

(i, j)th entry is aλj ki,j, (see [4], page 74). Using the Gershgorin circle theorem, the

Perron–Frobenius eigenvalue is bounded above by the largest row sum. Hence

ρ(λ) ≤ max
i

ℓ∑

j=1

ki,ja
λ
j .

Hence, Corollary 3.8 implies that if

inf
λ∈[0,1]

max
i

ℓ∑

j=1

ki,ja
λ
j < 1/b,

then the process is recurrent. The Gershgorin circle theorem can also be used to get the

lower bound

ρ(λ) ≥ min
i

(
ki,ia

λ
i −

∑

j : j 6=i

ki,ja
λ
j

)
,

useful if K is close to being diagonal. Thus Corollary 3.8 implies that if

inf
λ∈[0,1]

min
i

(
ki,ia

λ
i −

∑

j : j 6=i

ki,ja
λ
j

)
> 1/b,

then the process is transient.

In the case ℓ = 2, Λ(Kln)(λ) can of course be computed explicitly. For

K :=

(
α 1− α

1− β β

)
,

with α, β ∈ (0, 1), we have

Λ(Kln)(λ) = ln
1

2

(
αaλ1 + βaλ2 +

√
(αaλ1 + βaλ2)

2 + 4(1− α− β)aλ1a
λ
2

)
. (3.16)

The procedure used in Example 3.9 can be carried out in continuous space through

discretization, as the following simple example shows.
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Example 3.10 Let K be the kernel of a Markov process with compact state space U .

Consider a finite cover of U , say U1, U2, . . . , Uℓ, with the property that if i 6= j then

Ui 6⊂ Uj, and an ℓ × ℓ matrix with strictly positive elements B = {bi,j} such that, for

all t > 0,

K(y, (0, t]) ≤

⌊t⌋∑

j=1

bi,j ∀y ∈ Ui.

We emphasize that B need not be a transition matrix. Set Ξ = {ai, i ≤ ℓ}, where

ai = sup{b : b ∈ Ui}. Then

Λ(Kln)(λ) ≤ lim sup
n→∞

sup
j0≤ℓ

1

n
ln

ℓ∑

j1=1

. . .

ℓ∑

jn=1

eλ ln aj1 · · · eλ ln ajn bj0,j1 · · · bjn−1,jn.

Hence, the logarithm of the Perron-Frobenius eigenvalue of the matrix {aλj bi,j} is an

upper bound for Λ(Kln). We can then proceed as in the previous example to determine

a sufficient condition for recurrence. An analogous procedure, with lower bounds, can

be applied to derive sufficient conditions for transience.

Proof of Theorem 3.6. We first prove that condition (3.12) implies that (3.6)

holds, and hence, by Proposition 3.3, that X is transient. Observe that, for any r > 0,

we have

lim inf
ε→0

lim inf
n→∞

∫

Σ′

1

n
lnP(Tn < T−1 | Γ̺ = y)βε(dy)

= lim inf
ε→0

lim inf
n→∞

∫

Σ′

1

n
lnE

[( n∑

l=0

l−1∏

j=1

A−1
σj

)−1
| Γ̺ = y

]
βε(dy)

≥ lim inf
ε→0

lim inf
n→∞

∫

Σ′

1

n
lnE

[( n∑

l=0

l−1∏

j=1

(Aσj
∧ r)−1

)−1
| Γ̺ = y

]
βε(dy)

≥ lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[( n∑

l=0

l−1∏

j=1

(Aσj
∧ r)−1

)−1
| Γ̺ = y

]

≥ lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
i=1 ln(Aσi

∧r) | Γ̺ = y
]
.

(3.17)
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For r > 1 > c > 0, let Aσi
(c, r) = (Aσi

∨ c) ∧ r, and set C = ln c and R = ln r. Then,

writing ỹj := (ũj, zj) ∈ R× Σ for j ≥ 1 and ỹ0 := (ln u, z) for (u, z) = y, we have

lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 ln(Aσj

∧r) |Γ̺ = y
]

≥ lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 ln(Aσj

∧r)1l⋂n
i=1{Aσi

>c} |Γ̺ = y
]

= lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 lnAσj

(c,r)1l⋂n
i=1{Aσi

>c} |Γ̺ = y
]

≥ lim inf
n→∞

inf
y∈Σ′

∫

([C,R]×Σ)n
emint∈[0,1]

∑⌊nt⌋
j=1 ũj

n∏

j=1

Kln

(
ỹj−1, dỹj

)
.

(3.18)

Choosing c small enough and r large enough that

inf
y∈Σ′

Kln(y, [c, r]× Σ) ≥ (1− ηc,r) > 0,

as we may, because η < 1, we have

lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 (lnAσj

∧r) |Γ̺ = y
]

≥ lim inf
n→∞

inf
y∈Σ′

1

n
ln
[
(1− ηc,r)

n

∫

([C,R]×Σ)n
emint∈[0,1]

∑⌊nt⌋
j=1 ũj

n∏

j=1

Kln

(
ỹj−1, dỹj)

)

Kln(ỹj−1, (C,R]× Σ)

]

= lim inf
n→∞

inf
y∈Σ′

1

n
ln
[
(1− ηc,r)

n
Ẽ
[
emint∈[0,1]

∑⌊nt⌋
j=1 Wj |Γ̺ = y

]]

= ln(1− ηc,r) + lim inf
n→∞

inf
y∈Σ′

1

n
ln Ẽ

[
emint∈[0,1]

∑⌊nt⌋
j=1 Wj |Γ̺ = y

]
,

(3.19)

where Ẽ is the expectation with respect to the Markov chain G̃ = (W, M̃) with proba-

bility kernel QC,R

(
ỹ′, dỹ

)
introduced in (3.11).

Next we prove that the kernel QC,R satisfies Assumption 1. Note that, for Borel sets

F ⊂ (C,R] and E ∈ Σ, and for any x̃, ỹ ∈ (C,R]× Σ, we have

Q(ℓ)

C,R(x̃, F ×E) ≤ (1− ηc,r)
−ℓK(ℓ)

ln (x̃, F ×E) ≤
M

(1− ηc,r)ℓN

N∑

j=1

K(j)

ln (ỹ, F ×E)

≤
M

(1− ηc,r)ℓN

N∑

j=1

Q(j)

C,R(ỹ, F ×E).

(3.20)
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In the last step, we have used the inequality

K(n)

ln (ỹ, F × E) ≤ Q(n)

C,R(ỹ, F ×E),

valid for F ⊂ (C,R] and n ≥ 1, which is easily proved by induction.

Combining Theorem 3.5 with Varadhan’s lemma, using the uniform large deviations

stated in Theorem 3.4, we find that

lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 (lnAσj

∧r) |Γ̺ = y
]

≥ ln(1− ηc,r) + sup
f∈AC

{
min
t∈[0,1]

f(t)− I∗QC,R
(f)
}
,

(3.21)

and, since the function Λ(QC,R) is convex for any C and R, Proposition 5.1 can be used

to solve the variational formula on the right hand side of (3.21), giving

lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈[0,1]

∑⌊nt⌋
j=1 (lnAσj

∧r) |Γ̺ = y
]
≥ ln(1− ηc,r) + inf

t∈[0,1]
Λ(Qln c,ln r)(t).

(3.22)

Recalling (3.17), we thus have

lim inf
ε→0

lim inf
n→∞

∫

Σ′
ε

1

n
lnP(Tn < T−1 | Γ̺ = y)βε(dy) ≥ ln(1− ηc,r) + inf

t∈[0,1]
Λ(Qln c,ln r)(t),

for any c, r > 0 such that ηc,r < 1. By letting c → 0 and r → ∞, we get

lim inf
ε→0

lim inf
n→∞

∫

Σ′
ε

1

n
lnP(Tn < T−1 | Γ̺ = y)βε(dy)

≥ ln(1− η) + lim sup
min{1/c,r}→∞

inf
t∈[0,1]

Λ(Qln c,ln r)(t) > − ln b,

using (3.12), and (i) follows from Proposition 3.3.

Next, we prove that if (3.13) holds, then the process is positive recurrent. In this

case we just mimic the proof by Lyons & Pemantle (see [10], proof of Theorem 1.3,

page 130). We include the proof for sake of completeness and clarity. We use the well

known fact (see [8] Proposition 9-131) that the random walk is positive recurrent if the

sum of conductances is a.s. finite, i.e.

∑

ν∈G

|ν|∏

i=1

Aν−i < ∞ a.s. (3.23)
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From (3.13) and the definition of Λ, we can choose t0 ∈ (0, 1] such that

E

[
exp
{
t0

n∑

i=1

lnAi

} ∣∣∣ G̃0 = ỹ
]

< (1/b′)n,

for some b′ > b, for all ỹ and all n large enough. Recall that ν−i denotes the i-th

ancestor of ν. Because the branching number of the Galton–Watson tree is b, this

implies that

E


 ∑

ν : |ν|=n

n∏

i=1

At0
ν−i


 ≤ (b/b′)n, (3.24)

and hence that
∑

n≥1

∑

ν : |ν|=n

n∏

i=1

At0
ν−i < ∞ P–a.s. (3.25)

Furthermore, (3.24) also implies that, for all n large enough, P(En) ≤ (b/b′)n, where

En :=




∑

ν : |ν|=n

n∏

i=1

At0
ν−i ≥ 1



 .

Thus a.s. only finitely many of the events En occur, and, on Ec
n, since 0 ≤ t0 ≤ 1,

∑

ν : |ν|=n

n∏

i=1

At0
ν−i ≥

∑

ν : |ν|=n

n∏

i=1

Aν−i. (3.26)

(3.23) thus follows from (3.25) and (3.26), proving (ii).

4 A walk that changes its environment, once.

In this section, we consider a setting in which the process X changes the environment.

Fix parameters L, p > 0, and let (Bσi
, i ≥ 1) be a stochastic process, taking values in

[p,+∞), such that the triple (Aσi
, Bσi

,Mσi
) is a Markov process along rays. Recalling

that

Sν := inf{n ≥ 0: Xn = ν},
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define

G(ν, n) :=

{
Aν if {Aν > Bν} ∪ {Sν > n};

L if {Aν ≤ Bν} ∩ {Sν ≤ n},

for each vertex ν and time n. If Xn = ν, given the environment and Fn :=

σ{X1, X2, . . . , Xn}, the probability that Xn+1 = νi is given by

G(νi, n)

1 +
∑b(ν)

j=1 G(νj, n)
, (4.1)

so that the probability of a transition from ν to a state νi, which has been visited at

least once before and for which Aνi ≤ Bνi, is modified by replacing Aνi by L in its

calculation. As before, the process is absorbed at the state ̺−1, and recurrence means

that the process is absorbed with probability one at ̺−1. Let

Dσi
:=

{
L if Aσi

≤ Bσi

Aσi
if Aσi

> Bσi
.

and denote by K∗ the transition kernel of the Markov chain Γ∗ := (Dσi
, Bσi

, Aσi
,Mσi

)

on R+×Σ∗, where Σ∗ := R
2
+×Σ is the state space of (Bσi

, Aσi
,Mσi

), and Dσi
is singled

out. As before, define

ηε,r := 1− inf
y∈R+×Σ∗

P
(
ε < Aσ1 ≤ r |Γ∗

σ0
= y
)

and η = limε→0,r→∞ ηε,r.

Theorem 4.1 Suppose that K∗ satisfies Assumption 1 and that Assumption 2 also

holds. Suppose that L, p ≥ 1. Then the condition

ln(1− η) > − ln b (4.2)

implies the transience of X on G.

Corollary 4.2 If η = 0, then the process X is transient on G.

Proof of Theorem 4.1. Because the process X can change Aν only at the time Sν

that ν is first visited, the proof of Proposition 3.3 can be used to show that, if η < 1

and

lim sup
ε→0

lim inf
n→∞

1

n

∫

R+×Σ∗

lnP
(
T−1 > Tn | Γ∗

̺ = y
)
βε(dy) > − ln b, (4.3)
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then X is transient; here, βε(·) is defined as in the previous section, using K∗(ℓ)(x∗, ·)

for some x∗ ∈ R+ × Σ∗, and ℓ is chosen in such a way that there exist N and M such

that, for all x, y ∈ R+ × Σ∗ and Borel sets B, we have

K∗(ℓ)(x,B) ≤
M

N

N∑

i=1

K∗(i)(y, B).

It remains to determine when (4.3) holds.

For a given ray σ = [̺,∞), let QD
i := {

∑i
r=0

∏r
j=1D

−1
σj
}−1 denote the probability

that the random walk starting in ̺ would hit σi before ̺−1, if the probabilities were

determined solely by the Dσi
, and, for i ≥ 1, let qDi := QD

i /Q
D
i−1 denote the probability

that the same random walk starting in σi−1 hits σi before it hits ̺−1. Then, the

probability qAi that the original walk, after it reached σi−1, hits σi before ̺−1, when

started in σi−1, is given by Aσi
/{1+Aσi

− qDi−1}, i ≥ 1, with qD0 taken to be zero. This

leads us to consider the quantity

Φn :=

n∏

i=1

(qAi /q
D
i ) =

n∏

i=1
Aσi

<bσi

(
1 +D−1

σi
(1− qDi−1)

1 + A−1
σi
(1− qDi−1)

)
.

Now, since Dσi
≥ θ := p ∧ L ≥ 1 for all i, we have

1− qDi ≤ i−1, (4.4)

so that, on the event
⋂n

i=1{Aσi
> ε},

Φn ≥
n∏

i=1

{1 + i−1ε−1}−1 ≥ kn−1/ε, (4.5)

for a suitable k, which depends on ε only, and

n∏

i=1

qDi =
n∏

i=1

{1− (1− qDi )} ≥ 1/n.
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Hence, for (4.3), we have

P(T−1 > Tn |Γ
∗
̺ = y) = E

[n−1∏

i=0

Pω(T−1 > Ti+1 | T−1 > Ti)
∣∣∣ Γ∗

̺ = y
]

= E

[ n∏

i=1

qAi

∣∣∣ Γ∗
̺ = y

]
= E

[
Φn

n∏

i=1

qDi

∣∣∣ Γ∗
̺ = y

]

≥ kn−1/ε
E

[ n∏

i=1

qDi 1l∩n
i=1{Aσi

>ε}

∣∣∣ Γ∗
̺ = y

]

≥ kn−(1/ε)−1
P

[ n⋂

i=1

{Aσi
> ε}

∣∣∣ Γ∗
̺ = y

]
.

(4.6)

Hence, from the definition of ηε,∞,

lim inf
n→∞

inf
y∈R+×Σ∗

1

n
lnP(T−1 > Tn |Γ

∗
̺ = y) ≥ ln(1− ηε,∞),

and the theorem follows by letting ε → 0 and using (4.3).

Remark 4.3 Consider a once-reinforced random walk on a Galton–Watson tree, de-

fined as follows. Each edge is initially assigned weight 1. The walk moves to any one of

its nearest neighbours, with probability proportional to the weight of the edge traversed.

The first time an edge is traversed, its weight becomes 1+∆, for ∆ > −1, and is never

changed again. With the choice of L = 1 and Aν = 1/(1 + ∆) for all ν ∈ G, and with

bν = p = min{1, 1/(1 + ∆)}, for all ν, our walk is exactly a once-reinforced random

walk. Theorem 4.1 then implies transience for this class of processes, as already proved

in [1] or [2].

The next result holds for all choices of L and p such that L < p. Define the kernel

K∗
ln((w̃, c, ũ, z), B) := K∗((ew̃, c, eũ, z), E∗(B)),

where w̃ ∈ [lnL,∞), c ∈ (p,∞), ũ ∈ R, z ∈ Σ, B ∈ B and E∗(B) :=

{(ew̃, c, eũ, z) : (w̃, c, ũ, z) ∈ B}. Note that, if K∗ satisfies Assumption 1, then so does

the kernel K∗
ln.
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For R ∈ (0,∞) and with C := lnL, define the probability kernel Q∗
C,R on [C,R] ×

[p,∞)× [C,R]× Σ by

Q∗
C,R

(
ỹ, (dw̃, dc, dũ, dz)

)
:=

K∗
ln

(
ỹ, (dw̃, dc, dũ, dz)

)

K∗
ln(ỹ, [C,R]× (p,∞)× [C,R]× Σ)

. (4.7)

This kernel describes the distribution of the jumps of the process

(lnDσi
, Bσi

, lnAσi
,Mσi

) when lnAσi
is conditioned to be in the interval [C,R].

This also implies that lnDσi
takes values in the same interval. If K∗ satisfies

Assumption 1, then so does the kernel Q∗
C,R. Define

Λ̃(Q∗
C,R

) := lim sup
n→∞

sup
ỹ

1

n
lnE

[
eλ

∑n
i=1 lnDσi |Γ∗ = ỹ

]
,

where the expected value is taken with respect to the kernel Q∗
C,R, and the supremum

over the set [C,R]× [p,∞)× [C,R]× Σ.

Theorem 4.4 Suppose that K∗ satisfies Assumption 1 and that ηL,∞ < 1 and L < p.

Then the condition

lim sup
R↑∞

inf
λ∈[0,1]

Λ̃(Q∗
lnL,R

)(λ) > − ln b− ln(1− ηL,∞) (4.8)

implies the transience of X on G.

Remark 4.5 Suppose that η = 0 and K∗ satisfies Assumption 1. In this case, if

L, p ≥ 1, then, no matter what is the distribution of the initial environment (Aν , ν ∈ G),

the process X is transient, by Corollary 4.2. If instead we assume that L < p and

ηL,∞ < 1, then the process can also be recurrent. In this case, (4.8) provides a sufficient

condition for transience.

Proof of Theorem 4.4. First, note that

Φn ≥
n∏

i=1
Aσi

≤Bσi

(
1 +D−1

σi
(1− qDi−1)

1 + A−1
σi
(1− qDi−1)

)
1l{Aσi

≥L} ≥
n∏

i=1
Aσi

≤Bσi

1l{Aσi
≥L},
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and hence that

P(T−1 < Tn |Γ
∗
̺ = y) ≥ E

[ n∏

i=1

qDi 1l∩n−1
i=1 {Aσi

≥L}

∣∣∣ Γ∗
̺ = y

]

≥ E

[( n∑

r=0

r−1∏

j=1

D−1
σn

)−1

1l∩n−1
i=1 {Aσi

≥L} | Γ
∗
̺ = y

]
.

(4.9)

Now the last line of (4.9) is at most

E

[(
(n+ 1)max

r≤n

r−1∏

j=1

D−1
σn

)−1

1l∩n−1
i=1 {Aσi

≥L} | Γ
∗
̺ = y

]

≥ E

[(
(n+ 1)max

r≤n

r−1∏

j=1

(Dσn
∧ R)−1

)−1

1l∩n−1
i=1 {Aσi

≥L} | Γ
∗
̺ = y

]
.

This, in turn, implies that

lim inf
n→∞

inf
y∈Σ′

1

n
lnP
(
T−1 > Tn | Γ∗

̺ = y
)

≥ lim inf
n→∞

inf
y∈Σ′

1

n
lnE

[
emint∈(0,1)

∑[nt]
i=1 ln(Dσi

∧R) 1l∩n−1
i=1 {Aσi

≥L} | Γ
∗
̺ = y

]
.

We now argue much as for (3.19) in the proof of the first part of Theorem 3.6, proving

that

lim inf
n→∞

inf
y∈Σ′

1

n
lnP

(
T−1 > Tn | Γ∗

̺ = y
)
≥ lim sup

R→∞
inf

λ∈[0,1]
Λ(Q∗

lnL,R
)(λ)+ln(1−ηL) > − ln b.

Hence, (4.3) holds, and this ends the proof.

As an example, we consider the case where Bν = p is constant for all ν ∈ G.

Suppose that L−1 = p−1 + ε and that Aσi
∈ (L,C) a.s., for all ν ∈ G and for some

constant C. Note that then L < p and that ηL,∞ = 0. We prove that X is transient if

infλ∈[0,1] Λ
(K∗

ln) > − ln b, and recurrent if infλ∈[0,1] Λ
(K∗

ln) < − ln b− ln(1 + ε).

The transience, when infλ∈[0,1] Λ
(K∗

ln) > − ln b, is a consequence of Theorem 4.4 with

Q∗
lnL,lnC = K∗

ln. For the proof of recurrence under the assumption infλ∈[0,1] Λ
(K∗

ln) <
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− ln b− ln(1 + ε), we have that

Φn =
n∏

i=1
Aσi

≤Bσi

{
1 +

(L−1 − A−1
σi
)(1− qDi−1)

1 + A−1
σi
(1− qDi−1)

}

≤

n∏

i=1
Aσi

≤p

(1 + L−1 − A−1
σi
) ≤

n∏

i=1
Aσi

≤p

(1 + ε) ≤ (1 + ε)n.

Hence

P(T−1 > Tn |Γ
∗ = y) = E

[
Φn

n∏

i=1

qDi

∣∣∣ Γ∗ = y
]

≤ (1 + ε)n · E
[ n∏

i=1

qDi

∣∣∣ Γ∗ = y
]
.

This, by Theorem 3.4, using Varadhan’s lemma and Proposition 5.1, implies that

lim sup
n→∞

sup
y∈Σ′

1

n
lnP

(
T−1 > Tn | Γ∗ = y

)
≤ inf

λ∈[0,1]
Λ(K∗

ln)(λ) + ln(1 + ε) < − ln b.

The expected number of vertices at level n which are visited before the first return to

the origin is bounded above by bn supy∈Σ′ P
(
T−1 > Tn | Γ∗ = y

)
. Hence the expected

number of vertices visited before the process returns to the origin is bounded by

1 +
∞∑

n=1

bn sup
y∈Σ′

P
(
T−1 > Tn | Γ∗ = y

)
< ∞.

The latter proves recurrence.

Example 4.6 With the situation as above, suppose that (Dσi
, Bσi

, Aσi
) evolves as a

two state Markov chain. Aσ can take the values 1 and p < 1, and L−1 = p−1 + ε, so

that (Dσi
, Bσi

, Aσi
) has state space (L, p, p) and (1, p, 1). We assume that the diagonal

elements of the transition matrix of this process take the value 3/4. Using (3.16), we

have

̺(λ) =
3

8

{
1 + Lλ +

√
(1 + Lλ)2 − 32Lλ/9

}
,

and Λ(K∗
ln)(λ) = ln ρ(λ). Since L < p < 1, this implies that

inf
λ∈[0,1]

Λ(K∗
ln)(λ) = ln

{3
8

(
1 + L+

√
(1 + L)2 − 32L/9

)}
.
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Thus, if b > 4/3, the process is always transient. However, for 1 < b < 4/3, the process

is recurrent if
3

8

(
1 + L+

√
(1 + L)2 − 32L/9

)
<

1

b(1 + ε)
,

and is transient if
3

8

(
1 + L+

√
(1 + L)2 − 32L/9

)
>

1

b
.

5 Appendix

Proposition 5.1 Suppose that φ : R → [−∞,+∞] is a convex function, with φ(0) = 0.

Then

sup
f∈AC

{
min
t∈[0,1]

f(t)−

∫ 1

0

sup
λ
{f ′(u)λ− φ(λ)} du

}
= inf

λ∈[0,1]
φ(λ). (5.1)

Proof. We first prove that the right-hand side of (5.1) is a lower bound. Let φ be

finite on F ⊂ R, and let t∗ ∈ [0, 1] ∩ F be such that

lim
t→t∗

t∈F

φ(t) = inf
0≤t≤1

φ(t).

Such a t∗ exists, in virtue of the convexity of φ. Then, by convexity, φ has a (non-

empty) sub-derivative SD(φ){t∗} at t∗. Recall that c ∈ SD(φ){a} means that φ(t) ≥

φ(a) + c(t− a) for all t.

If t∗ ∈ (0, 1), then 0 ∈ SD(φ){t∗}, and we choose f(t) = 0 for all t to get

inf
λ∈R

φ(λ) = inf
λ∈[0,1]

φ(λ)

as a lower bound for the left hand side of (5.1).

If t∗ = 0, then there is a c ≥ 0 with c ∈ SD(φ){0}, so that φ(t) ≥ φ(0) + ct for all t.

Take f(t) = ct for all t. Since c ≥ 0, we have min0≤t≤1 f(t) = 0, and we get

− sup
t
{ct− φ(t)} ≥ − sup

t
{ct− φ(0)− ct} = φ(0) = inf

λ∈[0,1]
φ(λ)

as a lower bound for the left hand side of (5.1).
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If t∗ = 1, then there is a c ≤ 0 with c ∈ SD(φ){1}, so that φ(t) ≥ φ(1) + c(t− 1) for

all t. Take f(t) = ct. As c ≤ 0, we have min0≤t≤1 f(t) = c, and we get

c− sup
t
{ct− φ(t)} ≥ c− sup

t
{ct− φ(1)− c(t− 1)} = c+ φ(1)− c = inf

λ∈[0,1]
φ(λ)

as a lower bound for the left hand side of (5.1).

Next we turn to the proof of the upper bound. Fix any t∗ ∈ [0, 1]. Notice that, for

any f ∈ AC, we have mint∈[0,1] f(t) ≤ 0 and
(
f(1)−mint∈[0,1] f(t)

)
≥ 0. Hence, taking

λ = t∗ for all u ∈ [0, 1], the left-hand side of (5.1) is bounded above by

sup
f∈AC

{
min
t∈[0,1]

f(t)− f(1)t∗ + φ(t∗)
}

= sup
f∈AC

{
min
t∈[0,1]

f(t)(1− t∗)−
(
f(1)− min

t∈[0,1]
f(t)

)
t∗ + φ(t∗)

}
≤ φ(t∗).

By taking the infimum over t∗ ∈ [0, 1] we have the upper bound.
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