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PSEUDO PARALLEL CR-SUBMANIFOLDS IN A
NON-FLAT COMPLEX SPACE FORM

AVIK DE AND TEE-HOW LOO

ABSTRACT. We classify pseudo parallel proper CR-submanifolds in a
non-flat complex space form with CR-dimension greater than one. With
this result, the non-existence of recurrent as well as semi parallel proper
CR-submanifolds in a non-flat complex space form with CR-dimension
greater than one can also be obtained.

1. INTRODUCTION

Let M be an isometrically immersed submanifold in a Riemannian man-

ifold M. Denote by (,) the metric tensor of M as well as that induced on
M. Then M is said to be pseudo parallel if its second fundamental form A
satisfies the following condition

R(X,Y)h = f((X ANY)h)
for all vectors X, Y tangent to M, where f, called the associated function,
is a smooth function on M, R is the curvature tensor corresponding to the
van der Waerden-Bortolotti connection V and

(XAY)Z = (Y, 2)X — (X, 2)Y.

In particular, when the associated function f = 0, M is called a semi
parallel submanifold. It is called recurrent if and only if (Vxh)(Y,Z) =
T(X)h(Y, Z), where T is a 1-form.

Pseudo parallel submanifolds is a generalization of semi parallel and paral-
lel submanifolds. Parallel submanifolds in a real space form was completely
classified in [12], [24]. Semi parallel and pseudo parallel submanifolds in a
real space form were also studied extensively by many researchers (cf. [1],
21, [, [10], [15], [20]).

By n-dimensional complex space forms Mn(c), we mean complete and
simply connected n-dimensional Kaehler manifolds with constant holomor-
phic sectional curvature 4c. For each real number ¢, up to holomorphic

isometries, M, (c) is a complex projective space CP,, a complex FEuclidean
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space C,, or a complex hyperbolic space CH,, depending on whether c is
positive, zero or negative, respectively.

It is known that a parallel submanifold of a non-flat complex space form
M, (c), ¢ # 0, is either holomorphic or totally real (cf. [7]). As a result,

there does not exist any parallel real hypersurface in Mn(c), ¢ # 0. Further,

~

the non-existence of semi parallel real hypersurfaces in M,(c), ¢ # 0, n >
2, was proved by Ortega (cf. [23]). Nevertheless, there do exist pseudo

parallel real hypersurfaces in Mn(c), ¢ # 0. Indeed, Lobos and Ortega gave

a classification of pseudo parallel real hypersurfaces in M, (¢),c#0,n>2,
as below:

Theorem 1.1 ([I7]). Let M be a connected pseudo parallel real hypersurface

in My(c), n>2, ¢ #0, with associated function f. Then f is constant and
positive, and M 1is an open part of one of the following real hypersurfaces:
(a) Forc=—-1<0:
(i) A geodesic hypersphere of radius r > 0 with f = coth®r.
(ii) A tube of radius r > 0 over CH,_; with f = tanh?r.
(iii) A horoshpere with f = 1.
(b) Forc=1>0:
(i) A geodesic hypersphere of radius v € 10, 7/2[ with f = cot®r.

Note that a real hypersurface in a Kaehler manifold is a CR-submanifold
of codimension one. A natural problem arisen is to generalize these known

results on real hypersurfaces in M, (c) into the content of CR-submanifolds.
For technical reasons, certain additional restrictions such as the semi-flatness
assumptions on the normal curvature tensor (cf. [25]), or restriction on the
CR-codimension (cf. [11], [19]), have been imposed while dealing with CR-
submanifolds of higher codimension. It would be interesting to see if any nice
results on CR-submanifolds could be obtained without these restrictions.

In this paper, we study pseudo parallel proper CR-submanifolds in M, (c),
¢ # 0, with none of the above mentioned restrictions. More precisely, we
prove the following:

Theorem 1.2. Let M be a connected proper CR-submanifold in M, (c),
¢ # 0. Suppose that dime D = p > 2. If M is pseudo parallel with associated
function f, then f is a positive constant and M is an open part of one of
the following spaces:
(a) Forc=—-1<0:
(i) A geodesic hypersphere in CH,y C CH,, of radius r > 0 with
f = coth?r.
(ii) A tube over CH, in CH,y1 C CH,, of radius r > 0 with f =
tanh?r.
(iii) A horoshpere in CH,1 C CH,, with f = 1.
(b) Forc=1>0:
(i) A geodesic hypersphere in CP,.y C CP, of radius r €]0,7/2|
with f = cot?r.
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(ii) An invariant submanifold in a geodesic hypersphere in CP, of
radius v € |0, 7/2] with f = cot®r.

From the above theorem, we see that the associated function f is a non-

zero constant for pseudo parallel proper CR-submanifolds in Mn(c), c#0.
Hence we have

Corollary 1.1. There does not exist any semi parallel proper CR-submanifold
M in M,(c), ¢ # 0, with dim¢ D > 2.

This corollary generalizes the non-existence of semi parallel real hyper-
surfaces in M, (c), ¢ # 0 (cf. [23]) and improves a result in [16]: There does

not exist any semi parallel proper CR-submanifold in M, (c), ¢ # 0, with
semi-flat normal connection.

By applying Corollary [Tl we can then prove the non-existence of proper
recurrent CR-submanifolds in M, (c), ¢ # 0, with dim¢D > 2 (cf. Corol-
lary [5.1]).

The paper is organized as follows:

In Section 2, we fix some notations and recall some basic material of CR-
submanifolds in a Kaehler manifold which we use later. A fundamental
property of Hopf hypersurfaces in M, (c), ¢ # 0, is that the principal curva-
ture a corresponding to the Reeb vector field £ is constant. Moreover, the
other principal curvatures can be related to a by a nice formula (cf. [22]).
We generalize these results to mixed-geodesic CR-submanifolds of maximal
CR-dimension in M, (c) in Section 3. In Section 4 we present the proof
of Theorem [L2l In the last section, recurrence and semi-parallelism have
been discussed in the context of Riemannian vector bundles. We show that
for any homomorphism of Riemannian vector bundles, recurrence directly
implies semi-paralellism and thus conclude that there does not exist any
proper recurrent CR-submanifold M in M, (C), ¢ # 0, with dim¢ D > 2 (cf.

Corollary B.1)).

2. CR-SUBMANIFOLDS IN A KAEHLER MANIFOLD

Let M be a Riemannian manifold, and let M be a connected Riemannian
manifold isometrically immersed in M. For a vector bundle V over M, we
denote by T'(V) the Q°(M)-module of cross sections on V, where QF(M)
denotes the space of k-forms on M. A

Denote by (,) the Riemannian metric of M and M as well, h the second
fundamental form and A, the shape operator of M with respect to a vector o
normal to M. Also, let V denote the Levi-Civita connection on the tangent
bundle TM of M and V*, the induced normal connection on the normal
bundle TM+ of M. The second fundamental form A and the shape operator
Ay of M with respect to o € T'(T'M™) is related by the following equation

(WMX,Y),0) = (A, X,Y)
for any X,Y € I'(T'M).
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Let R and R* be the curvature tensors associated with V and V* respec-
tively. We denote by V the van der Waerden-Bortolotti connection and R
its corresponding curvature tensor. Then we have

(R(IX,Y)A),Z = R(X,Y)A,Z - A,R(X,Y)Z — ARL(va)JZ,
(R(X,Y)h)(Z,W) = RYX,Y)WZ,W)—h(R(X,Y)Z,W)
—h(Z, R(X,Y)W),
for any X, Y, Z, W € I'(TM) and ¢ € T(TM~). Tt can be verified that

(R(X,Y)h)(Z,W),0) = (R(X,Y)A)s Z,W).
A submanifold M is said to be pseudo parallel if

(R(X,Y)h)(Z, W) = F(X ANY)h|(Z,IV)
for any XY, Z, W € ['(TM), where f € Q°(M), is called the associated
function, and

(X AY)Z = (Y, 2)X — (X, Z)Y,
(X AVVR(Z, W) = —h(X AY)Z, W) = h(Z,(X NY)W),
(X AVVALZ = (X AY)AyZ — Al(X NY)Z.

If the associated function f = 0 then the submanifold M is said to be semi
parallel.

Now, let M be a Kaehler manifold with complex structure J. For any
X € I(TM) and o € T(TM*), we denote the tangential (resp. normal)
part of JX and Jo by ¢X and Bo (resp. wX and Co) respectively. From
the parallelism of J, we have (cf. |25, pp. 77])

(Vx9)Y = Ay X + Bh(X,Y)
(Vxw)Y = —h(X,¢Y) + Ch(X,Y)

forany X, Y e I'(TM).
The maximal J-invariant subspace D, of the tangent space T, M, x € M
is given by
D,=T,MNJT,M.

Definition 2.1 ([6]). A submanifold M in a Kaehler manifold M is called
a generic submanifold if the dimension of D, is constant along M. The
distribution D : x — D,, x € M 1is called the holomorphic distribution

(or Levi distribution) on M and the complex dimension of D is called the
CR-dimension of M.

Definition 2.2 ([4]). 4 generic submanifold M in a Kaehler manifold M is
called a CR-submanifold if the orthogonal complementary distribution D+
of D in TM is totally real, i.e., JD+ C TM~*. The real dimension of D+
15 called the CR-codimension of M.

If D+ = {0} (resp. D ={0}), the CR-submanifold M is said to be holo-
morphic (resp. totally real). A CR-submanifold M is said to be proper if it
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1s neither holomorphic nor totally real. Let v be the orthogonal complemen-
tary distribution of JD* in TM*. Then an anti-holomorphic submanifold
M is a CR-submanifold with v = {0}, i.e., JD+ = TM=. A real hypersur-
face is a proper CR-submanifold of codimension one.

For a local frame of orthonormal vectors Ey, Es, - - -, By, in I'(D), where
p = dim¢ D, we define the D-mean curvature vector Hp by

1 &
HD = %;h(E],EJ)

Lemma 2.1 ([19]). Let M be a CR-submanifold in a Kaehler manifold
M. Then ((pAs + As0)X,Y) = 0, for any X,Y € I'(D) and o € T'(v).
Moreover, we have CHp = 0.

If h(D+, D) = 0, the CR-submanifold M is said to be mized totally geo-
desic. M 1is said to be mized foliate if it is mixed totally geodesic and D is
integrable.

The following lemma characterizes mixed foliate CR-submanifolds in a
Kaehler manifold.

Lemma 2.2 ([5]). A CR-submanifold M in a Kaehler manifold is mized
foliate if and only if Bh(¢X,Y) = Bh(X,9Y), for any X,Y € I'(D) and
h(D+,D) = 0.

Now suppose the ambient space is an n-dimensional complex space form
M, (c) with constant holomorphic sectional curvature 4c. The curvature
tensor R of M,(c) is given by

A

RIX.Y)Z =c(XAY +JX ANJY —2(JX,Y)J])Z

for any X,Y,Z € I'(TM,(c)). The equations of Gauss, Codazzi and Ricci
are then given respectively by

RX,V)Z =c(X AY + X A @Y — 20X, YVO)Z + Anyy X — Apx.z)Y
(Vxh)(Y,Z) = (Vyh)(X, Z) = c{(¢Y, Z)wX — (6X, Z)wY — 2(pX,Y)wZ}
RY(X,Y)o = c(wX AwY — 2(¢pX,Y)C)o + h(X,A,Y) — h(Y, A, X)

forany X,Y, Z € I'(TM) and o € ['(TM*).
We now recall the following known result.

Theorem 2.1 ([5], [8]). There does not exist any proper mized foliate CR-
submanifold in M, (c), ¢ # 0.

3. MIXED-TOTALLY GEODESIC CR-SUBMANIFOLDS IN A COMPLEX
SPACE FORM

A real hypersurface M in a Kaehler manifold is said to be Hopf if it is
mixed-totally geodesic. A fundamental property of Hopf hypersurfaces in

Mn(c), ¢ # 0, is that the principal curvature a corresponds to the Reeb
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vector field ¢ is constant. Moreover, the other principal curvatures could
be related to a by a nice formula (cf. [22]). In this section, we show that
these properties hold for mixed-totally geodesic proper CR-submanifolds of
maximal CR-dimension. .
Suppose M is a real (2p + 1)-dimensional CR-submanifold in M, (c) of
maximal CR-dimension, that is, dim¢D = p and dimD*+ = 1. Let N €
['(JD) be a unit vector field, ¢ = —JN and 7 the 1-form dual to &. Then

we have

¢*°X = —X +n(X)¢ (3.1)

wX =n(X)N; Bo=—(0,N)¢ (3.2)

for any X € T'(T'M) and o € T(TM™). Tt follows from (2] and (2:2)) that
(Vx@)Y =n(Y)AnX — (AN X, Y)¢ (3.3)
Vxé=¢AnX; VxN =Ch(X,§) (3.4)

h(X,0Y) = —(¢AnX,YIN — n(Y)Ch(X,€) + Ch(X,Y) (3.5)

for any X, Y € I'(TM) and o € T'(TM™).
The equations of Codazzi and Ricci can also be reduced to

(Vxh)(Y,Z2) = (Vyh)(X, Z) = c{n(X)(¢Y,Z) —n(Y){¢X,Z)
—20(Z)(¢X,Y)}N (3.6)

RY(X,Y)o = —2c(¢X,Y)Co + h(X, A,Y) — h(Y, A, X) (3.7)
forany X,Y, Z € I'(TM) and o € ['(TM%).
Lemma 3.1. Let M be a mized-totally geodesic proper CR-submanifold of

mazimal CR-dimension in M,(c), ¢ # 0, and let o = (h(€,€),N). Then
(a) 2ANQAN — a(pAN + ANg) — 2¢p = 0;
(b) if ANY =AY and AyoY = X\ @Y, where Y € T'(D), then
2\ — a)(2\* — a) = a? + 4c;
(¢c) « is a constant.

Proof. By the hypothesis,
h(Y, &) = n(Y)h(&,§) (3.8)

for any Y € I'(T'M). Differentiating covariantly both sides of ([B.8)) in the
direction of X € I'(T'M), we get

(Vxh)(Y,€) + h(¢ANX,Y) = (pANX, Y )I(E, €) + n(Y)Vh(E,€).
By applying the Codazzi equation and this equation, we have
hMoANX,Y) — h(X, 0ANY) — ((9AN + Ang) X, Y)N(E, €)
—2¢(¢X,Y)N = n(Y)Vxh(¢, €) — n(X)Vyh( €). (3.9)
By putting Y = £ in this equation, we obtain
Vxh(&:€) = n(X)Veh(€,€) (3.10)
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and
hPANX,Y) — M(X, pANY) — ((9AN + Ane) X, Y)R(E, §)
=2¢(¢pX,Y)N. (3.11)
By taking inner product of (B.I1]) with N, we get
2ANGAN — a(dAN + Ang) — 2¢co = 0.
Statement (b) is directly from this equation. Next, it follows from (3.4)),
B.8), and (B.I0) that
Ya=Y(h(E),N)=gnY)
for any Y € I'(T'M), where g = &a, i.e., da = gn. Hence
0 = d’a = dg A+ gdn.

Since 2dn(X., §) = ((pAn+AN®) X, &) = 0 and Xg—({g)n(X) = dgnn(X, ),
for any X € T'(T'M), we have dg = (£g)n. Hence we have gdn = 0. This
implies that g = 0 (for otherwise, if dn = 0 then D is integrable. It follows
that M is mixed foliate but this contradicts Theorem 2.1I). Hence we have
da =0 or « is a constant. O

4. PROOF OF THEOREM

Throughout this section, suppose M is a (2p + ¢g)-dimensional pseudo
parallel proper CR-submanifold in M,(c), ¢ # 0, where dim¢D = p > 2
and dimg D+ = ¢.

Note that Gxy z(X AY)h)(Z, W) =0 and
Gxyz(R(X, Y)W (Z,W) = Gxyz{R"(X,Y)WZ, W) —h(Z, R(X,Y)W)}

for any XY, Z W € I'(I'M), where &y denotes the cyclic sum over
X,Y and Z. By the Gauss and Ricci equations, we obtain the following
equation.

(WY, h(Z,W))(wX, o) — (wX, h(Z,W))(wY,0) — 2(pX,Y)(Ch(Z, W), o)
+ (WwZ, (X, W) (WY, o) — (WY, h(X, W)} (wZ,0) — 2(¢Y, Z)(Ch(X, W), o)
+ (WX, h(Y, W) wZ,0) — (wZ,h(Y,W)) (wX, o) —2(¢Z, X)(Ch(Y, W), o)
(Y WY(Z, 6X),0) + (06X, WHA(Z, 6Y), 0) + 20X, VY {h(Z, 61V), o)
— (6Z,W)R(X, 6V ), ) + (6Y, W) (h(X, 62), 0) + 2, Z)(h(X, oW), o)
— (GX, WYY, 67),0) + (62, WHA(Y, 6X), 0} + 2(6Z, X){(h(Y, W), 0)

=0. (4.1)

for any X,Y,Z,W € I'(TM) and ¢ € T(TM*). By putting Z € I'(TM),

W eTl(Dh),Y =¢X, X € I'(D) with || X|| =1and X 1 Z,¢Z in @I,
we obtain

/\/\/\

_I_
_|_
_I_

—~

Ch(D+,TM) = 0. (4.2)
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Let {E1, By, -+, Ey} be a local orthonormal frame on D. By putting
X =E;, Z = ¢E; for j € {1,2,---,2p} in (4J)), and then summing up
these equations, with the help of (£.2)), we obtain

(2p = 2)CR(Y, W) — 2p(¢Y, W) Hp — h(¢*W, ¢Y')

(@2, W) — (2p+ Dh(Y, W) =0 (43)
for any Y, W € I'(TM). By virtue of ([£2)), after putting Y € T'(D+) in the
above equation, we have

h(D+,D) = 0. (4.4)
This means that M is mixed-totally geodesic and so (A3]) reduces to
(20— 2)Ch(Y, W) =2p(6Y, W) Hp+h(W, 6Y ) — (2p—1)h(Y, 6W) = 0 (4.5)

for any Y, W € I'(T'M). Next, we put Y = W in the above equation to get
Ch(Y,Y)—h(Y,¢Y) = 0, then, combining with the linearity of C', h and ¢,
we obtain

2CI(Y, W) — h(W, $Y) — h(Y, W) = 0 (4.6)
for any Y, W e I'(T'M). It follows from this equation and (£.5) that
B(Y, oW) = (Y, 6W) Hp + Ch(Y, W) (4.7)

for any Y, W € I'(TM). From (1)) and (A7), we have

(WY, WM Z,WNHwX — (WX, h(Z, W)wY + (wZ, (X, W))wY

— (WY, h( X, WHwZ + (wX, (Y, W)wZ — (wZ,h(Y,W))wX =0
forany X, Y, Z, W € I'(T'M).

We claim that ¢ = 1. Suppose the contrary that ¢ > 2. By putting
Z =W e€I'(D), Y = BHp and X | BHp a unit vector field in D+ in
this equation, with the help of (4.6]), we obtain BHp = 0. This, together
with (4.6) imply that h(D,D) = 0 and hence, by Lemma 2.2l and (4.4, M
is mixed foliate. This contradicts Theorem 2.1l Accordingly, ¢ = 1.

Let N € I'(JDY) be a unit vector field normal to M, and (¢, n,§) the

almost contact structure on M as defined in Section 3. It follows from
Lemma 2.1l and equations ([B3.1]), (3.2), (4.2)) and (4.4)) that

Hp =\N, (4.8)
h(X,€) =n(X)h(§,€) = an(X)N

for any X € I'(T'M), where A = (Hp, N) and a = (h(&,£), N). By using
(Z8) and the above two equations, we obtain

h(X,Y) = h(X, =¢"Y +n(Y)E)
= {MX,Y) + (X )n(Y)}N — Ch(X, ¢Y) (4.9)

for any X,Y € I'(T'M), where b = o — A. From Lemma B3] and (4.9), we
obtain

M —al—c=0 (4.10)
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and so A is a non-zero constant. Further, for any unit vector Y € D, we
have

0= ((R(EY)n)(Y.6),N)) = fF{((EAY)R)(Y.£), N) = (a = A)(f —aX —¢)

Hence, f = A\? is a positive constant.
We consider two cases: Ch = 0 and Ch # 0.

Case 1. Ch = 0.

By the hypothesis, ([8.4]) and the fact that A # 0, the first normal space
NI =RN,, x € M, and N'! is a parallel normal subbundle of TM=. Since
v is J-invariant, by Codimension Reduction Theorems (cf. [11], [I5]), M is
contained in a totally geodesic holomorphic submanifold Mp+1(c) as a real
hypersurface.

Now, let V', A’, etc denote the Levi-Civita connection on M induced by
the Levi-Civita connection of Mp+1(c), the shape operator, etc, respectively.
Since M,1(c) is totally geodesic in M,(c), we can see that V4Y = VxY,
A’ = Ay and N’ = N. Further, as V1N = 0, we have R+(X,Y)N = 0 and
so R'(X,Y)A = (R(X,Y)A)y, for any X,Y tangent to M. Then M is a
pseudo parallel real hypersurface in Mp+1(c) and by Theorem [I.I] we obtain
List (a) and (b-i) in Theorem [L2

Case 2. Ch # 0.

Suppose Ch # 0 at a point x € M. There is a number a # 0, ¢ € v,
and a unit vector Y € D, such that A,Y = aY. From Lemma 2.1 we
have A,¢Y = —a¢Y. Then from ((R(¢Y,Y)h)(Y,0Y),0) = f{((¢Y A
Y)h)(Y, Y ), o), we obtain

af3c — 2h(Y, 6Y), h(Y, 6Y)) + (h(Y, V), h(6Y, 0V )} = af.
On the other hand, from (€3], we have
(h(Y,9Y ), h(Y,¢Y)) = (Ch(Y,Y),Ch(Y,Y))
(M(Y,Y), h(¢Y, ¢Y)) = \* — (CR(Y,Y), Ch(Y,Y)).

Since a # 0 and f = A2, these equations give ¢ = (Ch(Y,Y),Ch(Y,Y)).
Hence, we conclude that ¢ > 0 (without loss of generality, we assume ¢ = 1)
and ||Ch|| > 0 on the whole of M.

Fixed » > 0 and let BM be the unit normal bundle over M. The focal
map D, is given by

BM > 0 2 exp(ro) € CP,

where exp is the exponential map on CP,. For each x € M and unit vector
o € T, M+, denote by v, (s) the normalized geodesic in CP, passes through
r € M at s = 0 with velocity o. Let Vx be the M-Jacobi field along v,
with initial values Yx(0) = X € T, M and Yx(0) = —A,X. Then (cf. [3]
pp.225])

d®,(0)X = Yx(r).
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In view of (£9), Ay has two distinct constant eigenvalues o and A with
eigenspaces RE and D, respectively at each x € M. We put a = 2cot 2r,
0 <r <m/2. Then A = cotr or A = —cot(§ —r) by (£I0).

Subcase 2-a. \ = cotr.

Since ) is a nonzero constant, by [@38)), N = A\"'1Hp is globally defined
on M. We may immerse M in BM as a submanifold in a natural way:
rz— Ny, e M.

We claim that ®,.(M) is a singleton for a suitable choice of r. This can
be done by showing that d®,(N,)T,M = {0}, for each z € M. We first
note that at each z € CP,, the Jacobi operator R, := R(-,0)0, 0 € T,CP,,
has eigenvalues 0, 4 and 1 with eigenspaces Ro, RJo and (Ro @ RJo)*t
respectively, To compute d®,(N,)X, X € T, M, we select the Jacobi field

B (cos2t— 9sin2t) Ex(t), X =¢
Yx(t) = { (cost 2 Asint)éx(t), X € D,

where Ex is the parallel vector field along vy, with £x(0) = X. Then we
have d®,(N,)X = Vx(r) = 0 and conclude that ®,.(M) = {z}.

Subcase 2-b. A = —cot(§ — ).
Note that cot 2r = —cot 2(5 — r). By selecting the Jacobi field

B (cos2t + 9sin2t) Ex(t), X =¢
Vx(t) = { (costj)\sint)gx(t), X €D,

we can see that d®./o_,.(—N;)X =0, for X € T, M and hence ®/,_,(M) =
{20}

We have shown that ®,.(M) = {z} for some r €]0,7/2[ in both cases.
By checking the Jacobi fields of CP, (cf. [13] pp.149]), there is no conjugate
point for zy along any geodesic in CP, of length r €]0, /2| starting at z,
we conclude that M lies in a geodesic hypersphere M’ around zy in CPB,
with almost contact structure (¢',n',¢’), where ¢ = —JN’, 1’ the 1-form
dual to &', ¢' = Jirmr — ' @ N’ and N’ a unit vector field normal to M'.
By the construction of M’ we have N = N, £ = ¢ and ¢ = ¢’ on M. It
follows that ¢"I'M C T'M and so M is an invariant submanifold of M" (cf.
[25]). Hence we obtain List (b-ii) in Theorem

5. RECURRENT CR-SUBMANIFOLDS IN A NON-FLAT COMPLEX SPACE
FORM

In this section, wel show that there are no proper recurrent CR-submanifolds
in M, (c), n # 0. We first discuss the ideas of recurrence and semi-parallelism
in a general setting.

Let M be a Riemannian manifold and &; a Riemannian vector bundle
over M with linear connection V7, j € {1,2}. It is known that & ® &, is
isomorphic to the vector bundle Hom(&1, &), consisting of homomorphisms
from &; into &. We denote by the same (,) the fiber metrics on & and &
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as well as that induced on Hom(&;,&;). The connections V! and V? induce
on Hom(&y, &) a connection V, given by

(VxF)V = (VF)(V;X)=V3%FV — FVyV

forany X e I'(TM), V € I'(&)) and F € I'(Hom(&4, &2)).

A section F' in Hom(&,&;) is said to be recurrent if there exists 7 €
QY (M) such that VF = F ® 7. We may regard parallelism as a special case
of recurrence, that is, the case 7 = 0. Let R, R' and R? be the curvature
tensor corresponding to V, V! and V? respectively. Then we have

(R-F)(V;X,Y) = (R(X,Y)F)V = R¥X,Y)FV — FRMX,Y)V

forany X, Y e I'(TM), V € I'(&) and F € I'(Hom(&,&s)).
We begin with the following result.

Lemma 5.1. Let M be a connected Riemannian manifold, £; a Riemannian
vector bundle over M, j € {1,2} and F € I'(Hom(&:,&y)). If F is recurrent
then F' is semi-parallel.

Proof. Suppose F is recurrent, that is, VF = F @ 7, for some 7 € Q'(M).
It is trivial if /' = 0. Suppose that p := ||F|| # 0 on an open set U C M.
Then the line bundle R ® F' — U, spanned by F, is a parallel subbundle of
Hom(&1,&,)y. Consider the unit section E := p~'F of R® F. Then

VE=p 'VF+Fedp™)=Fe @ 'r+dp™) = E® (r—pdu).

Hence, E is also recurrent and VE = E® )\, where A = 7 — u~tdp € Q(U).
It follows that

0=d(E,E) =2(VE,E) =2(E,E)\ = 2\.

Hence FE is a flat section. This implies that R ® F'is a flat bundle. Hence,
R-F = 0on U. By a standard topological argument, we conclude that
R-F=0on M. O

Geometrically, Lemma[5.Tltells us that the line subbundle of (Hom/(&1, &), V),
spanned by a nonvanishing recurrent section is a flat bundle.

A submanifold M of a Riemannian manifold M is said to be recurrent if
its second fundamental form A is recurrent. Since every T, M--valued bilin-
ear map on T, M naturally induces a homomorphism from T, M ® T, M to
T,M~*, x € M, we may identify h as a section of Hom(TM & TM,TM=).
Accordingly, the following result can be obtained immediately from Corol-
lary [L.T and Lemma 5.1

Corollgry 5.1. There does not exist any proper recurrent CR-submanifold
M in M,(c), ¢ # 0, with dim¢ D > 2.

Remark 5.1. The above corollary generalizes the non-existence of recurrent
real hypersurfaces in a non-flat complex space form (cf. [14], [21] ).
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