PSEUDO PARALLEL CR-SUBMANIFOLDS IN A NON-FLAT COMPLEX SPACE FORM

AVIK DE AND TEE-HOW LOO

ABSTRACT. We classify pseudo parallel proper CR-submanifolds in a non-flat complex space form with CR-dimension greater than one. With this result, the non-existence of recurrent as well as semi parallel proper CR-submanifolds in a non-flat complex space form with CR-dimension greater than one can also be obtained.

1. INTRODUCTION

Let M be an isometrically immersed submanifold in a Riemannian manifold \hat{M} . Denote by \langle, \rangle the metric tensor of \hat{M} as well as that induced on M. Then M is said to be *pseudo parallel* if its second fundamental form hsatisfies the following condition

$$\bar{R}(X,Y)h = f((X \land Y)h)$$

for all vectors X, Y tangent to M, where f, called the *associated function*, is a smooth function on M, \bar{R} is the curvature tensor corresponding to the van der Waerden-Bortolotti connection $\bar{\nabla}$ and

$$(X \wedge Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y.$$

In particular, when the associated function f = 0, M is called a *semi* parallel submanifold. It is called *recurrent* if and only if $(\bar{\nabla}_X h)(Y, Z) = \tau(X)h(Y, Z)$, where τ is a 1-form.

Pseudo parallel submanifolds is a generalization of semi parallel and parallel submanifolds. Parallel submanifolds in a real space form was completely classified in [12], [24]. Semi parallel and pseudo parallel submanifolds in a real space form were also studied extensively by many researchers (cf. [1], [2], [9], [10], [18], [20]).

By *n*-dimensional complex space forms $\hat{M}_n(c)$, we mean complete and simply connected *n*-dimensional Kaehler manifolds with constant holomorphic sectional curvature 4*c*. For each real number *c*, up to holomorphic isometries, $\hat{M}_n(c)$ is a complex projective space $\mathbb{C}P_n$, a complex Euclidean

This work was supported in part by the UMRG research grant (Grant No. RG163-11AFR).

⁰**2000** Mathematics Subject Classification, : 53C40, 53C15.

Key words and phrases : Complex space forms, CR-submanifolds, Pseudo parallel submanifolds.

space \mathbb{C}_n or a complex hyperbolic space $\mathbb{C}H_n$ depending on whether c is positive, zero or negative, respectively.

It is known that a parallel submanifold of a non-flat complex space form $\hat{M}_n(c), c \neq 0$, is either holomorphic or totally real (cf. [7]). As a result, there does not exist any parallel real hypersurface in $\hat{M}_n(c), c \neq 0$. Further, the non-existence of semi parallel real hypersurfaces in $\hat{M}_n(c), c \neq 0$, $n \geq 2$, was proved by Ortega (cf. [23]). Nevertheless, there do exist pseudo parallel real hypersurfaces in $\hat{M}_n(c), c \neq 0, n \geq 2$, as below:

Theorem 1.1 ([17]). Let M be a connected pseudo parallel real hypersurface in $\hat{M}_n(c)$, $n \ge 2$, $c \ne 0$, with associated function f. Then f is constant and positive, and M is an open part of one of the following real hypersurfaces:

- (a) For c = -1 < 0:
 - (i) A geodesic hypersphere of radius r > 0 with $f = \coth^2 r$.
 - (ii) A tube of radius r > 0 over $\mathbb{C}H_{n-1}$ with $f = \tanh^2 r$.
 - (iii) A horoshpere with f = 1.

(b) For c = 1 > 0:

(i) A geodesic hypersphere of radius $r \in [0, \pi/2[$ with $f = \cot^2 r$.

Note that a real hypersurface in a Kaehler manifold is a CR-submanifold of codimension one. A natural problem arisen is to generalize these known results on real hypersurfaces in $\hat{M}_n(c)$ into the content of CR-submanifolds. For technical reasons, certain additional restrictions such as the semi-flatness assumptions on the normal curvature tensor (cf. [25]), or restriction on the CR-codimension (cf. [11], [19]), have been imposed while dealing with CRsubmanifolds of higher codimension. It would be interesting to see if any nice results on CR-submanifolds could be obtained without these restrictions.

In this paper, we study pseudo parallel proper CR-submanifolds in $M_n(c)$, $c \neq 0$, with none of the above mentioned restrictions. More precisely, we prove the following:

Theorem 1.2. Let M be a connected proper CR-submanifold in $M_n(c)$, $c \neq 0$. Suppose that $\dim_{\mathbb{C}} \mathcal{D} = p \geq 2$. If M is pseudo parallel with associated function f, then f is a positive constant and M is an open part of one of the following spaces:

- (a) For c = -1 < 0:
 - (i) A geodesic hypersphere in $\mathbb{C}H_{p+1} \subset \mathbb{C}H_n$ of radius r > 0 with $f = \coth^2 r$.
 - (ii) A tube over $\mathbb{C}H_p$ in $\mathbb{C}H_{p+1} \subset \mathbb{C}H_n$ of radius r > 0 with $f = \tanh^2 r$.
 - (iii) A horoshpere in $\mathbb{C}H_{p+1} \subset \mathbb{C}H_n$ with f = 1.
- (b) For c = 1 > 0:
 - (i) A geodesic hypersphere in $\mathbb{C}P_{p+1} \subset \mathbb{C}P_n$ of radius $r \in [0, \pi/2[$ with $f = \cot^2 r$.

(ii) An invariant submanifold in a geodesic hypersphere in $\mathbb{C}P_n$ of radius $r \in [0, \pi/2[$ with $f = \cot^2 r$.

From the above theorem, we see that the associated function f is a nonzero constant for pseudo parallel proper CR-submanifolds in $\hat{M}_n(c), c \neq 0$. Hence we have

Corollary 1.1. There does not exist any semi parallel proper CR-submanifold M in $\hat{M}_n(c), c \neq 0$, with dim_{\mathbb{C}} $\mathcal{D} \geq 2$.

This corollary generalizes the non-existence of semi parallel real hypersurfaces in $\hat{M}_n(c)$, $c \neq 0$ (cf. [23]) and improves a result in [16]: There does not exist any semi parallel proper CR-submanifold in $\hat{M}_n(c)$, $c \neq 0$, with semi-flat normal connection.

By applying Corollary 1.1, we can then prove the non-existence of proper recurrent CR-submanifolds in $\hat{M}_n(c)$, $c \neq 0$, with $\dim_{\mathbb{C}} \mathcal{D} \geq 2$ (cf. Corollary 5.1).

The paper is organized as follows:

In Section 2, we fix some notations and recall some basic material of CRsubmanifolds in a Kaehler manifold which we use later. A fundamental property of Hopf hypersurfaces in $\hat{M}_n(c)$, $c \neq 0$, is that the principal curvature α corresponding to the Reeb vector field ξ is constant. Moreover, the other principal curvatures can be related to α by a nice formula (cf. [22]). We generalize these results to mixed-geodesic CR-submanifolds of maximal CR-dimension in $\tilde{M}_n(c)$ in Section 3. In Section 4 we present the proof of Theorem 1.2. In the last section, recurrence and semi-parallelism have been discussed in the context of Riemannian vector bundles. We show that for any homomorphism of Riemannian vector bundles, recurrence directly implies semi-paralellism and thus conclude that there does not exist any proper recurrent CR-submanifold M in $\tilde{M}_n(C)$, $c \neq 0$, with dim_C $\mathcal{D} \geq 2$ (cf. Corollary 5.1).

2. CR-submanifolds in a Kaehler manifold

Let \hat{M} be a Riemannian manifold, and let M be a connected Riemannian manifold isometrically immersed in \hat{M} . For a vector bundle \mathcal{V} over M, we denote by $\Gamma(\mathcal{V})$ the $\Omega^0(M)$ -module of cross sections on \mathcal{V} , where $\Omega^k(M)$ denotes the space of k-forms on M.

Denote by \langle , \rangle the Riemannian metric of \hat{M} and M as well, h the second fundamental form and A_{σ} the shape operator of M with respect to a vector σ normal to M. Also, let ∇ denote the Levi-Civita connection on the tangent bundle TM of M and ∇^{\perp} , the induced normal connection on the normal bundle TM^{\perp} of M. The second fundamental form h and the shape operator A_{σ} of M with respect to $\sigma \in \Gamma(TM^{\perp})$ is related by the following equation

$$\langle h(X,Y),\sigma\rangle = \langle A_{\sigma}X,Y\rangle$$

for any $X, Y \in \Gamma(TM)$.

Let R and R^{\perp} be the curvature tensors associated with ∇ and ∇^{\perp} respectively. We denote by $\overline{\nabla}$ the van der Waerden-Bortolotti connection and \overline{R} its corresponding curvature tensor. Then we have

$$(R(X,Y)A)_{\sigma}Z = R(X,Y)A_{\sigma}Z - A_{\sigma}R(X,Y)Z - A_{R^{\perp}(X,Y)\sigma}Z,$$

$$(\bar{R}(X,Y)h)(Z,W) = R^{\perp}(X,Y)h(Z,W) - h(R(X,Y)Z,W)$$

$$-h(Z,R(X,Y)W),$$

for any $X, Y, Z, W \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$. It can be verified that

$$\langle (\bar{R}(X,Y)h)(Z,W),\sigma \rangle = \langle (\bar{R}(X,Y)A)_{\sigma}Z,W \rangle.$$

A submanifold M is said to be *pseudo parallel* if

$$(\bar{R}(X,Y)h)(Z,W) = f[(X \land Y)h](Z,W)$$

for any $X, Y, Z, W \in \Gamma(TM)$, where $f \in \Omega^0(M)$, is called the *associated* function, and

$$(X \wedge Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y,$$

[(X \wedge Y)h](Z,W) = -h((X \wedge Y)Z,W) - h(Z, (X \wedge Y)W),
[(X \wedge Y)A]_{\sigma}Z = (X \wedge Y)A_{\sigma}Z - A_{\sigma}(X \wedge Y)Z.

If the associated function f = 0 then the submanifold M is said to be *semi* parallel.

Now, let M be a Kaehler manifold with complex structure J. For any $X \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$, we denote the tangential (resp. normal) part of JX and $J\sigma$ by ϕX and $B\sigma$ (resp. ωX and $C\sigma$) respectively. From the parallelism of J, we have (cf. [25, pp. 77])

$$(\bar{\nabla}_X \phi)Y = A_{\omega Y}X + Bh(X,Y) \tag{2.1}$$

$$(\bar{\nabla}_X \omega)Y = -h(X, \phi Y) + Ch(X, Y) \tag{2.2}$$

for any $X, Y \in \Gamma(TM)$.

The maximal J-invariant subspace \mathcal{D}_x of the tangent space T_xM , $x \in M$ is given by

$$\mathcal{D}_x = T_x M \cap J T_x M.$$

Definition 2.1 ([6]). A submanifold M in a Kaehler manifold \hat{M} is called a generic submanifold if the dimension of \mathcal{D}_x is constant along M. The distribution $\mathcal{D} : x \to \mathcal{D}_x, x \in M$ is called the holomorphic distribution (or Levi distribution) on M and the complex dimension of \mathcal{D} is called the *CR*-dimension of M.

Definition 2.2 ([4]). A generic submanifold M in a Kaehler manifold M is called a CR-submanifold if the orthogonal complementary distribution \mathcal{D}^{\perp} of \mathcal{D} in TM is totally real, i.e., $J\mathcal{D}^{\perp} \subset TM^{\perp}$. The real dimension of \mathcal{D}^{\perp} is called the CR-codimension of M.

If $\mathcal{D}^{\perp} = \{0\}$ (resp. $\mathcal{D} = \{0\}$), the CR-submanifold M is said to be holomorphic (resp. totally real). A CR-submanifold M is said to be proper if it

4

is neither holomorphic nor totally real. Let ν be the orthogonal complementary distribution of JD^{\perp} in TM^{\perp} . Then an anti-holomorphic submanifold M is a CR-submanifold with $\nu = \{0\}$, i.e., $JD^{\perp} = TM^{\perp}$. A real hypersurface is a proper CR-submanifold of codimension one.

For a local frame of orthonormal vectors E_1, E_2, \cdots, E_{2p} in $\Gamma(\mathcal{D})$, where $p = \dim_{\mathbb{C}} \mathcal{D}$, we define the \mathcal{D} -mean curvature vector $H_{\mathcal{D}}$ by

$$H_{\mathcal{D}} = \frac{1}{2p} \sum_{j=1}^{2p} h(E_j, E_j)$$

Lemma 2.1 ([19]). Let M be a CR-submanifold in a Kaehler manifold \hat{M} . Then $\langle (\phi A_{\sigma} + A_{\sigma} \phi) X, Y \rangle = 0$, for any $X, Y \in \Gamma(\mathcal{D})$ and $\sigma \in \Gamma(\nu)$. Moreover, we have $CH_{\mathcal{D}} = 0$.

If $h(\mathcal{D}^{\perp}, \mathcal{D}) = 0$, the CR-submanifold M is said to be *mixed totally geodesic*. M is said to be *mixed foliate* if it is mixed totally geodesic and \mathcal{D} is integrable.

The following lemma characterizes mixed foliate CR-submanifolds in a Kaehler manifold.

Lemma 2.2 ([5]). A CR-submanifold M in a Kaehler manifold is mixed foliate if and only if $Bh(\phi X, Y) = Bh(X, \phi Y)$, for any $X, Y \in \Gamma(\mathcal{D})$ and $h(\mathcal{D}^{\perp}, \mathcal{D}) = 0$.

Now suppose the ambient space is an *n*-dimensional complex space form $\hat{M}_n(c)$ with constant holomorphic sectional curvature 4*c*. The curvature tensor \hat{R} of $\hat{M}_n(c)$ is given by

$$\hat{R}(X,Y)Z = c(X \wedge Y + JX \wedge JY - 2\langle JX,Y \rangle J)Z$$

for any $X, Y, Z \in \Gamma(T\hat{M}_n(c))$. The equations of Gauss, Codazzi and Ricci are then given respectively by

$$R(X,Y)Z = c(X \wedge Y + \phi X \wedge \phi Y - 2\langle \phi X, Y \rangle \phi)Z + A_{h(Y,Z)}X - A_{h(X,Z)}Y$$
$$(\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z) = c\{\langle \phi Y, Z \rangle \omega X - \langle \phi X, Z \rangle \omega Y - 2\langle \phi X, Y \rangle \omega Z\}$$
$$R^{\perp}(X,Y)\sigma = c(\omega X \wedge \omega Y - 2\langle \phi X, Y \rangle C)\sigma + h(X,A_{\sigma}Y) - h(Y,A_{\sigma}X)$$

for any $X, Y, Z \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$. We now recall the following known result.

Theorem 2.1 ([5], [8]). There does not exist any proper mixed foliate CRsubmanifold in $\hat{M}_n(c), c \neq 0$.

3. MIXED-TOTALLY GEODESIC CR-SUBMANIFOLDS IN A COMPLEX SPACE FORM

A real hypersurface M in a Kaehler manifold is said to be Hopf if it is mixed-totally geodesic. A fundamental property of Hopf hypersurfaces in $\hat{M}_n(c), c \neq 0$, is that the principal curvature α corresponds to the Reeb vector field ξ is constant. Moreover, the other principal curvatures could be related to α by a nice formula (cf. [22]). In this section, we show that these properties hold for mixed-totally geodesic proper CR-submanifolds of maximal CR-dimension.

Suppose M is a real (2p + 1)-dimensional CR-submanifold in $\hat{M}_n(c)$ of maximal CR-dimension, that is, $\dim_{\mathbb{C}} \mathcal{D} = p$ and $\dim \mathcal{D}^{\perp} = 1$. Let $N \in \Gamma(J\mathcal{D}^{\perp})$ be a unit vector field, $\xi = -JN$ and η the 1-form dual to ξ . Then we have

$$\phi^2 X = -X + \eta(X)\xi \tag{3.1}$$

$$\omega X = \eta(X)N; \quad B\sigma = -\langle \sigma, N \rangle \xi \tag{3.2}$$

for any $X \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$. It follows from (2.1) and (2.2) that

$$(\nabla_X \phi) Y = \eta(Y) A_N X - \langle A_N X, Y \rangle \xi \tag{3.3}$$

$$\nabla_X \xi = \phi A_N X; \quad \nabla_X^\perp N = Ch(X,\xi) \tag{3.4}$$

$$h(X,\phi Y) = -\langle \phi A_N X, Y \rangle N - \eta(Y) Ch(X,\xi) + Ch(X,Y)$$
(3.5)

for any $X, Y \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$.

The equations of Codazzi and Ricci can also be reduced to

$$(\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z) = c\{\eta(X)\langle\phi Y,Z\rangle - \eta(Y)\langle\phi X,Z\rangle - 2\eta(Z)\langle\phi X,Y\rangle\}N$$
(3.6)

$$R^{\perp}(X,Y)\sigma = -2c\langle\phi X,Y\rangle C\sigma + h(X,A_{\sigma}Y) - h(Y,A_{\sigma}X)$$
(3.7)

for any $X, Y, Z \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$.

Lemma 3.1. Let M be a mixed-totally geodesic proper CR-submanifold of maximal CR-dimension in $\hat{M}_n(c)$, $c \neq 0$, and let $\alpha = \langle h(\xi, \xi), N \rangle$. Then

- (a) $2A_N\phi A_N \alpha(\phi A_N + A_N\phi) 2c\phi = 0;$
- (b) if $A_N Y = \lambda Y$ and $A_N \phi Y = \lambda^* \phi Y$, where $Y \in \Gamma(\mathcal{D})$, then $(2\lambda \alpha)(2\lambda^* \alpha) = \alpha^2 + 4c$;
- (c) α is a constant.

Proof. By the hypothesis,

$$h(Y,\xi) = \eta(Y)h(\xi,\xi) \tag{3.8}$$

for any $Y \in \Gamma(TM)$. Differentiating covariantly both sides of (3.8) in the direction of $X \in \Gamma(TM)$, we get

$$(\bar{\nabla}_X h)(Y,\xi) + h(\phi A_N X, Y) = \langle \phi A_N X, Y \rangle h(\xi,\xi) + \eta(Y) \nabla_X^{\perp} h(\xi,\xi).$$

By applying the Codazzi equation and this equation, we have

$$h(\phi A_N X, Y) - h(X, \phi A_N Y) - \langle (\phi A_N + A_N \phi) X, Y \rangle h(\xi, \xi)$$

$$-2c\langle\phi X,Y\rangle N = \eta(Y)\nabla_X^{\perp}h(\xi,\xi) - \eta(X)\nabla_Y^{\perp}h(\xi,\xi).$$
(3.9)

By putting $Y = \xi$ in this equation, we obtain

$$\nabla_X^{\perp} h(\xi,\xi) = \eta(X) \nabla_\xi^{\perp} h(\xi,\xi)$$
(3.10)

and

$$h(\phi A_N X, Y) - h(X, \phi A_N Y) - \langle (\phi A_N + A_N \phi) X, Y \rangle h(\xi, \xi)$$

= $2c \langle \phi X, Y \rangle N.$ (3.11)

By taking inner product of (3.11) with N, we get

$$2A_N\phi A_N - \alpha(\phi A_N + A_N\phi) - 2c\phi = 0.$$

Statement (b) is directly from this equation. Next, it follows from (3.4), (3.8), and (3.10) that

$$Y\alpha = Y\langle h(\xi,\xi), N \rangle = g\eta(Y)$$

for any $Y \in \Gamma(TM)$, where $g = \xi \alpha$, i.e., $d\alpha = g\eta$. Hence

$$0 = d^2 \alpha = dg \wedge \eta + g d\eta.$$

Since $2d\eta(X,\xi) = \langle (\phi A_N + A_N \phi) X, \xi \rangle = 0$ and $Xg - (\xi g)\eta(X) = dg \wedge \eta(X,\xi)$, for any $X \in \Gamma(TM)$, we have $dg = (\xi g)\eta$. Hence we have $gd\eta = 0$. This implies that g = 0 (for otherwise, if $d\eta = 0$ then \mathcal{D} is integrable. It follows that M is mixed foliate but this contradicts Theorem 2.1). Hence we have $d\alpha = 0$ or α is a constant. \Box

4. Proof of Theorem 1.2

Throughout this section, suppose M is a (2p + q)-dimensional pseudo parallel proper CR-submanifold in $\hat{M}_n(c)$, $c \neq 0$, where $\dim_{\mathbb{C}} \mathcal{D} = p \geq 2$ and $\dim_{\mathbb{R}} \mathcal{D}^{\perp} = q$.

Note that $\mathfrak{S}_{X,Y,Z}((X \wedge Y)h)(Z,W) = 0$ and

$$\mathfrak{S}_{X,Y,Z}(R(X,Y)h)(Z,W) = \mathfrak{S}_{X,Y,Z}\{R^{\perp}(X,Y)h(Z,W) - h(Z,R(X,Y)W)\}$$

for any $X, Y, Z, W \in \Gamma(TM)$, where $\mathfrak{S}_{X,Y,Z}$ denotes the cyclic sum over X, Y and Z. By the Gauss and Ricci equations, we obtain the following equation.

$$\langle \omega Y, h(Z, W) \rangle \langle \omega X, \sigma \rangle - \langle \omega X, h(Z, W) \rangle \langle \omega Y, \sigma \rangle - 2 \langle \phi X, Y \rangle \langle Ch(Z, W), \sigma \rangle + \langle \omega Z, h(X, W) \rangle \langle \omega Y, \sigma \rangle - \langle \omega Y, h(X, W) \rangle \langle \omega Z, \sigma \rangle - 2 \langle \phi Y, Z \rangle \langle Ch(X, W), \sigma \rangle + \langle \omega X, h(Y, W) \rangle \langle \omega Z, \sigma \rangle - \langle \omega Z, h(Y, W) \rangle \langle \omega X, \sigma \rangle - 2 \langle \phi Z, X \rangle \langle Ch(Y, W), \sigma \rangle - \langle \phi Y, W \rangle \langle h(Z, \phi X), \sigma \rangle + \langle \phi X, W \rangle \langle h(Z, \phi Y), \sigma \rangle + 2 \langle \phi X, Y \rangle \langle h(Z, \phi W), \sigma \rangle - \langle \phi Z, W \rangle \langle h(X, \phi Y), \sigma \rangle + \langle \phi Y, W \rangle \langle h(X, \phi Z), \sigma \rangle + 2 \langle \phi Y, Z \rangle \langle h(X, \phi W), \sigma \rangle - \langle \phi X, W \rangle \langle h(Y, \phi Z), \sigma \rangle + \langle \phi Z, W \rangle \langle h(Y, \phi X), \sigma \rangle + 2 \langle \phi Z, X \rangle \langle h(Y, \phi W), \sigma \rangle = 0.$$

$$(4.1)$$

for any $X, Y, Z, W \in \Gamma(TM)$ and $\sigma \in \Gamma(TM^{\perp})$. By putting $Z \in \Gamma(TM)$, $W \in \Gamma(D^{\perp}), Y = \phi X, X \in \Gamma(\mathcal{D})$ with ||X|| = 1 and $X \perp Z, \phi Z$ in (4.1), we obtain

$$Ch(\mathcal{D}^{\perp}, TM) = 0. \tag{4.2}$$

Let $\{E_1, E_2, \dots, E_{2p}\}$ be a local orthonormal frame on \mathcal{D} . By putting $X = E_j, Z = \phi E_j$ for $j \in \{1, 2, \dots, 2p\}$ in (4.1), and then summing up these equations, with the help of (4.2), we obtain

$$(2p-2)Ch(Y,W) - 2p\langle\phi Y,W\rangle H_{\mathcal{D}} - h(\phi^2 W,\phi Y) -2h(\phi^2 Y,\phi W) - (2p+1)h(Y,\phi W) = 0$$
(4.3)

for any $Y, W \in \Gamma(TM)$. By virtue of (4.2), after putting $Y \in \Gamma(\mathcal{D}^{\perp})$ in the above equation, we have

$$h(\mathcal{D}^{\perp}, \mathcal{D}) = 0. \tag{4.4}$$

This means that M is mixed-totally geodesic and so (4.3) reduces to

$$(2p-2)Ch(Y,W) - 2p\langle\phi Y,W\rangle H_{\mathcal{D}} + h(W,\phi Y) - (2p-1)h(Y,\phi W) = 0 \quad (4.5)$$

for any $Y, W \in \Gamma(TM)$. Next, we put Y = W in the above equation to get $Ch(Y,Y) - h(Y,\phi Y) = 0$, then, combining with the linearity of C, h and ϕ , we obtain

$$2Ch(Y,W) - h(W,\phi Y) - h(Y,\phi W) = 0$$
(4.6)

for any $Y, W \in \Gamma(TM)$. It follows from this equation and (4.5) that

$$h(Y,\phi W) = \langle Y,\phi W \rangle H_{\mathcal{D}} + Ch(Y,W) \tag{4.7}$$

for any $Y, W \in \Gamma(TM)$. From (4.1) and (4.7), we have

$$\begin{split} &\langle \omega Y, h(Z,W) \rangle \omega X - \langle \omega X, h(Z,W) \rangle \omega Y + \langle \omega Z, h(X,W) \rangle \omega Y \\ &- \langle \omega Y, h(X,W) \rangle \omega Z + \langle \omega X, h(Y,W) \rangle \omega Z - \langle \omega Z, h(Y,W) \rangle \omega X = 0 \end{split}$$

for any $X, Y, Z, W \in \Gamma(TM)$.

We claim that q = 1. Suppose the contrary that $q \ge 2$. By putting $Z = W \in \Gamma(\mathcal{D}), Y = BH_{\mathcal{D}}$ and $X \perp BH_{\mathcal{D}}$ a unit vector field in \mathcal{D}^{\perp} in this equation, with the help of (4.6), we obtain $BH_{\mathcal{D}} = 0$. This, together with (4.6) imply that $h(\mathcal{D}, \mathcal{D}) = 0$ and hence, by Lemma 2.2 and (4.4), M is mixed foliate. This contradicts Theorem 2.1. Accordingly, q = 1.

Let $N \in \Gamma(J\mathcal{D}^{\perp})$ be a unit vector field normal to M, and (ϕ, η, ξ) the almost contact structure on M as defined in Section 3. It follows from Lemma 2.1 and equations (3.1), (3.2), (4.2) and (4.4) that

$$H_{\mathcal{D}} = \lambda N, \tag{4.8}$$
$$h(X,\xi) = \eta(X)h(\xi,\xi) = \alpha \eta(X)N$$

for any $X \in \Gamma(TM)$, where $\lambda = \langle H_{\mathcal{D}}, N \rangle$ and $\alpha = \langle h(\xi, \xi), N \rangle$. By using (4.6) and the above two equations, we obtain

$$h(X,Y) = h(X, -\phi^2 Y + \eta(Y)\xi)$$

= { $\lambda \langle X, Y \rangle + b\eta(X)\eta(Y)$ } $N - Ch(X, \phi Y)$ (4.9)

for any $X, Y \in \Gamma(TM)$, where $b = \alpha - \lambda$. From Lemma 3.1 and (4.9), we obtain

$$\lambda^2 - \alpha \lambda - c = 0 \tag{4.10}$$

and so λ is a non-zero constant. Further, for any unit vector $Y \in \mathcal{D}$, we have

 $0 = \langle (\bar{R}(\xi, Y)h)(Y, \xi), N \rangle \rangle - f \langle ((\xi \land Y)h)(Y, \xi), N \rangle = (\alpha - \lambda)(f - \alpha\lambda - c)$

Hence, $f = \lambda^2$ is a positive constant.

We consider two cases: Ch = 0 and $Ch \neq 0$.

Case 1. Ch = 0.

By the hypothesis, (3.4) and the fact that $\lambda \neq 0$, the first normal space $\mathcal{N}_x^1 = \mathbb{R}N_x, x \in M$, and \mathcal{N}^1 is a parallel normal subbundle of TM^{\perp} . Since ν is *J*-invariant, by Codimension Reduction Theorems (cf. [11], [15]), *M* is contained in a totally geodesic holomorphic submanifold $\hat{M}_{p+1}(c)$ as a real hypersurface.

Now, let ∇' , A', *etc* denote the Levi-Civita connection on M induced by the Levi-Civita connection of $\hat{M}_{p+1}(c)$, the shape operator, *etc*, respectively. Since $\hat{M}_{p+1}(c)$ is totally geodesic in $\hat{M}_n(c)$, we can see that $\nabla'_X Y = \nabla_X Y$, $A' = A_N$ and N' = N. Further, as $\nabla^{\perp} N = 0$, we have $R^{\perp}(X, Y)N = 0$ and so $R'(X, Y)A = (\bar{R}(X, Y)A)_N$, for any X, Y tangent to M. Then M is a pseudo parallel real hypersurface in $\hat{M}_{p+1}(c)$ and by Theorem 1.1, we obtain List (a) and (b-i) in Theorem 1.2.

Case 2. $Ch \neq 0$.

Suppose $Ch \neq 0$ at a point $x \in M$. There is a number $a \neq 0, \sigma \in \nu_x$ and a unit vector $Y \in \mathcal{D}_x$ such that $A_{\sigma}Y = aY$. From Lemma 2.1, we have $A_{\sigma}\phi Y = -a\phi Y$. Then from $\langle (\bar{R}(\phi Y, Y)h)(Y, \phi Y), \sigma \rangle = f \langle ((\phi Y \land Y)h)(Y, \phi Y), \sigma \rangle$, we obtain

$$a\{3c - 2\langle h(Y,\phi Y), h(Y,\phi Y)\rangle + \langle h(Y,Y), h(\phi Y,\phi Y)\rangle\} = af.$$

On the other hand, from (4.9), we have

$$\langle h(Y,\phi Y), h(Y,\phi Y) \rangle = \langle Ch(Y,Y), Ch(Y,Y) \rangle \langle h(Y,Y), h(\phi Y,\phi Y) \rangle = \lambda^2 - \langle Ch(Y,Y), Ch(Y,Y) \rangle.$$

Since $a \neq 0$ and $f = \lambda^2$, these equations give $c = \langle Ch(Y,Y), Ch(Y,Y) \rangle$. Hence, we conclude that c > 0 (without loss of generality, we assume c = 1) and ||Ch|| > 0 on the whole of M.

Fixed r > 0 and let BM be the unit normal bundle over M. The focal map Φ_r is given by

$$BM \ni \sigma \xrightarrow{\Phi_r} \exp(r\sigma) \in \mathbb{C}P_n$$

where exp is the exponential map on $\mathbb{C}P_n$. For each $x \in M$ and unit vector $\sigma \in T_x M^{\perp}$, denote by $\gamma_{\sigma}(s)$ the normalized geodesic in $\mathbb{C}P_n$ passes through $x \in M$ at s = 0 with velocity σ . Let \mathcal{Y}_X be the *M*-Jacobi field along γ_{σ} with initial values $\mathcal{Y}_X(0) = X \in T_x M$ and $\dot{\mathcal{Y}}_X(0) = -A_{\sigma} X$. Then (cf. [3, pp.225])

$$d\Phi_r(\sigma)X = \mathcal{Y}_X(r).$$

In view of (4.9), A_N has two distinct constant eigenvalues α and λ with eigenspaces $\mathbb{R}\xi$ and \mathcal{D}_x respectively at each $x \in M$. We put $\alpha = 2 \cot 2r$, $0 < r < \pi/2$. Then $\lambda = \cot r$ or $\lambda = -\cot(\frac{\pi}{2} - r)$ by (4.10).

Subcase 2-a. $\lambda = \cot r$.

Since λ is a nonzero constant, by (4.8), $N = \lambda^{-1} H_{\mathcal{D}}$ is globally defined on M. We may immerse M in BM as a submanifold in a natural way: $x \mapsto N_x, x \in M$.

We claim that $\Phi_r(M)$ is a singleton for a suitable choice of r. This can be done by showing that $d\Phi_r(N_x)T_xM = \{0\}$, for each $x \in M$. We first note that at each $z \in \mathbb{C}P_n$, the Jacobi operator $\hat{R}_{\sigma} := \hat{R}(\cdot, \sigma)\sigma, \sigma \in T_z\mathbb{C}P_n$, has eigenvalues 0, 4 and 1 with eigenspaces $\mathbb{R}\sigma$, $\mathbb{R}J\sigma$ and $(\mathbb{R}\sigma \oplus \mathbb{R}J\sigma)^{\perp}$ respectively, To compute $d\Phi_r(N_x)X, X \in T_xM$, we select the Jacobi field

$$\mathcal{Y}_X(t) = \begin{cases} \left(\cos 2t - \frac{\alpha}{2} \sin 2t \right) \mathcal{E}_X(t), & X = \xi \\ \left(\cos t - \lambda \sin t \right) \mathcal{E}_X(t), & X \in \mathcal{D}_x \end{cases}$$

where \mathcal{E}_X is the parallel vector field along γ_{N_x} with $\mathcal{E}_X(0) = X$. Then we have $d\Phi_r(N_x)X = \mathcal{Y}_X(r) = 0$ and conclude that $\Phi_r(M) = \{z_0\}$.

Subcase 2-b. $\lambda = -\cot(\frac{\pi}{2} - r)$.

Note that $\cot 2r = -\cot 2(\frac{\pi}{2} - r)$. By selecting the Jacobi field

$$\mathcal{Y}_X(t) = \begin{cases} \left(\cos 2t + \frac{\alpha}{2} \sin 2t \right) \mathcal{E}_X(t), & X = \xi \\ \left(\cos t + \lambda \sin t \right) \mathcal{E}_X(t), & X \in \mathcal{D}_x \end{cases}$$

we can see that $d\Phi_{\pi/2-r}(-N_x)X = 0$, for $X \in T_x M$ and hence $\Phi_{\pi/2-r}(M) = \{z_0\}$.

We have shown that $\Phi_r(M) = \{z_0\}$ for some $r \in [0, \pi/2[$ in both cases. By checking the Jacobi fields of $\mathbb{C}P_n$ (cf. [13, pp.149]), there is no conjugate point for z_0 along any geodesic in $\mathbb{C}P_n$ of length $r \in [0, \pi/2[$ starting at z_0 , we conclude that M lies in a geodesic hypersphere M' around z_0 in $\mathbb{C}P_n$ with almost contact structure (ϕ', η', ξ') , where $\xi' = -JN', \eta'$ the 1-form dual to $\xi', \phi' = J_{|TM'} - \eta' \otimes N'$ and N' a unit vector field normal to M'. By the construction of M', we have $N = N', \xi = \xi'$ and $\phi = \phi'$ on M. It follows that $\phi'TM \subset TM$ and so M is an invariant submanifold of M' (cf. [25]). Hence we obtain List (b-ii) in Theorem 1.2.

5. Recurrent CR-submanifolds in a non-flat complex space form

In this section, well show that there are no proper recurrent CR-submanifolds in $\hat{M}_n(c)$, $n \neq 0$. We first discuss the ideas of recurrence and semi-parallelism in a general setting.

Let M be a Riemannian manifold and \mathcal{E}_j a Riemannian vector bundle over M with linear connection ∇^j , $j \in \{1, 2\}$. It is known that $\mathcal{E}_1^* \otimes \mathcal{E}_2$ is isomorphic to the vector bundle $Hom(\mathcal{E}_1, \mathcal{E}_2)$, consisting of homomorphisms from \mathcal{E}_1 into \mathcal{E}_2 . We denote by the same \langle , \rangle the fiber metrics on \mathcal{E}_1 and \mathcal{E}_2 as well as that induced on $Hom(\mathcal{E}_1, \mathcal{E}_2)$. The connections ∇^1 and ∇^2 induce on $Hom(\mathcal{E}_1, \mathcal{E}_2)$ a connection $\overline{\nabla}$, given by

$$(\bar{\nabla}_X F)V = (\bar{\nabla}F)(V;X) = \nabla^2_X FV - F\nabla^1_X V$$

for any $X \in \Gamma(TM)$, $V \in \Gamma(\mathcal{E}_1)$ and $F \in \Gamma(Hom(\mathcal{E}_1, \mathcal{E}_2))$.

A section F in $Hom(\mathcal{E}_1, \mathcal{E}_2)$ is said to be *recurrent* if there exists $\tau \in \Omega^1(M)$ such that $\overline{\nabla}F = F \otimes \tau$. We may regard parallelism as a special case of recurrence, that is, the case $\tau = 0$. Let \overline{R} , R^1 and R^2 be the curvature tensor corresponding to $\overline{\nabla}, \nabla^1$ and ∇^2 respectively. Then we have

$$(\bar{R} \cdot F)(V; X, Y) = (\bar{R}(X, Y)F)V = R^2(X, Y)FV - FR^1(X, Y)V$$

for any $X, Y \in \Gamma(TM), V \in \Gamma(\mathcal{E}_1)$ and $F \in \Gamma(Hom(\mathcal{E}_1, \mathcal{E}_2))$. We begin with the following result.

Lemma 5.1. Let M be a connected Riemannian manifold, \mathcal{E}_j a Riemannian vector bundle over M, $j \in \{1, 2\}$ and $F \in \Gamma(Hom(\mathcal{E}_1, \mathcal{E}_2))$. If F is recurrent then F is semi-parallel.

Proof. Suppose F is recurrent, that is, $\nabla F = F \otimes \tau$, for some $\tau \in \Omega^1(M)$. It is trivial if F = 0. Suppose that $\mu := ||F|| \neq 0$ on an open set $U \subset M$. Then the line bundle $\mathbb{R} \otimes F \to U$, spanned by F, is a parallel subbundle of $Hom(\mathcal{E}_1, \mathcal{E}_2)_{|U}$. Consider the unit section $E := \mu^{-1}F$ of $\mathbb{R} \otimes F$. Then

$$\bar{\nabla}E = \mu^{-1}\bar{\nabla}F + F \otimes d(\mu^{-1}) = F \otimes (\mu^{-1}\tau + d(\mu^{-1})) = E \otimes (\tau - \mu^{-1}d\mu).$$

Hence, E is also recurrent and $\overline{\nabla} E = E \otimes \lambda$, where $\lambda = \tau - \mu^{-1} d\mu \in \Omega^1(U)$. It follows that

$$0 = d\langle E, E \rangle = 2\langle \overline{\nabla}E, E \rangle = 2\langle E, E \rangle \lambda = 2\lambda.$$

Hence E is a flat section. This implies that $\mathbb{R} \otimes F$ is a flat bundle. Hence, $\overline{R} \cdot F = 0$ on U. By a standard topological argument, we conclude that $\overline{R} \cdot F = 0$ on M.

Geometrically, Lemma 5.1 tells us that the line subbundle of $(Hom(\mathcal{E}_1, \mathcal{E}_2), \overline{\nabla})$, spanned by a nonvanishing recurrent section is a flat bundle.

A submanifold M of a Riemannian manifold \hat{M} is said to be *recurrent* if its second fundamental form h is recurrent. Since every $T_x M^{\perp}$ -valued bilinear map on $T_x M$ naturally induces a homomorphism from $T_x M \otimes T_x M$ to $T_x M^{\perp}$, $x \in M$, we may identify h as a section of $Hom(TM \otimes TM, TM^{\perp})$. Accordingly, the following result can be obtained immediately from Corollary 1.1 and Lemma 5.1.

Corollary 5.1. There does not exist any proper recurrent CR-submanifold M in $\hat{M}_n(c), c \neq 0$, with $\dim_{\mathbb{C}} \mathcal{D} \geq 2$.

Remark 5.1. The above corollary generalizes the non-existence of recurrent real hypersurfaces in a non-flat complex space form (cf. [14], [21]).

AVIK DE AND TEE-HOW LOO

ACKNOWLEDGEMENT

The authors are thankful to the referee for several valuable comments and suggestions towards the improvement of the present article.

References

- Asperti, A.C., Lobos, G.A., Mercuri, F.: Pseudo-parallel immersions in space forms. Mat. Contemp. 17, 59–70 (1999).
- [2] Asperti, A.C., Lobos, G.A., Mercuri, F.: Pseudo-parallel submanifolds of a space form. Adv. Geom. 2, 57–71 (2002).
- [3] Berndt, J., Console, S., Olmos, C.: Submanifolds and holonomy. Research Notes in Mathematics Series vol. 434. Chapman & Hall/CRC, Boca Raton (2003).
- [4] Bejancu, A.: CR-submanifolds of a Kaehler manifold I. Proc. Amer. Math. Soc. 69, 135–142 (1978).
- [5] Chen, B.Y.: CR-submanifolds of a Kaehler manifold, I, II. J. Diff. Geom. 16, 305–322 (1981); 16, 493–509 (1981).
- [6] Chen, B.Y.: Differential geometry of real submanifolds in a Kähler manifold. Monatsh. Math. 91, 257–274 (1981).
- [7] Chen, B-Y., Ogiue, K.: On totally real submanifolds, Trans. Amer. Math. Soc., 193, 257-266 (1974).
- [8] Chen, B.Y., Wu, B.Q.: Mixed foliate CR-submanifolds in a complex hyperbolic space are non-proper. Internat. J. Math. & Math. Sci. 11, 507–515 (1988).
- [9] Deprez, J.: Semi-parallel surfaces in euclidean space. J. Geom. 25, 192–200 (1985).
- [10] Dillen, F.: Semi-parallel hypersurfaces of a real space form. Isr. J. Math. 75, 193-202 (1991).
- [11] Djorić, M., Okumura, M.: CR-submanifolds of complex projective space. Development in Mathematics vol. 19. Springer, Berlin (2009).
- [12] Ferus, D.: Immersions with parallel second fundamental form. Math. Z. 140, 87–93 (1974).
- [13] Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry, 3rd Ed. Universitext, Springer-Verlag, Berlin (2004).
- [14] Hamada, T.: On real hypersurfaces of a complex projective space with recurrent second fundamental tensor. J. Ramanujan Math. Soc. 11, 103–107 (1996).
- [15] Kawamoto, S.I.: Codimension reduction for real submanifolds of complex hyperbolic space. Revista Matematica de la Universidad Complutense de Madrid 7, 119– 128 (1994).
- [16] Kon, M.: Semi-parallel CR submanifolds in a complex space form. Colloq. Math. 124, 237–246 (2011).
- [17] Lobos, G.A., Ortega, M.: Pseodo-parallel real hypersurfaces in complex space forms, Bull. Korean Math. Soc. 41, 609–618 (2004).
- [18] Lobos, G.A., Tojeiro, R.: Pseudo-parallel submanifolds with flat normal bundle of space forms. Glasg. Math. J. 48, 171–177 (2006).
- [19] Loo, T.H.: Cyclic parallel CR-submanifolds of maximal CR-dimension in a complex space form. Ann. Mat. Pura Appl. (DOI 10.1007/s10231-013-0322-1).
- [20] Lumiste, U.: Semiparallel submanifolds in space forms. Springer Monographs in Mathematics, Springer, New York (2009).
- [21] Lyu, S.M., Suh, Y.J.: Real hypersurfaces in complex hyperbolic space with ηrecurrent second fundamental tensor Nihonkai Math. J. 8, 19–27 (1997).

12

- [22] Niebergall, R., Ryan, P.J.: Real hypersurfaces in complex space forms, Tight and Taut Submanifolds. Math. Sci., Res. Inst. Publ., Cambridge Univ. Press, Cambridge 32, 223–305 (1997).
- [23] Ortega, M.: Classifications of real hypersurfaces in complex space forms by means of curvature conditions. Bull. Belg. Math. Soc. Simon Stevin 9, 351–360 (2002).
- [24] Takeuchi, M.: Parallel submanifolds of space forms. in: Manifolds and Lie Groups, Papers in honour of Y. Matsushima, Birkhäuser, Basel, 429–447 (1981).
- [25] Yano, K., Kon, M.: CR-submanifolds of Kaehlerian and Sasakian manifolds, Progress in Mathematics vol. 30. Birkhäuser, Boston (1983).

DE, A., INSTITUTE OF MATHEMATICAL SCIENCES, UNIVERSITY OF MALAYA, 50603 KUALA LUMPUR, MALAYSIA

E-mail address: de.math@gmail.com

Loo, T. H., Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.

E-mail address: looth@um.edu.my