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QUASIPROJECTIVE THREE-MANIFOLD GROUPS AND COMPLEXIFICATION

OF THREE-MANIFOLDS

INDRANIL BISWAS AND MAHAN MJ

Abstract. We characterize the quasiprojective groups that appear as fundamental groups of compact
3-manifolds (with or without boundary). We also characterize all closed 3-manifolds that admit good
complexifications. These answer questions of Friedl–Suciu, [FrSu], and Totaro [To].
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1. Introduction

A group is called quasiprojective (respectively, Kähler) if it is the fundamental group of a smooth
complex quasiprojective variety (respectively, compact Kähler manifold). Kähler and quasiprojective 3-
manifold groups have attracted much attention of late [DiSu, Ko1, BMS, DPS, FrSu, Ko2]. In this paper
we characterize quasiprojective 3-manifold groups.

We shall follow the convention that our 3-manifolds have no spherical boundary components.

Capping such boundary components off by 3-balls does not change the fundamental group, which is
really what interests us here.

Theorem 1.1 (See Theorem 3.4). Let N be a compact 3-manifold (with or without boundary). If π1(N)
is a quasiprojective group, then N is either Seifert-fibered or π1(N) is one of the following type

• virtually free, or
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2 I. BISWAS AND M. MJ

• virtually a surface group.

Finer results leading to a complete characterization are given in Section 3.1 and Section 5 (see Theorem
5.6). We omit stating these here as they are slightly more complicated to do so.

This characterization of quasiprojective 3-manifold groups answers Questions 8.3 and Conjecture 8.4
of [FrSu]; see Corollary 5.7 and Corollary 5.9.

The following theorem provides an answer to Question 8.1 of [FrSu] under mild hypotheses.

Theorem 1.2 (See Theorem 5.13). Suppose A and B are groups, such that the free product G = A ∗B
is a quasiprojective group. In addition suppose that both A and B admit nontrivial finite index subgroups,
and at least one of A,B has a subgroup of index greater than 2. Then each of A,B are free products of
cyclic groups. In particular both A and B are quasiprojective groups.

A good complexification of a closed smooth manifold M is defined to be a smooth affine algebraic
variety U over the real numbers such that M is diffeomorphic to U(R) (the locus of closed points defined
over R) and the inclusion U(R) −→ U(C) is a homotopy equivalence [To]. Totaro asks whether a closed
smooth manifold M admits a good complexification if and only if M admits a metric of non-negative
curvature [To, p. 69, 2nd para]. As an application of Theorem 1.1, we prove this in the following strong
form for 3-manifolds.

Theorem 1.3 (See Theorem 4.5). A closed 3-manifold M admits a good complexification if and only if
one of the following hold:

(1) M admits a flat metric,
(2) M admits a metric of constant positive curvature,
(3) M is covered by the (metric) product of a round S2 and R.

Curiously, the proof of Theorem 1.3 is direct and there is virtually no use of the method or results of
[Ku, To, DPS, FrSu]. Our main tools from recent developments in 3-manifolds are:

(1) The Geometrization Theorem and its consequences (see [AFW]).
(2) Largeness of 3-manifold groups [Ag, Wi, LoNi, CLR, La].

The basic complex geometric tool is a theorem of Bauer, [Bau], regarding existence of irrational pencils
for quasiprojective varieties (the theorem of Bauer is recalled in Theorem 2.7). It is a useful existence
result in the same genre as the classical Castelnuovo-de Franchis Theorem and a theorem of Gromov
[Gr, ABCKT].

As a consequence of our results we deduce the restrictions on quasiprojective 3-manifold groups ob-
tained by the authors of [DPS, FrSu, Ko2] and the restrictions on good complexifications of 3-manifolds
deduced in [To] (this is done in in Section 3.1.1). We also indicate, in Remark 3.12, how to deduce the
classification of (closed) 3-manifold Kähler groups [DiSu, Ko1, BMS] using the techniques of Theorem
1.1, thus providing a unified treatment of known results.

2. Preliminaries

2.1. Three-manifold groups. We collect together facts about 3-manifold groups that will be used here.

By a quasi-Kähler manifold we mean the complement of a closed complex analytic subset of a compact
connected Kähler manifold.

Definition 2.1.

(1) A groupG is quasiprojective (respectively, quasi-Kähler) if it can be realized as the fundamental
group of a smooth quasiprojective complex variety (respectively, quasi-Kähler manifold).

(2) A group G is a 3-manifold group if it can be realized as the fundamental group of a compact
real 3-manifold (possibly with boundary).

(3) A group G is large if it has a finite index subgroup S that admits a surjective homomorphism
onto a non-abelian free group. Such a subgroup S necessarily has a finite index subgroup that
admits a surjective homomorphism onto F3.



QUASIPROJECTIVE THREE-MANIFOLD GROUPS AND COMPLEXIFICATION 3

A prime 3-manifold (possibly with boundary) is a 3-manifold that cannot be decomposed as a
non-trivial connected sum. Graph manifolds are prime 3-manifolds obtained by gluing finitely many
Seifert-fibered JSJ components along boundary tori. In particular, torus bundles over a circle are graph
manifolds. A 3-manifold M is geometric if it is a quotient of one of the following spaces (equipped with
standard Riemannian metrics) by a discrete group acting freely properly discontinuously via isometries:

S3,E3,H3,H2×R, S2×R, Nil, Sol, S̃l2(R). In this paper we shall mostly deal with closed 3-manifolds. If
M is a compact 3-manifold with boundary, we say that M is geometric, if the interior of M is geometric.
Note that in this case, the interior of M need not even have finite volume. Among the graph manifolds,
Sol and Seifert manifolds are geometric; the rest are non-geometric. It follows that the gluing maps
between the Seifert components in non-geometric manifolds do not identify circle fibers. (See [AFW, p.
59] and [He1, Ch. 3].)

The following omnibus theorem is the consequence of the Geometrization theorem of Thurston–
Perelman and work of a large number of people culminating in the resolution of the virtual Haken
problem by Agol and Wise. See [AFW] (especially Diagram 1, p. 36) for an excellent account.

Theorem 2.2. If a 3-manifold M has a prime component N satisfying one of the following three condi-
tions, then the fundamental group of M is large.

(1) N is a compact orientable irreducible 3-manifold with non-empty boundary such that M is not an
I-bundle (“I” is a closed interval) over a surface with non-negative Euler characteristic [CLR, La].

(2) N is closed hyperbolic [Ag, Wi].
(3) N is a closed, non-geometric graph manifold [LoNi].

If π1(M) is a nontrivial free product G1 ∗ G2 (e.g., if M is not prime), where at least one Gi has
order greater than 2, then the fundamental group of M is large. The exceptional case (Z/2Z) ∗ (Z/2Z) is
realized only by the connected sum of two real projective spaces.

As an immediate corollary we have the following:

Corollary 2.3. If the fundamental group of M is not large, then M is Seifert-fibered or a Sol manifold.

A finitely presented group is coherent if any finitely generated subgroup is finitely presented.

Theorem 2.4 ([Sc]). Fundamental groups of compact 3-manifolds are coherent.

A consequence is the following [He1, Ch. 11].

Proposition 2.5. Let 1 −→ H −→ G −→ Q −→ 1 be a short exact sequence of infinite finitely
generated groups with G the fundamental group of a compact orientable 3-manifold N (possibly with
boundary). Then

(1) either H is infinite cyclic and Q is the fundamental group of a compact 2-orbifold (possibly with
boundary), in which case N is Seifert-fibered;

(2) or H is the fundamental group of a compact surface (possibly with boundary) and Q is virtually
cyclic.

Another theorem that will be used is:

Theorem 2.6 ([Bas]). A finitely generated group G is virtually free if and only if G can be represented
as the fundamental group of a finite graph of groups where all vertex and edge groups are finite.

2.2. Logarithmic irrational pencil. We shall require an extension, due to Bauer, of the classical
Castelnuovo-de Franchis theorem on the existence of an irrational pencil on a projective variety to the
more general case of quasiprojective varieties. We refer to [Bau] for details and quickly recall here the
basic definitions used in this subsection (see also [Ca, Di] for related material). All varieties are defined
over C.

A surjective morphism f : X −→ C between quasi-projective varieties is said to be a fibration if f
has an irreducible (and hence connected) general fiber. If C is a curve of genus greater than zero, then
f is called an irrational pencil.
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Theorem 2.7 ([Bau, p. 442]). Let X be a smooth complex quasiprojective variety such that π1(X)
admits a surjective homomorphism to a group G that admits a finite presentation with n generators and
m relations, where n −m ≥ 3. Then there exists an integer β ≥ n −m and a quasiprojective curve C
with first Betti number β and a logarithmic irrational pencil f : X −→ C with connected fibers.

The proof of Theorem 2.7 in [Bau] combined with Remark 2.3(1) in [Bau] furnishes the following:

Proposition 2.8 ([Bau]). Let X be a smooth quasiprojective variety, and let X denote a smooth com-
pactification such that X \ X is a divisor with normal crossings. Further suppose that π1(X) admits a
surjection onto a group G that admits a finite presentation with n generators and m relations, where
n −m ≥ 3. Let C, f be the quasiprojective curve and logarithmic pencil obtained in Theorem 2.7. Let
C denote the projective completion of C. Then there exists f1 : X −→ C such that f1|X = f . In
particular, the fibers of f are quasiprojective.

Proof. Only the last statement (which is really obvious) is not explicitly mentioned in [Bau]. However
since we need it explicitly we say a couple of words here:

Note that the fibers of f are intersections of fibers of f1 with X . All fibers of f1 are projective varieties
as f1 is algebraic. Hence the fibers of f are quasiprojective. �

The logarithmic genus g∗ of a curve C is defined by the equality b1(C) = g + g∗, where g is the genus
of a smooth completion of C.

Let X be a variety. A subspace V ⊂ H1(X, C) is called isotropic if the image of
∧2

V in H2(X, C)
is zero [Bau, p. 441]. A (complex linear) subspace V ⊂ H1(X, C) is called real if V = V .

We owe the comment below to the referee:

Remark 2.9. There is a one-to-one correspondence between R−linear subspaces of H1(X,R) and real
subspaces of H1(X,C) in the above sense, that is, C−linear subspaces V such that V = V . The
correspondence sends any R−linear subspace W ⊂ H1(X, R) to

W ⊗R C ⊂ H1(X, R)⊗R C = H1(X, C) .

This is the convention we follow.

We could have alternately defined a R–linear subspace V of H1(X,C) to be real if V = V . Now
Theorem 2.10 below deals with maximal real isotropic subspaces V of H1(X,C). If V is a real isotropic
subspace of H1(X,C) in this sense, then V +

√
−1V ⊂ H1(X,C) is also isotropic. Since V is maximal, it

is equal to V +
√
−1V . So a maximal real isotropic subspaces V in this sense is automatically a complex

linear subspace of H1(X,C). Thus the two definitions are essentially equivalent. However “dimension”
in Theorem 2.10 below and in [Bau] means complex dimension.

The necessary and sufficient condition for C to be complete in Theorem 2.10 below is slightly misstated
in [Bau].

It is a standard fact that the inclusion X ⊂ X induces an injective map from H1(X, C) into H1(X, C).
We identify H1(X, C) with its image in H1(X, C) in the following:

Theorem 2.10 ([Bau, Theorem 2.1], [Ca, Theorem 2.11]). Let X be a smooth quasiprojective variety,
and let X denote a smooth compactification such that (X \X) = D is a divisor with normal crossings.
Every maximal real isotropic subspace V ⊂ H1(X, C) of dimension ≥ 3 determines a unique logarithmic
irrational pencil f : X −→ C onto a curve C with logarithmic genus g∗ ≥ 2. The curve C is complete
if and only if V is a maximal isotropic real subspace of H1(C,C), and so dimC(V ) is equal to the genus
of C. Else V = f∗(H1(C, C)).

We introduce some more notation towards the final result of this subsection. For f : X −→ Y be
a fibration of quasiprojective varieties, Sing(f) ⊂ X will denote the set of critical points of f . For any

y ∈ Y , let Fy := f−1(y). Let Fb be a regular fiber of f and b̃ ∈ Fb.

Proposition 2.12 below will use the following Lemma of Nori.
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Lemma 2.11 ([No, Lemma 1.5], [Sh, Proposition 3.1]). Let f : X → Y be a fibration of quasiprojective
varieties so that the regular fiber Fb is connected. Let ι : Fb −→ X denote the inclusion map. Let

Ξ ⊂ Y

be a Zariski closed subset of codimension greater than one such that for all y ∈ Y \ Ξ we have

Fy \ (Fy

⋂
Sing(f)) 6= ∅ .

Then f∗ : π1(X, b̃) −→ π1(Y, b) is surjective, and its kernel is equal to the image of

ι∗ : π1(Fb, b̃) −→ π1(X, b̃) .

A large part of the proof of the following proposition was supplied by the referee.

Proposition 2.12. Let X,C, f be as in Theorem 2.8. Then there is an exact sequence

1 −→ H −→ π1(X) −→ πorb
1 (C) −→ 1

with H finitely generated, where πorb
1 (C) denotes the orbifold fundamental group of some orbifold (with

finitely many orbifold points) whose underlying topological space is C.

Proof. We apply Lemma 2.11 with Y = C and Ξ = ∅. If Fy ⊂ Sing(f) for some y, then Fy is a multiple
fiber. If every singular fiber of f has an irreducible component with multiplicity one, Lemma 2.11 directly
gives an exact sequence

1 −→ ι∗(π1(Fb, b̃)) −→ π1(X, b̃) −→ π1(C) −→ 1 .

Since π1(Fb, b̃) is finitely generated by the last statement of Proposition 2.8, so is H = ι∗(π1(Fb, b̃)) and
we are done in this case.

Else suppose there are finitely many points b1 , · · · , bk such that the fibers Fi = Fbi are the multiple
fibers of the fibration. Let Z = {b1 , · · · , bk} denote the critical set in C. Suppose that Fi = Fbi has
multiplicity ni, where we define the multiplicity of Fi to be the gcd of the multiplicities of the irreducible
components of Fi. We equip C with an orbifold structure Co with orbifold points bi of order ni. Since
C is hyperbolic, so is Co (since its orbifold Euler characteristic must be negative). Hence there exists a
finite orbifold-cover C1 of Co such that C1 has no orbifold points [Sc]. This C1 may be thought of as a
branched cover of C with ni–fold branching at bi. The fibration f : X −→ C then lifts to a fibration
f1 : X1 −→ C1 where X1 is a manifold cover of X (since Fi is a multiple fiber with multiplicity ni).
Further the multiplicity of each singular fiber of f1 (in the above sense) is one. It suffices to show therefore
that there is an exact sequence

1 −→ H −→ π1(X1, b̃)
f1∗−→ π1(C1) −→ 1

with H finitely generated.

Two things need to be checked now:

(1) f1∗ is surjective.
(2) The kernel of f1∗ is the image H ⊂ π1(X1) of the fundamental group of a general fiber Fb.

Given that C1 has no orbifold points, any (based) loop σ can be homotoped slightly to miss the singular
set Z1 in C1 without changing its homotopy class. Since f1 is a fibration away from the singular set, σ
can now be lifted to a (based) loop σ1 ⊂ X1 with f1∗([σ1]) = [σ] and we conclude that f1∗ is surjective.

Let U = C1 \ Z1 and XU = f−1
1 (U). Then f1 : XU −→ U is a smooth fibration and hence

π1(XU )/π1(Fb) = π1(U). Next π1(X1) is the quotient of π1(XU ) by the normal subgroup generated by
one loop σK around each irreducible component K of X \XU . Hence π1(X1)/H is the quotient of π1(U)
by the normal subgroup generated by f1∗([σK ]). If K ⊂ Fi then f1∗([σK ]) = αnK

i , where αi is a small
loop around the critical point bi ∈ Z1 and nK is the multiplicity of K. If Ki1, · · · ,Kil are the irreducible
components of Fi with multiplicities ni1, · · · , nil respectively, then gcd(ni1, · · · , nil) = 1 and hence there

exist integers ci1, · · · , cil such that
∑l

j=1 cijnij = 1 and hence [αi] belongs to the normal subgroup

generated by f1∗([σK ])’s. It follows that the quotient of π1(U) by the normal subgroup generated by
f1∗([σK ])’s is precisely π1(C1). This proves the proposition. �
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Remark 2.13. We emphasize that in the proof of Proposition 2.12, we have actually shown the existence
of a finite manifold cover X1 of X satisfying the exact sequence

1 −→ H −→ π1(X1, b̃) −→ π1(C1) −→ 1

with H finitely generated.

3. Quasiprojective three-manifold groups

In this section, we combine Theorem 2.2 with Theorem 2.7 to completely characterize quasiprojective
3-manifold groups.

We shall use the following restriction on quasiprojective groups due to Arapura and Nori which says
that solvable quasiprojective groups are virtually nilpotent.

Theorem 3.1 ([ArNo]). Let N be a closed 3-manifold such that π1(N) is a quasiprojective group. Then
N is not a Sol manifold.

Theorem 3.2. Let N be a closed 3-manifold, such that π1(N) is a quasiprojective group. Then N is
either Seifert-fibered or N is finitely covered by #mS2 × S1.

Proof. By Theorem 3.1 we can exclude the case where N is a Sol manifold. Hence it follows that if π1(N)
is not large, then, by Corollary 2.3, the manifold N is Seifert-fibered.

Next suppose π1(N) is large. Then there exists a finite index subgroup G of π1(N) such that G admits
a surjection onto the free group F3.

Since π1(N) is quasiprojective, so is G. Let X be a smooth quasiprojective variety with fundamental
group G. By Theorem 2.7, there exists a logarithmic pencil f (with connected fibers) of X over a
quasiprojective curve C with first Betti number greater than two. By passing to a finite sheeted (orbifold)
cover of the base if necessary, we can assume without loss of generality that f has no multiple fibers.

By Proposition 2.8, the generic fiber F is quasiprojective and hence has finitely generated fundamental
group. Let H denote the image of π1(F ) in π1(X). Now we have an exact sequence

1 −→ H −→ π1(X) −→ π1(C) −→ 1 .

If C is closed, it follows from Proposition 2.5 that N is Seifert fibered. If H is infinite cyclic (or even
virtually so), then also N is Seifert fibered.

Else C is quasiprojective non-compact and H is not infinite cyclic. Hence by Proposition 2.5 again,
the subgroup H is finite and G is virtually free. By Grushko’s theorem, [He1, p. 25, Theorem 3.4], the
manifold N is finitely covered by a connected sum #mS2 × S1. �

Proposition 3.3. Let N be a 3-manifold with at least one boundary component of positive genus. Assume
that π1(N) is an infinite quasiprojective group. Then π1(N) is either virtually free or virtually of the
form Z× Fn (n ≥ 1) or virtually a surface group.

Proof. By Theorem 2.2(1), either N is an I–bundle over a surface of non-negative Euler characteristic or
it is large. If N is an I–bundle over a surface of non-negative Euler characteristic, then π1(N) is either
Z or virtually Z⊕ Z.

Else, by the same argument as in the proof of Theorem 3.2, we have an exact sequence

1 −→ H −→ π1(X) −→ π1(C) −→ 1

with H either Z or finite, and C a (possibly noncompact) surface. If H is finite, then π1(N) is either
virtually free or virtually a surface group.

If H is Z, then N is Seifert-fibered with base a compact orbifold surface with boundary. Consequently,
π1(N) is either virtually cyclic or virtually of the form Z× Fn with n ≥ 1. �

Combining Theorem 3.2 and Proposition 3.3 we have the following:

Theorem 3.4. Let N be a compact 3-manifold (with or without boundary) such that π1(N) is a quasipro-
jective group. One of the following is true:
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(1) N is closed Seifert-fibered,
(2) π1(N) is virtually free,
(3) π1(N) is virtually of the form Z× Fn with n ≥ 1,
(4) π1(N) is virtually a surface group.

3.1. Refinements and consequences.

Remark 3.5. The proof of Theorem 3.4 gives us a bit more. A standing assumption in this section is
that N is a compact 3-manifold (with or without boundary) and π1(N) is quasiprojective.

Case 1: N is closed prime. Then Theorem 3.2 forces N to be Seifert-fibered.

Case 2: N is closed but not prime. Then from Theorem 3.2 the fundamental group π1(N) is virtually
free and hence by Theorem 2.6, π1(N) is the fundamental group of a graph of groups with edge and vertex
groups finite. Hence in the prime decomposition of N , each prime component of N must have fundamen-
tal group that has virtual cohomological dimension either zero, in which case it is finite; or else virtual
cohomological dimension one, in which case it is virtually cyclic. By the classification of such 3-manifold
groups (see [AFW, Theorems 1.1, 1.12], [He1, Theorem 9.13]), π1(N) is of the form G1 ∗ G2 ∗ · · · ∗ Gk,
where each Gi is either the fundamental group of a spherical 3-manifold or Z or Z× (Z/2Z).

Case 3: N is an I–bundle over a surface of non-negative Euler characteristic. Then π1(N) is either Z
or Z⊕Z or the fundamental group of a Klein bottle. It turns out (see below) that all these three groups
are quasiprojective.

Case 4: N has a boundary component of positive genus and π1(N) contains an infinite cyclic normal
subgroup. Then by Proposition 3.3, the manifold N is Seifert-fibered with base a compact orbifold surface
with boundary. In this case a subgroup G of index at most 2 in π1(N) (if N is non-orientable) or one,
i.e., π1(N) itself (if N is orientable) contains an infinite cyclic central subgroup 〈t〉 such that the quotient
G/〈t〉 is a free product of cyclic groups (finite or infinite) [He1, p. 118].

Case 5: N has a boundary component of positive genus and π1(N) does not contain an infinite cyclic
normal subgroup. Then by Proposition 3.3,

(1) either π1(N) is virtually a surface group in which case N is an I–bundle over a surface [He1,
Theorem 13.6],

(2) or after compressing the boundary as far as possible, N = M#H , where H is a (possibly non-
orientable) handlebody and hence π1(H) is free, and M is a closed manifold covered by Case
2.

We now demonstrate the converse to Theorem 3.4 by describing examples of smooth quasiprojective
varieties that realize the groups occurring in Remark 3.5 as their fundamental groups. To do this we
shall restrict ourselves to orientable compact 3-manifolds with or without boundary.

We start with a lemma that is well-known to experts. We provide a proof for completeness (see [BiMj,
Section 5.3] for a closely related construction).

Lemma 3.6. Let X be a smooth complex quasiprojective variety, and let G be a finite group acting by
automorphisms on X. Then the orbifold fundamental group of X/G is quasiprojective.

Proof. Let W be a smooth simply connected projective variety admitting a free G–action by automor-
phisms. Such varieties exist by a theorem of Serre, [ABCKT, Example 1.11], which says that any finite
group is realizable as the fundamental group of a smooth projective variety.

Let Y = X ×W . Then the diagonal action of G on Y is free and the (usual) fundamental group of
the quotient Y/G coincides with the orbifold fundamental group of X/G. �

The next proposition addresses Cases (1) and (4) in Remark 3.5.
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Proposition 3.7. Let N be Seifert-fibered with fiber subgroup in the center of π1(N) such that the base
surface is orientable (with or without boundary). Then π1(N) is quasiprojective.

Proof. Let Q be the orientable base orbifold of N . Then Q admits the structure of an algebraic curve
(projective or quasiprojective according as Q is without boundary or with boundary). Consider the
quasiprojective orbifold given by Q (after we put a quasiprojective structure on it). Let L be an orbifold
algebraic line bundle on Q such that

• for each point x ∈ Q, the action of the isotropy group for x on the fiber Lx is faithful, and
• the degree of L is the degree of the Seifert-fibration.

Let L denote the underlying variety for the orbifold L. Let Σ ⊂ L be the image of the zero-section of
L. Then the complement L \Σ is a smooth quasiprojective variety with the same fundamental group as
N . �

To address Case (3), we observe first that Z and Z⊕Z are both quasiprojective. So only the fundamental
group of a Klein bottle remains. Let

φ : C∗ × C∗ −→ C∗ × C∗

be defined by (z1, z2) 7−→ ( 1
z1
,−z2). Let Q ⊂ Aut(C∗ × C∗) be the order 2 subgroup generated by φ.

Then Q acts freely on C, and the quotient C/Q has the same homotopy type as a Klein bottle.

In order to completely answer the question “Which 3-manifold groups are quasi-projective?”, it remains
to deal with virtually free groups or virtually surface groups. These will be addressed in Section 5 after
developing some further tools in Section 4.

3.1.1. Consequences. We deduce some of the results that preceded this paper from Theorem 3.4.

Theorem 3.8 ([DPS, Theorem 1.1]). Let G be the fundamental group of a closed orientable 3-manifold
M . Assume M is formal. Then the following are equivalent.

(1) The Malcev completion of G is isomorphic to the Malcev completion of a quasi-Kähler group.
(2) The Malcev completion of G is isomorphic to the Malcev completion of the fundamental group

of S3, #n(S
1 × S2) , or S1 × Σg, where Σg denotes a closed orientable surface of genus g with

g ≥ 1.

Proof. This follows from Theorem 3.2 by observing that a Seifert-fibered space is formal if and only if it
is finitely covered by S3 or a trivial circle bundle [ABCKT, Corollary 3.38]. �

Theorem 3.9 ([FrSu, Theorem 1.2]). Let N be a 3-manifold with empty or toroidal boundary. If π1(N)
is a quasiprojective group, then all the closed prime components of N are graph manifolds.

Proof. All the closed prime components of N are in fact Seifert-fibered by Theorem 3.2 and Remark 3.5
Case (5). �

Theorem 3.10 ([Ko2]). Let N be a 3-manifold with non-empty boundary. If π1(N) is a projective group,
then N is an I–bundle over a closed orientable surface.

Proof. Case 3 and Case 5(1) of Remark 3.5 give that N is an I–bundle over a closed surface S. If S is
non-orientable, then π1(S) is not projective, hence π1(N) is not projective.

Case 4 of Remark 3.5 forces a finite index subgroup H of π1(N) to be isomorphic to Fn × Z, with
n > 1. The group H is not projective and hence π1(N) is not projective.

Case 5 (2) of Remark 3.5 along with Theorem 2.6 forces a finite index subgroup H of π1(N) to be
isomorphic to Fn, with n > 1. The group H is not projective and hence π1(N) is not projective. �

Remark 3.11. Kotschick proves Theorem 3.10 in the context of Kähler groups. The proof we have
given above works equally well in the Kähler case. The only point to be noted is that we have to replace
the use of Theorem 2.7 by the analogous theorem in the Kähler context ensuring existence of irrational
pencils as in [Gr] or [DeGr].
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Remark 3.12. In order to recover the main Theorems of [DiSu] or [Ko1] from Theorem 3.4 with the
modifications mentioned in Remark 3.11, it remains to show that fundamental groups of circle bundles
N over closed surfaces of positive genus are not Kähler. If the bundle is trivial, then b1(N) is odd. If
the bundle is non-trivial, then the cup product vanishes identically on H1. Hence the maximal isotropic
subspace of H1 has dimension 2g, which would imply that π1(N) would admit a surjection onto the
fundamental group of a surface of genus 2g, a contradiction.

Following [To, p. 69], define a good complexification of a closed manifold M without boundary to be
a smooth affine algebraic variety U over R such that M is diffeomorphic to the space U(R) of real points
and the inclusion U(R) →֒ U(C) is a homotopy equivalence.

Using Theorem 3.2, we have an alternative proof of the following theorem of Totaro.

Theorem 3.13 ([To, Section 2]). Let M be a closed orientable 3-manifold with a good complexification.
Then either the cup product H1(M, Q)⊗H1(M, Q) −→ H2(M, Q) is 0 or M is formal.

Proof. By Theorem 3.2, M is

(1) either finitely covered by #n(S
1 × S2) in which case the above cup product is 0,

(2) or M is Seifert-fibered and finitely covered by either S3 or a trivial circle bundle over a closed
orientable surface; in this case M is formal,

(3) or M is finitely covered by a non-trivial circle bundle over a closed surface of positive genus; in
this case, the above cup product is zero.

This completes the proof. �

Remark 3.14. In the definition of a good complexification, if the affine variety over R is weakened to
a Stein manifold equipped with an antiholomorphic involution, then all manifolds admit such a com-
plexification. Indeed, given a manifold M , the total space of the cotangent bundle T ∗M admits a Stein
manifold structure [El, Go] such that the multiplication by −1 on T ∗M is an antiholomorphic involution.

4. Classification of three-manifolds with good complexification

The definition of a good complexification was recalled prior of Theorem 3.13. In this Section we shall
describe all 3-manifolds admitting a good complexification.

Lemma 4.1. If a closed smooth manifold M admits a good complexification, and M1 is a finite-sheeted
étale cover of M , then M1 also admits a good complexification.

Proof. Let U be a good complexification ofM . Fix a diffeomorphism ofM with U(R). Since the inclusion
U(R) →֒ U(C) induces an isomorphism of fundamental groups, the covering M1 of M = U(R) has a
unique extension to a covering U ′

1 of U(C). For any point x ∈ U(R), the Galois (antiholomorphic)
involution σ of U(C) for the nontrivial element of Gal(C/R) induces the identity map of π1(U(C), x)
because σ|U(R) = IdU(R) and the inclusion U(R) →֒ U(C) induces an isomorphism of π1(U(C), x) with
π1(U(R), x). Therefore, σ has a unique lift σ′ to U ′

1 that fixes M1 pointwise.

The pair (U ′

1 , σ
′) defines a smooth affine variety over R (see [FrSu, p. 157, Lemma 4.1]). Now the

variety (U ′

1 , σ
′) defined over R is a good complexification of M1. �

Let M be a closed 3-manifold admitting a good complexification. From Theorem 3.2 it follows that M
is either closed Seifert-fibered or is finitely covered by #mS2×S1. We shall therefore consider separately
the following problems:

(1) Which Seifert-fibered manifolds admit good complexifications?
(2) Does #mS2 × S1, (m > 1), admit a good complexification?

Seifert-fibered 3-manifolds split into three further sub-cases according to the orbifold Euler character-
istic χ(S) of the orbifold base S of the fibration:

(1a) χ(S) > 0,
(1b) χ(S) = 0, and
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(1c) χ(S) < 0.

First we consider case (1a). If χ(S) > 0, then M is covered by S3 or S2 × S1 (this follows from
the Poincaré conjecture and classical 3-manifold topology [AFW, Theorem 1.12]). Further, Perelman’s
solution of the Geometrization conjecture also implies that M is a geometric quotient of S3 or S2×S1. It
is known that geometric quotients of S3 or S2 × S1 admit good complexification [To, Lemma 3.1], [Ku].

4.1. Seifert-fibered manifolds with base hyperbolic. Now we consider case (1c).

Proposition 4.2. Let N be Seifert-fibered with hyperbolic base orbifold. Then N does not admit a good
complexification.

Proof. Seifert-fibered manifolds are finitely covered by circle bundles over surfaces. Since a finite cover
of a good complexification is a good complexification (see Lemma 4.1), it suffices to rule out principal
S1–bundles N over surfaces S with genus(S) = g > 1 and trivial orbifold structure.

So N is now a principal S1–bundle over a compact oriented surface S with genus(S) = g > 1.

Let, if possible, X be a good complexification of N . Let XC = X(C) be the base change of X to C.

If the principal S1–bundle N −→ S is nontrivial, then the fundamental group π1(N) admits a pre-
sentation

〈a1, · · · , ag, b1, · · · , bg, t | [ai, t], [bi, t],
g∏

i=1

[ai, bi]t
n〉 .

Then π1(N) admits a surjection onto the surface group π1(Σg) = 〈a1, · · · , ag, b1, · · · , bg | ∏g

i=1[ai, bi]〉 .
Hence, by Theorem 2.7, there exists an irrational logarithmic pencil

(4.1) f : XC −→ C

onto a quasiprojective curve C with b1(C) ≥ (2g − 1) . If C is non-compact, then π1(N) must admit a
surjection onto the free group F2g−1, which is impossible as this would induce a surjection of π1(Σg) (the
fundamental group of the closed orientable surface of genus g > 1) onto F2g−1. Hence C is compact.

Alternatively, if N is the trivial principal S1–bundle over S, then π1(N) admits a surjection onto
π1(S). Hence by Theorem 2.7, there exists a logarithmic pencil as in (4.1) onto a quasiprojective curve
C with b1(C) ≥ (2g− 1). If C is is non-compact, then π1(N) must admit a surjection onto F2g−1 which
is impossible. Hence C is compact also in this case.

In either case the genus of C is g and f∗ : π1(X(C)) −→ π1(C) has exactly 〈t〉 as its kernel.
Let

σ : XC −→ XC

denote the antiholomorphic involution corresponding to the nontrivial element of Gal(C/R). Fix an
identification of N with Xσ

C
= X(R). The action of σ on H1(XC, C) is trivial because the inclusion

Xσ
C

→֒ XC is a homotopy equivalence. There is a natural bijection between the irrational logarithmic
pencils as in (4.1) and the maximal real isotropic subspaces of H1(XC, C) satisfying certain conditions
(see the first paragraph in [Bau, p. 442]). In view of this bijective correspondence, from the fact that
the action of σ on H1(XC, C) is trivial we conclude that the map f in (4.1) commutes with σ. In other
words, σ descends to an antiholomorphic involution

(4.2) σ1 : C −→ C

of C. Note that inclusion

(4.3) Cσ1 ⊃ f(Xσ
C)

holds, where Cσ1 is the fixed point set for σ1.

Since f∗ : π1(X(C)) −→ π1(C) has exactly 〈t〉 as its kernel, the same is true for (f |N )∗ : π1(N) −→
π1(C). Since N and C are both Eilenberg–Maclane spaces, it follows that f is homotopic to the bundle
projection map from N (a circle bundle over C) to C. Hence the restriction of f to N = Xσ

C
is surjective.

Therefore, from (4.3) it follows that Cσ1 = C. This is a contradiction because the identity map of C is
not antiholomorphic. Hence N cannot admit a good complexification. �
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4.2. Nil manifolds. We now consider the second case where the orbifold base of the Seifert fibration is
flat (the genus of the orbifold is 1).

Non-trivial circle bundles over Euclidean orbifolds are also called nil manifolds.

Proposition 4.3. Let N be a Nil manifold. Then N does not admit a good complexification.

Proof. As before, in view of Lemma 4.1 it suffices to rule out non-trivial principal S1–bundles N over
the torus with trivial orbifold structure.

So N is a nontrivial principal S1–bundle over a surface of genus one.

Suppose X is a good complexification of N . As before, let

σ : XC −→ XC

denote the antiholomorphic involution corresponding to the nontrivial element of Gal(C/R).

Let

(4.4) Alb : XC −→ C

be the (quasi) Albanese map. Then C has fundamental group Z ⊕ Z and hence C is either an elliptic
curve or the semiabelian variety C∗ × C∗ (see [NWY]).

Case 1: If C is an elliptic curve, then the same arguments as in Section 4.1 now go through as before.
It leads to the conclusion that the real dimension of the fixed set of the involution σ is 4, which is a
contradiction.

Case 2: Assume therefore that C is the semiabelian variety C∗ × C∗. If dimC(Alb(X)) = 1, then
Alb(X) is a curve with fundamental group Z⊕ Z and the same argument as in the proof of Proposition
4.2 goes through.

Case 3: Hence suppose that dimC(Alb(X)) = 2, in which case all the fibers of Alb are quasiprojective
curves.

Case 3A: If some fiber of Alb is a singular curve, the same (complex Morse theoretic) arguments as in
[Ka, Lemmas 4, 7] (see also [BMP, Theorem 7.9]) show that the kernel of Alb∗ : π1(X) −→ π1(C) is
infinitely presented.

Case 3B: Hence the fibers of Alb must all be regular. This forces π1(F ) = Z and hence F = C∗ (since
F is a curve). Thus X is a holomorphic C∗–bundle over C∗ × C∗.

We note that the involution σ commutes with Alb. This is because Alb is the base change to C of a
morphism between varieties defined over R. Therefore, σ descends to an antiholomorphic involution

σ1 : C −→ C .

Since the fixed point set Cσ1 ⊂ C for the involution σ1 contains Alb(Xσ
C
), and Xσ

C
is nonempty, we know

that Cσ1 is nonempty. Consequently,

Cσ1 = S1 × S1 .

Therefore, Xσ
C

= N is a principal S1–bundle over Cσ1 = S1 × S1. We will show that the first Chern
class of this principal S1–bundle on Cσ1 vanishes.

The first Chern class of the above principal S1–bundle over Cσ1 coincides with the first Chern class
of the principal C∗–bundle XC in (4.4) after we identify H2(C∗ × C∗, Z) with H2(Cσ1 , Z) using the
inclusion of Cσ1 in C. Therefore, it suffices to show that the first Chern class of an algebraic line bundle
over C∗ × C∗ vanishes.

Take any algebraic line bundle L over C∗ × C∗. The line bundle L extends to an algebraic line
bundle over the projective surface P1 × P1. To see this, take the closure in P1 × P1 of any divisor in
C∗ × C∗ representing L. Let L′ −→ P1 × P1 be an extension of L. Therefore, c1(L) = ι∗c1(L

′), where
ι : C∗ × C∗ →֒ P1 × P1 is the inclusion map. But

ι∗(H2(P1 × P1, Z)) = 0 .

Therefore, c1(L) = 0.
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Since Xσ
C

= N is the trivial S1–bundle over S1 × S1, we conclude that N = S1 × S1 × S1. This
contradicts the given condition that N is a nil manifold. �

4.3. Connected sum of copies of S2×S1. Now we consider case (2).

Proposition 4.4. Let N be any closed 3-manifold with virtually free fundamental group and suppose that
π1(N) is not virtually cyclic. Then N does not admit a good complexification.

Proof. Any closed 3-manifold with virtually free fundamental group is covered by a connected sum of
copies of S2 × S1. Therefore, in view of Lemma 4.1, it is enough to rule out N = #mS2 × S1, where
m > 1.

The argument here follows that in Section 4.1. We continue with the same notation. By passing to a
finite-sheeted cover, we can assume that m ≥ 3. So Theorem 2.7 applies to give

f : XC −→ C ,

where C is a quasiprojective curve with b1(C) ≥ m ≥ 3. Since π1(XC) = π1(N) = Fm, this forces π1(C)
to equal Fm and f∗ : π1(XC) −→ π1(C) to be an isomorphism. Further, C must be noncompact.

As shown in the proof of Proposition 4.2, the morphism f commutes with the antiholomorphic involu-
tion σ of XC. Therefore, σ descends to an involution σ1 of C (as in (4.2)). The fixed point locus Cσ1 is a
disjoint union of (real) one dimensional proper (embedded) submanifolds of C. The image f(Xσ

C
) ⊂ Cσ1

is a connected component of of Cσ1 , in particular, f(Xσ
C
) is a connected proper (embedded) submanifold

of C of dimension one.

The inclusion f(Xσ
C
) →֒ C induces an isomorphism of fundamental groups. On the other hand,

we have b1(C) ≥ m ≥ 3. Therefore, there is no connected proper (embedded) submanifold of C of
dimension one such that the inclusion induces an isomorphism of fundamental groups. In view of this
contradiction, the proof of the proposition is complete. �

Combining Theorem 3.2 with Propositions 4.2, 4.3 and 4.4 (along with the Geometrization Theorem)
we obtain:

Theorem 4.5. If a closed 3-manifold M admits a good complexification, then one of the following is
true:

(1) The manifold M admits the structure of a Seifert-fibered space over a spherical orbifold and is
therefore covered by S3 or S2×S1. Hence M either admits a metric of constant positive curvature
or is covered by the (metric) product of a round S2 and R.

(2) The manifold M is finitely covered by S1 × S1 × S1. Hence M admits a flat metric.

5. Virtually free groups and virtually surface groups

The genus of a complex quasiprojective curve C is defined to be the genus of its smooth compactifi-
cation C.

Lemma 5.1. Let X be a smooth complex quasiprojective variety and

f : X −→ C

a nonconstant algebraic map to a quasiprojective complex curve of positive genus. Let ι : S →֒ X be a
smooth curve in X such that f ◦ ι is a nonconstant map. Then the dimension of the image of the pullback
homomorphism

ι∗ : H1(X, R) −→ H1(S, R)

is at least two.

Proof. Let X be a smooth compactification of X such that f extends to a morphism

f : X −→ C

with the image of the extension
ι : S −→ X
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being smooth.

We have (f ◦ι)∗(H0(C, ΩC)) ⊂ ι∗(H0(X, ΩX)), and (f◦ι)∗ : H0(C, ΩC) −→ H0(S, ΩS) is injective.
Therefore,

dim ι∗(H0(X, ΩX)) ≥ 1 .

This implies that

(5.1) dimR ι∗(H1(X, R)) = 2 dimC ι∗(H0(X, ΩX)) ≥ 2 .

The restriction homomorphism H1(X, R) −→ H1(X, R) is injective, and ι)|S = ι. Therefore, from
(5.1) it follows that dimR ι∗(H1(X, R)) ≥ 2. �

A slight modification of the techniques developed in the proofs of Propositions 4.2 , 4.3 and 4.4 yield
the following general result. (This might be regarded as a (weak) “maps” version of a theorem of Catanese
[Ca, Theorem A’] which provides the analogue for spaces.)

Proposition 5.2. Let X be a smooth complex quasiprojective variety and f : X −→ C an irrational
logarithmic pencil over a curve C with b1(C) ≥ 3. Let F be any regular fiber of f and i : F →֒ X
the inclusion map. Suppose that the image i∗(π1(F )) is either infinite cyclic or finite. Let A be an
algebraic automorphism of X. Then A(F ) is a fiber of f . Hence A induces an algebraic automorphism
A0 : C −→ C.

Proof. By lifting to a further Galois cover of the base C if necessary, we can assume that the smooth
projective curve C has genus greater than one.

Let i denote the inclusion of A(F ) in X . Assume that f ◦ i is not a constant map. Applying Lemma
5.1 to any smooth curve S ⊂ A(F ) such that f |S is not constant, we conclude that the dimension of the
image of the homomorphism

(5.2) i∗ : H1(X, R) −→ H1(A(F ), R)

is at least two.

Since A is a homeomorphism, from the given condition on F it follows that i∗(π1(A(F ))) ⊂ π1(X) is
either infinite cyclic or finite. Therefore, the dimension of the image of the homomorphism

i∗ : H1(S, R) −→ H1(X, R)

is at most one. But this contradicts the observation that the image of the homomorphism in (5.2) is at
least two. Therefore, f ◦ i is a constant map. �

The next proposition imposes restrictions on quasiprojective groups that are virtually free groups or
virtually surface groups.

Proposition 5.3. Let G be a quasi-projective group that is virtually a non-abelian free group or virtually
the fundamental group of a closed orientable surface of genus greater than one. Then there is a short
exact sequence of the form

1 −→ K −→ G −→ H −→ 1 ,

where K is finite and H is the fundamental group of an orientable orbifold surface (possibly with bound-
ary).

Proof. Let X be a smooth quasiprojective variety with fundamental group G. Let X1 be a finite Galois
étale cover of X with fundamental group H1 such that

• either H1 is non-abelian free, or
• H1 is isomorphic to the fundamental group of a closed orientable surface of genus greater than
one.

Let f : X1 −→ C be a logarithmic pencil given by Theorem 2.7, and let i : F →֒ X1 be a regular
fiber of f . Then i∗π1(F ) is finite. The quotient group Q = G/H1 acts by algebraic automorphisms on
X1 and hence, by Proposition 5.2, on C via algebraic automorphisms. Let K be the kernel of the action
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of Q on C. Let H be the orbifold fundamental group of the quotient C/Q. Then we have an exact
sequence

1 −→ K −→ G −→ H −→ 1 .

Also since Q acts on C by holomorphic automorphisms, the quotient C/Q is orientable. �

Proposition 5.4. Let G be a quasi-projective 3-manifold group that is virtually free. Then G is one of
the following:

(1) G = Z or Z⊕ (Z/2Z)
(2) G = ∗iGi where each Gi is cyclic.

Proof. If G is virtually cyclic, then by the classification of such 3-manifold groups (see [AFW, Theorems
1.1, 1.12], [He1, Theorem 9.13]), G is one of Z or Z⊕ (Z/2Z) or (Z/2Z) ∗ (Z/2Z).

Else G is virtually a non-abelian free group. Let N be a 3-manifold with G = π1(N). Then we are
in Case (2) or Case 5(2) of Remark 3.5. In either case, G = ∗iGi where each Gi is either finite or Z
or Z ⊕ (Z/2Z). By [ScWa, Theorem 3.11], the group G contains no finite normal subgroup. Hence by
Proposition 5.3, the group G is isomorphic to the fundamental group of an orientable orbifold surface S.
Since G is virtually a non-abelian free group, the orbifold surface S must have boundary. The orbifold
fundamental group G of such an S is of the form G = ∗iGi, where each Gi is cyclic. This is because
S deformation retracts onto a wedge (∨iS

1)
∨
(∨jDj), where each Dj is a quotient of the unit disk by a

finite cyclic group acting with a single fixed point at the origin. �

Proposition 5.5. Let G be a quasi-projective 3-manifold group that is virtually the fundamental group
of a closed orientable surface of genus greater than one. Then G is isomorphic to the fundamental group
of a closed orientable surface of genus greater than one.

Proof. If G is not isomorphic to the fundamental group of a closed orientable surface of genus greater than
one, then by Case 5(1) of Remark 3.5, the group G contains an index 2 subgroup H that is isomorphic
to the fundamental group of a closed orientable surface of genus greater than one. Also G is isomorphic
to the fundamental group of a closed non-orientable surface of genus greater than one.

Since such a G contains no finite normal subgroup, by Proposition 5.3, the group G is isomorphic to
the fundamental group of an orientable orbifold surface S. No orientable orbifold surface S has the same
fundamental group as a closed non-orientable surface. Therefore, the proposition follows. �

Combining the observations in Section 3.1 with those of this section, we have the following classification
result for quasiprojective 3-manifold groups.

Theorem 5.6. Let G be a quasiprojective group that can be realized as the fundamental of a compact
3-manifold N with or without boundary. Then either N is Seifert-fibered, or G satisfies one of the
following:

(a) G is isomorphic to Z, Z⊕ (Z/2Z) or the fundamental group of a Klein bottle or the fundamental
group of a closed orientable surface of genus greater than one.

(b) G = ∗iGi where each Gi is cyclic.

Each of the groups appearing in above alternatives (a) and (b) are quasiprojective. If N is closed Seifert-
fibered, and N is spherical, flat or covered by S2×R, then π1(N) is quasiprojective. If N is an orientable
closed Seifert-fibered with hyperbolic base orbifold B, then π1(N) is quasiprojective if and only if B is an
orientable orbifold.

Proof. All the statements except for the last two are contained in Remark 3.5, the examples constructed
in Section 3.1 or in Proposition 5.4 and Proposition 5.5. The penultimate statement is a consequence of
the fact that such manifolds admit good complexifications [To].

It remains to deal with N an orientable, Seifert-fibered with hyperbolic base orbifold B. That an
orientable, Seifert-fibered space N with orientable hyperbolic base orbifold B has quasiprojective funda-
mental group follows from Proposition 3.7 and the last statement in the first paragraph of [He1, p. 118].
We will prove the converse statement.
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Let X be a smooth quasiprojective variety with π1(X) = π1(N). Let B′ be an orientable hyperbolic
surface (without orbifold points) that (Galois) covers B and with b1(B

′) > 2. There is a corresponding
finite (Galois) cover N ′ of N which is a circle bundle over B′. Let X ′ be the Galois étale cover of X
corresponding to the subgroup π1(N

′). By Theorem 2.7 (or more precisely by Theorem A’ of [Ca] which
is its generalization to the quasi-Kähler context), there is a pencil f : X ′ −→ C with C a closed curve
(as N is closed). We are now in the situation of Proposition 5.2; the deck transformation group Q induces
an algebraic action on C forcing the quotient orientable orbifold C/Q to be orientable. �

The following immediate Corollary of Theorem 5.6 answers Question 8.3 of [FrSu, p. 166].

Corollary 5.7. Let G be a quasiprojective group that can be realized as the fundamental of a closed graph
manifold M . Then M is Seifert-fibered.

Friedl and Suciu conjecture the following in [FrSu]:

Conjecture 5.8 ([FrSu, p. 166, Conjecture 8.4]). Let N be a compact 3-manifold with empty or toroidal
boundary. If π1(N) is a quasiprojective group and N is not prime, then N is the connected sum of
spherical 3-manifolds and manifolds which are either diffeomorphic to S1 ×D2, S1 × S1 × [0, 1], or the
3-torus.

Following is a strong positive answer to it.

Corollary 5.9. Let N be a compact 3-manifold with empty or toroidal boundary such that π1(N) is a
quasiprojective group and N is not prime. Then N is the connected sum of lens spaces, S1 × S2 and
manifolds which are diffeomorphic to disk bundles over the circle.

Proof. We are in Case (b) of Theorem 5.6. Then by the prime decomposition theorem for 3-manifolds
[He1, Ch. 3], the manifold M is a connected sum of manifolds with cyclic fundamental group. A complete
list of such manifolds is: lens spaces, S1×S2 and manifolds which are diffeomorphic to disk bundles over
the circle. �

From Theorem 5.6 it follows that a closed non-orientable Seifert-fibered manifold N with hyperbolic
base orbifold such that its orientable double cover N ′ is a Seifert-fibered manifold with non-orientable

hyperbolic base orbifold cannot have quasiprojective fundamental group, because otherwise π1(N
′) is

quasiprojective contradicting Theorem 5.6. The only case that thus remains unanswered by Theorem 5.6
is the following:

Question 5.10. Let N be a closed non-orientable Seifert-fibered space with hyperbolic base orbifold
such that its orientable double cover is a Seifert-fibered space with orientable hyperbolic base orbifold.
Is π1(N) quasiprojective?

5.1. Quasiprojective free products. In [FrSu], Friedl and Suciu ask the following:

Question 5.11 ([FrSu, p. 165, Question 8.1]). Suppose A and B are groups, such that the free product
A ∗B is a quasiprojective group. Does it follow that A and B are already quasiprojective groups?

Lemma 5.12. Suppose A and B are groups, such that the free product A ∗B is a quasiprojective group.
In addition suppose that both A,B admit nontrivial finite index subgroups and at least one of A,B has a
subgroup of index greater than 2. Then A ∗B is virtually free.

Proof. Since A,B admit nontrivial finite index subgroups, they also admit finite index normal subgroups.
By the hypothesis, there exist finite quotients A1 and B1 (of A and B respectively) of which at least one
has order more than 2. So A ∗B admits a surjection onto A1 ∗B1, and hence a finite index subgroup G
of A ∗B admits a surjection onto a non-abelian free group with greater than 2 generators.

Let X be a smooth quasiprojective variety with fundamental group G. By Proposition 2.12, there
exists an exact sequence

1 −→ H −→ G −→ Fn −→ 1

with n ≥ 3 and H finitely generated. Hence H is trivial [ScWa, Theorem 3.11]. It follows that A ∗ B is
virtually free. �
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Following is a positive answer to Question 5.11 under mild hypotheses.

Theorem 5.13. Suppose A and B are groups, such that the free product G = A ∗B is a quasiprojective
group. In addition suppose that both A,B admit nontrivial finite index subgroups and at least one of A,B
has a subgroup of index greater than 2. Then each of A,B are free products of cyclic groups. In particular
both A and B are quasiprojective.

Proof. By Lemma 5.12 and Proposition 5.3, there is a short exact sequence of the form

1 −→ K −→ G −→ H −→ 1 ,

where K is finite and H is the fundamental group of an orientable orbifold surface. The subgroup K is
trivial by [ScWa, Theorem 3.11], and H is virtually free. Hence as in the proof of Proposition 5.4, we
have G = ∗iGi, where each Gi is cyclic. Therefore, since both A and B are free factors of G, they are
free product of cyclic groups. Hence A and B are fundamental groups of orientable orbifold surface. In
particular, both A and B are quasiprojective. �
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