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Abstract

A meshfree Lagrangian method for the fluctuating hydrodynamic equations
(FHEs) with fluid-structure interactions is presented. Brownian motion of
the particle is investigated by direct numerical simulation of the fluctuating
hydrodynamic equations. In this framework a bidirectional coupling has been
introduced between the fluctuating fluid and the solid object. The force
governing the motion of the solid object is solely due to the surrounding
fluid particles. Since a meshfree formulation is used, the method can be
extended to many real applications involving complex fluid flows. A three-
dimensional implementation is presented. In particular, we observe the short
and long-time behaviour of the velocity autocorrelation function (VACF) of
Brownian particles and compare it with the analytical expression. Moreover,
the Stokes-Einstein relation is reproduced to ensure the correct long-time
behaviour of Brownian dynamics.
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1. Introduction

The dynamics of small rigid particles immersed in a fluid presents an im-
portant and challenging problem, in particular, for micro/nano scale objects
in small scale geometries. The dynamics of small rigid particle can be influ-
enced by the inherent thermal fluctuation in the fluid. As one approaches
smaller scales, thermal fluctuations play an essential role in the description
of the fluid flow, see for example [1, 2] or [3, 4, 5] for more recent works.

This study focuses on Brownian motion of particles immersed in an in-
compressible fluid. The average motion of the surrounding fluid yields a
hydrodynamic force on the particles. Moreover, a random force is also ex-
perienced by the immersed particles due to the thermal fluctuation in the
fluid. The average motion of fluid is modelled by the Navier-Stokes equa-
tions. The thermal fluctuations can either be described on a microscopic
level using methods like molecular dynamics or they can be included in the
continuum description of the fluid by additional stochastic fluxes. If one con-
centrates on a continuum field description, the resulting equations of motion
for the fluctuating fluid turn out to be stochastic partial differential equa-
tions (SPDEs). Such equations, including an additional stochastic stress
tensor in the Navier-Stokes equations, have been proposed by Landau and
Lifshitz [6]. These equations are termed the Landau-Lifshitz Navier-Stokes
(LLNS) equations. Initially, the LLNS equations have been presented for
fluctuations around an equilibrium state of the system, but later on, their
validity for non-equilibrium systems has also been shown [7] and verified by
molecular simulations [8, 9].

Early work in the context of numerical approximation of the LLNS equa-
tions has been done by Garcia et al. [10]. The authors have developed
a simple scheme for the stochastic heat conduction equation and the lin-
earized one-dimensional LLNS equations. Later on in [11] a centered scheme
based on a finite-volume discretization, combined with the third-order Runge-
Kutta (RK3) temporal integrator, has been introduced for the compressible
LLNS equations. Afterwards, a systematic approach for the analysis of this
grid based finite-volume approximation for the LLNS equations and related
SPDEs has been discussed by Donev et al. [12]. The extension of this numer-
ical solver for the LLNS equations to binary mixtures and staggered schemes
for the fluctuating hydrodynamic equations have been presented in [13, 14].
A meshfree Lagrangian formulation for the 1D LLNS equations for compress-
ible fluids has been presented by the present authors in [15] and the results
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have been compared to the above-mentioned FVM-based RK3 scheme from
[11].

In the context of fluid-structure interactions, Brownian dynamics of im-
mersed particles due to the surrounding fluctuating fluid has been studied.
in [16, 17], using the coupling of the equations of motion for the particles
with the fluctuating hydrodynamic equations. There, inertia terms in the
governing equations have been neglected and the resultant time independent
problem has been solved with a numerical approach using a fixed grid spa-
tial discretization. A hybrid Eulerian-Lagrangian approach for the inertial
coupling of point particle with fluctuating compressible fluids has been pre-
sented by Usabiaga et al. [18]. Subsequently, an inertial coupling method
for particles in an incompressible fluctuating fluid has been reported in [19].
In this work, the equations of motion of the suspended particle are directly
coupled with an incompressible finite-volume solver for the LLNS equations
[14]. The authors have also discussed the Stokes-Einstein relation for fluid-
structure systems at moderate Schmidt number, see [20]. They have modeled
the particle through a source term in the momentum equation and dealt with
the full incompressible fluctuating hydrodynamic equations. In this work, a
very efficient coupling of the fluctuating fluid with particles and a finite-
volume approximation of the coupled model have been proposed. The short
and long-time behavior of Brownian dynamics has been captured very well.
Moreover, the authors were able to handle a wide range of Schmidt num-
bers in their proposed approximation, which has been a difficult task for
many numerical approximations. An immersed boundary approach has been
reported by Atzberger [21] for fluid-structure interaction with thermal fluc-
tuations using a grid-based method and extended to complex geometries in
[22]. The fluctuating hydrodynamics approach has also been used to analyse
the Brownian motion of nanoparticles in an incompressible fluid, compare
Uma et al. [23].

The present work distinguishes itself from the existing literature in its
approach. An explicit coupling has been used between the fluctuating fluid
and the solid structure, and a numerical approximation based on a meshfree
formulation is used for the LLNS equations. In general, meshfree meth-
ods are an alternative to classical methods for problems with time-varying
fluid domains such as problems with bodies suspended in a fluid, where one
can avoid re-meshing during the time evolution. We note that a meshfree
method termed “Smoothed dissipative particle dynamics (SDPD)” has been
presented in [24] which incorporates thermal fluctuations. The SDPD is a
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combination of meshfree smoothed particle hydrodynamics (SPH) [25] and
dissipative particle dynamics (DPD) [26]. In this approach, the SPH dis-
cretization of the Navier-Stokes equations is performed, and then thermal
fluctuations are treated in the same way as in DPD. On the contrary, the
present meshfree method is a formulation which is based on a direct nu-
merical discretization of the stochastic partial differential equation. In the
method the continuum constitutive model with a stochastic stress tensor is
considered, and then a numerical approximation for the stochastic partial dif-
ferential equations is employed. An extension of the SDPD method including
the conservation of angular momentum has been presented by Müller et al.
[27] to tackle fluid problems where angular momentum conservation is es-
sential. Moreover, we note, that in [24] a rotational friction force governing
particle spin interactions is included. In the present work, we focus on the
Brownian motion of a particle due to inherent fluctuations of the surround-
ing fluid. Problems, where the conservation of angular momentum of the
fluid particles is required, are left for future work. The other important
distinguishing feature of the present work, is the use of an incompressible
fluid solver instead of a compressible one as done in [24, 28, 29]. This allows
treating the Brownian motion of a particle inside a liquid considered in the
present work. We note that a compressible fluid needs to be considered if
one want to focus on the interaction between ultrasound waves and colloidal
particles, as studied by Usabiaga et al. [18]. For a compressible solver for
the fluctuating hydrodynamics equations in one dimension developed by the
present authors we refer to [15]. The coupling of a suspended particle with
a fluctuating compressible fluid is left to future work.

In the present work we consider a fully Lagrangian meshfree particle
method [30, 31]. The computational domain is approximated by moving
grid points or particles. We note that a particle management procedure has
to be added in the method, see [30, 31] for details. The suitability of the
method, for fluid-structure interaction with highly flexible structures in the
case of regular flow fields has been shown by Tiwari et al. [32]. In this paper,
we have extended this meshfree method to the coupling of rigid particles
with fluctuating fluids. For validation, the Brownian motion of particles has
been investigated. We have computed the velocity autocorrelation function
(VACF) of the Brownian particle and compared it with the theoretical result,
as given for example in [33]. A rigid sphere immersed in the incompressible
fluctuating fluid has been considered to validate the numerical results.
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2. Governing Equations

We consider a rigid sphere inside an incompressible fluctuating fluid. Let
Ω ⊂ R

3 denote the entire computational domain including both fluid and
rigid body, the domain of the rigid body is denoted by P . A neutrally
buoyant rigid particle is considered to demonstrate the Brownian motion of
an immersed particle due to the inherent fluctuations in the fluid.

The governing equations for the motion of the incompressible fluctuating
fluid are given by

dx

dt
= u in Ω \ P, (1)

ρf
du

dt
= ∇ · σ in Ω \ P, (2)

∇ · u = 0 in Ω \ P, (3)

where x stands for the position vector of the fluid particle, ρf denotes the

density of the fluid.
d

dt
=

∂

∂t
+ u.∇ defines the material derivative. The

stress tensor σ is given by

σ = −pI + µ[∇u+ (∇u)T ] + S̃, (4)

where p is the pressure and µ is the dynamic viscosity of the surrounding
fluid. S̃ stands for the stochastic stress tensor, which models the inherent
molecular fluctuations in the fluid. The required stochastic properties of S̃
have been derived by Landau and Lifshitz [6] in the spirit of a fluctuation-
dissipation balance principle, described as

〈S̃ij(x, t)〉 = 0, (5a)

〈S̃ik(x, t)S̃lm(x
′

, t
′

)〉 = 2kBTµ(δilδkm + δimδkl)δ(x− x
′

)δ(t− t
′

), (5b)

where kB is the Boltzmann constant, T is the temperature of the fluid and
〈 〉 is used for the ensemble averages. It has to be noted that originally these
expressions have been derived for compressible fluids, but equation (5) is the
corresponding approximation for an incompressible fluids.

We note that the non-linear LLNS equations define an ill-posed problem.
It has to be noticed that the stochastic forcing in the LLNS equations is the
divergence of a white noise process, rather than the more common exter-
nal fluctuations modelled through white noise which have been discussed in
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[34, 35, 36]. S̃ can not be defined pointwise either in space and time, there-

fore ∇ · S̃ can not be given a precise mathematical interpretation. Further
mathematical problems arise with the interpretation of the non-linear term
u · ∇u. An approach to deal with these issues is to consider a regularization
of the stochastic stress tensor, which is typically the source of irregularity.
The regularization can be physically justified by the fact that the fluctuat-
ing fields are defined from the underlying microscopic dynamics via spatial
coarse-graining, as discussed in [37]. In such a formalism, the nonlinear
term and the stochastic forcing are naturally regularized by the discretiza-
tion. We refer to Prato and Debussche [38] for a mathematical study of the
two-dimensional Navier-Stokes equations perturbed by a space-time white
noise.

The motion of the rigid sphere is governed by the Newton-Euler equations

M
dU

dt
= F, (6)

I
dω

dt
= T. (7)

Here, U and ω represent the translational and rotational velocities of the
sphere, respectively. M and I denote mass and moment of inertia of the
rigid sphere, respectively. F is the resultant hydrodynamic force acting on
the surface of the rigid sphere from the surrounding fluid,

F = (−1)

∫

∂P

σn̂s d(∂P ). (8)

T denotes the hydrodynamic torque of the hydrodynamical force

T = (−1)

∫

∂P

r× (σn̂s) d(∂P ), (9)

where n̂s is the unit outward normal on the surface of the sphere. r = x−X

is the position vector with respect to the center of mass (X) of the rigid body.
The center of mass X and the orientation Θ of the rigid body are updated
by

dX

dt
= U, (10)

dΘ

dt
= ω. (11)
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Together, equations (6 - 11) describe the motion of the rigid body. No
additional random term has been incorporated in the equation of motion
of the immersed particle to model its Brownian motion. In this context, our
approach is closer to [17, 16, 19, 18], but we have treated the fluid-structure
system in a different manner.

This formulation has to be complemented by appropriate initial and
boundary conditions for the fluid-structure system. Let us denote the outer
boundary of the computational domain (Ω), which is not shared by the rigid
sphere, by Γ. We consider a simple cubic array of domains. Therefore peri-
odic boundary conditions are employed on Γ, given as

uΓL
= uΓR

∂u

∂n̂
|ΓL

= −
∂u

∂n̂
|ΓR

, (12)

where n̂ denotes the unit outward normal on Γ. ΓL and ΓR are the left and
right faces of the boundary Γ. Since we have periodicity in all directions,
similar boundary conditions hold at the top - bottom and front - back faces.

The no-slip boundary condition is considered on ∂P which is the interior
boundary of the fluid and the surface of the rigid body

u = U+ ω × r = v on ∂P. (13)

v represents the resultant velocity of the rigid sphere, which also gives the
flow velocity at the interface.

The initial condition for the fluid is defined as

u(t = 0) = u0, (14)

where u0 should satisfy equation (3). The initial conditions for the suspended
particle are

X(t = 0) = X0; Θ(t = 0) = Θ0; U(t = 0) = U0; ω(t = 0) = ω0, (15)

whereX0,U0,ω0 should satisfy equation (13) such that the resultant velocity
of the rigid body v0 should be equal to the initial velocity u0 of the fluid. Due
to the consideration of a spherical particle made of homogeneous material,
the non-linear term ω × Iω vanishes in the equation (7).
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3. Numerical Approximation

In this section, we will discuss the numerical approximation of the coupled
system.

Though the occurrence of the divergence operator in front of the white
noise makes the numerical approximation of the LLNS equations difficult, a
systematic analysis of the numerical discretization of the LLNS equations in
the context of finite-volume methods has been discussed in [12]. We have also
successfully simulated the compressible LLNS equation in one dimension in a
meshfree framework [15]. In the present work, this meshfree method is used
for the spatial discretization of the incompressible LLNS equations. In this
formulation, the discretization in the spatial domain is defined by material
points moving with the fluid velocity. These mesh particles carry all relevant
physical properties of the fluid.

For the time integration a projection based scheme for the motion of the
fluid and an explicit Euler scheme for the motion of the rigid body have been
used. We take a fixed time step ∆t throughout the computation.

The spatio-temporal averaging of stochastic forcing is performed in the
same way as explained in [12, 14]. The components of the stochastic stresses
are generated as

S̃ =
(
S̃ij

)
=





√
4kBTµ

∆V∆t
ℜ̃ for i = j

√
2kBTµ

∆V∆t
ℜ̃ for i 6= j

, (16)

where ℜ̃ =
ℜ+ℜ

T

2
. A realization of ℜ̃ is sampled using a stream of inde-

pendent, standard normally distributed random numbers at each time step.

∆V =
V

N
, where V is the volume of the fluid domain Ω \ P and N is the

number of spatial discretization points at a particular time step.
It has to be noted that we update the value of ∆V at each time step

dependent on the actual number of spatial points in the domain. In the
meshfree formulation N does not remain fixed over time due to removing
spatial points which are too close to each other and adding new points in
the sparse domain. Therefore, ∆V changes over time and has to be appro-
priately updated at each time step. We note that this approximation of the
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stochastic tensor has been successfully implemented in the meshfree numeri-
cal approximation of the compressible LLNS equations in one dimension, see
[15].

3.1. Time Integration

At first we explain the time integration of the fluid equations and then
the coupling of fluid and rigid body motion.

3.1.1. Time integration of the incompressible LLNS equations

For the fluctuating hydrodynamic equations, we have employed an ex-
tension of the Chorin projection scheme [39]. In the next subsection, the
spatial discretization of the differential operators will be described. These
discretized differential operators are denoted by letter symbols to distinguish
them from the corresponding continuum operators. For example, G denotes
the discretized gradient operator, L and D stand for the discretized Lapla-
cian and divergence operators, respectively.The operation of a divergence
operator on a tensor field such as the stochastic stress tensor S̃ is understood
component-wise on the x, y, and z components. Similarly, the gradient and
Laplacian operators act component-wise on a vector. The consistency of
the discretized differential operator has been shown for the solution of the
incompressible Navier-Stokes equation, see [30].

A temporal discretization of the LLNS system has to reproduce the sta-
tistical properties of the continuum fluctuations, which is an additional chal-
lenge for the temporal scheme. We would like to mention that the temporal
integration of fluctuating hydrodynamics can be higher order accurate only
in the weak sense and only for the linearized equations of fluctuating hydro-
dynamics [12].

We index the time step by a superscript n, i.e. quantities evaluated at
time n∆t are denoted by the superscript n.

At the first step of the projection scheme, we compute the new positions
of the particles from equation (1)

xn+1 = xn +∆tun. (17)

At the new positions, we first compute the intermediate velocity u∗ from
equation (2) by ignoring the pressure term

u∗ = un +
∆t

ρf
(µLun +DS̃n). (18)
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Then, we correct the intermediate velocity u∗ by its projection onto the space
of solenoidal velocity fields

un+1 = u∗ −
∆t

ρf
Gpn+1. (19)

This requires the gradient of the pressure field at the (n+1)th time step. For
this a pressure Poisson equation is solved which comes from the incompress-
ibility condition. Since

Dun+1 = 0, (20)

we get the pressure Poisson equation from equation (19)

Lpn+1 =
ρf
∆t

Du∗. (21)

Thus we use the Neumann boundary condition for the pressure on the solid
wall ∂P which is given by

(
Gpn+1 · n̂s

)
|∂P = 0. (22)

We use the no-slip boundary condition for u∗ and un+1 on ∂P . In this
scheme, we update the positions of the mesh particles only at the beginning
of every time step. Then the intermediate velocity, the final divergence free
velocity field and the pressure field are computed at these new particle posi-
tions. The stochastic flux S̃ is updated at each time step as described earlier.
The differential operators appearing in equations (18 -22) are computed at
every particle position from its surrounding clouds of points.

3.1.2. Time integration for the solid structure

For the fluid-structure interaction we have to couple the Newton-Euler
equations, given by equations (6 - 11), with the LLNS equations. We use an
explicit method for the time discretization of the Newton-Euler equations.
The main steps are as follows

1. Once we get the value of un+1, pn+1 and the value of S̃n+1 (based
on the stream of pseudo-random numbers ), compute the stress σ

n+1

according to equation (4)

σ
n+1 = −pn+1I + µ[Gun+1 + (Gun+1)T ] + S̃n+1. (23)
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2. Compute the hydrodynamic force and torque by a numerical approx-
imation of the surface integrals, given by equations (8) and (9). To
simulate the hydrodynamic interactions between the fluctuating fluid
and the solid body, the solid body is defined by a boundary surface.
In the numerical computation, this boundary surface is constructed by
many point-like particles. We note that the surface of the sphere is
triangulated using boundary particles. The triangulation of the sphere
is illustrated in figure 1. The components of the hydrodynamic force

Figure 1: Triangulation to construct the boundary surface of a sphere.

and the torque are computed as

Fi = −
∑

x∈∂P

((σ · n̂s)i)x dsx, (24)

Ti = −
∑

x∈∂P

(((x−X)× (σ · n̂s))i)x dsx, (25)

where i runs from 1 to 3, and dsx is the area of the small surface element
given by the triangulation.

3. Solve the equations of motion for the solid structure given by equations
(6, 7 and 10) together with given initial conditions:

Xn+1 = Xn +∆tUn, (26)

Un+1 = Un +
∆t

M
Fn, (27)

ω
n+1 = ω

n +∆tI−1T. (28)
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4. Compute the resultant velocity of the structure which will yield the
interface boundary condition for the fluid flow

vn+1 = un+1 = Un+1 + ω
n+1 × (x−Xn+1). (29)

5. Move the rigid body with the resultant velocity vn+1. Then, assign
new velocities to the interface boundary particles according to (29).
The new positions of the boundary particles are obtained from the
linear transformation representing the movement of the rigid sphere.

It has been mentioned in [40] that fully explicit schemes for fluid-structure
simulation, as the one used in the present implementation, will be unstable
in certain situations due to the explicit discretization of the equations of
translational motion of the rigid body. In [40] a condition for stability of the
explicit scheme has been derived asMv < M , whereMv denotes the so-called
virtual mass of the fluid.

Now, in the case of a spherical object, the virtual mass in an infinite fluid
medium is given by

Mv =
2

3
πr3ρf , (30)

and the actual mass of the sphere is

M =
4

3
πr3ρs. (31)

Hence, Mv < M if ρf < 2ρs.
We have strictly followed this condition in our simulation by considering a
neutrally buoyant spherical particle.

The discretizations described above yield a first order spatio-temporal
discretization of the fluid-structure system. The time step ∆t is restricted
by the CFL condition

∆t ≤ min

{
0.16

h

3Umax

, 0.11
h2

9ν

}
, (32)

where ν =
µ

ρf
is the kinematic viscosity, Umax is the typical advection speed

and h is the radius of the neighbourhood, which bounds the number of neigh-
bour particles for a particular particle. The time step is chosen such that
none of the grid particles moves a distance more than the average spacing
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between them in a single time step. We note that we have chosen h to be
equal to three times the initial spacing of the particles. Thus, the first term
in (32) can be viewed as the usual hyperbolic CFL condition with a numeri-
cal factor taking into account the possible changes of the grid spacing during
the computation. Similarly, the second term in (32) is the analogue to the
parabolic CFL condition. Compare [19] for the corresponding conditions for
a fixed grid.

This completes the temporal discretization of the fluid-structure system.
The remaining task is to approximate the spatial derivatives.

3.2. Spatial discretization

An algorithm for the meshfree solution of the incompressible Navier-
Stokes equations has been presented in [30]. Let f : Ω × [0, T ] −→ R be
a scalar-valued function. f(x, t) denotes the value of the function f at po-
sition x ∈ Ω at an instant t. In this formulation, the spatial differential
operators acting on f are approximated at x in terms of the values of the
function f(x, t) at a set of neighbouring points of x. We assign a weight
function to each particle. This weight function is a function of the distance
between the central particle (the particle on which the derivative is being
computed) and its neighbouring particles. In order to restrict the number
of neighbouring particles, we consider a weight function w = w(xj − x, h)
with compact support of size h. The choice of the weight function can be
arbitrary. We choose a Gaussian weight function

w (xj − x; h) =





exp

(
−α

‖xj − x‖2

h2

)
, if

‖xj − x‖

h
≤ 1

0, else.
(33)

where α is a positive constant and h defines the neighbourhood radius for x.
There are obvious restrictions on the distribution and the number of neigh-
bouring particles of x in order to obtain a reasonable approximation of the
derivatives. We remove and add particles if the distribution is too dense
or too sparse. The fluid quantities of newly added particles are approxi-
mated from their neighbouring values. Let m be the number of neighbouring
particles for the particle x. Then, to approximate the spatial derivative of
f(x, t) at x = (x, y, z) we consider the Taylor expansion of f(xi, t) around
x = (x, y, z), for all neighbouring points of x. This yields a linear system in
the unknown derivatives, reading

e =Ma− b. (34)
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where
M =

































∆x1 ∆y1 ∆z1
∆x21
2

∆x1∆y1 ∆x1∆z1
∆y21
2

∆y1∆z1
∆z21
2

∆x2 ∆y2 ∆z2
∆x22
2

∆x2∆y2 ∆x2∆z2
∆y22
2

∆y2∆z2
∆z22
2

...
...

...
...

...
...

...
...

...

∆xm ∆ym ∆zm
∆x2m
2

∆xm∆ym ∆xm∆zm
∆y2m
2

∆ym∆zm
∆z2m
2

































,

a = [fx f y f z fxx fxy fxz f yy f yz f zz]T ,

b = [f1 − f f2 − f . . . . . . . . . fm − f ]T ,

e = [e1 e2 . . . . . . . . . em]
T .

Here, ∆xi = xi − x, ∆yi = yi − y, ∆zi = zi − z for i = 1, . . .m, and
superscripts x, y, z on f represent the respective partial derivatives of the
function.

This system is solved using the least square approximation by minimizing,

J =
m∑

i=1

wie
2
i = (Ma− b)T W (Ma− b) , (35)

where,
W = diag[w1, . . . , wm] is a diagonal matrix, with entries wi = w (xi − x; h)
as given in equation (33).

This yields the unknown a as

a =
(
MTWM

)−1 (
MTW

)
b. (36)

As a result, we will get derivatives of the prescribed function at a specific
point as a linear combination of function values at its neighbour points.

In the present work, this approach will be also employed for the solution
of the pressure Poisson equation with Neumann boundary conditions and for
periodic boundary conditions of the velocity. It was first presented in [41]
to solve the Poisson equation, where second-order convergence was demon-
strated. The accuracy and stability of this method to solve the pressure
Poisson equation with different boundary conditions was also discussed in
[41].
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4. Numerical results

In this section we present our simulation results to validate the numer-
ical approximation, discussed in the previous sections. We investigate the
Brownian motion of a solid sphere due to the surrounding fluctuating fluid.
In this context, the VACF of the sphere has been calculated and compared
with the theoretical result as given in [33].

To proceed, the governing equations are non-dimensionalized. The fun-
damental scales for the non-dimensionalization are chosen as

Characteristic length −→ x̃ = ∆x ≈
h

3
(average distance between the Lagrangian particles),

Characteristic time −→ t̃ =
ρf (∆x)

2

µ
,

Characteristic mass −→ M̃ = ρf (∆x)
3,





(37)

The resulting scalings for velocity, pressure and stress are

Characteristic velocity −→ ṽ =
x̃

t̃
=

µ

ρf∆x
,

Characteristic pressure, stress −→ P̃ , S̃ =
µ2

ρf (∆x)2
.





(38)

The resulting non-dimensionalized system is

dx∗

dt∗
= u∗ in Ω \ P, (39)

du∗

dt∗
= −∇p∗ +△u∗ +∇ · S̃∗ in Ω \ P, (40)

∇ · u∗ = 0 in Ω \ P, (41)

where, properties of the random stresses S̃∗ are given as

〈S̃∗

ij(x, t)〉 = 0, (42a)

〈S̃∗

ik(x, t)S̃
∗

lm(x
′

, t
′

)〉 =
2kBTρ

2
f x̃

4

µ3
(δilδkm + δimδkl)δ(x− x

′

)δ(t− t
′

), (42b)

dU∗

dt∗
= F∗ in P, (43)
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I∗
dω∗

dt∗
= T ∗ in P, (44)

dX∗

dt∗
= U∗, (45)

dΘ∗

dt∗
= ω

∗, (46)

Non-dimensionalized variables are denoted by the superscript ∗.

4.1. Brownian motion of a sphere in a three dimensional fluctuating fluid

We consider a neutrally-buoyant spherical object immersed in an incom-
pressible fluid. Initially, the sphere is placed at the center of a cubic domain.
We use periodic boundary conditions in all directions at the outer bound-
ary Γ and no-slip boundary conditions at the interface boundary ∂P . No
additional force is applied other than the stochastic force. The only forces
responsible for the motion of the sphere are the random stresses. Initially,
the fluid-structure system is at rest. Now, we solve the system of equations
(39) - (46) for the three-dimensional fluid-structure system. We employ our
scheme to perform a well known test [16, 42, 43, 20, 19] for the coupling of a
spherical particle with the fluctuating fluid. In this context, we compute the
VACF,

C(t∗) =
1

d
〈U∗(t∗) ·U∗(0)〉 (47)

of a single Brownian particle diffusing through a periodic fluctuating fluid
and compare the result with the analytical expression [33]. Here d denotes
the dimension of the computational domain. The VACF yields the crucial
information about the Brownian dynamics at both short and long times.

In figure 2, we show the VACF of a neutrally-buoyant spherical particle
along with the analytical approximation of the VACF. We fill the cubic box
with N = 132350 Lagrangian particles. The volume fraction of the spherical
particle is

ψ =
volume of the spherical particle

volume of the simulation box
= 0.008.

Table (1) gives the physical parameters used for this simulation. All of these
parameters are dimensionless, since they have been expressed via the funda-
mental scales for length, time etc., defined in equations (37) and (38). RH
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Fluid density ρf 1.0
Viscosity µ 1.0

Thermal energy kBT 0.83
Hydrodynamic radius RH 6.2

Schmidt number Sc 140.6

Table 1: Physical parameters.

is the radius of the considered spherical particle. The Schmidt number Sc is
defined by the Stokes-Einstein diffusion coefficient D,

Sc ≈
ν

D
=

6πµ2RH

ρkBT

t *
10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

C
(t

* )

10 -6

10 -5

10 -4

10 -3

Numerical Simulation

Analytical Solution

Figure 2: The velocity autocorrelation function of a rigid sphere immersed in an incom-
pressible fluctuating fluid.

It can be observed that our numerical approximation correctly reproduces
the long time behaviour of the Brownian dynamics. At the viscous time scale,
t∗ > τν = ρfR

2
H/µ ≈ 36, the VACF shows the well-known algebraic decay

t−3/2 [44]. There are some discrepancies in the result for short time dynamics.

17



In particular, C(t∗) does not agree well with the analytical expression for
t∗ < 10. Such discrepancies in the short-time behaviour of the VACF have
also been observed by other particle methods, as reported in [43]. We note,
however that a very good approximation of the VACF, for the short and long-
time behaviour, has been attained by [19, 20], for a large range of Schmidt
numbers using a Finite Volume approach.

In order to test further the validity of our method for the long-time be-
haviour of Brownian dynamics, we evaluate the long-time diffusion coefficient
of the spherical particle. The long-time diffusion coefficient of the immersed
particle is obtained by the discrete integral of the VACF,

D∗(t∗) = D∗(k∆t∗) ≈
∆t∗

2
C0 +∆t∗

k−1∑

i=1

Ci, (48)

where Ci are the values of the VACF at time t∗ = i∆t∗, for i = 1 . . . k − 1.
We estimate the asymptotic value of the diffusion coefficient D∗ ≈ D∗(t∗),
for t∗ = L2/ν, where L denotes the size of the computational domain and
ν is the dynamic viscosity of the fluid. The Stokes-Einstein relation for a
periodic array of spheres in a cube can be written as

D =
kBT

6πµRHξc
, (49)

where ξc denotes the correction factor to the drag coefficient of the immersed
particle. In terms of non-dimensional variable, the drag coefficient correction
factor can be re-written as

ξc =
kBTρf

6πµ2RHD∗
. (50)

We have computed the drag coefficient factor from equation (50) and com-
pared it with the analytical value for different number of Lagrangian parti-
cles, given in table 2. The results shown in table 2 are for the same volume
fraction of the solid, which is ψ = 0.008. From table 2 one can observe a
good agreement between the analytical and the numerical values of the drag
correction factor. This confirms that the numerics is able to reproduce the
Stokes-Einstein relation and to accurately represent the long-time Brownian
dynamics of a solid sphere immersed in an incompressible fluid by solving
the fluctuating hydrodynamic equations.
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Ma Analytical Simulation Result % Error
Value Interval

80000 1.525 1.4587 4.5
100700 1.525 1.4899 2.3
132350 1.525 1.5021 1.5

Table 2: Comparison of numerical and analytical values of the drag correction factor.

5. Conclusions

A meshfree discretization for a system comprising a fluctuating incom-
pressible fluid and a suspended solid body has been presented and validated
via an investigation of the Brownian motion of the solid. No external forces
on the solid structure other than the hydrodynamic forces from the surround-
ing fluid have been considered. The LLNS equations for the fluctuating fluid
have been coupled with the Newton-Euler equations for the motion of the
solid object.

Specifically, simulations of the Brownian motion of a sphere have been
performed. To validate the simulation, the VACF of the Brownian particle
has been calculated and compared with the available analytical expression.
The long-time Brownian dynamics of the sphere has also been confirmed
by the Stokes-Einstein relation. In that context, we have calculated the
corresponding correction factor for the drag coefficient in a three-dimensional
periodic system. The numerical value of the correction factor shows good
agreement with the analytical result.

The fact that the Stokes-Einstein relation could be reproduced demon-
strates that the method is consistent with the continuum fluctuation-dissi-
pation theorem (FDT). This still needs to be verified at the discrete level.
The numerical validation of the discrete FDT by static and dynamic struc-
ture factors is a future task of the authors. Moreover, a detailed study of
the problem for a larger range of Schmidt numbers, as given in [20], has
also to be considered. The study of fluid-fluid interfaces and the dynamics
of small particles at these interfaces with fluctuating hydrodynamics in the
framework of a meshfree discretization is another subject of future work.
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