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BOURGAIN-DELBAEN £*-SUMS OF BANACH SPACES

DESPOINA ZISIMOPOULOU

ABSTRACT. Motivated by a problem stated by S.A.Argyros and Th.
Raikoftsalis, we introduce a new class of Banach spaces. Namely, for
a sequence of separable Banach spaces (Xn, || - ||n)nen, we define the
Bourgain Delbaen £*-sum of the sequence (Xp,|| - ||n)nen which is a
Banach space Z constructed with the Bourgain-Delbaen method. In
particular, for every 1 < p < oo, taking X, = ¢, for every n € N
the aforementioned space Z,, is strictly quasi prime and admits ¢, as a
complemented subspace. We study the operators acting on Z, and we
prove that for every n € N, the space Z; = > 1 | ®Z, admits exactly
n + 1, pairwise not isomorphic, complemented subspaces.

1. INTRODUCTION

There has been an extensive study of Schauder sums of sequences of Ba-
nach spaces (X, || ||l») ([,[5]) with many interesting applications, depend-
ing on the choices of the spaces X,, and the external norm. In particular,
in [I] the authors defined Schauder sums of arbitrary sequence of separable
Banach spaces (>_,cny ®Xy,)an where the external norm is based on the
Gowers Maurey norm [9].

In [5] the authors studied further the spaces X, = (3, cn ©lp)anm for
1 <p<oo, Xo= (D ey Dco)anm as well as the space of their bounded,
linear operators. Moreover, in the same paper it was proved that for X = X,
or X the space X" = (3°1" | ®X)s admits at least n+1, up to isomorphism,
complemented subspaces and it was stated as an open problem whether they
are exactly n+ 1. We do not give an affirmative answer to this problem but
instead, following the basic scheme of the authors in [3] we present a method
of constructing for every n € N Banach spaces with exactly n + 1, up to
isomorphism, complemented subspaces. In particular, we shall define and
construct Schauder sums of sequences of Banach spaces with an external
norm that is based on the original Bourgain-Delbaen norm ([6]).
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We now give a description of how this paper is organized. In section
2, given a sequence of separable Banach spaces (Xp,| - ||n)nen, we de-
fine the Bourgain Delbaen (BD) -£>-sum of (X, || - ||n)nen, denoted as
Z = (3 ,en ©Xn)Bp. This space is defined along with a sequence of pair-
wise disjoint and finite subsets of N, the so called ”Bourgain-Delbaen” sets
(Ay)nen- Z has a Schauder Decomposition (Z,),en and there exists a con-
stant C' > 0 such that Z,, ~¢ (X,, @ £oo(Ar))eo for every n € N.

In section 3 we study Z* and we show that if the Schauder Decomposition
(Zn)nen of Z is shrinking then Z* can be identified with (3, ey ®(X;: @
01(Ap))1)1. In Section 4 we describe in detail the construction of Z. We
also study the special case where the Bourgain Delbaen external norm is
the Argyros-Haydon norm in [3], yielding spaces Z which we denote by
(> neny @Xn)an. We devote Sections 5,6 and 7 into proving the following.

Theorem 1.1. Let (X,,, || - |ln)» be a sequence of separable Banach spaces
and Z = (3.7, ®X,) am. Then the following hold:

(1) The space Z admits a shrinking Schauder Decomposition.

(2) Every block (with respect to (Zx)ken ) sequence (z,,)nen generates
an HI subspace, i.e. the subspace < z, : n € N > of Z is HL.

(3) Assume that for every n € N, either ¢; does not embed in X or X,
has the Schur property. Then, for every bounded, linear operator T’
on Z there exists a scalar A € R such that the operator T'— Al on Z
is horizontally compact, i.e. for every bounded, block (with respect
to (Zn)nen ) sequence (zx)ren in Z, [|[(T — X)zg|| — 0.

In Section 8 we prove that Z, = (3, oy ©fp)an for 1 < p < oo is strictly
quasi prime and contains isomorphically ¢, as a complemented subspace.
We recall (see [3]) that a Banach space X is strictly quasi prime if there
exists a subspace Y of X not isomorphic to X such that X admits a unique
non trivial decomposition as Y @ X.

Our main result is proved in Section 9:

Theorem 1.2. For every 1 < p < oo and n € N the space Z = O 82
has exactly n + 1 up to isomorphism complemented subspaces.

We must mention that similar results were obtained by many authors
using different techniques. Namely, P. Wojtasczszyk in [12] and P. Woj-
tasczszyk, 1.S. Edelstein in [7] proved that for every n € N there exists
a separable Banach space with exactly 2" — 1 complemented subspaces.
Moreover, as it is pointed out in [§], W.T. Gowers and B. Maurey in [10]
constructed for every n € N a Banach space X,, that has exactly n up to
isomorphism complemented subspaces. Our approach is more direct using
a combination of techniques which are presented in [3] and [5].

This introduction cannot end without giving my special thanks to my
advisor and Professor S. A. Argyros for his helpful advice as well as to 1.
Gasparis for useful conversations regarding the results of this work.
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2. THE DEFINITION OF A BD-£°-SUM OF BANACH SPACES
We start by giving the needed terminology.

Notation 2.1. Let (E,, |-, )52 be sequences of separable Banach spaces.
For I interval of N or I = N we consider direct sums (3, c; ®Ep)oo, We use
vectors as 7', I, Z to represent their elements. For 7 € (> oner ®En)oe we
denote by 2’ (n) the n-th coordinate of 7 in E, and the norm is defined
as | 7||oo = sup,c; |7 (n)||g,. In a similar manner we consider dual direct
sums (3, c; Ex)1 consisting of elements functions vectors which we denote

by ?, 7, ﬁ, etc. For an element ? we define H?Hl = el ||?(n)||E;; and
for @ € (> ke ©Ek)oe we denote by ?(?) the inner product ) ; ?n(?n),
where ?n = ?(n) and 7', = 7' (n).

For every I finite interval of N we denote by R; the natural surjections
R (Coen®En)oo = (X1 ®En)oo defined as Ri(Z) = (7 (n))ner. We
use a "star” notation R} to regard in a similar manner the natural surjection
on the duals, i.e. R} : (3, en ®En)1 — (X ,er ®Ep

For I,J intervals of N we say that I,J are successive denoted as I < J
if max/ < minJ. Let I} < Iy < I3 such that max[; + 1 = min [;; for
every ¢ = 1,2. For vectors ?1,?2,?3 such that ?Z € (Zkeli BSFE,)co

we denote by (Z'1, @2, 7'3) the vector ¥ € ("5 @ F,)o defined as

n=min [{

% (n) = Zj(n) whenever n € I;. Similarly we define vectors (71, 72, ?3)
in (3>, ®E})1 where ?Z € (D per, DE)1-

We now recall the definition of classical £ spaces (see [3]),a generalised
form of which will be used in order to define the new class of spaces, namely
the BD L, sums of Banach spaces.

Definition 2.2. We say that a separable Banach space X is L c where
C > 0 is a constant, if there exists a strictly increasing sequence (Y, )nen of
subspaces of X such that Y, is C- isomorphic to £+ (dimY,,) for every n € N
and X = UpenYn-

We also recall that for Banach spaces Z,W and a constant M > 0 we
say that Z is M- isomorphic to W if there exists T : Z — W such that
1T < M.

Definition 2.3. Let (X,,|| - [[n)neny be a sequence of separable Banach
spaces. A Banach space Z is called a Bourgain Delbaen(BD)-£*-sum of
the sequence (X, || - |n)n, denoted as Z = (3°° | X,,)pp, if there exists a
sequence (A,,)nen of finite, pairwise disjoint subsets of N and the following
hold:

(1) The space Z is a subspace of (307 (X ® loo(An))so)oo-

(2) There exist C' > 0 and for every n, a linear operator

I Z @(Xk %) EOO(Ak)) - (Z @(Xn D EOO(An))OO)oo
k=1 n=1
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such that
(a) |lin|| < C for every n € N.
(b) For T € 37, ®(Xi ® loo(Ay)) we have that Ry (i, (7)) =
z, R o0) (in(Z)) € > i1 ®loo(A) while for every I > n+1
we have that il(R[l,l}in(?)) =i (7).
(3) Setting Yy, = in[> p_; &(Xk & €°(Ag))], the union U,Y}, is dense in
Z.

In order to simplify the symbolisms, for I interval of N we shall write
2 ket B( Xy @ Loo(Ay)) instead of (3oe; B( Xk @ Loo(Ak))oo)oo-

2.1. The general construction. We now present the basic ingredients
of constructing this new type of spaces which is based on the Bourgain-
Delbaen(BD)- method of construction (see [6]).
Let (Xp, | - [[n)nen be a sequence of separable Banach spaces and let also
A, )nen be a sequence of pairwise disjoint intervals of N. We denote by I' the
union I' = U,enA,, and use letters as 7, £, n to denote elements of the sets I
For every v € A, we assign a linear functional ¢} : Z;%(Xk Blo(Ag)) = R
and for n < m € N we define by induction a linear operator

inm Y O(Xk © Loo(Ar)) = Y DXy, @ loo(Ar))
k=1 h=1

as follows: Form=n+1and @ € Y7_, &(Xy, © ((A}))
Z.n,n—l-l(?) = (77 ?n—l—l)

where ?n-i-l - (OXn+17 (C:(?)'}/EArwrl) € Xp+1 @ eOO(An-i-l)
Then assuming that i, ,, has been defined, we set ip m+1 = tmm+1 © tn,m-
It is clear that for every n <1 <m, ipm = im © in-

Remark 2.4. The boundeness principle for (i, ,)n<m. Assume that
there exists C' > 0 such that |[[i, | < C for every n < m. We define
in > pey DXy ®LP(AR)) = Loo[(Xn, £1(Ay))] as the direct limit

i = L i
m—r0o0

It follows that the operators i, are uniformly bounded by C' and since
in(Z)|loo > || ]loc the operators 4, are isomorphic embeddings. We can
then define Y,, = i, [>_p_; &(Xk @ loo(Ag))] and Z = UpenY,. It immediate
follows that Y;, C Y, 41, each Y, is C-isomorphic to >, _; &(Xj & loo(Ak))
and moreover considering Definition we conclude by the above that
Z=(>.,9Xn)BD-

Viewing Z as a close subspace of (7 &(X;, & loo(An))oo)oo We restrict
the operators Ry ) 1 2 — Y1) ®(Xp @ £2°(Ay)) for every n € N and we
also restrict the image of i, upon Z, iy : > ;1 &(Xj ® (°(Ay)) — Z. We

can also extend ¢ : Z — R for every v € A, as ¢}(2) = ¢4 (R[1 n)?)-
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We note that the definition of i, yields that for z = i, (@) € Yy,

(| = max{|| ¥ || oo, sup | ()]}
el

For each n, we define projections Py, : Z — Z by the rule P, =
in o Rj1 )|z with ImPy; ;) = Y,,. An easy observation is the following.

Lemma 2.5. Let n € N and x € Y,,. Suppose that there exists m < n such
that P ,,jx = 0 then there exists s Y hemi1 ®(Xk @ Loo(Ay)) such that

xr = Z'n(6>17m, 7)

Proof. We first treat (1). Note that x = P ,(7) = in(Y) where ¥ =
R[Ln}(x) S ZZ:I @(Xk D goo(Ak))- Since P[l,m}x =0z = im(R[l,m]x) it
follows that Ry ,z = ﬁl,m which yields that i = (ﬁlm,ﬁ) such that
U = Rypi1.0)(2) € S he s ®(Xk @ loo(A)). O

2.2. Schauder Decomposition of our space Z. For n < m we define
Pinm) = imBpim)|lz — in R p)|z. Since i, are uniformly bounded (property
b) we have that || Pr|| < 2C for every interval I C N. Moreover, by property
(d) of Definition for every n,m € N it is clear that Py, 0 Py, =
P[l,min{m,n}}- Since Z = UnENP[l,n] [Z], setting Z; = P[l,l] and Z,, = P{n} [Z],
where Pp,y = Py — Pipno it follows easily that (Z,)nen is a Schauder
decomposition of the space Z.

Note that for every k£ < m an element x belongs in » " | Z, if and only
if z € Yy, and Py pjr = 0. We finally note that by Lemma 2.3]

Zy={(z = in(010, W) : T EXn®loo(An)).

Let Pﬁ o Z* — Z* be the adjoint projections. We define Z[*1 n =
1 mP[’; n] for each n € N and we observe the following.

Lemma 2.6. For every n, the restricted operator iy, : 2} , — O op(Xie
01(Ag))1)1 is an isomorphism onto satisfying that ||z*| < ||iX (z%)[1 < C||z*||
for every z* € Z[*1 n]’

Proof. Since ||i} || = ||in|| for every n € N the right hand inequality is trivial.
For the left hand inequality it is enough to show that for every f € Z[*Ln}
such that [|f|| = 1 we have that |i¥ (f)|| > 1 — ¢ for every € > 0. Let
z* € 2], such that ||z*]] = 1 and € > 0. Let also z € Z such that ||z|| = 1,
|z*(z)] > 1 —e. Then, we have that z* = P ut for vt € Z* and we
set 7 = Rj1n)(2). A simple observation is that u* (in2) = uw* (i Ry ) 2) =
u* Py 2 = Pﬁm}u*(z) = 2*(z) > 1 — e. Therefore, [|i}(z")|1 > |Z:Z*(7)| =
|2 (i, 2)| = \u*P[Ln}z'n?\ = |u*(i, @)| > 1 —e. It remains to show that
inlzy, ., is onto. Observe that i : Z* — (3, (X @& (1(Ay))1)1 is onto

n

since iy, is isomorphic embedding and thus for ? €O r(Xrdli(An))i)
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there exists g € Z* such that i} (g) = 7 Note that i} (g) = ifl(Pﬁ n}g) and
the result follows. O

The next lemma yields that for every [ > n the restriction of the operator
if s ZF = (ZLZI(X;; @ ¢1(Ag))1)1 upon Z}} ) extends the operator i;, :
2l = e (X @ G(AR) 1)1
Lemma 2.7. Let n € Nand f € Z[*1 n]’ Then, for every | > n we have that
» . — ’
i (f) = (n(f), 0nsag)-
Proof. Let g € Z* such that f = P 9. For Z e S BXp B loo(Ag) we

. — = = . . —
have that i f(Z', 0n1) = f@(T, 0,p1y) = P[Ln}g(ll(?, 0nt1)) =
g(in@) = g(P[l,n]z'n?) = i* f(Z). Moreover, if T € ka:nﬂ O(Xy, @
loo(Ar)) then
(01 @) = (010, @) = (Phy9) @ (010, @, 0

%
01,))=0.

n—l—l,l))

= g(zn(

3. THE DUAL OF (Y., ®X,)BD

Before proceeding to the main construction we shall investigate the dual
of BD L sums of a sequence of separable Banach spaces. We start by
fixing such a sequence (X, || - [|n)nen and let Z = (3~ ®@X,,)pp satisfying
Definition 2.3l As we will see we have more things to say considering the
dual in the case that the decomposition of the space Z is shrinking.

We need first to define the following operator

®: U 2, = (O (X @ 4(An)ih
n=1
as follows:
For f € Z*, we define ®(f) = lim;,,_yo0 i P* . (f). Lemma7Tand Lemma

ne [1n]

2.0l yield that ® is well defined and moreover the extended ® : U;’Lole[*l n
Oore  ®(X @ 01(Ay))1)1 is an isomorphism onto.

Proposition 3.1. If the decomposition (Z,),en of Z is shrinking, then Z*
is isomorphic with (3°°7 &(X}: & €1(Ap))1)1.

Proof. We just observe that if the decomposition is shrinking then Z* =
UnZ1Z[; ) and thus the isomorphism & : Z* — Oome 1 B(X @ L (Ap))1 )
defined as above yields the result. O

The following results concern spaces Z = (), ®X,,)pp with a shrinking
schauder decomposition and are helpful in terms of studying the operators

acting on Z. We recall that for I interval of N, R} denotes the natural
restriction R} : (3,71 &(Xy; & L1(An)1)1 = Oner B(X @ 0i(Ap))1)1-
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Lemma 3.2. Let ¢ > 0, f € Z" and m < n. Let also x € Y}, such that
z]| <1, Py () = 0 and |f(z)| > e. Then there exists [ > n and Z €

S (X5 @ Loo(Ag)) such that | Z]|ee < 1 and [@£(0 1, 2, 0151)] >
5. In particular, HR*m-i—l,l (@)l =5

Proof. Let 6 > 0 such that § < 2(||T||+1) Let [ > n and g € Z[1 1 such

that ||f — g|| < 0. By Lemma 2.5 we have that = = ¢;( 0 1m,7) where
Ze (Zk:m—l—l D(Xp ® Loo(Ay)). Observe that || Z||ee < [|lz]| <1 and using
Lemma [27] we deduce that

— — L

1@g( 01, 2, 0141) =15 9) (0 1m, 2) = lg(@)| > |f (@)= | f —gll = e—0.
— — — —

Thus7 ’(I)f( 0 1777%?7 Ol+1)‘ > ’(I)g( 0 1777%?7 Ol+1)‘ - ”(I)H”f _g” > % U

Corollary 3.3. Let ¢ > 0, (zx)ren be a block sequence in Z and f;, € Z*

such that |fx(zx)| > €. Then there exists finite pairwise disjoint intervals of
N such that ||R} (®fx)[| > 5.

Proof. Since (zk)nen is block we can find m; < ny < mg < ng < ... such
that z € Yy, and Py )7 = 0. By Lemmal[3.2] for every k € N there exists
lx > ny such that setting I, = (my,[,] we have that

€

15, (@] > 5.
Passing to a subsequence we can achieve that I are pairwise disjoint and
the proof is complete. O

The following proposition states a property first noticed in the Schauder
sum (3 ey ®(X; @ €1(Ay))1)1 but it will be presented in a more general
manner.

Proposition 3.4. Let (W,,),en be a sequence of Banach spaces and let W =
(D _nen @Whn)1. Suppose that there exists a sequence (@)keN, € >0and a
sequence (I)nen of successive intervals of N such that ||wk|z o w, |l >

for every k € N. Then (’@c})neN cannot be weakly null.

Proof. Suppose that (wk)keN is weakly null. We may also assume pass-
ing to subsequences and rearranging the numbering of (Ix)gen that wi €

(Zma’dk Wy )1 for every k e N. Let k1 = 1 and choose f1 € (3,7, ®W;)) oo

n=1
%
such that || f1]|cc < 1 and f1 (w}) > e. Since (W} )ken is Weak_y null there

exists N1 C Ninfinite such that min Ny = ky > ky and 37, oy, |1 (wk)| < 5.
Choose f2 (Znelk ®W)1 such that [|z2]/cc < 1 and E(w;m) > . Fol-

l(ﬁ)vmg this manner _1>nduct1vely we find 1 = _l><:1 < ko < ... and elements
(fj)jen such that f; € (Enelk AW oo, ||f]Hoo < 1, fj(wk) > ¢ and

%
>t fi(wg)) < 57T+ Setting 7 PO f] we have that || f||c < 1 and
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max [y .
kj

since w_kj € (>,—1 ’ Wy)1 the following is deduced

J

T = YT ) - Y7 @)

i=1 i#j
I e £
> e smi 2y
i=1
contradicting the fact that (w_k; )jen is weakly null. O

Definition 3.5. For every element z € Z we define the range of z, denoted
by ran(z) to be the minimal interval I C N such that z € > _; Z,. In a
similar manner for b* € Z* we say that ranb* = (p,q) if b*(z) = P(;q)b*(z)
for every z € Z. For z1,2z9 € Z, we will write z; < zo whenever ran z; <
ran zo and we will say that a sequence (zx)res is horizontally block in Z, if
it is block with respect to the natural decomposition (Z,)nen, i.€. 2x < Zk+1
for every k € I. In the sequel, whenever we refer to a block sequence, we

mean that the sequence is horizontally block.

The next result concerns (), X, )pp where the separable spaces X,
satisfy additional properties.

Proposition 3.6. Let Z = (), ®X,,)pp with a shrinking Schauder de-
composition such that ¢; does not embed in X' for every n € N or X,
admits the Schur property for every n € N. Let also T': Z — Z be a linear
bounded operator. Then, for every (zj)reny bounded block in Z and ¢ € N
there exists a subsequence (z;);en such that || P o7 (z;)|| — 0.

Proof. We treat first the case that X, has the Schur property for every
n € N. Let (2x)ren be a bounded block in Z. Since (T'zx )pen is weakly null
then for every ¢ € N (P[Lq]T 2k )nen is weakly null. For each ¢ using a sliding
hump argument and the Schur property of X; we deduce that there exists a
subsequence (z;); such that || Py Trs]| — 0 and the result follows.

In the case that /1 does not embed in X for every n € N we assume on
the contrary that there exists ¢ € N and ¢ > 0 such that [P 7' (z)[| >
0 for every k € N. Applying Hahn-Banach we find w;, € Z* such that
|wi (P11 (2x))| > 6. Using the adjoint operator T™ o Plg: 2 — 2% and
setting 2} = T" o P* (wj) it is clear that |z}(2zx)| > 6. We claim that there

[1,q]
exists a subsequence of (2}, )ren that is equivalent to the unit vector basis

of 61 .

Indeed, if not by Rosenthal’s ¢; theorem we may assume, passing to a
subsequence, that (z;)ien is weakly Cauchy. Then, since (2;)ren is weakly
null we can choose inductively ki < k2 < ... such that setting z =z —
2}, , we have that |2 (zx,,)| > g. Tt is clear that (Z); is weakly null and
applying Corollary we find a sequence (I;);en of successive intervals of
N such that |[R} (®(z]))[1 > 8. Proposition 3.4 implies that ®(Z}); is not
weakly null yielding a contradiction.
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It follows that (P[’i’q} (wy,, )k is equivalent to the unit vector basis of £1 and

thus £y € Z; . Since 2| | ~ (>oF_(XE®li(Ay))1)1 there exists ng € [1, ¢

such that ¢; is isomorphically embedded in X} ' yielding a contradiction. [

4. THE DESCRIPTION OF THE BOURGAIN-DELBAEN SETS

Now we shall give a basic description of how the BD- sets A, will be
determined as well as the functionals ¢ : ST B(Xp @ Loo(Ag)) — R for
v € A,. We fix a sequence of separable Banach spaces (X,, || - ||») and two
natural numbers a,b such that 0 <a <1land 0 <b< % We determine the
sets A, by induction satisfying:

(i) Each A, is finite and is the union of two pairwise disjoint sets A,, =
AV U AL

(i) Every element v in A? is represented as v = (n, a, f,p,0) with p < n
for f functional in a finite subset of the unit ball By, while if
v € AL v is represented as v = (n,b,n,p,&), where n € A;, for
p<n—1land €A, withp<k<n-—1.

For v € A, we denote by €7 the usual vector element of £1(A;,). We iden-
tify X with (X @ {0}); and ¢1(A,,) with ({0} &¢1(A,,))1 via identifications
X* 3 2% — 7% = (2*,0) and respectively ey EY)* = (0,€3). Note that
la*llx; = I12*1ly and 2] = 1.

For m < n ? € (X}, @ 01(An)) and T € S0, B(Xp @ Loo(Ag)) we
denote by ?(7) the natural action ?(7(m))

Let @ € Y7, ®(Xp @ loo(Ay)) and assume that for every k < n the
sets Ay, have been determined as well as the operators (in,;)m<i<n. For
v=(n+1,2%p,0) € A9L+1 we define

() = a7 (T),
while for vy = (n+1,b,1,p,¢) € A}LH we define
(@) = aey (@) + bed* (T = (ipn-1Rp 5 @)

y

As described above every element yA,, is represented as v = (n, a, f, p,0)
or v = (n,b,n,p,&). Each coordinate represents a difference characteristic
that defines uniquely v and we shall use some of the them to define useful
concepts. In particular we define the first coordinate as the rank of ~, i.e
rank(y) = n whenever v € A,,. We also define the second coordinate as the
weight of v, w(vy) = a or b.

4.1. Argyros Haydon BD-sets. We will now use the Argyros-Haydon
version of "Bourgain Delbaen” sets as they where presented in [3]. We
shall follow the above basic scheme in a more general manner for the fixed
sequence of separable Banach spaces (X, || « ||n)nen-

We choose a pair of strictly increasing sequences (m;);en, (nj);jen of nat-
ural numbers such n; > m? satisfying the requirements of Assumption 2.3

in [3].
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For every I = [m,n] finite interval of N we identify (3, .; ®X})1 with
(D per ®(X} @ {0})1)1 via identification

F =2 f = (T, 77
Similarly we identify (3", c; ®¢1(Ag))1 with (3°,c; ({0} ® €1(Ak))1)1, ie.
for b* = (bj,,...,b5,) such that by = > A, ayel we identify b* with
b*=(br,..., by) where by =3 A, asel.
We choose F),, 1-norming countable and symmetric subset of the unit ball

of X* (recall that X, is separable). We denote by F* the first m-elements
of F, and for every p < n we define a subset I, , of (3p_, . ©X)1 defined
as

Knp={f = (@hrr-na) s af € FRU{0h, 3 llaillx: <1}
k

As in [3] (Section 4) we choose a strictly increasing sequence of natural
numbers (N, )nen, we set G, ={q € Q: ¢= % ldivides N,,!} and define a
subset By, of (33,1 ®h(Ag))1 as

j * * * *
By ={b" = (b1,...,bp) : bkzzawe—w ay € Gy Z la,| <1}
YEAK yETR\Tp

Along with A, we will also recursively define an injection o : A, = N
such that min{o(y) : v € Ay} > max{o(y) : v € A1}, hence o(v) > n for
all v € A,. Since A,, is finite this is possible.

Let A} = 0, Ay = Al = {1} and o(1) = 2. Assume that A; and
o : A — Rhave been defined for every k < n we define A, 11 = AV UAL
such that

A ={(n+1p £,0): T eKny)

A7ll+1:{(n+17m2j7p7b7): 2j§n+17 p<n ,bjEBn,p}

U{(n—l—l,n,mgj,p,,bj): 2i<n+1, p<n, nGAll,, w(n) = may,
,?eBn,p}
U{(n—kl,mgj_l,%): 2j<n+2, nelAg, k<n,
w(n) =mai—o > m3; ;)
U{(n—l—l,n,m%_l,p,%): 2j <n+2, UGA;, w(n) = maj—1, ,
Ee A, p<k<n, w(ﬁ):m4g(n)}.

We define o : A,11 — N satisfying that min{o(y) : v € Apt1} >
max{o(y) : v € Ap}. The functionals ¢} for v € A, are defined as in
the above section but with some differences concerning the parameters a, b.
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In our case a will always be equal to 1 and thus w(y) = 1 for every v € A,
n € N, while b = m; whenever v € Al and w(y) = m;.

Remark 4.1. 1. We note that for every p < n and ? € K, , we have that
”?”1 < 1. Indeed, let 7 (Tpt1s---»2y) such that 3 € F{" U {0y} and

S lellx; < 1. Observe that |l =l x; and since |7 = S, 7]
the result follows Similarly || T |1 <1 for every bt € By

2. Let b* — (Brg1s-- b)) € (Of— st ®l1(Ag))1 such that [[p*]; <1
and by = Zye A, T2€5 where 7y is rational for every 7. Then, there exists

g > n such that b* € Bg,,. Indeed, since the sequence (N;); is strictly
increasing we have that there exists ¢ > n such that the maximum of all de-
nominators of r, is less than N for every v € Ui_, . ;Ag. By the definition
of By the result follows.

5. ARGYROS HAYDON L SUMS OF BANACH SPACES (), &X,)an

For a fixed sequence (X, || - ||n)nen of separable Banach spaces we de-
note by (> ®X,)am the BD £* sum of (X,,] - ||») that is constructed
following the steps stated in section 4.1. In order to ensure that the spaces
(>-®X,)any are well defined we need to check the boundness principle of
the operators inm : Y peq B(Xk ® loo(Ak)) = D pey B(Xi @ loo(Ak)).
Proposition 5.1. ||iy || < 2 for every n,m € N with n < m.

Proof. We will prove it using induction on m and for all n < m. For m =1,
it is trivial. Now assume that for some m € N and some n < m we have that
for every k < n and [ < m, szg < 2. In order to prove that ||inmt1] < 2
it is enough to show that for 2 € >}, (X @ £>°(Ay)) with H?H <1,
|ch (inm Z)| < 2 for every v € Ay

Let v € A2 | of the form v = (m + 1 ? p,0) where ? € K, and by
Remark LT || £ [y < 1. Thus, | (inm 2)| = |7(7)| <1

Now, let v € A}n—i—l of the form v = (m+1,n,m;,p, ?) where ? € Bpm.
By the definition of ¢} we obtain that

.y X 1 . . .
& linm?) = & (inm?) + =0 linm ? — ipRis ) {inm 7))
J
Observe that if p > n, then using the definition of 4,, ,,, we have that an7 =

ip Ry p) (in, m?) and by the inductive hypothesis we are done. In case that
p < n we have that &, *(in.n 7) = &*(7) and

bj[lmm? — Z'pR[Lp] (’me?)] = ?[Zn,m7 - Z'p,m(R[l,p]7)]'

Again by Remark EI] we have that Hbj\h < 1 and using our inductive
assumption we conclude that

inm?) < |7 + mij<||z'n,m7u T lipm 2] < 2

Cy
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O

We deduce that ||in|| < 2 for every n € N and by Remark [24] set-
ting Z = U,)Y,, where Y, = i,,[> ;_; ®(X) ® loo(Ag))] we have that Z =

Notation 5.2. As noted in section 2 we restrict the operators Ry ) : Z —
Y ok—1 DXk @ loo(Ag)). For v € Apyy we extend ¢ @ Z2 — Roas c}(z) =

5 (R1,n)?). In the same manner we can extend every P> e B Xk @
lo(Ar)) — R to a functional 7 : Z — R (such that 7(2) = 7(R[1’n]z)) ).

We naturally consider every vector element 7 € (X pom (Xl (AR) )
as a bounded linear functional 7 DYl B(Xy @ Lo(Ak)) — R and thus
by the above as a linear bounded functional f : Z — R. This includes the

functionals a,)* for v € Ay, 7 for a* € X7, bj € Bpn, ? € K, , where
p < n. Moreover as it follows by Lemma 1] all these extended functionals
belong in the unit ball of Z*.

We recall that P, ) = imBR[1 m) — inBp ) for every m < n. For v € A,
we define ), : Z — R as d}, = e o P(,,y. Considering Notation we obtain
that d = % — c5. The boundness principle of iy, yields that [|i,| < 2,
[Pl <4, | Parocy | < 3 for every n € N while [|d} || < 3 for every v € T'.

The following proposition is crucial in order to estimate norms in Z. The
proof shares similar arguments as in [3] (Proposition 4.5).

Proposition 5.3. For every v € A,11 there exists natural numbers 0 <
P1L<q1<p2<q<...<Dpg<qq=n+1with a <nj, elements (§)%,
with &, =7, & € Ag,41, w(&) = w(vy) and functionals g € By, 4, such that
a a
< _ * 1 T4
€y = Zdﬁi + M Z bj o P(Pm!li}
i=1 T =1
The sequence {p;, gi, &, b }¢_; is called the evaluation analysis of 7. Note
that for v € AY (i.e. w(y) = 1) the elements v admits the trivial evaluation
analysis consisting of its singleton.

Notation 5.4. By our already introduced terminology for every p < n we
identify (33—, ®Xy)oo with (3_p_, ©(Xx © {0})oc)oo as

T = (T, y) = T = (T sy Tn)
where 'y = (1,0) € (Xp®{0})oo. Similarly we identify (D h=p Dloo(Ak))oo
with (3 F_, ®({0} @ Loo(Ak))oo)oo-
Remark 5.5. Let m < n and z € Z with ranz = (m,n] (or equiv-
alently z € Y, and P ,,(2) = 0). By Lemma there exists o €

> heme1 B(Xk ® Loo(Ag)) such that z = in(). Using the above iden-
tification we can split @ as W'+ " such that ¥’ € (Xp_,i1 DXk)oo
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while W € (i1 Ploo(Ak))oo- Indeed if U (k) = (x, yr) we set ' =
(Tmat1s---,@y) and " = (Yma1s--->Yn). We also set 2/ = in(ﬁLm,ﬁ’)
and 2" = Z‘n(ﬁl,my "). Then it is easy to check that z = 2’4 z”. Moreover
note that

[ ||oo = sup{|Z*(W)|: 2* € X}, m+1<k<n}
while

12" |0 = sup{|&}*(W)| : v € Ay, m+1<k<n}
Considering Notation for 2 € Xj ory € Ap withm+1 <k < n
we have that 77*(z) = 7*(u) = z*(2;) and similarly a,)*(z) = _,;*(u) =
ex(yx) = yx(7). In order to simplify the symbolisms we shall denote 1" by
(7“{)761“”\Fm where 7“{ = aY>*(7)
Definition 5.6. Let z € Z with maxran(z) = n and let o € S B Xk @
lso(Ar)) such that z = i, (7). We define supp,.(z) = @. We say that the
local support of z has no weight if (77)76Fn = ﬁl,n where 77 = e_V)*(ﬁ)
as in Remark

The concept of the next lemma is based on arguments of Lemma 7.2 in
3.
Lemma 5.7. Let z € Z such that ranz C (p,q]. Then, there exists v € T’
with rank(v) > p such that |e2*(2)| > 1Bl
Proof. Let suppy,.(z) = ¥ where @ = U’ + (77)7€I‘q\r‘p as in Remark [5.4]
Since z = iq(ﬁl,p,ﬁ) and ||iy]| < 2 we have that ||| e > 1]lz[|. Note that

1 [loo = max{[[ @ loc, [|(F ) lloc -

In the case that || ]|es = H(ﬁﬁ,)«,HOO if we consider Remark [5.5] we can find
p+1<k<qand~y € A such that |a,>*(7)| = || |oo. Hence

& () =& () > gle]

Otherwise | 7]joo = ||@'||oo as in Remark and applying Hahn Banach
theorem we can find 2* € Bxy with p+1 < k < ¢ such that |2 ()| =
| ||oo. Since Fj is 1-norming in Bx:, we may assume that z* € Fj, and
let I > p such that z* € F,i and set 7 = (?*,6)]@4_17[). Observe that
the functional ? belongs in Kjj,_; and moreover ?(z) = 7*(U). Let
v € Ay of the form v = (I + 1,?,7@,0). Notice that d3(z) = 0, thus
@) = le(2) = [F(2)] = [T > Ll=]] as desired. 0
5.1. Rapidly Increasing Sequences in Z = () X,,)an. For the sequel
whenever we write Z we refer to Z = () ®X,,) ay for the fixed sequence of
separable Banach spaces (X, || - ||n)nen-

We recall that Z admits a Schauder Decomposition (Z,,)nen for which we
define the range of elements of Z as well as block sequences in Z. We shall
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define special types of block sequences that are useful in order to study the
space as well as its bounded linear operators.

We start with the following lemma which concerns the bounded block
sequences of Z in general.

Lemma 5.8. Let (z,),er be a block sequence with ||z,|| < C for every
n € I and let (a,)ner be a sequence of scalars. Then for every € Kpm
with p > m there exists ng € N such that \7(Zn anzn)| < Clap,].

Proof. Let ? € K, of the form ? = (Tp41,-.,7,) where 23 € " @
{0} for every p+1 < k < m and > [[z}]x; < 1. We also recall that
Hx%” < Hx%”l = ||[z}llx;. Since (zn)n is block for every k there exists ny
not necessarily pairwise different such that Fk(Zn anzn) = o (@n,, 2n,,). We
set an, = max{a,, : k=p+1,...,m}. It follows that | f (D, arzi)| <
Clag| Ty 171 < Cla | :

We continue with the definition of Rapidly Increasing Sequences (RIS).

Definition 5.9. We say that a block sequence (zx )ken in Z is C-RIS if there
exists a constant C' > 0 and a strictly increasing sequence (ji)ren such that

(1) ||z|| < C for all k € N
(2) Jk+1 > maxran zj
(3) le5(zr)l < o Whenever w(y) =m; and i < Jg.

Lemma 5.10. Let z € Z such that maxranz = ¢ and suppose that
Supp;,.(2) has no weight. Then, for every v € I' of w(y) = m; we have

4 3ll=ll
that |e} (2)] < e

Proof. The proof share a similar concept of Lemma 5.7 in [3]. Observe that
for every v € I' with ranky > ¢ we have that d’(z) = 0 and P, Oo)( x) =0 for

every r > q. If v € I" with w( ) = m] there exists {p;, ¢, bi, & oy , 1< nj
such that a,) >idy + Z b © P, q1- Let i be the maximum such
that p; < ¢q. For every > z note that p;; > ¢ and also ¢;; > p; > ¢ hence
Py, q(?) = 0 and dzi,(z) = 0. If i = 1 then _>*(z) = L b1 (Pip1,q1)%)-
Otherwise i — 1 > 1 and &*(2) = &7, (2) + = b “(Plpy a5 ]z) Notice that if
W = suppy,.(z) then &, eni_1(2) = E;i_l(ﬁ) = 0 as rank(n;—1) = ¢i—1 +1 <

1) =
pi < q Therefore in every case we conclude that & ey (z) = mi bi*(Ppig)?) =
3=l
m—]b *(Ppi,00) )gm—j. O
Corollary 5.11. Let (z)ren be a block sequence in Z that is bounded by a

constant C' > 0 and assume that supp;,.(zx) has no weight for every k € N.
Then there exists a subsequence (z;); that is 3C-RIS.



BOURGAIN-DELBAEN £*-SUMS OF BANACH SPACES 15

Proof. Let p,qx such that ranzy = (pg,qx] and let Uy = SUPP;pe(2k) in

;']ipk D(X; @ lo(A;)). We also assume passing to a subsequence that
Pr+1 > qr + 1 for every k. We set jr = pir and then we have that (ji)x
is strictly increasing and jipi; > maxranzyg. Moreover, for v € I' with
w(y) = m; by Lemma we deduce that |€Y>*(zk)| < 3C/m;j. Since
llzx]] < C < 3C, every one of the three conditions of an RIS are satis-

fied. O

The following proposition ensures that there is a strong connection be-
tween RIS of Z and the mixed Tsirelson space T'(Asy;, m%) jen. It is proved
in a similar manner as in [3] (Proposition 5.4) and we can use the same
estimates. We denote by (ej)nen the usual basis of T'(Asy,, m%.)jeN-

Considering its norming set W = W[(.Agnj, m%) jen] as a subset of cqg, for
every f € W we define supp f = {k € N: f(k) # 0} and whenever f is of
the form f = m% Y p—y fi for some (f;)"; C W we define the weight of f as

weight(f) = m;.
Proposition 5.12. Let (zx)ge; be an C-RIS in Z and v € T'. Then,
for every scalars ay and s € N there exist kg € I and a functional f €
W(A3n,;, m%_)jgN] such that

(1) Either f =0 or w(y) = weight(f), suppf C{k€l: k> ko}.

(2) 164 0 Pls ooy (5321 ax2k)| < ACag,| +6C F(S32 laglen)
Moreover, if we assume that there exists jo € N such that

o
e¢* () arze)| < Cmax |ay,
el kel

for every J C I and all £ € I' with w(§) = mj,, then f can be chosen in
W[(A3njv ij)j?éjo]'

Proof. Suppose that v belongs to AY for some n € N of the form v =
(n,q,p,0) where p < n, ¢ € K, pn—1. Then, a,)* = d} + ¢ where d;, =
ZY)* o P,y and ¢, = J. Note that if s > n then 67;* © Plso0) = 0 and
there is nothing to prove. Let s < n and wy = P(s )2k for every k. Ob-
serve that since (wg)g is block by Lemma [5.8] there exists k1 € I such that
(D per axwy) < Clay, |. Moreover there exists k2 € I not necessarily equal
to ki such that d3 (> ,c;arwy) = di(ak,wr,). Let ko € I (ko = k1 or
ko = ko) such that |ay,| = max{|ay, |, |ar,|}. Since ||P )l < 3, de‘yH <3
we conclude that
|a/>* o P(s,oo)(z akzk)| < 4O|ako|'
kel

Setting f = 0 the result follows. For v € U,Al we use induction on
rank(y) = n in a similar manner as in [3] (Proposition 5.4). O

The basic inequality yields the following:
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Corollary 5.13. Let (zk)k , be an C-RIS in Z. Then Hnml an 2kl <
10¢ “Moreover, if (M) kJ:Ol are scalars such that |[A\;x| <1 and

mJO
Z)\kzk )| < C’max|)\k|
keJ
for every ~ of weight m;, and every interval J C {1,2,...,n;,}, then

10C
Jol Z )\kzkH < —'

Proof. We apply the basic inequality for scalars nj_ol)\k and I = {1,2,...,n;,}.
Using estimations of W (Aszy,, mi) jen ( see [3], Section 2.4) we conclude that
|_>*( e E:J‘)l zi)| < 100 for every v € I'. Observe that for f € Bxy there

exists at most one k; € I such that \7 Zml zi)| = \? nj, zkl )| < nj

Since nj, > m?o combining all the above the proof of the first part is

complete. For the second we can apply the "moreover part” of the ba-
sic inequality and using estimations of W (Asy,;, m%-)j#jo we deduce that

|€Y>*(nj_1 Yok Mezi)| < :r?—f for every v € I'. In a similar manner as above we
J

0
arrive to the desired estimation of the norm. O

All the above yield to the following general result that concerns AH-L .,
sums of separable Banach spaces.

Proposition 5.14. Let Z = (3, ®X,)ag where (X, || - ||n)nen is a se-
quence of separable Banach spaces. Let also Y be a Banach space and
T :Z — Y be a linear and bounded operator such that ||7z,|| — 0 for ev-
ery RIS (z;)ren in Z, Then ||Twg| — 0, for every bounded block sequence

(W) gen In 2.

Proof. For (1) first we fix a bounded block sequence (zx)ren in Z and let
C > 0 such that ||zx]] < C for every k € N. It is enough to show that
there exists a subsequence (zy,); such that ||T'(z,)|| — 0. Let pg, g such
that ranz, = (pg, qi] and let @), = suppy,.(zx). We split each element z,
to z;, = 2, + 2j, with ranz;, = ranz; = ranz;, as in Remark It follows
that both (2} )nen and (2)))gen are bounded and moreover by the definition
of z;, we have that supp,.(z;,) has no weight. By Corollary [5.11] there exists
a subsequence (z},)gen that is 3C-RIS, hence by our hypothesis (T'(2},)) ke
is norm null. For every k € M and N € N we also split further the element
zy = wk + yk in a snnllar manner as in Proposition 5.11 in [3]. Namely, we

define ﬁk ,7]\[ pk-i-l Ploo(A;))oo such that ﬁN( ) = 77 if w(v) <
mpy or 0 0therw1se , Whlle 7N = U if w( ) > my or 0 otherwise. It
follows that WY + YN = (W), and we set wh =i, ( K Ly WY and yN =

Qg ( 0 Lo U, For the bounded block sequences (W )rerr, (YN Jkenr we

find subsequences (wlivjij )js (y]ivjij ); that are RIS following a similar argument
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as in [3] (Proposition 5.11). Our hypothesis implies that [|7°(z) )|l — 0 and
J

since || T'(2;,, )|l = 0 we conclude that HT(szj)H — 0. O
J

Corollary 5.15. Let Z = (>, ®X,,)an where (X, | - ||n)nen is a se-

quence of separable Banach spaces. Then the dual Z* may be identified

with (30, B(X2 & 61(A))1)1.

Proof. By Corollary [5.13] we observe that every RIS is weakly null. By
Proposition [£.14] we conclude that every bounded block sequence in Z is
weakly null and thus the decomposition (Z,,)nen is shrinking. Proposition

B yields the result. U

6. THE HI-PROPERTY IN BLOCK SUBSPACES OF Z = (> X,)anH

In this section we will define the basic features that can be found in many
HI constructions ( see [3], [1], also [2]). As we already noted we follow the HI
method of construction of Argyros-Haydon presented in [3]. The adaptation
of the arguments is made without validating their precise estimations and
we can observe by the definition of the sets A, that in the case where
X,, = {0} for every n € N the space Z = (> ®X,,)ay coincides with the
Argyros Haydon space X . Therefore for any arbitrary choice (Xp, ||-||n)nen,
the space Z will always contain the space X and thus a L., HI subspace.
However as we will see the HI property is satisfied in every block subspace
of Z which reveals the the influence of an HI external norm (see [1], [5]).

We start by recalling the definition of Hereditarily indecomposable (HI)
spaces.

Definition 6.1. We say that a Banach space X is Hereditarily Indecom-
posable if every closed subspace Y of X is indecomposable i.e. there do not
exists W, Z infinite dimensional closed subspaces of Y such that Y = W& Z.

It is known (see [1,[2],[3],[4]) that a Banach space X is HI if and only if
for every pair of infinite dimensional closed subspaces Y, Z of X and every
e > 0 there exist y € Y, z € Z such that ||y + z|| > 1 while |ly — 2| < e.

We continue by giving the definition of C' — {}-averages.

Definition 6.2. Let C' > 1 and n € N. We say that a vector z € Z is a
C — (7} average if
(1) ||zl = 1
(2) There exists a block sequence (z;)/; in Z, with ||z < C, for all
i=1,2,...,nsuch that z = 23" | z.

The proof of the existence of ¢! averages in Z demands some a further
study of the space.

Proposition 6.3. Let (zj),en be a bounded block sequence in Z. Then, for
every j € N there exists (zkz):z:%l such that 25 < maxran 2, and an element
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v € I" of weight w(y) = mg; such that
n2j n2;
Al 2 g S
M2 5

Proof. Fix j € N and let p;, < I < pr41 < lg+1 < ... such that ranz; C

(Pk, L) Usmg Lemma 5.7 for every k, We can find &, € Ay, with ¢, > pp+1

%
such that e, *(z;) > Sllzkll. We set T = (0 ppst1.gn—1,€. ") and observe

that by € By, p, and P qk}bk(zk) = &g, *(z1,) for all k. Let k; € N such

%
that 2j < maxran z;, and ng, = (qk, + 1,m2;, b}, ). Assume that for some
1 < @ < ng; the elements z,, 7, have been defined for every [ < i. We

%
choose k; such that rankng, | < pg, and let ng, = (qr, + 1, 7%, —1, m25, b )

7

Observe that that d (Zkl) = 0 for every i,1. Let v € I with w(y) = mg; and

evaluation analysis {pkz,%, My » b } . An immediate computation yields
that %(2?231 2k;) = m12j ) e_gz (2k;) and hence ~ satisfies the conclusion.
O

As in [3] (Lemma 8.2), the above result in conjunction with a standard
argument presented in Lemma 2.2 of [3] yields the following:

Lemma 6.4. Let Y be a block subspace of Z. Then for every C' > 1 and
n € N, Y contains C' — /] average.

Next we generalise the result of Proposition concerning weakly null
sequences as it will be useful in next section.

Lemma 6.5. Let (z); be weakly null sequence in Z and assume that there

exists a sequence of successive intervals of N, (Ji)j such that || Py, (2x)]| > 6.

Then for every j € N there exist elements (2, )?2]1 with 25 < maxran 2y,

and v € I' of weight mg; such that |e o0 2| > 2

4m2j :

Proof. Let j € N and assume that ran z; C [1,l;] where [, > max Jj for
every k € N. Let & € A, with ¢z > min Jk (Lemma [B.7) such that
egk *(Prozk) > %. We set pp, = minJj, — 1 and b * = (ﬁpk+17qk_1,e§k ) €
By, p, for every k. We choose inductively zy,, n, as in the proof of Proposi-
tion [6.3] and we additionally require in each inductive step r = i+1 > 1 that
the element zj, satisfies that ]e_,;};(zkr)\ < %Zj. Since (zx)r is weakly null
such a choice is p0551b1e Let v € I with w(y) = mg; and evaluation analy-

sis {Dk; s Qh;s My » b } A Simple observation is that for each 1 <1 < ny;,

Z*(zki) = e_bki,l(zk ) + = b 5 (P 2k;) 2 g We conclude that
naj
2
|ew<; =

as promised. O
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We recall the definition of exact pairs.

Definition 6.6. Let C' > 0, € € {0,1}, and j € N. A pair (z,7) € Z xT'is
said to be (C, j,¢) exact pair if the following conditions are fulfilled:

(1) w(v) =my, |lz] <C, & () ==

(2) di(2) < m% for every £ € T

(3) If 4/ € T with w(y') = m; and i # j, then

—1 .p - .
]e_ﬁ}*(z)] < Cmi_1 .1f‘z <f7
ij if i > j.

The next results of this section are similar to corresponding ones in [3].
We shall include slight description of the basic steps followed in the proofs
for sake of completeness. We start with the following lemma that shares the
same arguments with Proposition 8.6 in [3].

Lemma 6.7. Let Y be a block subspace of Z. Then, for every j € N there
exists a (65,27, 1) exact pair (z,7) in Y.

Proof. Let (ji)ren be an increasing sequence of natural numbers and C' > 1.
Lemma implies that for each k € N there exists a C-E?jk average zj in
Y. The corresponding analogue of Lemma 8.4 in [3] allows as to assume
that (zx)ren is 2C-RIS (passing to a subsequence). We note that ||zx| > 1
for every k£ € N and also for j € N Proposition yields that there exists a
subsequence denoted by (zj)ren again and n € I' of w(n) = my; such that
e (2, )| = g2

For a suitable # € R with |#] < 2 we can have that e_n)*(z) = 1 where
z=140 222:”1 TRan;jlzk. Using estimates that result from the basic inequality
(Proposition 5.12]) it is easy to check that the pair (z,7n) is the desired
(32C,24,1) in Y. Since this is true for every C' > 1 the result follows. O

We will be focused into finding finite sequences of (C,ji,e) exact pairs
(zk,nk)zzgfl that have additional properties. This type of sequences are

called Dependent sequences (see [3]).

Definition 6.8. A finite sequence (zk)zzzjgfl in Z is called (C,2jp — 1,¢)
dependent sequence if there exist p1 < ¢1 < p2 < q2 < ... < P, o1 < nojo—1
if there exist (nk)zzgfl together with (ﬁk)zzgfl such that n, € T'y, \ T'p,,
&k € Ay, the following are satisfied:

(1) with ran z; C (pk, qx — 1].

(2) (z1,m) is (C,4j1 — 2,¢) exact pair and for each k > 1 (zp,7n) is
(C, 474k, €) exact pair.

(3) The element v = ny, o—1 has weight m9;,—1 and analysis

— S N2j—1
{pia qi, gi) em*}izjlo
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Notice that by the definition of the sets A,, and the (C,j,¢) exact pairs we
have that w(n1) = maj,—2 > n%jo_l and w(ni41) = maj, ., where ji11 = o (&)
for 1 § ) S ’I’L2j0_1.

In a similar manner as in Lemma 6.4 of [3] every (C,2jy — 1,¢) dependent
sequence is a C-RIS. Applying basic inequality (Proposition (I3]) we can
have estimations on averages of dependent sequences which are helpful in
order to prove the HI property in block subspaces of the space Z.

Proposition 6.9. Let (zk)ZiJ?*l be a (C,2jy — 1,e) dependent sequence.

_ _ 1 M2jp—1 s 1 n2j0—1 k ;
We set z = W()*l k=1 Zk and z = m k=1 (—1) Zl- Flnally fOI' J

subinterval of [1,naj,—1] we set Z; = >, o ;(—1)%z,.
(1) If e = 1, then ||z > —L— and ||Z| < m‘éo_—c

M2jo—1 2jp—1

(2) Ife=0|z] < mi;’O—C.
2j9—1

Proof. The proof uses the same arguments as in [3] Prop 6.6, Lemma 8.9,
therefore we will present only the basic steps for (i). For the first let
Dis Gk M, E that follow from the definition of a dependent sequence and
let also v of w(y) = maj,—1 with analysis {pk,qk,ﬁk,%)* Zi’?il. We note
that since ranz, C (pg,qr — 1] and & € A, we have that dg, (z) = 0 for
—1

every k,l and thus & *(z) = %)*(:f;;z):ll Dok k) = m2j10—1'

For the second part of (i) we estimate 67;*(2) for every v with w(y) =
maj,—1. Using a corresponding tree like property of the odd weight elements
of I' as in [3](Lemma 4.6) we deduce that for every J subinterval of [1, ngj,—1]
and every 7 of weight maj,_1 [e2*(2;)] < 4C. As we mentioned above the
dependent sequence (z)r is C-RIS and additionally it satisfies the moreover
part of Corollary .13l (replacing C by 4C). We deduce that ||Z|| < Wlbg'_—‘lc =

J

o—1

40C
Majo-1
The next result uses the same arguments as Lemma 8.10 in [3]. We include
a small proof for sake of completeness.

Corollary 6.10. Let (z,)nen be a block sequence in Z. Then, the sub-
space Z = < x,: n€ N> of Zis HI (i.e. for every Y7, Ys closed infinite
dimensional subspaces of Z dist(Sy,, Sy,) = 0, where Sy, denotes the unit
sphere of Y;, i = 1,2).

Proof. Assume that Z = Y7 @ Y, fix ¢ > 0, jo € N such that mgj,_1e >
2600 and choose also j; € N such that my; o > n%jo_l. Without loss of
generality we may assume that both Y7, Y5 are block subspaces. Lemma [6.7]
implies that there exists (65,m4j, —2,1) exact pair (z1,7:) in ¥7. Let ¢ € N
such that m € A, and for p; > max{q;, maxranz;} we define & € A,
as & = (p1,270 — 1,5{;*). Let jo = 0(&1) and by Lemma [6.7] we choose
(z2,m2) a (65,472,1) exact pair in Y5 such that minran zo > py. Let g2 > py
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such that n; € Ay, and for p; > max{ge, maxranzy} we define & € A,
as & = (p2,&1,2750 — 1,6_,7;*). Inductively, we construct a (65,2j9 — 1,1)
dependent sequence (zk)Zij‘l’71 such that z; € Y7 for k& odd while z; € Ys for
k even. Setting 21 = >, a2k € Yiand 220 = > ;. ... 2k € Ya by Proposition

and the choice of jy we observe that ||z1 — 22| < €]|21 + 22]. O

7. BOUNDED LINEAR OPERATORS ON Z

In this section we will study bounded and linear operators on Z =
(>, Xn)am for a fixed sequence of separable Banach spaces (X, || - |[|n)nen.
We use an adaptation of basic techniques of [3] (Section 7) used into proving
that their space Xj has the ”scalar plus compact” property( i.e. for every
linear bounded operator 1" on X, there exists a scalar A such that T'— A is
compact).

A 7weaker” type of compact operators is presented in the next definition.

Definition 7.1. A bounded and linear operator K on Z is called horizon-
tally compact if for every bounded block sequence (z )ren in Z, with respect
t0 (Zn)nen, || K (zx)|| — 0, or equivalently, for every € > 0, there exists k. €
N, such that [|K|z,__ || <&, where Z4_ ) =302 11 Zn = Pl 00)[2].

In order to use some useful approximation arguments in [3] we need fur-
ther notations. For a set A we denote by spangA the set of all finite ratio-
nal linear combinations of elements of A. It is known that every separable
Banach space admits a bounded M-basis such that the set spanned by its
biorthogonals is w* dense and in particular 1-norming for its dual space. For
each n € N we shall denote by (z,,;)icn the M-basis of X,, and by {(CUZZ)ZGN}
the set of its biorthogonals. We shall assume without loss of generality that
F, = B, Nspang{x, ;: i € N} and we set D, = spang{zn,;: i € N}.
Finally, for each n € N we denote by ¢2(A,,) the set spang{e, : n € N}
where e,, is the usual unit vector.

In the sequel for sake of simplicity we choose to work with a dense subset
of the space Z rather than the whole space.

Lemma 7.2. For every z € Z with ranz = (n,l| and every ¢ > 0 there
exists w € Z such that ranz = ranw, ||z — w| < € and if ¥ = supp;y,(w)

then ¥ € kaznﬂ (D ® (L (Ar)).

Proof. Let U € Zif:nﬂ (X B loo(Ag)) such that supp;,.(z) = (6>1m, o).
We split @ as @ = '+ @" such that o’ € (ZL:nH ®X1)oo and U" €
(ZL:nH @l (AL))oo. For each k we find vy € spangf{zr; : ¢ € N},
Yp € loo(Ay) with rational coordinates such that ||/ (k) — vgllp < 5 and
Hﬁ”(k‘) —yklle < 5. Let w = zn(ﬁln,ﬁ) where 7(1@) = (vk,yr). We
observe that ||z — w|| < 2| ¥ — V|| < € and combining all the above the
proof is complete. U
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We set V! = {z =i (W) : W € Y7, @D @ (2(Ag))}. A direct
consequence of the above is that the union U,)Y, is dense in Z.
For the sequel we need the following notation.

Notation 7.3. For n < [ we split 7 (Xk @ 01 (Ag)))1 as 7 =
? + ?” such that ? Ek:n SXh and (Zk:n @l (Ag))1. We

follow the same method that we used for the local support of elements of
Z (Remark B3), ie. if f(k) = (¢5,b) € (X7 @ £1(Ag))1 we set [/ =
(@%,....z8) and f7 = (b%,....00).

Remark 7.4. Let ? € (%ZZHEB(X;; @ (1(Ag)))1 such that ?’(k:) € F}, for
every n < k < I, where f’ as above. Then there exists v € I' such that
et (z) = 7’(2) for every z € Y/. Indeed, for every n < k <[ let my, > 1
such that f'(k) € F"™* and let m = max{my, : k = n,...,l}. Note that

m > [, ?’ € Ky, and let v = (m + 1,n,?’,0) € AQHH. Since m + 1 > [
for z € Y} we have that dZ(z) = 0 and thus e}(z) = c}(2) = 7’(2).
Lemma 7.5. Let n < [ and z,w € Z such that ranz,ranw € (n,l] and

dist(w,R z) > 6. If we assume that z E Y/ then there exists ¢ > I, b* € By,
_)
such that that b*(z) =0 T (w) > 4.

Proof. Let W,V € ch:n—i-l D(XkDBloo(Ag)) such that supp;,.(z) = (ﬁlm, )
and supp;,.(w) = (ﬁl,n, 7). Notice that

— — 1 1)
17 = A oo = 1(0 1.0, T) = A0 10, @)|oo > 5\\2 = dwl| > 3

Hence dist(v,R ) > g. By Hahn Banach Theorem there exists ? €
(ZZZHH ®(X} @ 1(Ag)))1 such that ?(7) =0 and ?(7) > %. Consid-
ering Notation [Z.3] we split ? = ?/ + ?” where ?’ € (Eiz:nﬂ ®X;)1 and

"e (ZL:,H_I @®l1(Ag))1. Since z € Y] we may assume that ?’(kz) € Fy
and ?”(k‘) € EQ(Ak) for every n —|— 1 < k < 1. By Remark [[4] there exists
m > [ and ’y E AY ., such that ej*(z) = ?/( ) for every x € Z. We set
B = (5 T aerm 58). Then 0 € (Tph @0 (M), |57 < 1
and notice that each coordinate b *(k) is a rational linear combination of
{e iy € Ag}. Remark IZ:[I(2) 1mphes that there exists ¢ > m + 1 such that

T e Bgy. Observe that () = 17” +iet(z) = %7(2) =0 and in

a similar manner b * *(w) = % ( ) > Z. O

S
b*

For the sequel of this section Z = (> ®X,,)pp such that (X, | - ||ln)neN
is a sequence of separable Banach spaces with the additional property that
either ¢; does not embed in X for every n € N or X,, admits the Schur
property for every n € N.
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Adapting the basic steps of Lemma 7.2 in [3] we arrive at the following
result.

Lemma 7.6. Let T be a bounded and linear operator on Z and (wg)gen be
a C-RIS in U, Y, such that dist(Twg, Rwy) > § > 0 for every n € N. Then,
for all j,p € N, there exist z € [w, : k € N] and n € A, ¢ > p such that

(z,m) is (16C, 24,0) exact pair, ||[I — P, 4T2| < 5m2_jl and P(’;vq]e;;(Tz) > %.

Proof. Let j,p € N. Repeatedly applying Proposition we may assume
passing to a subsequence that there exists p < 711 <1 < ... <71 <l <

Tk1 < ... such that ranwy C (rg, ] and [[(I — P, 1) Twe]| < &)ngj for

every k. It follows that dist(P, ;,1Twg, Rwy) > . By Lemma [Z5] we can

— — —
find gx > Iy and b} € By, r, that by (wi) =0 b (P, 0 Twk) > s
Passing to a subsequence if necessary we may additionally require that
re < q+1<rpp; <...andlet z = :’j—;j EZZI wg. Assuming that 25 < rq,
we can recursively choose & € Ay, 11 with w(§;) = me; and construct an

element n € I' with analysis {ry, gk, &, b 5, }127;. Similarly as in [3](Lemma
7.2) it is proved that the pair (z,7) satisfies the hypothesis. O

Repeatedly and carefully applications of the above lemma imply the fol-
lowing result that is an adaptation of Proposition 7.3 in [3]. For sake of
completeness we give a slight description of the proof.

Lemma 7.7. Let T : Z — Z be a linear bounded operator. Then, for every
RIS (wk)keN in Z, diSt(ka,]R’wk) — 0.

Proof. Tt is enough to prove it for every RIS in U,Y,. Suppose on the
contrary that there exists an RIS (wg)reny in U,Y, and § > 0 such that
dist(Twg, Rwy) > 0 for every k € N. Let also jy that will be determined
later and choose ji such that my;, _2 > "%jo—l' Applying Lemmal[Z.6l for j =
2j1—1and p; = 1 we can find ¢; > 1 and a (16C, 451 —2,0) exact pair (z1,71)
such that n1 € Ay, |1 — Py gT21| < 57712]%_2 and (6_77_1)*(P(p17q1]T21) > %.
Let & = (1 + 1,majo—1, €5 "), jo = 0(&1) and apply again Lemma [7.6] for
j =449 and po = g1 + 1. Inductively we construct p; < q1 < p2 < g2 < ...,
a sequence (z;,7;)!_; such that each (z;,7;) is (16C,4j;,0) exact pair with
ranz; C (pi,qi], ;€ qu‘? HI - P(pi,qi}TziH < 5mlﬁ and E;;F(P(pi,qi}Tzi) > %
Observe that (z);0 " is a (16C,2jy — 1,0) dependent sequence and let
~ € T' with analysis {pi,qi,&,e_m}*}?ijf*l. We notice that dZi(zj) = 0 for
every i, j while for every i

e_“/>*(TZi) 2 M0t (a;;k(P(Pi,qz'}TZi) — 1 = P, 40 Tzill) > 87”253'0—1 o n2;z_1'
Setting z = n2jt71 2?223'1071 z; we have the estimation
n2jo—1 5
e (Tz) = nyp 4 e (Tz) > T6may 1

i=1
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Proposition 6.9 yields that ||Tz| <

30-16C||T . .
mgi””. Now jp can be suitable chosen
2j9—1

in order to conclude that &2 *(Tz) > ||Tz| yielding a contradiction. O

All the above yield

Proposition 7.8. Let T be a linear and bounded operator on Z. Then,
there exists a scalar A\ such that the operator T'— A\ is horizontally compact.

Proof. Let (wg)ren be a normalized RIS in Z. Lemma [.7] yields that there
exist scalars A\ such that ||[Twy — A\pwg| — 0. An easy argument as in
[B], Theorem 7.4 implies that the scalars \; tend to some scalar A which
does not depend on the choice of (wy)ren. By Proposition we deduce that
(T — AI)zg|| — 0, for every bounded block sequence (zx)nen in Z. O

8. Quasi PRIME AH-L> sUMS OF BANACH SPACES

We now study AH sums for specific sequence of Banach spaces. In par-
ticular, we denote by Z, for 1 < p < oo the AH-L, sum of the sequence
(Xn, || - lln)nen such that X,, = ¢, for every n € N. A direct consequence of
the proceeding study is the following:

Corollary 8.1. (i) Z, is non isomorphic to £,.
(ii) For every bounded and linear operator 7' on Z,, there exists a scalar
A such that the operator T'— AI is horizontally compact.

Proof. For (i) we observe that by Proposition [6.10] the space Z, contains
an HI subspace and thus cannot be isomorphic to ¢,. The second (i7) is a
direct application of Proposition [.8l O

As it is shown in the next proposition /), is isomorphic to complemented
subspaces of Z,,.

Proposition 8.2. For every kg € N the image P j,(Z)) is isomorphic to
.

Proof. We set Yy, = P ,(2p) and we recall that Yy, is isomorphic to

Uk, = (z],zozl Bl ® loo(Ak)))oo- It is easy to see that Uy, is isomorphic
to £,. More precisely there exists a constant Cy, > 1 such that ||[¥]le <
|||, < Cro | ]| oo for every W € Uy,. We mention that Cj — oc. O

Remark 8.3. In a similar manner as above we have that (3.F_  @®(f, ®
loo(Af)))so is isomorphic to £, for every m < k. Hence, Lemma we
deduce that Py, 11(2)) is isomorphic to £, for every m < k.

In order to show that the spaces Z, are strictly quasi prime we need the
following lemmas.

Lemma 8.4. Let 1 < p < oo and suppose that Z, ~ U @ V. Then,
there exists kg € N such that either P 1|y or Py |y is an isomorphic
embedding.
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Proof. Let P : Z, — 2, be a projection onto U. By Corollary [B.1] we
have that there exists a scalar A such that P = A + K, where K is a
horizontally compact operator on Z,. If A = 0 we have that U = K[Z,] and
by the definition of the horizontally compact operator the result trivially
holds for U. Otherwise, A # 0 and we claim that in this case P} )|V is
an isomorphic embedding. Indeed, if we assume the opposite we can find a
normalized sequence (v, )nen in V' and a block sequence (zy,)nen in Z, such
that ||v, — x,|| — 0. Since ||K(z,)|| — 0 we have that [|[K(v,)|] — 0. A
simple observation is that |\ — || K (vy,)| < ||P(vy,)|| which yields that A =0
contradiction our initial assumption. O

The arguments of the next lemma are adapted from [3] (Lemma 3).

Lemma 8.5. Let 1 < p < oo and Y be a subspace of Z, for which there
exist ko € N such that P} ;v is an isomorphism. Then, the following hold:

(1) If p =1 and Y is complemented in Z; by a projection P, then for
every € > 0, there exists k. € N such that |P(2)| < ¢||z|| for every
S P(kg,oo)[Zl]-

(2) If p > 1, then for every ¢ > 0 there exists k. € N such that
[P ke 00) W) < €lly]| for every y € Y.

Proof. In Case (1) if we assume the opposite, then there exists € > 0 such
that for every k& € N, there exists 3, € Zj(; o) such that ||z = 1 and
|P(2x)|| > €. Using a sliding hump argument we may also assume that the
sequence (zr)gen is block. This implies that both (zx)ren and (P(zg))ken
are weakly null. Since Y is isomorphically embedded into Zy; 3, which is
isomorphic to ¢; and by the Schur property of ¢; we deduce that ||P(z)| —
0, which is a contradiction.

In Case (2), contradicting the assumption again, we have that there exists
e > 0 such that for every k € N, a normalized sequence (y)ren in Y and a
sequence of successive intervals (Ij)ien such that || Py, (y)|| > €. Now, since
Y is isomorphically embedded into Z; 3, ~ ¢, passing to a subsequence if
necessary, we may assume that the sequence zp = yor — yor_1 is w-null and
passing again to a subsequence we have that (zx)g is equivalent to the unit
standard vector basis of ¢,. Thus, there exists a constant C' > 0 such that

1

25771 2] < C2 for every n € N.

1

o nf
Fix 7 € N such that 16#7”2]_ > C’n—2;.
have that || Pmin 1, 1,00)¥k|| — 0 and thus we may assume that || P, 2| > §

for every k € N. Considering Lemma for the chosen j, J. = Iy and

§ = £/2 there exist elements (zy,);~) and v € ' of weight w(y) = ma; such
1

Passing to a subsequence we can

p
n2j
nayj

that \efy(zzjl 2 )| > 122 Tt follows that Hn—lzj ST 2|l > 16ng]» >C

16mo;
yielding a contradiction.
O
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Proposition 8.6. The spaces Z,, 1 < p < oo are strictly quasi prime.

Proof. Let 1 < p < 0o and set Z = Z,. Suppose that Z ~ V @ U and let
P : Z — Z such that ImP = V. By Lemma we may assume that V
does not contain an HI subspace and hence Lemma implies that there
exists kg € N such that || PP, ,00)|v | < 1 and [Py ,00)Plz, o | < 1. This
yields that the operators P : Py (V) — V and Py 0 V = Pyg(V)
are inventible as well as S = Py 3P : Py p)(V) = P (V). Let Q :
Ziky) — V defined as @ = S~1o P[Lko}P‘Z[l,kO]' Then @ is a projection
onto Py (V) = V and since Zj 5, =~ f, we have that V =~ f,. The
following factorization

1-P . Pige0)
Z(ko,oo) — U i) Z(ko,oo)

yields that Z, o) is isomorphic with a complemented subspace of U. In

particular, by Remark we deduce that ¢, is isomorphic to a comple-

mented subspace of U. Therefore, U ~ {, ® Z ~ l, L, 2 ~ {, DU ~

VoeU~2Z, O

9. COMPLEMENTED SUBSPACES OF Zg

In this section we shall study the complemented subspaces of a finite
powers 2! = > | ©Z,(i), endowed with the supremum norm as an external
one. It is clear that since Z), is strictly quasi prime Z ~ £, Z}. Therefore,
we are interested for the non trivial complemented subspaces of Z} that are
not isomorphic to £,

Notation 9.1. For the sequel, for I € N and L C {1,2,...,n} we de-
note by PF : Z} — ZJ, the natural projections defined as PESTE  z) =
>ier Pr(zi), for 370 | 2z € Z). In the case that L = {1,2,...,n} we simply
write P;'. For technical reasons, for a subspace Y of Z} we will write Y
instead of P7'(Y). Moreover, we say that a sequence (7)ren in 2} is block
if max;j—1  p{ranzi(i)} < mini—; _,{ranxg41(i)}, where x (i) € Z,(i).

The following lemma is a generalization of Lemma

Lemma 9.2. Let 1 < p < oo and Y be a subspace of Z} for which there
exist kg € N such that P[TIL o] |y is an isomorphism. Then, the following hold:

(1) If p=1 and Y is complemented in Z* by a projection P, then for
every € > 0, there exists k. € N such that ||P(z)|| < ¢||z|| for every
LS I [Z]].

(2) If p > 1, then for every ¢ > 0 there exists k. € N such that
1P ooy @I < ellyll for every y €Y.

Proof. Case (1) is proved using the same arguments as in Case (1) of Lemma
In Case (2), contradicting the assumption again, we have that there
exists € > 0 such that for every k € N, a normalized sequence (yx)ren in Y
and a sequence of successive intervals (Iy)ren such that || Pf (yx)| > €. For



BOURGAIN-DELBAEN £*-SUMS OF BANACH SPACES 27

every k, let ny € L satisfying || Pf; (yx)(n)|| = €. Then, there exists M € [N]
such that ny = ng for every k € M. Using arguments as in the proof of
Lemma B3)2) we arrive to a contradiction. O

Notation 9.3. Let T': Z — Z be a linear and bounded operator. Then,
T is written into the form T' = (T j)1<ij<n, Where T;; : Zpy — Zp0)-
Proposition RIJ(1) yields that for every 1 < 4,5 < n there exists a scalar
Aij such that T; ; = \; ;1; ; + K; j, where I; ; Zp(j) — Zp(i) is the natural
identity map and K;; : Z,;) = Zp(;) s a horizontally compact operator.
Setting A = ()\i,j)lgi,jgm Al = ()‘LJ'IZ'J)lSi,]'Sn and K = (Ki,j)lgi,jgn we
have that T'= Al + K.

Lemma 9.4. Let m < n and T : ZI? — Zgb be a linear and bounded
operator of the form T"= Al + K as above. Then,
(1) If m = n and T is a projection, then A = (X; j)1<i j<n is a projection
on R™.
(2) If n > m, then T cannot be an isomorphic embedding.

Proof. For the first assume, on the contrary, that A?> # A. Then, there
exists 0 # @ = (ay,...,a,) € R such that A%(a) # A(a). We may assume
that |a;] <1 for all 1 <4 < n and that there exists iy such that |a;,| = 1.
We consider the supremum norm on R" and let 0 < e = [|[A%(a) — A(a)]|.
Note that P? = A% + K’, where K' = (AI)K + K(AI) + K2 Since K; ;
are horizontally compact we can find kg € N and x € Z,;, o) such that
|z|]| = 1 and both [|K(Z)|| < §, [[K'(Z)|] < §. Let #; € 2" defined as

4
0. if i 2 i
z;(4) = ’ 1.fz‘ 7&‘]‘ and we set & = Y ", a;%;. Clearly, & belongs in
x, if i =j
- . ~ - - . € €
|P?(&) — P(@)| > [A*I(2) — AL(@)] - | K (%) - K'(#)]| > e - 3= 5
which contradicts the fact that P? = P.
For the second part we refer the reader to [5], Prop.3 O

Proposition 9.5. Let W be an infinite dimensional complemented subspace
of ZJ'. Then, either W =~ £, or there exists a non-empty set L C {1,...,n}

such that W is isomorphic to ZPL(: Y e ®2p)-

Proof. Let P : Z)) — Z)' be a projection onto W, i.e P[Z]] = W. Lemma
(1), yields that A = (\;;); is a projection on R". Thus, there exists
an inventible matrix A : R” — R" of the form A = (a; ;)1<i j<n such that
Oorl, ifi=j
1, ifi#j
inventible operator A = (@i j1;)1<ij<n We set P = APA™! Tt is easy to
see tha‘E P :~ZI’}~—> zy ~is a projection of the ~form P = (Njlij)ij + K
where K = AKA™! = (K; j)1<i j<n such that K;; is horizontally compact

ANA™Y = (A j)1<ij<n Where \;; = Considering the
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for every 1 < i,7 < mand W ~ P[Zg]. Therefore we may assume that
P="P(ieK=K, A=A).
We set L = {i: p;; # 0}.We distinguish into the following cases:

Case 1: L = (). This implies that P = K. We claim that there exists kg € N
such that P[’ll’ko]|w is an isomorphism. Indeed if not, then we can find a
normalized sequence (wy,)ken and a block sequence (xx)ken in Z such that
|lxx — wg|| — 0. Since [|[K(x)|| — 0 we have that ||wg| = ||P(wy)| =
| K (wg)|| — 0, a contradiction. Lemma [0.2] implies that there exist ¢ € N
such that ||PP(70700)|WH < 3. We conclude that W ~ Wi, and setting

T:P, o P|W[n

[L,lo] (R W[’f ] " . we have that T is an isomorphism and
) slo s

[l,lo]
-1 . . . . .
T o P[Tllvlo] o P|p[71L7ZO]Z;L : Zz?[llo} — Wﬁ,lo} is a projection on Wﬁm. Since

Zg[l’lo} ~ /,, the result follows.

Case 2: L # (). In this case we prove that W ~ ZPL. In particular, we
shall prove that W ~ Zﬁ @Y, where Y ~ /, and since Z, is quasi prime,
ie Z, ~ Z,®{,, the result will follow. We recall that K = (K ;);; where
each K;; is horizontally compact and hence we can find ky € N such that
”K’Zﬁko,w) | < L. It follows that the operator

L . =L L
Plro.o0) © Plzr, )+ Zpikoco) = Znlioco)
is inventible. Moreover the factorization of the above operator yields that

ZpL ~ ZL(kO 00) is isomorphic to a complemented subspace of W and thus

W ~ ZpL @ Y as promised. Then, it is easy to see that there exists {5 € N
such that [TlL,lo}‘Y is an isomorphic embedding. Working similarly as in
Case 1 and using Lemma we obtain that Y is complemented in ¢, and
so isomorphic to /. O

Lemma [0.4)2) and Propositions yield the following.

Corollary 9.6. The spaces Z, for 1 < p < oo admit exactly n + 1, up to
isomorphism, complemented subspace.
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