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BOURGAIN-DELBAEN L∞-SUMS OF BANACH SPACES

DESPOINA ZISIMOPOULOU

Abstract. Motivated by a problem stated by S.A.Argyros and Th.
Raikoftsalis, we introduce a new class of Banach spaces. Namely, for
a sequence of separable Banach spaces (Xn, ‖ · ‖n)n∈N, we define the
Bourgain Delbaen L∞-sum of the sequence (Xn, ‖ · ‖n)n∈N which is a
Banach space Z constructed with the Bourgain-Delbaen method. In
particular, for every 1 ≤ p < ∞, taking Xn = ℓp for every n ∈ N

the aforementioned space Zp is strictly quasi prime and admits ℓp as a
complemented subspace. We study the operators acting on Zp and we
prove that for every n ∈ N, the space Zn

p =
∑n

i=1 ⊕Zp admits exactly
n+ 1, pairwise not isomorphic, complemented subspaces.

1. Introduction

There has been an extensive study of Schauder sums of sequences of Ba-
nach spaces (Xn, ‖ · ‖n) ([1],[5]) with many interesting applications, depend-
ing on the choices of the spaces Xn and the external norm. In particular,
in [1] the authors defined Schauder sums of arbitrary sequence of separable
Banach spaces (

∑

n∈N⊕Xn)GM where the external norm is based on the
Gowers Maurey norm [9].

In [5] the authors studied further the spaces Xp = (
∑

n∈N⊕ℓp)GM for
1 ≤ p < ∞, X0 = (

∑

n∈N⊕c0)GM as well as the space of their bounded,
linear operators. Moreover, in the same paper it was proved that for X = Xp

or X0 the space X
n = (

∑n
i=1 ⊕X)∞ admits at least n+1, up to isomorphism,

complemented subspaces and it was stated as an open problem whether they
are exactly n+1. We do not give an affirmative answer to this problem but
instead, following the basic scheme of the authors in [3] we present a method
of constructing for every n ∈ N Banach spaces with exactly n + 1, up to
isomorphism, complemented subspaces. In particular, we shall define and
construct Schauder sums of sequences of Banach spaces with an external
norm that is based on the original Bourgain-Delbaen norm ([6]).
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Learning” of the National Strategic Reference Framework (NSRF) - Research Funding
Program: Heracleitus II. Investing in knowledge society through the European Social
Fund.
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We now give a description of how this paper is organized. In section
2, given a sequence of separable Banach spaces (Xn, ‖ · ‖n)n∈N, we de-
fine the Bourgain Delbaen (BD) -L∞-sum of (Xn, ‖ · ‖n)n∈N, denoted as
Z = (

∑

n∈N⊕Xn)BD. This space is defined along with a sequence of pair-
wise disjoint and finite subsets of N, the so called ”Bourgain-Delbaen” sets
(∆n)n∈N. Z has a Schauder Decomposition (Zn)n∈N and there exists a con-
stant C > 0 such that Zn ≃C (Xn ⊕ ℓ∞(∆n))∞ for every n ∈ N.

In section 3 we study Z∗ and we show that if the Schauder Decomposition
(Zn)n∈N of Z is shrinking then Z∗ can be identified with (

∑

n∈N⊕(X∗
n ⊕

ℓ1(∆n))1)1. In Section 4 we describe in detail the construction of Z. We
also study the special case where the Bourgain Delbaen external norm is
the Argyros-Haydon norm in [3], yielding spaces Z which we denote by
(
∑

n∈N⊕Xn)AH . We devote Sections 5,6 and 7 into proving the following.

Theorem 1.1. Let (Xn, ‖ · ‖n)n be a sequence of separable Banach spaces
and Z = (

∑∞
n=1⊕Xn)AH . Then the following hold:

(1) The space Z admits a shrinking Schauder Decomposition.
(2) Every block (with respect to (Zk)k∈N ) sequence (xn)n∈N generates

an HI subspace, i.e. the subspace < xn : n ∈ N > of Z is HI.
(3) Assume that for every n ∈ N, either ℓ1 does not embed in X∗

n or Xn

has the Schur property. Then, for every bounded, linear operator T
on Z there exists a scalar λ ∈ R such that the operator T −λI on Z
is horizontally compact, i.e. for every bounded, block (with respect
to (Zn)n∈N ) sequence (zk)k∈N in Z, ‖(T − λI)zk‖ → 0.

In Section 8 we prove that Zp = (
∑

n∈N⊕ℓp)AH for 1 ≤ p < ∞ is strictly
quasi prime and contains isomorphically ℓp as a complemented subspace.
We recall (see [3]) that a Banach space X is strictly quasi prime if there
exists a subspace Y of X not isomorphic to X such that X admits a unique
non trivial decomposition as Y ⊕X.

Our main result is proved in Section 9:

Theorem 1.2. For every 1 ≤ p < ∞ and n ∈ N the space Zn
p = (

∑n
i=1⊕Zp)∞

has exactly n+ 1 up to isomorphism complemented subspaces.

We must mention that similar results were obtained by many authors
using different techniques. Namely, P. Wojtasczszyk in [12] and P. Woj-
tasczszyk, I.S. Edelstein in [7] proved that for every n ∈ N there exists
a separable Banach space with exactly 2n − 1 complemented subspaces.
Moreover, as it is pointed out in [8], W.T. Gowers and B. Maurey in [10]
constructed for every n ∈ N a Banach space Xn that has exactly n up to
isomorphism complemented subspaces. Our approach is more direct using
a combination of techniques which are presented in [3] and [5].

This introduction cannot end without giving my special thanks to my
advisor and Professor S. A. Argyros for his helpful advice as well as to I.
Gasparis for useful conversations regarding the results of this work.
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2. The definition of a BD-L∞-sum of Banach spaces

We start by giving the needed terminology.

Notation 2.1. Let (En, ‖·‖En)
∞
n=1 be sequences of separable Banach spaces.

For I interval of N or I = N we consider direct sums (
∑

n∈I ⊕En)∞, we use
vectors as −→x ,−→y ,−→z to represent their elements. For −→x ∈ (

∑

n∈I ⊕En)∞ we
denote by −→x (n) the n-th coordinate of −→x in En and the norm is defined
as ‖−→x ‖∞ = supn∈I ‖

−→x (n)‖En . In a similar manner we consider dual direct
sums (

∑

n∈I E
∗
n)1 consisting of elements functions vectors which we denote

by
−→
f ,−→g ,

−→
h , etc. For an element

−→
f we define ‖

−→
f ‖1 =

∑

n∈I ‖
−→
f (n)‖E∗

n
and

for−→x ∈ (
∑

k∈I ⊕Ek)∞ we denote by
−→
f (−→x ) the inner product

∑

n∈I

−→
f n(

−→x n),

where
−→
f n =

−→
f (n) and −→x n = −→x (n).

For every I finite interval of N we denote by RI the natural surjections
RI : (

∑

n∈N⊕En)∞ → (
∑

n∈I ⊕En)∞ defined as RI(
−→z ) = (−→z (n))n∈I . We

use a ”star” notation R∗
I to regard in a similar manner the natural surjection

on the duals, i.e. R∗
I : (

∑

n∈N ⊕E∗
n)1 → (

∑

n∈I ⊕E∗
n)1

For I, J intervals of N we say that I, J are successive denoted as I < J
if max I ≤ minJ . Let I1 < I2 < I3 such that max Ii + 1 = min Ii+1 for
every i = 1, 2. For vectors −→x 1,

−→x 2,
−→x 3 such that −→x i ∈ (

∑

k∈Ii
⊕En)∞

we denote by (−→x 1,
−→x 2,

−→x 3) the vector −→y ∈ (
∑max I3

n=min I1
⊕En)∞ defined as

−→y (n) = −→xi(n) whenever n ∈ Ii. Similarly we define vectors (
−→
f 1,

−→
f 2,

−→
f 3)

in (
∑

n⊕E∗
n)1 where

−→
f i ∈ (

∑

k∈Ii
⊕E∗

n)1.

We now recall the definition of classical L∞ spaces (see [3]),a generalised
form of which will be used in order to define the new class of spaces, namely
the BD L∞ sums of Banach spaces.

Definition 2.2. We say that a separable Banach space X is L∞,C where
C > 0 is a constant, if there exists a strictly increasing sequence (Yn)n∈N of
subspaces of X such that Yn is C- isomorphic to ℓ∞(dimYn) for every n ∈ N

and X = ∪n∈NYn.

We also recall that for Banach spaces Z,W and a constant M > 0 we
say that Z is M - isomorphic to W if there exists T : Z → W such that
‖T‖‖T−1‖ ≤ M .

Definition 2.3. Let (Xn, ‖ · ‖n)n∈N be a sequence of separable Banach
spaces. A Banach space Z is called a Bourgain Delbaen(BD)-L∞-sum of
the sequence (Xn, ‖ · ‖n)n, denoted as Z = (

∑∞
n=1 ⊕Xn)BD, if there exists a

sequence (∆n)n∈N of finite, pairwise disjoint subsets of N and the following
hold:

(1) The space Z is a subspace of (
∑∞

n=1 ⊕(Xn ⊕ ℓ∞(∆n))∞)∞.
(2) There exist C > 0 and for every n, a linear operator

in :
n
∑

k=1

⊕(Xk ⊕ ℓ∞(∆k)) → (
∞
∑

n=1

⊕(Xn ⊕ ℓ∞(∆n))∞)∞
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such that
(a) ‖in‖ ≤ C for every n ∈ N.
(b) For −→x ∈

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k)) we have that R[1,n](in(

−→x )) =
−→x , R(n,∞)(in(

−→x )) ∈
∑∞

k=n+1⊕ℓ∞(∆k) while for every l ≥ n+1

we have that il(R[1,l]in(
−→x )) = in(

−→x ).

(3) Setting Yn = in[
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k))], the union ∪nYn is dense in
Z.

In order to simplify the symbolisms, for I interval of N we shall write
∑

k∈I ⊕(Xk ⊕ ℓ∞(∆k)) instead of (
∑

k∈I ⊕(Xk ⊕ ℓ∞(∆k))∞)∞.

2.1. The general construction. We now present the basic ingredients
of constructing this new type of spaces which is based on the Bourgain-
Delbaen(BD)- method of construction (see [6]).

Let (Xn, ‖ · ‖n)n∈N be a sequence of separable Banach spaces and let also
(∆n)n∈N be a sequence of pairwise disjoint intervals of N. We denote by Γ the
union Γ = ∪n∈N∆n and use letters as γ, ξ, η to denote elements of the sets Γ.
For every γ ∈ ∆n we assign a linear functional c∗γ :

∑n−1
k=1(Xk⊕ℓ∞(∆k)) → R

and for n < m ∈ N we define by induction a linear operator

in,m :
n
∑

k=1

⊕(Xk ⊕ ℓ∞(∆k)) →
m
∑

k=1

⊕(Xk ⊕ ℓ∞(∆k))

as follows: For m = n+ 1 and −→x ∈
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k))

in,n+1(
−→x ) = (−→x ,−→x n+1)

where −→x n+1 = (0Xn+1 , (c
∗
γ(
−→x )γ∈∆n+1) ∈ Xn+1 ⊕ ℓ∞(∆n+1).

Then assuming that in,m has been defined, we set in,m+1 = im,m+1 ◦ in,m.
It is clear that for every n < l < m, in,m = il,m ◦ in,l.

Remark 2.4. The boundeness principle for (in,m)n≤m. Assume that
there exists C > 0 such that ‖in,m‖ ≤ C for every n ≤ m. We define
in :

∑n
k=1⊕(Xn ⊕ ℓ∞(∆n)) → ℓ∞[(Xn, ℓ1(∆n))] as the direct limit

in = lim
−→

m→∞

in,m.

It follows that the operators in are uniformly bounded by C and since
‖in(

−→x )‖∞ ≥ ‖−→x ‖∞ the operators in are isomorphic embeddings. We can
then define Yn = in[

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k))] and Z = ∪n∈NYn. It immediate

follows that Yn ⊂ Yn+1, each Yn is C-isomorphic to
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k))
and moreover considering Definition 2.3 we conclude by the above that
Z = (

∑

n⊕Xn)BD.
Viewing Z as a close subspace of (

∑∞
n=1⊕(Xn⊕ ℓ∞(∆n))∞)∞ we restrict

the operators R[1,n] : Z →
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k)) for every n ∈ N and we
also restrict the image of in upon Z, in :

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k)) → Z. We

can also extend c∗γ : Z → R for every γ ∈ ∆n as c∗γ(z) = c∗γ(R[1,n]z).
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We note that the definition of in yields that for x = in(
−→u ) ∈ Yn,

‖x‖ = max{‖−→u ‖∞, sup
γ∈Γ

|c∗γ(x)|}.

For each n, we define projections P[1,n] : Z → Z by the rule P[1,n] =
in ◦R[1,n]|Z with ImP[1,n] = Yn. An easy observation is the following.

Lemma 2.5. Let n ∈ N and x ∈ Yn. Suppose that there exists m < n such
that P[1,m]x = 0 then there exists −→u ∈

∑n
k=m+1⊕(Xk ⊕ ℓ∞(∆k)) such that

x = in(
−→
0 1,m,−→u ).

Proof. We first treat (1). Note that x = P[1,n](x) = in(
−→y ) where −→y =

R[1,n](x) ∈
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k)). Since P[1,m]x = 0Z = im(R[1,m]x) it

follows that R[1,m]x =
−→
0 1,m which yields that −→y = (

−→
0 1,m,−→u ) such that

−→u = R[m+1,n](x) ∈
∑n

k=m+1⊕(Xk ⊕ ℓ∞(∆k)). �

2.2. Schauder Decomposition of our space Z. For n ≤ m we define
P(n,m] = imR[1,m]|Z − inR[1,n]|Z . Since in are uniformly bounded (property
b) we have that ‖PI‖ < 2C for every interval I ⊂ N. Moreover, by property
(d) of Definition 2.3 for every n,m ∈ N it is clear that P[1,n] ◦ P[1,m] =

P[1,min{m,n}]. Since Z = ∪n∈NP[1,n][Z], setting Z1 = P[1,1] and Zn = P{n}[Z],
where P{n} = P[1,n] − P[1,n−1] it follows easily that (Zn)n∈N is a Schauder
decomposition of the space Z.

Note that for every k ≤ m an element x belongs in
∑m

n=k Zn if and only
if x ∈ Ym and P[1,k]x = 0. We finally note that by Lemma 2.5

Zn = {(z = in(
−→
0 1,n,

−→u ) : −→u ∈ Xn ⊕ ℓ∞(∆n)}.

Let P ∗
[1,n] : Z∗ → Z∗ be the adjoint projections. We define Z∗

[1,n] =

ImP ∗
[1,n] for each n ∈ N and we observe the following.

Lemma 2.6. For every n, the restricted operator i∗n : Z∗
[1,n] → (

∑n
k=1(X

∗
k ⊕

ℓ1(∆k))1)1 is an isomorphism onto satisfying that ‖z∗‖ ≤ ‖i∗n(z
∗)‖1 ≤ C‖z∗‖

for every z∗ ∈ Z∗
[1,n].

Proof. Since ‖i∗n‖ = ‖in‖ for every n ∈ N the right hand inequality is trivial.
For the left hand inequality it is enough to show that for every f ∈ Z∗

[1,n]

such that ‖f‖ = 1 we have that ‖i∗n(f)‖ ≥ 1 − ε for every ε > 0. Let
z∗ ∈ Z∗

[1,n] such that ‖z∗‖ = 1 and ε > 0. Let also z ∈ Z such that ‖z‖ = 1,

|z∗(z)| ≥ 1 − ε. Then, we have that z∗ = P ∗
[1,n]u

∗ for u∗ ∈ Z∗ and we

set −→x = R[1,n](z). A simple observation is that u∗(in
−→x ) = u∗(inR[1,n]z) =

u∗P[1,n]z = P ∗
[1,n]u

∗(z) = z∗(z) ≥ 1− ε. Therefore, ‖i∗n(z
∗)‖1 ≥ |i∗nz

∗(−→x )| =

|z∗(in
−→x )| = |u∗P[1,n]in

−→x | = |u∗(in
−→x )| ≥ 1 − ε. It remains to show that

i∗n|Z∗

[1,n]
is onto. Observe that i∗n : Z∗ → (

∑n
k=1(X

∗
n ⊕ ℓ1(∆n))1)1 is onto

since in is isomorphic embedding and thus for
−→
f ∈ (

∑n
k=1(X

∗
n ⊕ ℓ1(∆n))1)1
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there exists g ∈ Z∗ such that i∗n(g) =
−→
f . Note that i∗n(g) = i∗n(P

∗
[1,n]g) and

the result follows. �

The next lemma yields that for every l ≥ n the restriction of the operator

i∗l : Z∗ → (
∑l

k=1(X
∗
k ⊕ ℓ1(∆k))1)1 upon Z∗

[1,n] extends the operator i∗n :

Z∗
[1,n] → (

∑n
k=1(X

∗
k ⊕ ℓ1(∆k))1)1.

Lemma 2.7. Let n ∈ N and f ∈ Z∗
[1,n]. Then, for every l ≥ n we have that

i∗l (f) = (i∗n(f),
−→
0 n+1,l).

Proof. Let g ∈ Z∗ such that f = P ∗
[1,n]g. For

−→x ∈
∑n

k=1⊕Xk ⊕ ℓ∞(∆k) we

have that i∗l f(
−→x ,

−→
0 n+1,l) = f(il(

−→x ,
−→
0 n+1,l)) = P ∗

[1,n]g(il(
−→x ,

−→
0 n+1,l)) =

g(in
−→x ) = g(P[1,n]in

−→x ) = i∗nf(
−→x ). Moreover, if −→x ∈

∑l
k=n+1⊕(Xk ⊕

ℓ∞(∆k)) then

i∗l f(
−→
0 1,n,

−→x ) = f(il(
−→
0 1,n,

−→x )) = (P ∗
[1,n]g)(il(

−→
0 1,n,

−→x ,
−→
0 n+1,l))

= g(in(
−→
0 1,n)) = 0.

�

3. The dual of (
∑

n ⊕Xn)BD

Before proceeding to the main construction we shall investigate the dual
of BD L∞ sums of a sequence of separable Banach spaces. We start by
fixing such a sequence (Xn, ‖ · ‖n)n∈N and let Z = (

∑

n⊕Xn)BD satisfying
Definition 2.3. As we will see we have more things to say considering the
dual in the case that the decomposition of the space Z is shrinking.

We need first to define the following operator

Φ : ∪∞
n=1Z

∗
[1,n] → (

∞
∑

n=1

⊕(X∗
n ⊕ ℓ1(∆n))1)1

as follows:
For f ∈ Z∗, we define Φ(f) = limn→∞ i∗nP

∗
[1,n](f). Lemma 2.7 and Lemma

2.6 yield that Φ is well defined and moreover the extended Φ : ∪∞
n=1Z

∗
[1,n] →

(
∑∞

n=1⊕(X∗
n ⊕ ℓ1(∆n))1)1 is an isomorphism onto.

Proposition 3.1. If the decomposition (Zn)n∈N of Z is shrinking, then Z∗

is isomorphic with (
∑∞

n=1⊕(X∗
n ⊕ ℓ1(∆n))1)1.

Proof. We just observe that if the decomposition is shrinking then Z∗ =
∪∞
n=1Z

∗
[1,n] and thus the isomorphism Φ : Z∗ → (

∑∞
n=1⊕(X∗

n ⊕ ℓ1(∆n))1)1
defined as above yields the result. �

The following results concern spaces Z = (
∑

n⊕Xn)BD with a shrinking
schauder decomposition and are helpful in terms of studying the operators
acting on Z. We recall that for I interval of N, R∗

I denotes the natural
restriction R∗

I : (
∑∞

n=1⊕(X∗
n ⊕ ℓ1(∆n))1)1 → (

∑

n∈I ⊕(X∗
n ⊕ ℓ1(∆n))1)1.
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Lemma 3.2. Let ε > 0, f ∈ Z∗ and m < n. Let also x ∈ Yn such that
‖x‖ ≤ 1, P[1,m](x) = 0 and |f(x)| ≥ ε. Then there exists l ≥ n and −→z ∈
∑l

k=m+1⊕(Xk⊕ ℓ∞(∆k)) such that ‖−→z ‖∞ ≤ 1 and |Φf(
−→
0 1,m,−→z ,

−→
0 l+1)| ≥

ε
2 . In particular, ‖R∗

[m+1,l](Φf)‖1 ≥
ε
2

Proof. Let δ > 0 such that δ < ε
2(‖T‖+1) . Let l ≥ n and g ∈ Z∗

[1,l] such

that ‖f − g‖ ≤ δ. By Lemma 2.5 we have that x = il(
−→
0 1,m,−→z ) where

−→z ∈ (
∑l

k=m+1⊕(Xk ⊕ ℓ∞(∆k)). Observe that ‖−→z ‖∞ ≤ ‖x‖ ≤ 1 and using
Lemma 2.7 we deduce that

|Φg(
−→
0 1,m,−→z ,

−→
0 l+1)| = |(i∗l g)(

−→
0 1,m,−→z )| = |g(x)| ≥ |f(x)|−‖f −g‖ ≥ ε−δ.

Thus, |Φf(
−→
0 1,m,−→z ,

−→
0 l+1)| ≥ |Φg(

−→
0 1,m,−→z ,

−→
0 l+1)| − ‖Φ‖‖f − g‖ ≥ ε

2 . �

Corollary 3.3. Let ε > 0, (xk)k∈N be a block sequence in Z and fk ∈ Z∗

such that |fk(xk)| ≥ ε. Then there exists finite pairwise disjoint intervals of
N such that ‖R∗

Ik
(Φfk)‖ ≥ ε

2 .

Proof. Since (xk)n∈N is block we can find m1 < n1 < m2 < n2 < . . . such
that xk ∈ Ynk

and P[1,mk]xk = 0. By Lemma 3.2 for every k ∈ N there exists
lk ≥ nk such that setting In = (mk, ln] we have that

‖R∗
Ik
(Φfk)‖ ≥

ε

2
.

Passing to a subsequence we can achieve that Ik are pairwise disjoint and
the proof is complete. �

The following proposition states a property first noticed in the Schauder
sum (

∑

k∈N⊕(X∗
k ⊕ ℓ1(∆n))1)1 but it will be presented in a more general

manner.

Proposition 3.4. Let (Wn)n∈N be a sequence of Banach spaces and letW =
(
∑

n∈N⊕Wn)1. Suppose that there exists a sequence (−→wk)k∈N, ε > 0 and a
sequence (Ik)n∈N of successive intervals of N such that ‖−→wk|∑

n∈Ik
Wn

‖ ≥ ε

for every k ∈ N. Then (−→wk)n∈N cannot be weakly null.

Proof. Suppose that (−→wk)k∈N is weakly null. We may also assume pass-
ing to subsequences and rearranging the numbering of (Ik)k∈N that −→wk ∈

(
∑max Ik

n=1 Wn)1 for every k ∈ N. Let k1 = 1 and choose
−→
f1 ∈ (

∑

n∈I1
⊕W ∗

n)∞

such that ‖
−→
f1‖∞ ≤ 1 and

−→
f1(

−→w1) ≥ ε. Since (−→wk)k∈N is weakly null there

exists N1 ⊂ N infinite such that minN1 = k2 > k1 and
∑

k∈N1
|
−→
f1(

−→wk)| <
ε
22 .

Choose
−→
f2 ∈ (

∑

n∈Ik2
⊕W ∗

n)1 such that ‖x2‖∞ ≤ 1 and
−→
f2(

−→wk2) ≥ ε. Fol-

lowing this manner inductively we find 1 = k1 < k2 < . . . and elements

(
−→
fj )j∈N such that

−→
fj ∈ (

∑

n∈Ikj
⊕W ∗

n)∞, ‖
−→
fj‖∞ ≤ 1,

−→
fj (

−→wkj ) > ε and
∑∞

i=j+1

−→
fj (

−→wki) <
ε

2j+1 . Setting
−→
f =

∑∞
j=1

−→
fj we have that ‖f‖∞ ≤ 1 and
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since −→wkj ∈ (
∑max Ikj

n=1 Wn)1 the following is deduced

−→
f (−→wkj ) =

j
∑

i=1

−→
fi (

−→wkj ) ≥
−→
fj (

−→wkj )−
∑

i 6=j

|
−→
fi (

−→wkj )|

≥ ε−

j
∑

i=1

ε

2i+1
≥

ε

2
,

contradicting the fact that (−→wkj )j∈N is weakly null. �

Definition 3.5. For every element z ∈ Z we define the range of z, denoted
by ran(z) to be the minimal interval I ⊂ N such that x ∈

∑

n∈I Zn. In a
similar manner for b∗ ∈ Z∗ we say that ran b∗ = (p, q) if b∗(z) = P ∗

(p,q)b
∗(z)

for every z ∈ Z. For z1, z2 ∈ Z, we will write z1 < z2 whenever ran z1 <
ran z2 and we will say that a sequence (zk)k∈I is horizontally block in Z, if
it is block with respect to the natural decomposition (Zn)n∈N, i.e. zk < zk+1

for every k ∈ I. In the sequel, whenever we refer to a block sequence, we
mean that the sequence is horizontally block.

The next result concerns (
∑

n⊕Xn)BD where the separable spaces Xn

satisfy additional properties.

Proposition 3.6. Let Z = (
∑

n⊕Xn)BD with a shrinking Schauder de-
composition such that ℓ1 does not embed in X∗

n for every n ∈ N or Xn

admits the Schur property for every n ∈ N. Let also T : Z → Z be a linear
bounded operator. Then, for every (zk)k∈N bounded block in Z and q ∈ N

there exists a subsequence (zj)j∈N such that ‖P[1,q]T (zj)‖ → 0.

Proof. We treat first the case that Xn has the Schur property for every
n ∈ N. Let (zk)k∈N be a bounded block in Z. Since (Tzk)n∈N is weakly null
then for every q ∈ N (P[1,q]Tzk)n∈N is weakly null. For each i using a sliding
hump argument and the Schur property of Xi we deduce that there exists a
subsequence (xj)j such that ‖P{i}Txj‖ → 0 and the result follows.

In the case that ℓ1 does not embed in X∗
n for every n ∈ N we assume on

the contrary that there exists q ∈ N and δ > 0 such that ‖P[1,q]T (zk)‖ ≥
δ for every k ∈ N. Applying Hahn-Banach we find w∗

k ∈ Z∗ such that
|w∗

k(P[1,q]T (zk))| ≥ δ. Using the adjoint operator T ∗ ◦ P ∗
[1,q] : Z

∗ → Z∗ and

setting z∗k = T ∗ ◦P ∗
[1,q](w

∗
k) it is clear that |z

∗
k(zk)| ≥ δ. We claim that there

exists a subsequence of (z∗nk
)k∈N that is equivalent to the unit vector basis

of ℓ1.
Indeed, if not by Rosenthal’s ℓ1 theorem we may assume, passing to a

subsequence, that (z∗k)k∈N is weakly Cauchy. Then, since (zk)k∈N is weakly
null we can choose inductively k1 < k2 < . . . such that setting z̃∗i = z∗k2i −

z∗k2i−1
we have that |z̃∗i (zk2i)| ≥

δ
2 . It is clear that (z̃∗i )i is weakly null and

applying Corollary 3.3 we find a sequence (Ii)i∈N of successive intervals of
N such that ‖R∗

Ii
(Φ(z̃∗i ))‖1 ≥ δ

4 . Proposition 3.4 implies that Φ(z̃∗i )i is not
weakly null yielding a contradiction.
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It follows that (P ∗
[1,q](w

∗
nk
))k is equivalent to the unit vector basis of ℓ1 and

thus ℓ1 ∈ Z∗
[1,q]. Since Z

∗
[1,q] ≃ (

∑q
n=1(X

∗
n⊕ℓ1(∆n))1)1 there exists n0 ∈ [1, q]

such that ℓ1 is isomorphically embedded in X∗
n0

yielding a contradiction. �

4. The Description of the Bourgain-Delbaen sets

Now we shall give a basic description of how the BD- sets ∆n will be
determined as well as the functionals c∗γ :

∑n−1
k=1 ⊕(Xk ⊕ ℓ∞(∆k)) → R for

γ ∈ ∆n. We fix a sequence of separable Banach spaces (Xn, ‖ · ‖n) and two
natural numbers a, b such that 0 < a ≤ 1 and 0 < b < 1

2 . We determine the
sets ∆n by induction satisfying:

(i) Each ∆n is finite and is the union of two pairwise disjoint sets ∆n =
∆0

n ∪∆1
n.

(ii) Every element γ in ∆0
n is represented as γ = (n, a, f, p, 0) with p ≤ n

for f functional in a finite subset of the unit ball BX∗
p
, while if

γ ∈ ∆1
n, γ is represented as γ = (n, b, η, p, ξ), where η ∈ ∆1

p for
p < n− 1 and ξ ∈ ∆k with p ≤ k ≤ n− 1.

For γ ∈ ∆n we denote by e∗γ the usual vector element of ℓ1(∆n). We iden-
tify X∗

n with (X∗
n⊕{0})1 and ℓ1(∆n) with ({0}⊕ℓ1(∆n))1 via identifications

X∗
n ∋ x∗ 7→ −→x ∗ = (x∗, 0) and respectively e∗γ 7→ −→eγ

∗ = (0, e∗γ). Note that

‖x∗‖X∗
n
= ‖−→x ∗‖1 and ‖−→eγ

∗‖1 = ‖e∗γ‖1.

For m ≤ n
−→
f ∈ (X∗

m ⊕ ℓ1(∆m)) and −→y ∈
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k)) we

denote by
−→
f (−→y ) the natural action

−→
f (−→y (m)).

Let −→x ∈
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k)) and assume that for every k ≤ n the
sets ∆k have been determined as well as the operators (im,l)m≤l≤n. For
γ = (n+ 1, x∗, p, 0) ∈ ∆0

n+1 we define

c∗γ(
−→x ) = a−→x ∗(−→x ),

while for γ = (n + 1, b, η, p, ξ) ∈ ∆1
n+1 we define

c∗γ(
−→x ) = a−→eη

∗(−→x ) + b−→eξ
∗(−→x − (ip,n−1R[1,p]

−→x )).

As described above every element γ∆n is represented as γ = (n, a, f, p, 0)
or γ = (n, b, η, p, ξ). Each coordinate represents a difference characteristic
that defines uniquely γ and we shall use some of the them to define useful
concepts. In particular we define the first coordinate as the rank of γ, i.e
rank(γ) = n whenever γ ∈ ∆n. We also define the second coordinate as the
weight of γ, w(γ) = a or b.

4.1. Argyros Haydon BD-sets. We will now use the Argyros-Haydon
version of ”Bourgain Delbaen” sets as they where presented in [3]. We
shall follow the above basic scheme in a more general manner for the fixed
sequence of separable Banach spaces (Xn, ‖ · ‖n)n∈N.

We choose a pair of strictly increasing sequences (mj)j∈N, (nj)j∈N of nat-
ural numbers such nj ≥ m2

j satisfying the requirements of Assumption 2.3

in [3].
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For every I = [m,n] finite interval of N we identify (
∑

k∈I ⊕X∗
k)1 with

(
∑

k∈I ⊕(X∗
k ⊕ {0})1)1 via identification

−→
f = (x∗m, . . . , x∗n) 7→

−→
f = (−→x ∗

m, . . . ,−→x ∗
n)

Similarly we identify (
∑

k∈I ⊕ℓ1(∆k))1 with (
∑

k∈I ⊕({0} ⊕ ℓ1(∆k))1)1, i.e.

for
−→
b ∗ = (b∗m, . . . , b∗n) such that b∗k =

∑

γ∈∆k
aγe

∗
γ we identify

−→
b ∗ with

−→
b ∗ = (

−→
b ∗
m, . . . ,

−→
b ∗
n) where

−→
b∗k =

∑

γ∈∆k
aγ

−→
e∗γ .

We choose Fn 1-norming countable and symmetric subset of the unit ball
of X∗

n (recall that Xn is separable). We denote by Fm
n the first m-elements

of Fn and for every p < n we define a subset Kn,p of (
∑n

k=p+1⊕X∗
k)1 defined

as

Kn,p = {
−→
f = (x∗p+1, . . . , x

∗
m) : x∗k ∈ Fn

k ∪ {0},
∑

k

‖x∗k‖X∗

k
≤ 1}.

As in [3] (Section 4) we choose a strictly increasing sequence of natural
numbers (Nn)n∈N, we set Gn = {q ∈ Q : q = k

l
ldivides Nn!} and define a

subset Bn,p of (
∑n

k=p+1⊕ℓ1(∆k))1 as

Bn,p = {
−→
b∗ = (b∗1, . . . , b

∗
k) : b∗k =

∑

γ∈∆k

aγe
∗
γ , aγ ∈ Gn

∑

γ∈Γn\Γp

|aγ | ≤ 1}

Along with ∆n we will also recursively define an injection σ : ∆n → N

such that min{σ(γ) : γ ∈ ∆n} ≥ max{σ(γ) : γ ∈ ∆n−1}, hence σ(γ) > n for
all γ ∈ ∆n. Since ∆n is finite this is possible.

Let ∆0
1 = ∅, ∆1 = ∆1

1 = {1} and σ(1) = 2. Assume that ∆k and
σ : ∆k → R have been defined for every k ≤ n we define ∆n+1 = ∆0

n+1∪∆
1
n+1

such that

∆0
n+1 = {(n + 1, p,

−→
f , 0) :

−→
f ∈ Kn,p}

∆1
n+1 =

{

(n+ 1,m2j , p,
−→
b∗ ) : 2j ≤ n+ 1, p < n ,

−→
b∗ ∈ Bn,p

}

∪
{

(n + 1, η,m2j , p, ,
−→
b∗ ) : 2j ≤ n+ 1, p < n, η ∈ ∆1

p, w(η) = m2j ,

,
−→
b∗ ∈ Bn,p

}

∪
{

(n + 1,m2j−1,
−→
e∗η) : 2j ≤ n+ 2, η ∈ ∆k, k ≤ n,

w(η) = m4i−2 > m2
2j−1

}

∪
{

(n + 1, η,m2j−1, p,
−→
e∗ξ ) : 2j ≤ n+ 2, η ∈ ∆1

p, w(η) = m2j−1, ,

ξ ∈ ∆k, p < k ≤ n, w(ξ) = m4σ(η)

}

.

We define σ : ∆n+1 → N satisfying that min{σ(γ) : γ ∈ ∆n+1} ≥
max{σ(γ) : γ ∈ ∆n}. The functionals c∗γ for γ ∈ ∆n are defined as in
the above section but with some differences concerning the parameters a, b.
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In our case a will always be equal to 1 and thus w(γ) = 1 for every γ ∈ ∆0
n,

n ∈ N, while b = mj whenever γ ∈ ∆1
n and w(γ) = mj.

Remark 4.1. 1. We note that for every p ≤ n and
−→
f ∈ Kp,n we have that

‖
−→
f ‖1 ≤ 1. Indeed, let

−→
f = (x∗p+1, . . . , x

∗
n) such that x∗k ∈ Fm

k ∪ {0X∗

k
} and

∑

k ‖x
∗
k‖X∗

k
≤ 1. Observe that ‖

−→
x∗k‖1 = ‖x∗k‖X∗

k
and since ‖

−→
f ‖1 =

∑

k ‖
−→
x∗k‖1

the result follows. Similarly ‖
−→
b ∗‖1 ≤ 1 for every

−→
b∗ ∈ Bp,n.

2. Let
−→
b ∗ = (b∗m+1, . . . , b

∗
n) ∈ (

∑n
k=m+1⊕ℓ1(∆k))1 such that ‖b∗‖1 ≤ 1

and b∗k =
∑

γ∈∆k
rγe

∗
γ where rγ is rational for every γ. Then, there exists

q > n such that
−→
b ∗ ∈ Bq,m. Indeed, since the sequence (Nj)j is strictly

increasing we have that there exists q ≥ n such that the maximum of all de-
nominators of rγ is less than Nq for every γ ∈ ∪n

k=m+1∆k. By the definition
of Bq,m the result follows.

5. Argyros Haydon L∞ sums of Banach spaces (
∑

n⊕Xn)AH

For a fixed sequence (Xn, ‖ · ‖n)n∈N of separable Banach spaces we de-
note by (

∑

⊕Xn)AH the BD L∞ sum of (Xn, ‖ · ‖n) that is constructed
following the steps stated in section 4.1. In order to ensure that the spaces
(
∑

⊕Xn)AH are well defined we need to check the boundness principle of
the operators in,m :

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k)) →

∑m
k=1⊕(Xk ⊕ ℓ∞(∆k)).

Proposition 5.1. ‖in,m‖ ≤ 2 for every n,m ∈ N with n ≤ m.

Proof. We will prove it using induction on m and for all n ≤ m. For m = 1,
it is trivial. Now assume that for some m ∈ N and some n ≤ m we have that
for every k ≤ n and l ≤ m, ‖ik,l‖ ≤ 2. In order to prove that ‖in,m+1‖ ≤ 2
it is enough to show that for −→z ∈

∑n
k=1(Xk ⊕ ℓ∞(∆k)) with ‖−→z ‖ ≤ 1,

|c∗γ(in,m
−→z )| ≤ 2 for every γ ∈ ∆m+1.

Let γ ∈ ∆0
m+1 of the form γ = (m + 1,

−→
f , p, 0) where

−→
f ∈ Kp,m and by

Remark 4.1 ‖
−→
f ‖1 ≤ 1. Thus, |c∗γ(in,m

−→z )| = |
−→
f (−→z )| ≤ 1.

Now, let γ ∈ ∆1
m+1 of the form γ = (m+1, η,mj , p,

−→
b∗ ) where

−→
b∗ ∈ Bp,m.

By the definition of c∗γ we obtain that

c∗γ(in,m
−→z ) = −→eη

∗(in,m
−→z ) +

1

mj

−→
b∗ [in,m

−→z − ipR[1,p](in,m
−→z )].

Observe that if p ≥ n, then using the definition of in,m we have that in,m
−→z =

ipR[1,p](in,m
−→z ) and by the inductive hypothesis we are done. In case that

p < n we have that −→eη
∗(in,m

−→z ) = −→eη
∗(−→z ) and

−→
b∗ [in,m

−→z − ipR[1,p](in,m
−→z )] =

−→
b∗ [in,m

−→z − ip,m(R[1,p]
−→z )].

Again by Remark 4.1 we have that ‖
−→
b∗‖1 ≤ 1 and using our inductive

assumption we conclude that

c∗γ(in,m
−→z ) ≤ ‖−→z ‖+

1

mj
(‖in,m

−→z ‖+ ‖ip,m
−→z ‖) ≤ 2.



12 DESPOINA ZISIMOPOULOU

�

We deduce that ‖in‖ ≤ 2 for every n ∈ N and by Remark 2.4 set-
ting Z = ∪nYn where Yn = in[

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k))] we have that Z =

(
∑

n⊕Xn)AH .

Notation 5.2. As noted in section 2 we restrict the operators R[1,n] : Z →
∑n

k=1⊕(Xk ⊕ ℓ∞(∆k)). For γ ∈ ∆n+1 we extend c∗γ : Z → R as c∗γ(z) =

c∗γ(R[1,n]z). In the same manner we can extend every
−→
f :

∑n
k=1⊕(Xk ⊕

ℓ∞(∆k)) → R to a functional
−→
f : Z → R (such that

−→
f (z) =

−→
f (R[1,n]z)) ).

We naturally consider every vector element
−→
f ∈ (

∑n
k=m⊕(X∗

k⊕ℓ1(∆k))1)1

as a bounded linear functional
−→
f :

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k)) → R and thus

by the above as a linear bounded functional
−→
f : Z → R. This includes the

functionals −→eγ
∗ for γ ∈ ∆n,

−→x ∗ for x∗ ∈ X∗
n,

−→
b∗ ∈ Bp,n,

−→
f ∈ Kn,p where

p < n. Moreover as it follows by Lemma 4.1 all these extended functionals
belong in the unit ball of Z∗.

We recall that P(m,n] = imR[1,m] − inR[1,n] for every m ≤ n. For γ ∈ ∆n

we define d∗γ : Z → R as d∗γ =
−→
e∗γ ◦P{n}. Considering Notation 5.2 we obtain

that d∗γ =
−→
e∗γ − c∗γ . The boundness principle of ik,m yields that ‖in‖ ≤ 2,

‖P[1,n]‖ ≤ 4, ‖P(n,∞)‖ ≤ 3 for every n ∈ N while ‖d∗γ‖ ≤ 3 for every γ ∈ Γ.
The following proposition is crucial in order to estimate norms in Z. The

proof shares similar arguments as in [3] (Proposition 4.5).

Proposition 5.3. For every γ ∈ ∆n+1 there exists natural numbers 0 <
p1 < q1 < p2 < q2 < . . . < pa < qa = n + 1 with a ≤ nj, elements (ξi)

a
i=1

with ξa = γ, ξi ∈ ∆qi+1, w(ξi) = w(γ) and functionals
−→
b∗i ∈ Bpi,qi such that

−→
e∗γ =

a
∑

i=1

d∗ξi +
1

mj

a
∑

i=1

−→
b∗i ◦ P(pi,qi]

The sequence {pi, qi, ξi, b
∗
i }

a
i=1 is called the evaluation analysis of γ. Note

that for γ ∈ ∆0
n (i.e. w(γ) = 1) the elements γ admits the trivial evaluation

analysis consisting of its singleton.

Notation 5.4. By our already introduced terminology for every p ≤ n we
identify (

∑n
k=p⊕Xk)∞ with (

∑n
k=p⊕(Xk ⊕ {0})∞)∞ as

−→x = (xp, . . . , xn) →
−→x = (−→x p, . . . ,

−→x n)

where−→x k = (xk, 0) ∈ (Xk⊕{0})∞. Similarly we identify (
∑n

k=p⊕ℓ∞(∆k))∞
with (

∑n
k=p⊕({0} ⊕ ℓ∞(∆k))∞)∞.

Remark 5.5. Let m ≤ n and z ∈ Z with ran z = (m,n] (or equiv-
alently z ∈ Yn and P[1,m](z) = 0). By Lemma 2.5 there exists −→u ∈
∑n

k=m+1⊕(Xk ⊕ ℓ∞(∆k)) such that z = in(
−→u ). Using the above iden-

tification we can split −→u as −→u ′ + −→u ′′ such that −→u ′ ∈ (
∑n

k=m+1 ⊕Xk)∞
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while −→u ′′ ∈ (
∑n

k=m+1⊕ℓ∞(∆k))∞. Indeed if −→u (k) = (xk, yk) we set −→u ′ =

(xm+1, . . . , xn) and −→u ′′ = (ym+1, . . . , yn). We also set z′ = in(
−→
0 1,m,−→u ′)

and z′′ = in(
−→
0 1,m,−→u ′′). Then it is easy to check that z = z′+ z′′. Moreover

note that

‖−→u ′‖∞ = sup{|−→x ∗(−→u )| : x∗ ∈ X∗
k , m+ 1 ≤ k ≤ n}

while
‖−→u ′′‖∞ = sup{|−→eγ

∗(−→u )| : γ ∈ ∆k, m+ 1 ≤ k ≤ n}.

Considering Notation 5.2 for x∗ ∈ X∗
k or γ ∈ ∆k with m + 1 ≤ k ≤ n

we have that −→x ∗(z) = −→x ∗(u) = x∗(xk) and similarly −→eγ
∗(z) = −→eγ

∗(u) =
e∗γ(yk) = yk(γ). In order to simplify the symbolisms we shall denote −→u ′′ by

(−→u γ)γ∈Γn\Γm
where −→u γ = −→eγ

∗(−→u ).

Definition 5.6. Let z ∈ Z with max ran(z) = n and let −→u ∈
∑n

k=1⊕(Xk⊕
ℓ∞(∆k)) such that z = in(

−→u ). We define supploc(z) =
−→u . We say that the

local support of z has no weight if (−→u γ)γ∈Γn =
−→
0 1,n where −→u γ = −→eγ

∗(−→u )
as in Remark 5.5.

The concept of the next lemma is based on arguments of Lemma 7.2 in
[3].

Lemma 5.7. Let z ∈ Z such that ran z ⊂ (p, q]. Then, there exists γ ∈ Γ
with rank(γ) > p such that |−→eγ

∗(z)| > 1
2‖z‖

Proof. Let supploc(z) =
−→u where −→u = −→u ′ + (−→u γ)γ∈Γq\Γp

as in Remark 5.4.

Since z = iq(
−→
0 1,p,

−→u ) and ‖iq‖ ≤ 2 we have that ‖−→u ‖∞ ≥ 1
2‖z‖. Note that

‖−→u ‖∞ = max{‖−→u ′‖∞, ‖(−→u γ)γ‖∞}.

In the case that ‖−→u ‖∞ = ‖(−→u γ)γ‖∞ if we consider Remark 5.5 we can find
p+ 1 ≤ k ≤ q and γ ∈ ∆k such that |−→eγ

∗(−→u )| = ‖−→u ‖∞. Hence

−→eγ
∗(z) = −→eγ

∗(−→u ) ≥
1

2
‖x‖

Otherwise ‖−→u ‖∞ = ‖−→u ′‖∞ as in Remark 5.5 and applying Hahn Banach
theorem we can find x∗ ∈ BX∗

k
with p + 1 ≤ k ≤ q such that |−→x ∗(−→u )| =

‖−→u ‖∞. Since Fk is 1-norming in BX∗

k
, we may assume that x∗ ∈ Fk and

let l ≥ p such that x∗ ∈ F l
k and set

−→
f = (−→x ∗,

−→
0 k+1,l). Observe that

the functional
−→
f belongs in Kl,k−1 and moreover

−→
f (z) = −→x ∗(−→u ). Let

γ ∈ ∆l+1 of the form γ = (l + 1,
−→
f , n, 0). Notice that d∗γ(z) = 0, thus

|−→eγ
∗(z)| = |c∗γ(z)| = |

−→
f (z)| = ‖−→u ‖ ≥ 1

2‖z‖ as desired. �

5.1. Rapidly Increasing Sequences in Z = (
∑

nXn)AH . For the sequel
whenever we write Z we refer to Z = (

∑

⊕Xn)AH for the fixed sequence of
separable Banach spaces (Xn, ‖ · ‖n)n∈N.

We recall that Z admits a Schauder Decomposition (Zn)n∈N for which we
define the range of elements of Z as well as block sequences in Z. We shall
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define special types of block sequences that are useful in order to study the
space as well as its bounded linear operators.

We start with the following lemma which concerns the bounded block
sequences of Z in general.

Lemma 5.8. Let (zn)n∈I be a block sequence with ‖zn‖ ≤ C for every

n ∈ I and let (an)n∈I be a sequence of scalars. Then for every
−→
f ∈ Kp,m

with p > m there exists n0 ∈ N such that |
−→
f (

∑

n anzn)| ≤ C|an0 |.

Proof. Let
−→
f ∈ Kp,m of the form

−→
f = (x∗p+1, . . . , x

∗
m) where x∗k ∈ Fm

k ⊕
{0} for every p + 1 ≤ k ≤ m and

∑

k ‖x
∗
k‖X∗

k
≤ 1. We also recall that

‖
−→
x∗k‖ ≤ ‖

−→
x∗k‖1 = ‖x∗k‖X∗

k
. Since (zn)n is block for every k there exists nk

not necessarily pairwise different such that
−→
x∗k(

∑

n anzn) =
−→
x∗k(ank

znk
). We

set an0 = max{ank
: k = p + 1, . . . ,m}. It follows that |

−→
f (

∑

k akzk)| ≤

C|ak0 |
∑

k ‖
−→
x∗k‖ ≤ C|ak0 |. �

We continue with the definition of Rapidly Increasing Sequences (RIS).

Definition 5.9. We say that a block sequence (zk)k∈N in Z is C-RIS if there
exists a constant C > 0 and a strictly increasing sequence (jk)k∈N such that

(1) ‖zk‖ ≤ C for all k ∈ N

(2) jk+1 > max ran zk

(3)
−→
|e∗γ(zk)| ≤

C
mi

whenever w(γ) = mi and i < jk.

Lemma 5.10. Let z ∈ Z such that max ranz = q and suppose that
supploc(z) has no weight. Then, for every γ ∈ Γ of w(γ) = mj we have

that |
−→
e∗γ (z)| ≤

3‖z‖
mj

.

Proof. The proof share a similar concept of Lemma 5.7 in [3]. Observe that
for every γ ∈ Γ with rankγ > q we have that d∗γ(x) = 0 and P(r,∞)(x) = 0 for

every r > q. If γ ∈ Γ with w(γ) = mj there exists {pi, qi, b
∗
i , ξi}

l
i=1 , l ≤ nj

such that −→eγ
∗ =

∑

i d
∗
ηi
+ 1

mj

∑

i

−→
bi

∗ ◦ P(pi,qi]. Let i be the maximum such

that pi ≤ q. For every i′ > i note that pi′ > q and also qi′ > pi′ > q hence

P(pi′ ,qi′ ]
(z) = 0 and d∗ξi′

(z) = 0. If i = 1 then −→eγ
∗(z) = 1

mj

−→
b1

∗(P(p1,q1]z).

Otherwise i− 1 ≥ 1 and −→eγ
∗(z) = −→eη

∗
i−1(z) +

1
mj

−→
bi

∗(P(pi,qi]z). Notice that if
−→u = supploc(z) then −→eη

∗
i−1(z) =

−→eη
∗
i−1(

−→u ) = 0 as rank(ηi−1) = qi−1 + 1 <

pi < q. Therefore in every case we conclude that −→eγ
∗(z) = 1

mj

−→
bi

∗(P(pi,qi]z) =

1
mj

−→
bi

∗(P(pi,∞)z) ≤
3‖z‖
mj

. �

Corollary 5.11. Let (zk)k∈N be a block sequence in Z that is bounded by a
constant C > 0 and assume that supploc(zk) has no weight for every k ∈ N.
Then there exists a subsequence (zi)i that is 3C-RIS.
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Proof. Let pk, qk such that ran zk = (pk, qk] and let −→u k = supploc(zk) in
∑qk

i=pk
⊕(Xi ⊕ ℓ∞(∆i)). We also assume passing to a subsequence that

pk+1 > qk + 1 for every k. We set jk = pk and then we have that (jk)k
is strictly increasing and jk+1 > max ranxk. Moreover, for γ ∈ Γ with
w(γ) = mj by Lemma 5.10 we deduce that |−→eγ

∗(zk)| ≤ 3C/mj . Since
‖zk‖ ≤ C ≤ 3C, every one of the three conditions of an RIS are satis-
fied. �

The following proposition ensures that there is a strong connection be-
tween RIS of Z and the mixed Tsirelson space T (A3nj

, 1
mj

)j∈N. It is proved

in a similar manner as in [3] (Proposition 5.4) and we can use the same
estimates. We denote by (en)n∈N the usual basis of T (A3nj

, 1
mj

)j∈N.

Considering its norming set W = W [(A3nj
, 1
mj

)j∈N] as a subset of c00, for

every f ∈ W we define supp f = {k ∈ N : f(k) 6= 0} and whenever f is of
the form f = 1

mj

∑n
k=1 fi for some (fi)

n
i=1 ⊂ W we define the weight of f as

weight(f) = mj.

Proposition 5.12. Let (zk)k∈I be an C-RIS in Z and γ ∈ Γ. Then,
for every scalars ak and s ∈ N there exist k0 ∈ I and a functional f ∈
W [(A3nj

, 1
mj

)j∈N] such that

(1) Either f = 0 or w(γ) = weight(f), supp f ⊂ {k ∈ I : k > k0}.

(2) |
−→
e∗γ ◦ P(s,∞)(

∑∞
k=1 akzk)| ≤ 4C|ak0 |+ 6Cf(

∑∞
k=1 |ak|ek)

Moreover, if we assume that there exists j0 ∈ N such that

|−→eξ
∗(

∞
∑

k∈I

akzk)| ≤ Cmax
k∈I

|ak|,

for every J ⊂ I and all ξ ∈ Γ with w(ξ) = mj0 , then f can be chosen in

W [(A3nj
, 1
mj

)j 6=j0 ].

Proof. Suppose that γ belongs to ∆0
n for some n ∈ N of the form γ =

(n,−→g , p, 0) where p < n, −→g ∈ Kp,n−1. Then, −→eγ
∗ = d∗γ + c∗γ where d∗γ =

−→eγ
∗ ◦ P{n} and c∗γ = −→g . Note that if s > n then −→eγ

∗ ◦ P(s,∞) = 0 and
there is nothing to prove. Let s ≤ n and wk = P(s,∞)zk for every k. Ob-
serve that since (wk)k is block by Lemma 5.8 there exists k1 ∈ I such that
c∗γ(

∑

k∈I akwk) ≤ C|ak1 |. Moreover there exists k2 ∈ I not necessarily equal
to k1 such that d∗γ(

∑

k∈I akwk) = d∗γ(ak2wk2). Let k0 ∈ I (k0 = k1 or
k0 = k2) such that |ak0 | = max{|ak1 |, |ak2 |}. Since ‖P(s,∞)‖ ≤ 3, ‖d∗γ‖ ≤ 3
we conclude that

|−→eγ
∗ ◦ P(s,∞)(

∑

k∈I

akzk)| ≤ 4C|ak0 |.

Setting f = 0 the result follows. For γ ∈ ∪n∆
1
n we use induction on

rank(γ) = n in a similar manner as in [3] (Proposition 5.4). �

The basic inequality yields the following:
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Corollary 5.13. Let (zk)
nj0
k=1 be an C-RIS in Z. Then ‖n−1

j0

∑nj0
k=1 zk‖ ≤

10C
mj0

. Moreover, if (λk)
nj0
k=1 are scalars such that |λk| ≤ 1 and

|−→eγ
∗(
∑

k∈J

λkzk)| ≤ Cmax
k∈J

|λk|

for every γ of weight mj0 and every interval J ⊂ {1, 2, . . . , nj0}, then

‖n−1
j0

∑

k

λkzk‖ ≤
10C

m2
j0

.

Proof. We apply the basic inequality for scalars n−1
j0

λk and I = {1, 2, . . . , nj0}.

Using estimations of W (A3nj
, 1
mj

)j∈N ( see [3], Section 2.4) we conclude that

|−→eγ
∗(n−1

j0

∑nj0
k=1 zk)| ≤

10C
mj0

for every γ ∈ Γ. Observe that for f ∈ BX∗

l
there

exists at most one kl ∈ I such that |
−→
f (n−1

j0

∑nj0
k=1 zk)| = |

−→
f (n−1

j0
zkl)| ≤

C
nj0

.

Since nj0 ≥ m2
j0

combining all the above the proof of the first part is
complete. For the second we can apply the ”moreover part” of the ba-
sic inequality and using estimations of W (A3nj

, 1
mj

)j 6=j0 we deduce that

|−→eγ
∗(n−1

j

∑

k λkzk)| ≤
10C
m2

j0

for every γ ∈ Γ. In a similar manner as above we

arrive to the desired estimation of the norm. �

All the above yield to the following general result that concerns AH-L∞

sums of separable Banach spaces.

Proposition 5.14. Let Z = (
∑

n⊕Xn)AH where (Xn, ‖ · ‖n)n∈N is a se-
quence of separable Banach spaces. Let also Y be a Banach space and
T : Z → Y be a linear and bounded operator such that ‖Tzn‖ → 0 for ev-
ery RIS (zk)k∈N in Z, Then ‖Twk‖ → 0, for every bounded block sequence
(wk)k∈N in Z.

Proof. For (1) first we fix a bounded block sequence (zk)k∈N in Z and let
C > 0 such that ‖zk‖ ≤ C for every k ∈ N. It is enough to show that
there exists a subsequence (zki)i such that ‖T (zki)‖ → 0. Let pk, qk such
that ran zk = (pk, qk] and let −→u k = supploc(zk). We split each element zk
to zk = z′k + z′′k with ran z′k = ran z′′k = ran zk as in Remark 5.5. It follows
that both (z′k)n∈N and (z′′k)k∈N are bounded and moreover by the definition
of z′k we have that supploc(z

′
k) has no weight. By Corollary 5.11 there exists

a subsequence (z′k)k∈M that is 3C-RIS, hence by our hypothesis (T (z′k))k∈M
is norm null. For every k ∈ M and N ∈ N we also split further the element
z′′k = wN

k + yNk in a similar manner as in Proposition 5.11 in [3]. Namely, we

define −→wN
k ,−→y N

k ∈ (
∑qk

i=pk+1 ⊕ℓ∞(∆i))∞ such that −→wN
k (γ) = −→u γ if w(γ) ≤

mN or 0 otherwise , while −→y N
k (γ) = −→u γ if w(γ) > mN or 0 otherwise. It

follows that −→wN
k +−→y N

k = (−→u γ)γ and we set wN
k = iqk(

−→
0 1,pk ,

−→wN
k ) and yNk =

iqk(
−→
0 1,pk ,

−→y N
k ). For the bounded block sequences (wN

k )k∈M , (yNk )k∈M we

find subsequences (w
Nj

kNj

)j , (y
Nj

kNj

)j that are RIS following a similar argument
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as in [3] (Proposition 5.11). Our hypothesis implies that ‖T (z′′kNj
)‖ → 0 and

since ‖T (z′kNj
)‖ → 0 we conclude that ‖T (zkNj

)‖ → 0. �

Corollary 5.15. Let Z = (
∑

n⊕Xn)AH where (Xn, ‖ · ‖n)n∈N is a se-
quence of separable Banach spaces. Then the dual Z∗ may be identified
with (

∑∞
n=1⊕(X∗

n ⊕ ℓ1(∆n))1)1.

Proof. By Corollary 5.13 we observe that every RIS is weakly null. By
Proposition 5.14 we conclude that every bounded block sequence in Z is
weakly null and thus the decomposition (Zn)n∈N is shrinking. Proposition
3.1 yields the result. �

6. The HI-property in block Subspaces of Z = (
∑

nXn)AH

In this section we will define the basic features that can be found in many
HI constructions ( see [3], [1], also [2]). As we already noted we follow the HI
method of construction of Argyros-Haydon presented in [3]. The adaptation
of the arguments is made without validating their precise estimations and
we can observe by the definition of the sets ∆n that in the case where
Xn = {0} for every n ∈ N the space Z = (

∑

⊕Xn)AH coincides with the
Argyros Haydon space XK . Therefore for any arbitrary choice (Xn, ‖·‖n)n∈N,
the space Z will always contain the space XK and thus a L∞ HI subspace.
However as we will see the HI property is satisfied in every block subspace
of Z which reveals the the influence of an HI external norm (see [1], [5]).

We start by recalling the definition of Hereditarily indecomposable (HI)
spaces.

Definition 6.1. We say that a Banach space X is Hereditarily Indecom-
posable if every closed subspace Y of X is indecomposable i.e. there do not
exists W,Z infinite dimensional closed subspaces of Y such that Y = W⊕Z.

It is known (see [1],[2],[3],[4]) that a Banach space X is HI if and only if
for every pair of infinite dimensional closed subspaces Y,Z of X and every
ε > 0 there exist y ∈ Y , z ∈ Z such that ‖y + z‖ > 1 while ‖y − z‖ < ε.

We continue by giving the definition of C − ℓn1 -averages.

Definition 6.2. Let C > 1 and n ∈ N. We say that a vector z ∈ Z is a
C − ℓn1 average if

(1) ‖z‖ ≥ 1
(2) There exists a block sequence (zi)

n
i=1 in Z, with ‖zi‖ ≤ C, for all

i = 1, 2, . . . , n such that z = 1
n

∑n
i=1 zi.

The proof of the existence of ℓ1 averages in Z demands some a further
study of the space.

Proposition 6.3. Let (zk)n∈N be a bounded block sequence in Z. Then, for
every j ∈ N there exists (zki)

n2j

i=1 such that 2j ≤ max ran zk1 and an element
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γ ∈ Γ of weight w(γ) = m2j such that

|
−→
e∗γ (

n2j
∑

i=1

zki)| ≥
1

2m2j

n2j
∑

k=1

‖zki‖

Proof. Fix j ∈ N and let pk < lk < pk+1 < lk+1 < . . . such that ran zk ⊂
(pk, lk]. Using Lemma 5.7 for every k, we can find ξk ∈ ∆qk with qk ≥ pk+1

such that −→eξk
∗(zk) ≥ 1

2‖zk‖. We set
−→
b ∗
k = (

−→
0 pk+1,qk−1,

−→eξk
∗) and observe

that b∗k ∈ Bqk,pk and P ∗
(pk ,qk]

−→
b ∗
k(zk) = −→eξk

∗(zk) for all k. Let k1 ∈ N such

that 2j ≤ max ran zk1 and ηk1 = (qk1 + 1,m2j ,
−→
b ∗
k1
). Assume that for some

1 < i < n2j the elements zkl , ηkl have been defined for every l < i. We

choose ki such that rank ηki−1
< pki and let ηki = (qki + 1, ηki−1,m2j ,

−→
b ∗
ki
).

Observe that that d∗ηki
(zkl) = 0 for every i, l. Let γ ∈ Γ with w(γ) = m2j and

evaluation analysis {pki , qki , ηki ,
−→
b ∗
ki
}
n2j

i=1. An immediate computation yields

that
−→
e∗γ (

∑n2j

i=1 zki) =
1

m2j

∑n2j

i=1
−→eξ

∗
ki
(zki) and hence γ satisfies the conclusion.

�

As in [3] (Lemma 8.2), the above result in conjunction with a standard
argument presented in Lemma 2.2 of [3] yields the following:

Lemma 6.4. Let Y be a block subspace of Z. Then for every C > 1 and
n ∈ N, Y contains C − ℓn1 average.

Next we generalise the result of Proposition 6.3 concerning weakly null
sequences as it will be useful in next section.

Lemma 6.5. Let (zk)k be weakly null sequence in Z and assume that there
exists a sequence of successive intervals of N, (Jk)k such that ‖PJk(zk)‖ ≥ δ.

Then for every j ∈ N there exist elements (zki)
n2j

i=1 with 2j ≤ max ran zk1
and γ ∈ Γ of weight m2j such that |

−→
e∗γ (

∑n2j

i=1 zki)| ≥
δ

4m2j
.

Proof. Let j ∈ N and assume that ran zk ⊂ [1, lk] where lk ≥ maxJk for
every k ∈ N. Let ξk ∈ ∆qk with qk ≥ min Jk (Lemma 5.7) such that
−→eξk

∗(PJkzk) ≥ δ
2 . We set pk = minJk − 1 and

−→
b ∗
k = (

−→
0 pk+1,qk−1,

−→eξk
∗) ∈

Bqk,pk for every k. We choose inductively zki , ηki as in the proof of Proposi-
tion 6.3 and we additionally require in each inductive step r = i+1 > 1 that
the element zkr satisfies that |−→eη

∗
ki
(zkr)| <

δ
4m2j

. Since (zk)k is weakly null

such a choice is possible. Let γ ∈ Γ with w(γ) = m2j and evaluation analy-

sis {pki , qki , ηki ,
−→
b ∗
ki
}
n2j

i=1. A simple observation is that for each 1 ≤ i ≤ n2j,
−→eγ

∗(zki) =
−→eη

∗
ki−1

(zki) +
1

m2j

−→
b ∗
ki
(PJki

zki) ≥
δ

4m2j
. We conclude that

|
−→
e∗γ (

n2j
∑

i=1

zki)| ≥
δ

4m2j
,

as promised. �
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We recall the definition of exact pairs.

Definition 6.6. Let C > 0, ε ∈ {0, 1}, and j ∈ N. A pair (z, γ) ∈ Z × Γ is
said to be (C, j, ε) exact pair if the following conditions are fulfilled:

(1) w(γ) = mj, ‖z‖ ≤ C, −→eγ
∗(z) = ε.

(2) d∗ξ(z) ≤
C
mj

for every ξ ∈ Γ.

(3) If γ′ ∈ Γ with w(γ′) = mi and i 6= j, then

|−→eγ′
∗(z)| ≤

{

Cm−1
i if i < j

Cm−1
j if i > j.

The next results of this section are similar to corresponding ones in [3].
We shall include slight description of the basic steps followed in the proofs
for sake of completeness. We start with the following lemma that shares the
same arguments with Proposition 8.6 in [3].

Lemma 6.7. Let Y be a block subspace of Z. Then, for every j ∈ N there
exists a (65, 2j, 1) exact pair (z, η) in Y .

Proof. Let (jk)k∈N be an increasing sequence of natural numbers and C > 1.

Lemma 6.4 implies that for each k ∈ N there exists a C-ℓ
njk

1 average zk in
Y . The corresponding analogue of Lemma 8.4 in [3] allows as to assume
that (zk)k∈N is 2C-RIS (passing to a subsequence). We note that ‖zk‖ ≥ 1
for every k ∈ N and also for j ∈ N Proposition 6.3 yields that there exists a
subsequence denoted by (zk)k∈N again and η ∈ Γ of w(η) = m2j such that

|−→eη
∗(
∑n2j

k=1 zk)| ≥
n2j

4m2j
.

For a suitable θ ∈ R with |θ| ≤ 2 we can have that −→eη
∗(z) = 1 where

z = θ
∑n2j

k=1m2jn
−1
2j zk. Using estimates that result from the basic inequality

(Proposition 5.12) it is easy to check that the pair (z, η) is the desired
(32C, 2j, 1) in Y . Since this is true for every C > 1 the result follows. �

We will be focused into finding finite sequences of (C, jk, ε) exact pairs

(zk, ηk)
n2j0−1

k=1 that have additional properties. This type of sequences are
called Dependent sequences (see [3]).

Definition 6.8. A finite sequence (zk)
n2j0−1

k=1 in Z is called (C, 2j0 − 1, ε)
dependent sequence if there exist p1 < q1 < p2 < q2 < . . . < pn2j0−1 < qn2j0−1

if there exist (ηk)
n2j0−1

k=1 together with (ξk)
n2j0−1

k=1 such that ηk ∈ Γqk \ Γpk ,
ξk ∈ ∆qk the following are satisfied:

(1) with ran zk ⊂ (pk, qk − 1].
(2) (z1, η1) is (C, 4j1 − 2, ε) exact pair and for each k > 1 (zk, ηk) is

(C, 4jk , ε) exact pair.
(3) The element γ = ηn2j0−1 has weight m2j0−1 and analysis

{pi, qi, ξi,
−→eηi

∗}
n2j0−1

i=1 .
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Notice that by the definition of the sets ∆n and the (C, j, ε) exact pairs we
have that w(η1) = m4j1−2 > n2

2j0−1 and w(ηi+1) = m4ji+1 where ji+1 = σ(ξi)
for 1 ≤ i ≤ n2j0−1.

In a similar manner as in Lemma 6.4 of [3] every (C, 2j0−1, ε) dependent
sequence is a C-RIS. Applying basic inequality (Proposition 5.13) we can
have estimations on averages of dependent sequences which are helpful in
order to prove the HI property in block subspaces of the space Z.

Proposition 6.9. Let (zk)
n2j0−1

k=1 be a (C, 2j0 − 1, ε) dependent sequence.

We set z = 1
n2j0−1

∑n2j0−1

k=1 zk and z̃ = 1
n2j0−1

∑n2j0−1

k=1 (−1)kzk. Finally for J

subinterval of [1, n2j0−1] we set z̃J =
∑

k∈J(−1)kzk.

(1) If ε = 1, then ‖z‖ ≥ 1
m2j0−1

and ‖z̃‖ ≤ 40C
m2

2j0−1
.

(2) If ε = 0 ‖z‖ ≤ 30C
m2

2j0−1
.

Proof. The proof uses the same arguments as in [3] Prop 6.6, Lemma 8.9,
therefore we will present only the basic steps for (i). For the first let
pk, qk, ηk, ξk that follow from the definition of a dependent sequence and
let also γ of w(γ) = m2j0−1 with analysis {pk, qk, ξk,

−→eηk
∗}

n2j0−1

k=1 . We note
that since ran zk ⊂ (pk, qk − 1] and ξk ∈ ∆qk we have that d∗ξk(zl) = 0 for

every k, l and thus −→eγ
∗(z) = −→eηk

∗(
n−1
2j0−1

m2j0−1

∑

k zk) =
1

m2j0−1
.

For the second part of (i) we estimate −→eγ
∗(z̃) for every γ with w(γ) =

m2j0−1. Using a corresponding tree like property of the odd weight elements
of Γ as in [3](Lemma 4.6) we deduce that for every J subinterval of [1, n2j0−1]
and every γ of weight m2j0−1 |−→eγ

∗(z̃J)| ≤ 4C. As we mentioned above the
dependent sequence (zk)k is C-RIS and additionally it satisfies the moreover
part of Corollary 5.13 (replacing C by 4C). We deduce that ‖z̃‖ ≤ 10·4C

m2
2j0−1

=

40C
m2

2j0−1
. �

The next result uses the same arguments as Lemma 8.10 in [3]. We include
a small proof for sake of completeness.

Corollary 6.10. Let (xn)n∈N be a block sequence in Z. Then, the sub-
space Z = < xn : n ∈ N > of Z is HI (i.e. for every Y1, Y2 closed infinite
dimensional subspaces of Z dist(SY1 , SY2) = 0, where SYi

denotes the unit
sphere of Yi, i = 1, 2).

Proof. Assume that Z = Y1 ⊕ Y2, fix ε > 0, j0 ∈ N such that m2j0−1ε >
2600 and choose also j1 ∈ N such that m4j1−2 > n2

2j0−1. Without loss of
generality we may assume that both Y1, Y2 are block subspaces. Lemma 6.7
implies that there exists (65,m4j1−2, 1) exact pair (z1, η1) in Y1. Let q1 ∈ N

such that η1 ∈ ∆q1 and for p1 > max{q1,max ran z1} we define ξ1 ∈ ∆p1

as ξ1 = (p1, 2j0 − 1,−→eη1
∗). Let j2 = σ(ξ1) and by Lemma 6.7 we choose

(z2, η2) a (65, 4j2, 1) exact pair in Y2 such that min ran z2 > p1. Let q2 > p1
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such that η2 ∈ ∆q2 and for p2 > max{q2,max ranx2} we define ξ2 ∈ ∆p2

as ξ2 = (p2, ξ1, 2j0 − 1,−→eη2
∗). Inductively, we construct a (65, 2j0 − 1, 1)

dependent sequence (zk)
n2j0−1

k=1 such that zk ∈ Y1 for k odd while zk ∈ Y2 for
k even. Setting z1 =

∑

k odd zk ∈ Y1 and z2 =
∑

keven zk ∈ Y2 by Proposition
6.9 and the choice of j0 we observe that ‖z1 − z2‖ < ε‖z1 + z2‖. �

7. Bounded linear operators on Z

In this section we will study bounded and linear operators on Z =
(
∑

nXn)AH for a fixed sequence of separable Banach spaces (Xn, ‖ · ‖n)n∈N.
We use an adaptation of basic techniques of [3] (Section 7) used into proving
that their space Xk has the ”scalar plus compact” property( i.e. for every
linear bounded operator T on Xk there exists a scalar λ such that T − λI is
compact).

A ”weaker” type of compact operators is presented in the next definition.

Definition 7.1. A bounded and linear operator K on Z is called horizon-
tally compact if for every bounded block sequence (zk)k∈N in Z, with respect
to (Zn)n∈N, ‖K(zk)‖ → 0, or equivalently, for every ε > 0, there exists kε ∈
N, such that ‖K|Z(kε,∞)

‖ < ε, where Z(kε,∞) =
∑∞

n=kε+1 Zn = P(kε,∞)[Z].

In order to use some useful approximation arguments in [3] we need fur-
ther notations. For a set A we denote by spanQA the set of all finite ratio-
nal linear combinations of elements of A. It is known that every separable
Banach space admits a bounded M-basis such that the set spanned by its
biorthogonals is w* dense and in particular 1-norming for its dual space. For
each n ∈ N we shall denote by (xn,i)i∈N the M-basis of Xn and by {(x∗n,i)i∈N}
the set of its biorthogonals. We shall assume without loss of generality that
Fn = B∗

Xn
∩ spanQ{x

∗
n,i : i ∈ N} and we set Dn = spanQ{xn,i : i ∈ N}.

Finally, for each n ∈ N we denote by ℓQ∞(∆n) the set spanQ{en : n ∈ N}
where en is the usual unit vector.

In the sequel for sake of simplicity we choose to work with a dense subset
of the space Z rather than the whole space.

Lemma 7.2. For every z ∈ Z with ran z = (n, l] and every ε > 0 there
exists w ∈ Z such that ran z = ranw, ‖z − w‖ < ε and if −→v = supploc(w)

then −→v ∈
∑l

k=n+1⊕(Dk ⊕ ℓQ∞(∆k)).

Proof. Let −→u ∈
∑l

k=n+1⊕(Xk⊕ℓ∞(∆k)) such that supploc(z) = (
−→
0 1,n,

−→u ).

We split −→u as −→u = −→u ′ + −→u ′′ such that −→u ′ ∈ (
∑l

k=n+1⊕Xk)∞ and −→u ′′ ∈

(
∑l

k=n+1⊕ℓ∞(∆k))∞. For each k we find vk ∈ spanQ{xk,i : i ∈ N},
yk ∈ ℓ∞(∆k) with rational coordinates such that ‖−→u ′(k) − vk‖k ≤ ε

2 and

‖−→u ′′(k) − yk‖k ≤ ε
2 . Let w = in(

−→
0 1,n,

−→v ) where −→v (k) = (vk, yk). We
observe that ‖z − w‖ ≤ 2‖−→u − −→v ‖∞ < ε and combining all the above the
proof is complete. �
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We set Y ′
n = {x = in(

−→u ) : −→u ∈
∑n

k=1⊕(Dk ⊕ ℓQ∞(∆k))}. A direct
consequence of the above is that the union ∪nY

′
n is dense in Z.

For the sequel we need the following notation.

Notation 7.3. For n < l we split
−→
f ∈ (

∑l
k=n⊕(X∗

k ⊕ ℓ1(∆k)))1 as
−→
f =

−→
f ′ +

−→
f ′′ such that

−→
f ′ ∈ (

∑l
k=n⊕X∗

k)1 and
−→
f ′′ ∈ (

∑l
k=n⊕ℓ1(∆k))1. We

follow the same method that we used for the local support of elements of

Z (Remark 5.5), i.e. if
−→
f (k) = (x∗k, b

∗
k) ∈ (X∗

k ⊕ ℓ1(∆k))1 we set
−→
f ′ =

(x∗n, . . . , x
∗
l ) and

−→
f ′′ = (b∗n, . . . , b

∗
l ).

Remark 7.4. Let
−→
f ∈ (

∑l
k=n⊕(X∗

k ⊕ ℓ1(∆k)))1 such that
−→
f ′(k) ∈ Fk for

every n ≤ k ≤ l, where
−→
f ′ as above. Then there exists γ ∈ Γ such that

−→eγ
∗(z) =

−→
f ′(z) for every z ∈ Y ′

l . Indeed, for every n ≤ k ≤ l let mk ≥ l
such that f ′(k) ∈ Fmk

k and let m = max{mk : k = n, . . . , l}. Note that

m > l,
−→
f ′ ∈ Km,n and let γ = (m + 1, n,

−→
f ′, 0) ∈ ∆0

m+1. Since m + 1 > l

for z ∈ Y ′
l we have that d∗γ(z) = 0 and thus e∗γ(z) = c∗γ(z) =

−→
f ′(z).

Lemma 7.5. Let n < l and z, w ∈ Z such that ran z, ranw ∈ (n, l] and

dist(w,R z) > δ. If we assume that z ∈ Y ′
l then there exists q ≥ l,

−→
b ∗ ∈ Bq,n

such that that
−→
b ∗(z) = 0

−→
b ∗(w) > δ

4 .

Proof. Let−→u ,−→v ∈
∑l

k=n+1⊕(Xk⊕ℓ∞(∆k)) such that supploc(z) = (
−→
0 1,n,

−→u )

and supploc(w) = (
−→
0 1,n,

−→v ). Notice that

‖−→v − λ−→u ‖∞ = ‖(
−→
0 1,n,

−→v )− λ(
−→
0 1,n,

−→u )‖∞ ≥
1

2
‖z − λw‖ >

δ

2
.

Hence dist(−→v ,R−→u ) ≥ δ
2 . By Hahn Banach Theorem there exists

−→
f ∈

(
∑l

k=n+1⊕(X∗
k ⊕ ℓ1(∆k)))1 such that

−→
f (−→u ) = 0 and

−→
f (−→v ) ≥ δ

2 . Consid-

ering Notation 7.3 we split
−→
f =

−→
f ′ +

−→
f ′′ where

−→
f ′ ∈ (

∑l
k=n+1⊕X∗

k)1 and
−→
f ′′ ∈ (

∑l
k=n+1⊕ℓ1(∆k))1. Since z ∈ Y ′

l we may assume that
−→
f ′(k) ∈ Fk

and
−→
f ′′(k) ∈ ℓQ1 (∆k) for every n + 1 ≤ k ≤ l. By Remark 7.4 there exists

m ≥ l and γ ∈ ∆0
m+1 such that −→eγ

∗(x) =
−→
f ′(x) for every x ∈ Z. We set

−→
b ∗ = (12

−→
f ′′,

−→
0 n+1,m, 12

−→eγ
∗). Then

−→
b ∗ ∈ (

∑m+1
k=n+1⊕ℓ1(∆k))1, ‖

−→
b ∗‖1 ≤ 1

and notice that each coordinate
−→
b ∗(k) is a rational linear combination of

{e∗γ : γ ∈ ∆k}. Remark 4.1(2) implies that there exists q ≥ m+ 1 such that
−→
b ∗ ∈ Bq,n. Observe that

−→
b ∗(z) = 1

2

−→
f ′′(z) + 1

2
−→eγ

∗(z) = 1
2

−→
f (z) = 0 and in

a similar manner
−→
b ∗(w) = 1

2

−→
f (w) ≥ δ

4 . �

For the sequel of this section Z = (
∑

⊕Xn)BD such that (Xn, ‖ · ‖n)n∈N
is a sequence of separable Banach spaces with the additional property that
either ℓ1 does not embed in X∗

n for every n ∈ N or Xn admits the Schur
property for every n ∈ N.
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Adapting the basic steps of Lemma 7.2 in [3] we arrive at the following
result.

Lemma 7.6. Let T be a bounded and linear operator on Z and (wk)k∈N be
a C-RIS in ∪nY

′
n such that dist(Twk,Rwk) > δ > 0 for every n ∈ N. Then,

for all j, p ∈ N, there exist z ∈ [wk : k ∈ N] and η ∈ ∆q, q > p such that

(z, η) is (16C, 2j, 0) exact pair, ‖I −P(p,q]Tz‖ ≤ δm−1
2j and P ∗

(p,q]e
∗
η(Tz) >

δ
8 .

Proof. Let j, p ∈ N. Repeatedly applying Proposition 3.6 we may assume
passing to a subsequence that there exists p < r1 < l1 < . . . < rk < lk <
rk+1 < . . . such that ranwk ⊂ (rk, lk] and ‖(I − P(rk ,lk])Twk‖ ≤ δ

80m2j
for

every k. It follows that dist(P(rk ,lk]Twk,Rwk) >
7δ
16 . By Lemma 7.5 we can

find qk ≥ lk and
−→
b ∗
k ∈ Bqk,rk that

−→
b ∗
k(wk) = 0

−→
b ∗
k(P(rk ,lk]Twk) >

7δ
64 .

Passing to a subsequence if necessary we may additionally require that
rk < qk + 1 < rk+1 < . . . and let z =

m2j

n2j

∑n2j

k=1wk. Assuming that 2j < r1,

we can recursively choose ξk ∈ ∆qk+1 with w(ξk) = m2j and construct an

element η ∈ Γ with analysis {rk, qk, ξk,
−→
b ∗
k, }

n2j

k=1. Similarly as in [3](Lemma
7.2) it is proved that the pair (z, η) satisfies the hypothesis. �

Repeatedly and carefully applications of the above lemma imply the fol-
lowing result that is an adaptation of Proposition 7.3 in [3]. For sake of
completeness we give a slight description of the proof.

Lemma 7.7. Let T : Z → Z be a linear bounded operator. Then, for every
RIS (wk)k∈N in Z, dist(Twk,Rwk) → 0.

Proof. It is enough to prove it for every RIS in ∪nY
′
n. Suppose on the

contrary that there exists an RIS (wk)k∈N in ∪nY
′
n and δ > 0 such that

dist(Twk,Rwk) > δ for every k ∈ N. Let also j0 that will be determined
later and choose j1 such that m4j1−2 > n2

2j0−1. Applying Lemma 7.6 for j =

2j1−1 and p1 = 1 we can find q1 > 1 and a (16C, 4j1−2, 0) exact pair (z1, η1)
such that η1 ∈ ∆q1 , ‖I − P(1,q1]Tz1‖ ≤ δm−1

4j1−2 and (−→eη1
∗(P(p1,q1]Tz1) >

δ
8 .

Let ξ1 = (q1 + 1,m2j0−1,
−→eη1

∗), j2 = σ(ξ1) and apply again Lemma 7.6 for
j = 4j2 and p2 = q1 + 1. Inductively we construct p1 < q1 < p2 < q2 < . . .,
a sequence (zi, ηi)

l
i=1 such that each (zi, ηi) is (16C, 4ji, 0) exact pair with

ran zi ⊂ (pi, qi], ηi ∈ ∆qi , ‖I − P(pi,qi]Tzi‖ ≤ δm−1
4ji

and −→eη
∗
i (P(pi,qi]Tzi) >

δ
8 .

Observe that (zi)
n2j0−1

i=1 is a (16C, 2j0 − 1, 0) dependent sequence and let

γ ∈ Γ with analysis {pi, qi, ξi,
−→eηi

∗}
n2j0−1

i=1 . We notice that d∗ξi(zj) = 0 for
every i, j while for every i

−→eγ
∗(Tzi) ≥

1

m2j0−1
(−→eη

∗
i (P(pi,qi]Tzi)−‖I −P(pi,qi]Tzi‖) >

δ

8m2j0−1
−

δ

n2j0−1
.

Setting z = 1
n2j0−1

∑n2j0−1

i=1 zi we have the estimation

−→eγ
∗(Tz) = n−1

2j0−1

n2j0−1
∑

i=1

−→eγ
∗(Tzi) >

δ

16m2j0−1
.
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Proposition 6.9 yields that ‖Tz‖ ≤ 30·16C‖T‖
m2

2j0−1
. Now j0 can be suitable chosen

in order to conclude that −→eγ
∗(Tz) > ‖Tz‖ yielding a contradiction. �

All the above yield

Proposition 7.8. Let T be a linear and bounded operator on Z. Then,
there exists a scalar λ such that the operator T−λI is horizontally compact.

Proof. Let (wk)k∈N be a normalized RIS in Z. Lemma 7.7 yields that there
exist scalars λk such that ‖Twk − λkwk‖ → 0. An easy argument as in
[3], Theorem 7.4 implies that the scalars λk tend to some scalar λ which
does not depend on the choice of (wk)k∈N. By Proposition we deduce that
‖(T − λI)zk‖ → 0, for every bounded block sequence (zk)n∈N in Z. �

8. Quasi Prime AH-L∞ sums of Banach spaces

We now study AH sums for specific sequence of Banach spaces. In par-
ticular, we denote by Zp for 1 ≤ p < ∞ the AH-L∞ sum of the sequence
(Xn, ‖ · ‖n)n∈N such that Xn = ℓp for every n ∈ N. A direct consequence of
the proceeding study is the following:

Corollary 8.1. (i) Zp is non isomorphic to ℓp.
(ii) For every bounded and linear operator T on Zp there exists a scalar

λ such that the operator T − λI is horizontally compact.

Proof. For (i) we observe that by Proposition 6.10 the space Zp contains
an HI subspace and thus cannot be isomorphic to ℓp. The second (ii) is a
direct application of Proposition 7.8. �

As it is shown in the next proposition ℓp is isomorphic to complemented
subspaces of Zp.

Proposition 8.2. For every k0 ∈ N the image P[1,k0](Zp) is isomorphic to
ℓp.

Proof. We set Yk0 = P[1,k0](Zp) and we recall that Yk0 is isomorphic to

Uk0 = (
∑k0

k=1⊕(ℓp ⊕ ℓ∞(∆k)))∞. It is easy to see that Uk0 is isomorphic
to ℓp. More precisely there exists a constant Ck0 ≥ 1 such that ‖−→u ‖∞ ≤
‖−→u ‖p ≤ Ck0‖

−→u ‖∞ for every −→u ∈ Uk0 . We mention that Ck → ∞. �

Remark 8.3. In a similar manner as above we have that (
∑k

k=m⊕(ℓp ⊕
ℓ∞(∆k)))∞ is isomorphic to ℓp for every m ≤ k. Hence, Lemma 2.5 we
deduce that P[m,k](Zp) is isomorphic to ℓp for every m ≤ k.

In order to show that the spaces Zp are strictly quasi prime we need the
following lemmas.

Lemma 8.4. Let 1 ≤ p < ∞ and suppose that Zp ≃ U ⊕ V . Then,
there exists k0 ∈ N such that either P[1,k0]|U or P[1,k0]|V is an isomorphic
embedding.
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Proof. Let P : Zp → Zp be a projection onto U . By Corollary 8.1 we
have that there exists a scalar λ such that P = λI + K, where K is a
horizontally compact operator on Zp. If λ = 0 we have that U = K[Zp] and
by the definition of the horizontally compact operator the result trivially
holds for U . Otherwise, λ 6= 0 and we claim that in this case P[1,k0]|V is
an isomorphic embedding. Indeed, if we assume the opposite we can find a
normalized sequence (vn)n∈N in V and a block sequence (xn)n∈N in Zp such
that ‖vn − xn‖ → 0. Since ‖K(xn)‖ → 0 we have that ‖K(vn)‖ → 0. A
simple observation is that |λ| − ‖K(vn)‖ ≤ ‖P (vn)‖ which yields that λ = 0
contradiction our initial assumption. �

The arguments of the next lemma are adapted from [3] (Lemma 3).

Lemma 8.5. Let 1 ≤ p < ∞ and Y be a subspace of Zp for which there
exist k0 ∈ N such that P[1,k0]|Y is an isomorphism. Then, the following hold:

(1) If p = 1 and Y is complemented in Z1 by a projection P , then for
every ε > 0, there exists kε ∈ N such that ‖P (z)‖ < ε‖x‖ for every
z ∈ P(kε,∞)[Z1].

(2) If p > 1, then for every ε > 0 there exists kε ∈ N such that
‖P(kε,∞)(y)‖ < ε‖y‖ for every y ∈ Y .

Proof. In Case (1) if we assume the opposite, then there exists ε > 0 such
that for every k ∈ N, there exists xk ∈ Z1(k,∞) such that ‖zk‖ = 1 and
‖P (zk)‖ ≥ ε. Using a sliding hump argument we may also assume that the
sequence (zk)k∈N is block. This implies that both (zk)k∈N and (P (zk))k∈N
are weakly null. Since Y is isomorphically embedded into Z1[1,k0] which is
isomorphic to ℓ1 and by the Schur property of ℓ1 we deduce that ‖P (zk)‖ →
0, which is a contradiction.

In Case (2), contradicting the assumption again, we have that there exists
ε > 0 such that for every k ∈ N, a normalized sequence (yk)k∈N in Y and a
sequence of successive intervals (Ik)k∈N such that ‖PIk(yk)‖ ≥ ε. Now, since
Y is isomorphically embedded into Zp[1,k0] ≃ ℓp, passing to a subsequence if
necessary, we may assume that the sequence zk = y2k − y2k−1 is w-null and
passing again to a subsequence we have that (zk)k is equivalent to the unit
standard vector basis of ℓp. Thus, there exists a constant C > 0 such that

‖ 1
n

∑n
k=1 zk‖ ≤ C n

1
p

n
for every n ∈ N.

Fix j ∈ N such that ε
16m2j

> C
n

1
p
2j

n2j
. Passing to a subsequence we can

have that ‖P(min Ik+1,∞)yk‖ → 0 and thus we may assume that ‖PI2kzk‖ ≥ ε
2

for every k ∈ N. Considering Lemma 6.5 for the chosen j, Jk = I2k and
δ = ε/2 there exist elements (zki)

n2j

i=1 and γ ∈ Γ of weight w(γ) = m2j such

that |e∗γ(
∑n2j

i=1 zki)| ≥
εn2j

16m2j
. It follows that ‖ 1

n2j

∑n2j

i=1 zki‖ ≥ ε
16m2j

> C
n

1
p
2j

n2j

yielding a contradiction.
�



26 DESPOINA ZISIMOPOULOU

Proposition 8.6. The spaces Zp, 1 ≤ p < ∞ are strictly quasi prime.

Proof. Let 1 ≤ p < ∞ and set Z = Zp. Suppose that Z ≃ V ⊕ U and let
P : Z → Z such that ImP = V . By Lemma 8.4 we may assume that V
does not contain an HI subspace and hence Lemma 8.5 implies that there
exists k0 ∈ N such that ‖PP(k0,∞)|V ‖ ≤ 1 and ‖P(k0,∞)P |Z(k0,∞)

‖ ≤ 1. This

yields that the operators P : P[1,k0](V ) → V and P[1,k0] : V → P[1,k0](V )
are inventible as well as S = P[1,k0]P : P[1,k0](V ) → P[1,k0](V ). Let Q :

Z[1,k0] → V defined as Q = S−1 ◦ P[1,k0]P |Z[1,k0]
. Then Q is a projection

onto P[1,k0](V ) ≃ V and since Z[1,k0] ≃ ℓp we have that V ≃ ℓp. The
following factorization

Z(k0,∞)
I−P
→ U

P(k0,∞)
→ Z(k0,∞)

yields that Z(k0,∞) is isomorphic with a complemented subspace of U . In
particular, by Remark 8.3 we deduce that ℓp is isomorphic to a comple-
mented subspace of U . Therefore, U ≃ ℓp ⊕ Z ≃ ℓp ⊕ ℓp ⊕ Z ≃ ℓp ⊕ U ≃
V ⊕ U ≃ Zp. �

9. Complemented subspaces of Zn
p

In this section we shall study the complemented subspaces of a finite
powers Zn

p =
∑n

i=1 ⊕Zp(i), endowed with the supremum norm as an external
one. It is clear that since Zp is strictly quasi prime Zn

p ≃ ℓp⊕Zn
p . Therefore,

we are interested for the non trivial complemented subspaces of Zn
p that are

not isomorphic to ℓp.

Notation 9.1. For the sequel, for I ⊂ N and L ⊂ {1, 2, . . . , n} we de-
note by PL

I : Zn
p → Zn

p , the natural projections defined as PL
I (

∑n
i=1 zi) =

∑

i∈L PI(zi), for
∑n

i=1 zi ∈ Zn
p . In the case that L = {1, 2, . . . , n} we simply

write Pn
I . For technical reasons, for a subspace Y of Zn

p we will write YI

instead of Pn
I (Y ). Moreover, we say that a sequence (xk)k∈N in Zn

p is block
if maxi=1,...,n{ranxk(i)} < mini=1,...,n{ran xk+1(i)}, where xk(i) ∈ Zp(i).

The following lemma is a generalization of Lemma 8.5.

Lemma 9.2. Let 1 ≤ p < ∞ and Y be a subspace of Zn
p for which there

exist k0 ∈ N such that Pn
[1,k0]

|Y is an isomorphism. Then, the following hold:

(1) If p = 1 and Y is complemented in Zn
1 by a projection P , then for

every ε > 0, there exists kε ∈ N such that ‖P (x)‖ < ε‖x‖ for every
x ∈ Pn

(kε,∞)[Z
n
1 ].

(2) If p > 1, then for every ε > 0 there exists kε ∈ N such that
‖Pn

(kε,∞)(y)‖ < ε‖y‖ for every y ∈ Y .

Proof. Case (1) is proved using the same arguments as in Case (1) of Lemma
8.5. In Case (2), contradicting the assumption again, we have that there
exists ε > 0 such that for every k ∈ N, a normalized sequence (yk)k∈N in Y
and a sequence of successive intervals (Ik)k∈N such that ‖Pn

Ik
(yk)‖ ≥ ε. For
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every k, let nk ∈ L satisfying ‖Pn
Ik
(yk)(nk)‖ ≥ ε. Then, there exists M ∈ [N]

such that nk = n0 for every k ∈ M . Using arguments as in the proof of
Lemma 8.5(2) we arrive to a contradiction. �

Notation 9.3. Let T : Zn
p → Zn

p be a linear and bounded operator. Then,
T is written into the form T = (Ti,j)1≤i,j≤n, where Ti,j : Zp(j) → Zp(i).
Proposition 8.1(1) yields that for every 1 ≤ i, j ≤ n there exists a scalar
λi,j such that Ti,j = λi,jIi,j +Ki,j, where Ii,j : Zp(j) → Zp(i) is the natural
identity map and Ki,j : Zp(j) → Zp(i) is a horizontally compact operator.
Setting Λ = (λi,j)1≤i,j≤n, ΛI = (λi,jIi,j)1≤i,j≤n and K = (Ki,j)1≤i,j≤n we
have that T = ΛI +K.

Lemma 9.4. Let m ≤ n and T : Zn
p → Zm

p be a linear and bounded
operator of the form T = ΛI +K as above. Then,

(1) If m = n and T is a projection, then Λ = (λi,j)1≤i,j≤n is a projection
on Rn.

(2) If n > m, then T cannot be an isomorphic embedding.

Proof. For the first assume, on the contrary, that Λ2 6= Λ. Then, there
exists 0̃ 6= ã = (a1, . . . , an) ∈ Rn such that Λ2(ã) 6= Λ(ã). We may assume
that |ai| ≤ 1 for all 1 ≤ i ≤ n and that there exists i0 such that |ai0 | = 1.
We consider the supremum norm on Rn and let 0 < ǫ = ‖Λ2(ã) − Λ(ã)‖.
Note that P 2 = Λ2I + K ′, where K ′ = (ΛI)K + K(ΛI) + K2. Since Ki,j

are horizontally compact we can find k0 ∈ N and x ∈ Zp(k0,∞) such that
‖x‖ = 1 and both ‖K(x̃)‖ < ǫ

4 , ‖K ′(x̃)‖ ≤ ǫ
4 . Let x̃i ∈ Zn defined as

x̃i(j) =

{

0, if i 6= j

x, if i = j
and we set x̃ =

∑n
i=1 aix̃i. Clearly, x̃ belongs in

Zn
p(k0,∞), ‖x̃‖ = 1 and

‖P 2(x̃)− P (x̃)‖ ≥ ‖Λ2I(x̃)− ΛI(x̃)‖ − ‖K(x̃)−K ′(x̃)‖ ≥ ǫ−
ǫ

2
=

ǫ

2
,

which contradicts the fact that P 2 = P .
For the second part we refer the reader to [5], Prop.3 �

Proposition 9.5. Let W be an infinite dimensional complemented subspace
of Zn

p . Then, either W ≃ ℓp or there exists a non-empty set L ⊂ {1, . . . , n}

such that W is isomorphic to ZL
p (=

∑

i∈L⊕Zp).

Proof. Let P : Zn
p → Zn

p be a projection onto W , i.e P [Zn
p ] = W . Lemma

9.4 (1), yields that Λ = (λi,j)i,j is a projection on Rn. Thus, there exists
an inventible matrix A : Rn → Rn of the form A = (ai,j)1≤i,j≤n such that

AΛA−1 = (λ̃i,j)1≤i,j≤n where λ̃i,j =

{

0 or 1, if i = j

1, if i 6= j.
Considering the

inventible operator Ã = (ai,jIi,j)1≤i,j≤n we set P̃ = ÃP Ã−1. It is easy to

see that P̃ : Zn
p → Zn

p is a projection of the form P̃ = (λ̃i,jIi,j)i,j + K̃

where K̃ = ÃKÃ−1 = (K̃i,j)1≤i,j≤n such that K̃i,j is horizontally compact
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for every 1 ≤ i, j ≤ n and W ≃ P̃ [Zn
p ]. Therefore we may assume that

P = P̃ (i.e.K̃ = K, Λ̃ = Λ ).
We set L = {i : µi,i 6= 0}.We distinguish into the following cases:

Case 1: L = ∅. This implies that P = K. We claim that there exists k0 ∈ N

such that Pn
[1,k0]

|W is an isomorphism. Indeed if not, then we can find a

normalized sequence (wk)k∈N and a block sequence (xk)k∈N in Zn
p such that

‖xk − wk‖ → 0. Since ‖K(xk)‖ → 0 we have that ‖wk‖ = ‖P (wk)‖ =
‖K(wk)‖ → 0, a contradiction. Lemma 9.2 implies that there exist ℓ0 ∈ N

such that ‖PPn
(l0,∞)|W‖ < 1

2 . We conclude that W ≃ W n
[1,l0]

and setting

T : Pn
[1,l0]

◦ P |Wn
[1,l0]

: W n
[1,l0]

→ W n
[1,l0]

we have that T is an isomorphism and

T−1 ◦ Pn
[1,l0]

◦ P |Pn
[1,l0]

Zn
p
: Zn

p[1,l0]
→ W n

[1,l0]
is a projection on W n

[1,l0]
. Since

Zn
p[1,l0]

≃ ℓp, the result follows.

Case 2: L 6= ∅. In this case we prove that W ≃ ZL
p . In particular, we

shall prove that W ≃ ZL
p ⊕ Y , where Y ≃ ℓp and since Zp is quasi prime,

i.e Zp ≃ Zp ⊕ ℓp, the result will follow. We recall that K = (Ki,j)i,j where
each Ki,j is horizontally compact and hence we can find k0 ∈ N such that

‖K|Zn
p(k0,∞)

‖ < 1
4 . It follows that the operator

PL
(k0,∞) ◦ P |ZL

p(k0,∞)
: ZL

p(k0,∞) → ZL
p(k0,∞)

is inventible. Moreover the factorization of the above operator yields that
ZL
p ≃ ZL

p(k0,∞) is isomorphic to a complemented subspace of W and thus

W ≃ ZL
p ⊕ Y as promised. Then, it is easy to see that there exists ℓ0 ∈ N

such that Pn
[1,l0]

|Y is an isomorphic embedding. Working similarly as in

Case 1 and using Lemma 9.2 we obtain that Y is complemented in ℓp and
so isomorphic to ℓp. �

Lemma 9.4(2) and Propositions 9.5 yield the following.

Corollary 9.6. The spaces Zn
p , for 1 ≤ p < ∞ admit exactly n + 1, up to

isomorphism, complemented subspace.
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