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Abstract

Let N0 denote the set of all non-negative integers and P(N0) be its power
set. An integer additive set-indexer (IASI) of a graph G is an injective func-
tion f : V (G) → P(N0) such that the induced function f+ : E(G) → P(N0)
defined by f+(uv) = f(u) + f(v) is also injective. An IASI f is said to
be a weak IASI if |f+(uv)| = max(|f(u)|, |f(v)|) for all adjacent vertices
u, v ∈ V (G). The sparing number of a weak IASI graph G is the minimum
number of edges in G with singleton set-labels. In this paper, we study the
admissibility of weak integer additive set-indexers by certain graph classes
and associated graphs of given graphs.

Key Words: Integer additive set-indexers, weak integer additive set-indexers, spar-
ing number of a graph.
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1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [7]
and [2]. Unless mentioned otherwise, all graphs considered here are simple, finite
and have no isolated vertices.

The sum set of two sets A,B, denoted by A+B, is defined by A+B = {a+ b :
a ∈ A, b ∈ B}. Using the concepts of sum sets, the notion of integer additive
set-indexers is introduced in [5] as follows.
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Let N0 denote the set of all non-negative integers. An integer additive set-indexer
(IASI) is an injective function f : V (G) → P(N0) such that the induced function
f+ : E(G) → P(N0) defined by f+(uv) = f(u) + f(v) is also injective. An IASI is
said to be k-uniform if |f+(uv)| = k for all u, v ∈ V (G).

The cardinality of the labeling set of an element (vertex or edge) of a graph G
is called the set-indexing number of that element. An element (a vertex or an edge)
of graph which has the set-indexing number 1 is called a mono-indexed element of
that graph.

The notion of a weak IASI was introduced in [9] as follows.

A weak IASI is an IASI f such that |f+(uv)| = max(|f(u)|, |f(v)|) for all u, v ∈
V (G). A graph which admits a weak IASI is known as a weak IASI graph. In a
weak IASI graph G, at least one end vertex of every edge of G has the set-indexing
number 1.

The sparing number of a graph G is defined to be the minimum number of
mono-indexed edges required for G to admit a weak IASI and is denoted by ϕ(G).

The main results on weak IASI graphs are the following.

Theorem 1.1. [9] An odd cycle Cn has a weak IASI if and only if it has at least
one mono-indexed edge. That is, the sparing number of an odd cycle is 1.

Theorem 1.2. [9] An odd cycle Cn that admits a weak IASI has odd number mono-
indexed edges and an even cycle Cn that admits a weak IASI has even number
mono-indexed edges.

Theorem 1.3. [9] A bipartite graph need not contain any mono-indexed edges.
That is, the sparing number of bipartite graphs is 0.

Theorem 1.4. [9] A complete graph Kn admits a weak IASI if and only if the
maximum number of mono-indexed edges of Kn is 1

2
(n− 1)(n− 2).

Theorem 1.5. [10] The union G1∪G2 of two weak IASI graphs G1 and G2 admits
a weak IASI. Moreover, ϕ(G1 ∪G2) = ϕ(G1) + ϕ(G2)− ϕ(G1 ∩G2).

In this paper, we discuss first on the admissibility of weak IASI by certain graphs
which contain cliques or independent sets or both.

2 New Results

In view of Theorem 1.4, we note that a complete graph can have at most one
mono-indexed vertex. Therefore, we propose

Proposition 2.1. The sparing number of a complete graph Kn is equal to the
number of triangles which contain the vertex that is not mono-indexed in Kn.

Proof. Every pair among the n− 1 edges incident on every vertex v of a complete
graph Kn form a triangle with one edge of Kn which does not incident on v. Hence,
the number of triangles containing v is

(
n−1
2

)
= 1

2
(n − 1)(n − 2). Therefore, by

Theorem 1.4, the number of triangles containing the single vertex v, that is not
mono-indexed, is ϕ(Kn).
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In the following discussion, we study the sparing number of certain graph one of
whose components is a complete graph. Now, recall the definition of a sun graph.

Definition 2.2. [2] An n-sun or a trampoline, denoted by Sn, is a chordal graph
on 2n vertices, where n ≥ 3, whose vertex set can be partitioned into two sets U =
{u1, u2, u3, . . . , un} and W = {w1, w2, w3, . . . , wn} such that W is an independent
set of G and wj is adjacent to ui if and only if j = i or j = i + 1 (mod n). A
complete sun is a sun G where the induced subgraph 〈U〉 is complete.

Theorem 2.3. The sparing number of a complete sun graph Sn is 1
2
(n2 − 3n+ 6).

Proof. Let U and W be the partitions of V (Sn), where W is an independence set.
Since Sn is a complete sun, 〈U〉 = Kn. Let f be a weak IASI on Sn.

If we first label the vertices of U , then, since 〈U〉 = Kn, by Theorem 1.4, exactly
one vertex, say u, in U can have a non-singleton set-label and the sparing number
of 〈U〉 is 1

2
(n− 1)(n− 2). Then, two vertices in W that are adjacent to the vertex

u ∈ U must be mono-indexed and the other two edges incident on these vertices of
W (but not on u) are also mono-indexed. Therefore, the number of mono-indexed
edges in Sn, in this case, is 1

2
(n− 1)(n− 2) + 2 = 1

2
(n2 − 3n+ 6).

If we label the vertices of W first, then, since W is an independent set, we can
label all the vertices of W by distinct non-singleton sets. Therefore, all the vertices
of the component 〈U〉 must be mono-indexed. In this case, the total number of
mono-indexed edges in Sn, in this case, is 1

2
n(n− 1).

For any positive integer n ≥ 3, we have n2 − 3n + 6 ≤ n2 − n. Hence, we have
ϕ(Sn) = 1

2
n(n− 1).

Let us now consider the class of split graphs, defined as follows.

Definition 2.4. [2] A split graph is a graph in which the vertices can be partitioned
into a clique Kr and an independent set S. A split graph is said to be a complete
split graph if every vertex of the independent set S is adjacent to every vertex of
the the clique Kr and is denoted by KS(r, s), where r and s are the orders of Kr

and S respectively.

The following result discusses the sparing number of a split graph.

Theorem 2.5. The sparing number of a split graph G G is equal to the number of
triangles in G containing the vertex that is not mono-indexed in its clique.

Proof. Let Kr be the clique and S be the independent set in the split graph G. Let
{u1, u2, . . . , ur} be the vertex set of Kr and S = {v1, v2, . . . , vl}. By Theorem 1.4,
Kr can have at most one vertex that is not mono-indexed and its sparing number
is 1

2
(r − 1)(r − 2). Choose the vertex u of Kr which is contained in minimum

number of triangles with one vertex in S, to label with a non-singleton set. Now
let η be the number of triangles that contain the vertex u. If there exists a triangle
incident on ui with one vertex vj in S, then the edge vjuk of the triangle uivjuk
must be mono-indexed. By Corollary 2.1, the number of triangles incident on u in
Kr is r−1C2 = ϕ(Kr). Therefore, the number of triangles incident on u with one
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vertex in S is η − (r−1)(r−2)
2

. Hence, the number of mono-indexed edges in G is

ϕ(G) = (r−1)(r−2)
2

+ η − (r−1)(r−2)
2

= η. This completes the proof.

The following theorem estimates the sparing number of a complete split graph
G.

Theorem 2.6. The sparing number of a complete split graph is equal to the sparing
number of the maximal clique in it.

Proof. Let U = {u1, u2, u3, . . . , ur} and S = {w1, w2, w3, . . . , ws}, where 〈U〉 = Kr

and W is an independent set in G.

If the vertices of U are labeled first, then by Theorem 1.4, exactly one vertex of
U , say u, can have a non-singleton set-label and the number of mono-indexed edges
in 〈U〉 = Kr is 1

2
(r − 1)(r − 2). Since every vertex of S is adjacent to all vertices

of U , each vertex wj, 1 ≤ j ≤ s, in S must be mono-indexed. Therefore, all the
edges incident on wj, except the edge uwj are mono-indexed. That is, there exist
exactly n− 1 mono-indexed edges in G corresponding to each vertex in S. Hence,
the number of mono-indexed edges between U and S is s(r−1). Therefore, the total
number of mono-indexed edges in G is 1

2
(r− 1)(r− 2) + s(r− 1) = 1

2
(r− 1)(r+ 2s).

If the vertices of S are labeled first, all vertices of S can be labeled by distinct
non-singleton sets, since S is an independent set of G. Hence, every vertex of U
must be mono-indexed. Hence, the number of mono-indexed edges in 〈U〉 is r(r−1)

2

there is no mono-indexed edges between U and S. Hence, the total number of
mono-indexed edges in this case is r(r−1)

2
.

For any positive integer s, r < r + 2s and hence 1
2
r(r − 1) < 1

2
(r − 1)(r + 2s).

Hence, ϕ(KS(r, s)) = 1
2
r(r − 1). This completes the proof.

Next, consider the definition of a bisplit graph.

Definition 2.7. [3] An undirected graph G is a bisplit graph if its vertex set V can
be partitioned into three independent sets X, Y and Z such that Y ∪ Z induces a
complete bipartite subgraph (a bi-clique) in G.

Proposition 2.8. Let G be a bisplit graph and let X, Y, Z be the three partitions
of V (G). Then, the sparing number of G is the number of paths of length 2 with
internal vertex in the set with the least cardinality.

Proof. Without loss of generality, assume that |X| ≤ |Y | ≤ |Z|. Then, label all the
vertices of Z by distinct non-singleton sets and label the vertices of Y by distinct
singleton sets. Then, no edges between Y and Z are mono-indexed.

Some vertices of X are adjacent to some vertices in Y or some vertices in Z
or some vertices in both. The vertices in X, which are adjacent to the vertices
in Y alone, can be labeled by distinct non-singleton sets which have not already
been used for labeling the vertices in G. The vertices of X, that are adjacent to the
vertices in Z alone, can be labeled by distinct singleton sets that are not used before
for labeling the vertices in G. We note that no edge labeled so far is a mono-indexed
edge.
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Assume that a vertex, say v of X is adjacent to a vertex, say u, in Y and to a
vertex, say w in Z. Clearly, uvw is a path of length 2 with v as an internal vertex.
Since w is not mono-indexed, v can only be labeled by a singleton set, not already
used for labeling any vertex in G. Hence, the edge uv is mono-indexed. Therefore,
each path of length 2 with its internal vertex in X has a mono-indexed edge. This
completes the proof.

Proposition 2.9. Let G be a complete bisplit graph and let X, Y, Z be the three
partitions of V (G). The sparing number of G is the product of the cardinalities of
two of these sets with minimum cardinality.

Proof. Without loss of generality, assume that |X| ≤ |Y | ≤ |Z|. Then, label all the
vertices of Z by distinct non-singleton sets and label the vertices of Y by distinct
singleton sets. No edges between Y and Z are mono-indexed. Since G is a complete
bisplit graph, every vertex of X must be adjacent to all the vertices of Y and Z.
Hence, every vertex of X must be mono-indexed. Hence, all edges between X and
Y are mono-indexed and no edges between X and Z are mono-indexed. Therefore,
the number of mono-indexed edges in G is the number of edges between X and Y .
Since X and Y are independent sets, the maximum number of edges between X
and Y is |X| |Y |. Therefore, ϕ(G) = |X| |Y |.

Note that a complete bisplit graph is a complete tripartite graph. Hence, we
rewrite Theorem 2.9 as

Theorem 2.10. The sparing number of a complete tripartite graph is the product
of the cardinalities of the two sets having minimum cardinality in its tripartition.

Let us next consider the class of block graphs, defined as follows.

Definition 2.11. [7] A graph is called a block graph or a clique tree if it is connected
and every block is a clique. A graph is a block graph if it can be constructed from
a tree by replacing every edge by a clique of arbitrary size, with at most one vertex
in common.

The following result discusses about the sparing number of the block graphs.

Theorem 2.12. Let G be a block graph. Then, G admits a weak IASI and its
sparing number G is 1

2

∑r
i=1(ni − 1)(ni − 2), where r is the number of cliques in G

and ni is the order of the i-th clique in G.

Proof. A block graph is an edge disjoint union of cliques, any two which have at most
one vertex in common. Let Kn1 , Kn2 , Kn3 , . . . , Knr be the edge disjoint cliques in G.
If Kni

and Knj
have a common vertex in G and Knj

and Knk
has another common

vertex in G, then Kni
and Knk

do not have any common vertex in G. Hence, the
total number of mono-indexed edges in G is the sum of mono-indexed edges in each
clique Kni

. By Theorem 1.4, the number of mono-indexed edges in a clique Kni
in

G is 1
2
(ni − 1)(ni − 2). Since G is a graph having edge disjoint cliques, the number

of mono-indexed edges in G is the sum of the mono-indexed edges in each clique.
Hence, the total number of mono-indexed edges in G is 1

2

∑r
i=1(ni− 1)(ni− 2).
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Now, consider the following notions.

Definition 2.13. [2] A windmill graph, denoted by W (n, r), is an undirected graph
constructed for n ≥ 2 and r ≥ 2 by joining r copies of the complete graph Kn at a
shared vertex.

Definition 2.14. [2] A friendship graph or a dutch wind mill or a fan graph, denoted
by Fr, is a graph obtained by joining r copies of the cycle graph C3 with a common
vertex. The fan graph Fr is isomorphic to the windmill graph W (3, r).

The following theorem is on the sparing number of windmill graphs.

Theorem 2.15. A windmill graph W (n, r) admits a weak IASI and the sparing
number of W (n, r) is r

2
(n− 1)(n− 2).

Proof. For 1 ≤ i ≤ r, let Kni
be the i-th copy of Kn in the windmill graph W (n, r),

which admits a weak IASI. Conventionally, we assign the IASI fi = i.f to the copy
Kni

, where f is an IASI defined on Kn. Since any pair of Kni
in G are edge disjoint

and has the same vertex in common, the number of mono-indexed edges in W (n, r)
is the sum of mono-indexed edges in each Kni

. By Theorem 1.4, each Kni
contains

(n−1)(n−2)
2

mono-indexed edges. Then, the total number of mono-indexed edges in

G is
r∑

i=1

(n− 1)(n− 2)

2
=
r

2
(n−1)(n−2). Hence ϕ(W (n, r)) = r

2
(n−1)(n−2).

Corollary 2.16. A friendship graph Fr = W (3, r) admits a weak IASI and the
sparing number of Fr is r.

Proof. Put n = 3 in Theorem 2.15. Then, we have the total number of mono-
indexed edges in Fr is r

2
(n− 1)(n− 2) = r

2
.2.1 = r.

Definition 2.17. [4] The shadow graph of a graph G is obtained from G by adding,
for each vertex v of G, a new vertex v′, called the shadow vertex of v, and joining v′

to the neighbours of v in G. The shadow graph of a graph G is denoted by S(G).

The following theorem establishes the admissibility of weak IASI by the shadow
graph S(G) of a weak IASI graph G and finds out the sparing number of S(G).

Theorem 2.18. The shadow graph of a weak IASI graph also admits a weak IASI.
Moreover, ϕ(S(G)) = 2ϕ(G).

Proof. Let v be an arbitrary vertex of G. Let v′ be the shadow vertex of G. If v is
adjacent to a single vertex, say u, then v′ is also adjacent to u in S(G). Hence, vuv′

is a path of length 2 in S(G). If G is a tree, then S(G) is also tree and by Theorem
1.3, S(G) need not have a mono-indexed edge.

If the vertex v is adjacent to two vertices, say u and w in G, then v′ is adjacent
to u and w in S(G) forming a cycle C : vuv′wv of length 4. Then, by Theorem 1.2,
it has even number of mono-indexed edges. That is, if either vu or vw is mono-
indexed in G, then the corresponding edge v′u or v′w is also mono-indexed in S(G).
Since v is arbitrary, this is true for any vertex of G. Hence, ϕ(S(G)) = 2ϕ(G).
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In the following results, we discuss the admissibility of a weak IASI by some
other associated graphs of a given IASI graph G.

Definition 2.19. [1] The subdivision of some edge e = uv is a graph obtained by
introducing one new vertex w to the edge uv, and with two edges replacing e by
two new edges, uw and wv. A subdivision of a graph G is a graph resulting from
the subdivision of edges in G.

Two graphs G and G′ are said to be homeomorphic if there is an graph isomor-
phism from some subdivision of G to some subdivision of G′.

The following theorem verifies the admissibility of weak IASI by a homeomorphic
graph G′of a weak IASI graph G.

Theorem 2.20. A graph G′ obtained by the subdivision of an edge e of a weak IASI
graph G admits a (induced) weak IASI if and only if e is mono-indexed.

Proof. First observe that if one new element is introduced to an IASI graph in place
of another element of G, it is customary to assign the same set-label of the replaced
element to the newly introduced element.

Now, assume that the graph G′ obtained by subdividing an edge e = uv of a
weak IASI graph G. Let w be the new vertex introduced to the edge e. Then, the
set-label of w in G′ is the same set-label of e in G. If e is not mono-indexed in G,
then either u or v has a non-singleton set-label. Without loss of generality, let v
be the vertex which is not mono-indexed. Then, for the edge wv of G′ both the
end vertices u and v have non-singleton set-labels, which is a contradiction to the
hypothesis that G′ admits a weak IASI.

Let e be a mono-indexed edge in G. Then, the end vertices u and v of e are
mono-indexed in G. Let G′ be the graph obtained from G by introducing a vertex
w to the edge e. In G′, the vertex w has the same set-label of e in G. Hence, the
edge uw and vw in G′ are mono-indexed in G′. Hence, G′ is a weak IASI graph.

Remark 2.21. Due to Theorem 2.20, it can be observed that the graph G′ obtained
by subdividing the mono-indexed edges of a weak IASI graph is also a weak IASI
graph. The graph subdivision which is obtained by subdividing all the mono-
indexed edges of G is called a maximal subdivision of G with respect to the weak
IASI of G.

The following result is on the sparing number of a maximal subdivision G′ of a
weak IASI graph G.

Theorem 2.22. The sparing number of the maximal subdivision graph G′ of a weak
IASI graph G is 2ϕ(G).

Proof. If a vertex w is introduced to the edge uv of G to get a subdivision G′, then
by Theorem 2.20, uv is mono-indexed in G. Also, in G′ the new edges uw and wv
are mono-indexed. That is, corresponding to every mono-indexed edge in G, there
exist two mono-indexed edges in its subdivision graph. Therefore, for a maximal
subdivision G′ of G, ϕ(G′) = 2ϕ(G).
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Now, recall the following definition.

Definition 2.23. [7] A cactus or a cactus tree is a connected graph G in which any
two simple cycles have at most one vertex in common. A graph G is a cactus if
and only if every block in G is either a simple cycle or a single edge. The following
result and estimates sparing number of a cactus graph.

The following theorem estimates the sparing number of a cactus.

Theorem 2.24. The sparing number of a cactus G is r, where r is the number of
odd cycles in G.

Proof. Let G be a cactus. Then, G may be considered as a union of edge disjoint
paths (or trees) and cycles, any two of which has at most one vertex in common.
Let Cn be a cycle which admits a weak IASI and let Pm be a path (or T be a tree),
which has at most one vertex in common. Then, by Theorem 1.5, Cn ∪ Pm (or
Cm ∪ T ) admits a weak IASI and ϕ(Cn ∪ Pm) = ϕ(Cm) (or ϕ(Cn ∪ T ) = ϕ(Cm)).
Hence, in order to estimate the sparing number of a cactus, we need to take the
sum of the sparing numbers of all cycles in it.

Let Cm1 , Cm2 , Cm3 , . . . , Cmn be the edge disjoint cycles in G. Without loss of
generality, let Cm1 , Cm2 , Cm3 , . . . , Cmr be the odd cycles and Cmr+1 , Cmr+2 , . . . , Cmn

be the even cycles in G.

Now, assume that G admits a weak IASI, each cycle in G must have a weak
IASI, say fi, where fi is the restriction of f to the cycle Cmi

. By Theorem 1.3, even
cycles do not necessarily have a mono-indexed edge and each odd cycles Ci, must
have at least one mono-indexed edge. Therefore, G has at least r mono-indexed
edges. Hence, ϕ(G) = r.

Our next discussion is on the sparing number of a graph structure called (m,n)-
cone. First, recall the definition of an (m,n)-cone.

Definition 2.25. An (m,n)-cone or an n-point suspension, denoted by Cm,n is a
graph G whose vertex is partitioned into two sets U and S where S is an independent
set and the vertices of U forms a cycle in G such that every vertex of W is adjacent
with all vertices of U .

For positive integers m,n, if 〈U〉 = Cm, then Cm,n = Cm + S, where n = |S|.

If n = 1, then Cm,n reduces to a wheel graph Wm+1 and, the following result
discusses the sparing number of a wheel graph Wm+1.

Proposition 2.26. [10] The sparing number of a wheel graph Wm+1 is d (m−1)
2
e.

Hence, we estimate the sparing number of an (m,n)-cone in the following theo-
rem.

Theorem 2.27. For m > 0, n ≥ 2, the sparing number of an (m,n)-cone is m.
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Proof. For m > 0, n ≥ 2, let Cm,n = Cm + S, where S be an independent set in G.
Now we have the following cases.

Case-1: Let m be an even integer. Hence, Cm is an even cycle and if we label
the vertices of Cm first, then by Theorem 1.3, ϕ(Cm) = 0 and it has exactly m

2

mono-indexed vertices and exactly m
2

vertices that are not mono-indexed. Since
each vertex wj of S is adjacent to all vertices of Cm, all vertices of S must be mono-
indexed. Therefore, exactly m

2
edges incident on each vertex wj of S are mono-

indexed. The number of mono-indexed edges between Cm and S is mn
2

. Hence, the
total number of mono-indexed edges in Cm,n in this case is mn

2
.

If the vertices of S are labeled first, then all vertices of S can be labeled by
distinct non-singleton sets, since S is independent set in Cm,n. Then, every vertex
of Cm must be mono-indexed. In this case, no edge between Cm and S is mono-
indexed and the total number of mono-indexed edges in Cm,n is m.

Since n ≥ 2, we have mn
2
> m.

Case-2: Let m be an odd integer. Hence, Cm is an odd cycle and if we label the
vertices of Cm first, then by Theorem 1.1, ϕ(Cm) = 1 and it has exactly (m+1)

2

mono-indexed vertices and exactly (m−1)
2

vertices that are not mono-indexed. Since
each vertex wj of S is adjacent to all vertices of Cm, all vertices of S must be

mono-indexed. Therefore, exactly (m+1)
2

edges incident on each vertex wj of S are

mono-indexed. The number of mono-indexed edges between Cm and S is (m+1)n
2

.

Hence, the total number of mono-indexed edges in Cm,n in this case is 1 + (m+1)n
2

.

If the vertices of S are labeled first, then as explained in Case-1, all vertices of
S can be labeled by distinct non-singleton sets. Then, every vertex of Cm must be
mono-indexed. In this case no edge between Cm and S is mono-indexed and the
total number of mono-indexed edges in Cm,n is m.

Since n ≥ 2, we have 1 + (m+1)n
2

> m.

In both cases, the minimum number of mono-indexed edges in Cm,n is m. Hence,
the sparing number ϕ(Cm,n) = m.

3 Conclusion

In this paper, we have established some results on the sparing number of certain
graphs and graph classes. The admissibility of weak IASI by certain other graph
classes, graph operations and graph products and finding the corresponding sparing
numbers are still open. There are several other open problems regarding the nec-
essary and sufficient conditions for the admissibility of certain IASIs, both uniform
and non-uniform, by various graphs and graph classes.

References

[1] J A Bondy and U S R Murty, (2008). Graph Theory, Springer.

9
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