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We obtain, by extensive direct numerical simulations, trajectories of heavy inertial particles in
two-dimensional, statistically steady, homogeneous, and isotropic turbulent flows, with friction. We
show that the probability distribution function P(κ), of the trajectory curvature κ, is such that,
as κ → ∞, P(κ) ∼ κ−hr , with hr = 2.07 ± 0.09. The exponent hr is universal, insofar as it is
independent of the Stokes number St and the energy-injection wave number kinj. We show that
this exponent lies within error bars of their counterparts for trajectories of Lagrangian tracers. We
demonstrate that the complexity of heavy-particle trajectories can be characterized by the number

NI(t,St) of inflection points (up until time t) in the trajectory and nI(St) ≡ limt→∞
NI(t,St)

t
∼ St−∆,

where the exponent ∆ = 0.33± 0.02 is also universal.

PACS numbers: 47.27.-i,05.40.-a

The transport of particles by turbulent fluids has at-
tracted considerable attention since the pioneering work
of Taylor [1]. The study of such transport has experi-
enced a renaissance because (a) there have been tremen-
dous advances in measurement techniques and direct nu-
merical simulations (DNSs) [2] and (b) it has implica-
tions not only for fundamental problems in the physics
of turbulence [11] but also for a variety of geophysical, at-
mospheric, astrophysical, and industrial problems [3–9].
It is natural to use the Lagrangian frame of reference [10]
here; but we must distinguish between (a) Lagrangian or
tracer particles, which are neutrally buoyant and follow
the flow velocity at a point, and (b) inertial particles,
whose density ρp is different from the density ρf of the
advecting fluid. The motion of heavy inertial particles is
determined by the flow drag, which can be parameter-
ized by a time scale τs, whose ratio with the Kolmogorov
dissipation time Tη is the Stokes number St = τs/Tη;
tracer and heavy inertial particles show qualitatively dif-
ferent behaviors in flows; e.g., the former are uniformly
dispersed in a turbulent flow, whereas the latter clus-
ter [11], most prominently when St ' 1. Differences
between tracers and inertial particles have been inves-
tigated in several studies [2], which have concentrated
on three-dimensional (3D) flows and on the clustering or
dispersion of these particles.

We present the first study of the statistical properties
of the geometries of heavy-particle trajectories in two-
dimensional (2D), homogeneous, isotropic, and statisti-
cally steady turbulence, which is qualitatively different
from its 3D counterpart because, if energy is injected at
wave number kinj, two power-law regimes appear in the
energy spectrum E(k) [12–14], for wave numbers k < kinj

and k > kinj. One regime is associated with an in-
verse cascade of energy, towards large length scales, and
the other with a forward cascade of enstrophy to small
length scales. It is important to study both forward- and
inverse-cascade regimes, so we use kinj = 4, which gives
a large forward-cascade regime in E(k), and kinj = 50,
which yields both forward- and inverse-cascade regimes.

For a heavy inertial particle, we calculate the velocity
v, the acceleration a = dv/dt, with magnitude a and
normal and tangential components an and at, respec-
tively. The intrinsic curvature of a particle trajectory is
κ = an/v

2. We find two intriguing results that shed new
light on the geometries of particle tracks in 2D turbu-
lence: First, the probability distribution function (PDF)
P(κ) is such that, as κ→∞, P(κ) ∼ κ−hr ; in contrast, as
κ→ 0, P(κ) has slope zero; we find that hr = 2.07±0.09
is universal, insofar as they are independent of St and
kinj. We present high-quality data, with two decades of
clean scaling, to obtain the values of these exponents, for
different values of St and kinj. We obtain data of similar
quality for Lagrangian-tracer trajectories and thus show
that hr lies within error bars of its tracer-particle coun-
terpart. Second, along every heavy-particle track, we
calculate the number, NI(t,St), of inflection points (at
which a × v changes sign) up until time t. We propose
that

nI(St) ≡ lim
t→∞

NI(t,St)

t
(1)

is a natural measure of the complexity of the trajectories
of these particles; and we find that nI ∼ St−∆, where the
exponent ∆ = 0.33± 0.02 is also universal.

We obtain several other interesting results: (a) At
short times the particles move ballistically but, at large
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times, there is a crossover to Brownian motion, at a
crossover time Tcross that increases monotonically with
St. (b) The PDFs P(a), P(an), and P(at) all have ex-
ponential tails. (c) By conditioning P(κ) on the sign
of the Okubo-Weiss [16–18] parameter Λ, we show that
particles in regions of elongational flow (Λ > 0) have, on
average, trajectories with a lower curvature than parti-
cles in vortical regions (Λ < 0).

We write the 2D incompressible Navier-Stokes (NS)
equation in terms of the stream-function ψ and the vor-
ticity ω = ∇ × u(x, t), where u ≡ (−∂yψ, ∂xψ) is the
fluid velocity at the point x and time t, as follows:

Dtω = ν∇2ω − µω + F ; (2)

∇2ψ = ω. (3)

Here, Dt ≡ ∂t+u·∇, the uniform fluid density ρf = 1, µ is
the coefficient of friction, and ν the kinematic viscosity of
the fluid. We use a Kolmogorov-type forcing F (x, y) ≡
−F0kinj cos(kinjy), with amplitude F0 and length scale
`inj ≡ 2π/kinj. (A) For k < kinj, the inverse cascade of
energy yields E(k) ∼ k−5/3; and (B) for k > kinj, there is
a forward cascade of enstrophy and E(k) ∼ k−δ, where
the exponent δ depends on the friction µ (for µ = 0,
δ = 3). We use µ = 0.01 and obtain δ = −3.6. The
equation of motion for a small, spherical, rigid particle
(henceforth, a heavy particle) in an incompressible flow
[19] assumes the following simple form, if ρp � ρf :

dx

dt
= v(t),

dv

dt
= − 1

τs
[v(t)− u(x(t), t)] , (4)

where x, v, and τs = (2R2
p)ρp/(9νρf) are, respectively,

the position, velocity, and response time of the particle,
and Rp is its radius. We assume that Rp � η, the dis-
sipation scale of the carrier fluid, and that the particle
number density is so low that we can neglect interac-
tions between particles, the particles do not affect the
flow, and particle accelerations are so high that we can
neglect gravity. In our DNSs we solve simultaneously for
several species of particles, each with a different value
of St; there are Np particles of each species. We also
obtain the trajectories for Np Lagrangian particles, each
of which obeys the equation d(x)/dt = u [x(t), t]. The
details of our DNS are given in the Appendix and param-
eters in our DNSs are given in Tables(I) and (II) for 12
representative values of St (we have studied 20 different
values of St).

In Fig. (1) we show representative particle trajectories
of a Lagrangian tracer (black line) and three different
heavy particles with St = 0.1 (red asterisks), St = 0.5
(blue circles), and St = 1 (black squares) superimposed
on a pseudocolor plot of ω. We expect that inertial parti-
cles move ballistically in the range 0 < t ≤ τs; for t� τs,
we anticipate a crossover to Brownian behavior, which
we quantify by defining the mean-square displacement
r2(t) = 〈(x(t0 + t)− x(t0))2〉t0,Np

, where 〈〉t0,Np
denotes

FIG. 1: (Color online) Representative particle trajectories
of a Lagrangian tracer (black line) and three different heavy
particles with St = 0.1 (red asterisks), St = 0.5 (blue circles),
and St = 1 (black squares) superimposed on a pseudocolor
plot of ω. For the spatiotemporal evolution of this plot see
the animation available at the location http://www.youtube.

com/watch?v=lk3iSHhfTuU

an average over t0 and over the Np particles with a given
value of St. Figure (2) contains log-log plots of r2 versus
t, for the representative cases with St = 0.1 (red aster-
isks) and St = 1 (black squares); both of these plots
show clear crossovers from ballistic (r2 ∼ t2) to Brow-
nian (r2 ∼ t) behaviors. We define the crossover time
Tcross as the intersection of the ballistic and Brownian
asymptotes (bottom inset of Fig. (2)). The top inset of
Fig. (2) shows that, in the parameter range we consider,
Tcross increases monotonically with St.

In Fig. (3) we present semilog plots of the PDFs P(a),
P(at), and P(an) for some representative values of St.
Clearly, all of these PDFs have exponential tails, i.e.,
P(a,St) ∼ exp[−a/α(St)], P(at,St) ∼ exp[−at/αt(St)],
and P(an,St) ∼ exp[−an/αn(St)]. As St increases, the
tails of these PDFs fall more and more rapidly, because
the higher the inertia the more difficult is it to accelerate
a particle. Hence, α, αt, and αn decrease with St [see
Table (II)].

Although these acceleration PDFs have exponential
tails, P(κ) shows a power-law behavior as κ→∞, as we
have mentioned above. The exponent hr for the right-tail
of P(κ) is especially interesting because it characterizes
the parts of a trajectory that have large values of κ. If
P(κ) ∼ κ−hr , then its cumulative PDF Q(κ) ∼ κ−hr+1.
We obtain an accurate estimate of hr from Q, which we
obtain by a rank-order method that does not suffer from
binning errors [15]. We give representative, log-log plots
of Q in Fig. (4), for St = 0.1 (blue asterisks) and St = 1
(red squares); and we determine hr by fitting a straight
line to Q over a scaling range of more than two decades;
We plot, in the inset, Fig. (4), the local slope of this

http://www.youtube.com/watch?v=lk3iSHhfTuU
http://www.youtube.com/watch?v=lk3iSHhfTuU
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FIG. 2: (Color online) Log-log (base 10) plots of r2 ver-
sus t/Teddy for St = 0.1 (red triangles), and St = 1 (black
squares); top inset: plot of Tcross/Teddy versus St; bottom in-
set: log-log (base 10) plot of r2/t versus t/Teddy for tracers
(blue curve) and linear fits to the small- and large-t asymp-
totes (dashed lines) with slopes 1 and 0 in ballistic and Brow-
nian regimes, respectively; the intersection point of these
dashed lines yields Tcross.

scaling range, whose mean value and standard deviation
yield, respectively, hr and its error bars. From such plots
we find that hr does not depend significantly on St [Table
(II)]. Furthermore, we find that the Lagrangian analog of
hr, which we denote by hlagrangian, is 2.03 ± 0.09, i.e., it
lies within error bars of hr. By analyzing the κ→ 0 limit
of P(κ), we find that P(κ) ∼ A0κ

hl , where A0 > 0 is an
amplitude and hl = 0.0 ± 0.1 (the latter is independent
of St); this indicates that there is a nonzero probability
that the paths of particles have zero curvature, i.e., they
can move in straight lines. The κ → 0 limit of P(κ)
seems, therefore, to be different from its counterpart for
3D fluid turbulence (see Ref. [26] for Lagrangian trac-
ers and Ref. [28] for heavy particles), where P(κ) → 0
as κ → 0. Very-high-resolution DNSs for 2D turbulence
must be undertaken to probe the κ→ 0 limit of P(κ) by
going to even smaller values of κ than we have been able
to obtain reliably in our DNS.

A point in a 2D flow is vortical or strain-dominated
if the Okubo-Weiss parameter Λ = (1/8)(ω2 − σ2) is,
respectively, positive or negative [16–18]. We now inves-
tigate how the acceleration statistics of heavy particles
depends on the sign of Λ by conditioning the PDFs of at
and κ on this sign. In particular, we obtain the condi-
tional PDFs P+ and P−, where the superscript stands for
the sign of Λ. We find, on the one hand, that the tail of
P+(at) falls faster than that of P−(at) because regions
of the trajectory with high tangential accelerations are
associated with strain-dominated points in the flow. On
the other hand, the right tail of P+(κ) falls more slowly
than that of P−(κ), which implies that high-curvature

parts of a particle trajectory are correlated with vorti-
cal regions of the flow. We give plots of P+(at), P+(κ),
P−(at), and P−(κ) in the Appendix .

We find that a×v (a pseudoscalar in 2D like the vortic-
ity) changes sign at several inflection points along a par-
ticle trajectory. We use the number of inflection points
on a trajectory, per unit time, nI(St) (see Eq. (1)) as a
measure of its complexity. In Fig. (5) we demonstrate
that the limit in Eq. (1) exists by plotting NI(t,St)/t as
a function of t for St = 0.1 (red asterisks) and St = 2
(black triangles); the mean value of NI(t,St)/t, between
the two vertical dashed lines in Fig. (5), yields our esti-
mate for nI(St), which is given in the inset as a function
of St (on a log-log scale); the standard deviation gives the
error bars. From this inset of Fig. (5) we conclude that
nI(St) ∼ St−∆, with ∆ = 0.33 ± 0.05. This exponent ∆
[Table (I)] is independent of the Reynolds number and µ,
within the range of parameters we have explored. Fur-
thermore, ∆ is independent of whether our 2D turbulent
flow is dominated by forward or the inverse cascades in
E(k), which are controlled by kinj.

We have repeated all the above studies with a forc-
ing term that yields an energy spectrum with a signifi-
cant inverse-cascade part (kinj = 50); the parameters for
this run are given in Table (1) in the Appendix and in
Ref. [20]. The dependence of all the tails of the PDFs
discussed above and the exponents hl and hr on St are
similar to those we have found above for kinj = 4.

Earlier studies of the geometrical properties of parti-
cle tracks have been restricted to tracers; and they have
inferred these properties from tracer velocities and accel-
erations. For example, the PDFs of different components
of the acceleration of Lagrangian particles in 2D turbu-
lent flows has been studied for both decaying [21] and
forced [22] cases; they have shown exponential tails in pe-
riodic domains, but, in a confined domain, have obtained
PDFs with heavier tails [23]. The PDF of the curvature
of tracer trajectories has been calculated from the same
simulations, which quote an exponent hlagrangian ' 2.25
(but no error bars are given). Our work goes well be-
yond these earlier studies by (a) investigating the statis-
tical properties of the geometries of the trajectories of
heavy particles in 2D turbulent flows for a variety of pa-
rameter ranges and Stokes numbers, (b) by introducing
and evaluating, with unprecedented accuracy (and error
bars), the exponent hr, (c) proposing nI as a measure
of the complexity of heavy-particle trajectories and ob-
taining the exponent ∆ accurately, (d) by examining the
dependence of all these exponents on St and kinj, and
(e) showing, thereby, that these exponents are universal
(within our error bars).

Our results imply that nI(St) has a power-law diver-
gence, so the trajectories become more and more con-
torted, as St→ 0. This divergence is suppressed eventu-
ally, in any DNS, which can only achieve a finite value of
Reλ because it uses only a finite number of collocation
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(a) (b) (c)

FIG. 3: (Color online) Plots of PDFs of (a) the modulus of a of the particle acceleration, (b) its tangential component at, and
(c) its normal component an for St = 0 (blue curve), 0.5 (red curve), 1 (green curve), and 2 (black curve).

FIG. 4: (Color online) Log-log plots of the cumulative PDFs
Q(κ) for St = 0.1 (blue asterisks) and St = 1 (red squares);
the inset shows a plot of the local slope of the tail of this
cumulative PDF and the two dashed horizontal lines indicate
the maximum and minimum values of this local slope in the
range we use for fitting the exponent hr.

points. Such a suppression is the analog of the finite-size
rounding off of divergences, in say the susceptibility, at
an equilibrium critical point [27]. Note also that the limit
St → 0 is singular and it is not clear a priori that this
limit should yield the same results, for the properties we
study, as the Lagrangian case St = 0.

We hope that our study will lead to experimental stud-
ies and accurate measurements of the exponents hr and
∆, and applications of these in developing a detailed un-
derstanding of particle-laden flows in the variety of sys-
tems that we have mentioned in the introduction.

For 3D turbulent flows, geometrical properties of
Lagrangian-particle trajectories have been studied nu-
merically [24, 25] and experimentally [26]. However, such
geometrical properties have not been studied for heavy
particles. The extension of our heavy-particle study to
the case of 3D fluid turbulence is nontrivial and will be
given in a companion paper [28].

FIG. 5: (Color online) Plots of NI/(t/Teddy) versus t/Teddy

for St = 0.1 (red curve) and St = 2 (black curve); the in-
set shows a log-log (base 10) plot of nI versus St (blue open
circles); the black dotted line has a slope = −1/3.
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Run N F0 kinj `d λ Reλ Teddy Tη Tinj

IA 1024 0.2 50 1.3× 10−3 0.06 1219 0.98 0.16 2.94

FA 1024 0.005 4 5.4× 10−3 0.2 1322 7 2.9 30.2

TABLE I: The parameters for our DNS runs: N2 is the num-
ber of collocation points, Np = 104 is the number of La-
grangian or inertial particles, δt the time step, ν = 10−5

the kinematic viscosity, and µ = 0.01 the air-drag-induced
friction, F0 the forcing amplitude, kinj the forcing wave num-

ber, ld ≡ (ν3/ε)1/4 the dissipation scale, λ ≡
√
νE/ε the

Taylor microscale, Reλ = urmsλ/ν the Taylor-microscale

Reynolds number, Teddy = (
∑

k E(k)/k∑
k E(k)

)/urms the eddy-turn-

over time, and Tη ≡
√

(ν/ε) the Kolmogorov time scale.

Tinj ≡ (`2inj/Einj)
1/3 is the energy-injection time scale, where

Einj =< fu ·u >, is the energy-injection rate, `inj = 2π/kinj is
the energy-injection length scale, and fω = ∇× fu.

Run St α αt αn hr

F1 0.1 0.86± 0.07 1.45± 0.07 0.86± 0.07 2.03± 0.08

F2 0.2 0.96± 0.06 1.66± 0.07 0.97± 0.06 2.0± 0.1

F3 0.3 1.11± 0.07 1.87± 0.07 1.12± 0.06 2.0± 0.1

F4 0.4 1.43± 0.07 2.15± 0.07 1.36± 0.09 2.04± 0.09

F5 0.5 1.56± 0.08 2.27± 0.08 1.45± 0.09 2.0± 0.1

F6 0.6 1.66± 0.08 2.36± 0.09 1.6± 0.1 2.02± 0.09

F7 0.7 1.88± 0.09 2.51± 0.09 1.61± 0.09 2.06± 0.09

F8 0.8 2.22± 0.08 2.73± 0.09 1.90± 0.09 2.01± 0.08

F9 0.9 2.6± 0.1 2.9± 0.1 2.0± 0.1 2.0± 0.1

F10 1.0 2.6± 0.1 3.3± 0.1 2.17± 0.09 2.0± 0.1

F11 1.5 3.9± 0.1 4.3± 0.1 3.3± 0.1 2.1± 0.1

F12 2.0 4.5± 0.1 4.7± 0.1 3.8± 0.1 2.0± 0.1

TABLE II: The values of α, αn, and αt and the exponent hr

for the case kinj = 4 and for different values of St.
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Statistical Properties of the Intrinsic Geometry of
Heavy-particle Trajectories in Two-dimensional,

Homogeneous, Isotropic Turbulence : Supplemental
Material

In this Supplemental Material we provide numerical
details of our direct numerical simulation (DNS) of Eq.
(2) in the main part of this paper. We also give results of
our DNS for the case of the injection wave vector kinj =
50, which yields a significant inverse-cascade part in the
energy spectrum E(k). In Fig. (6) we show the energy
spectra E(k) for our runs FA (kinj = 4) and IA (kinj = 50).

(a)

(b)

FIG. 6: (Color online) Log-log (base 10) plots of the energy
spectra E(k) versus k for (a) runs FA (kinj = 4) and (b) runs
IA (kinj = 50).

We perform a DNS of Eq. (2) by using a pseudo-
spectral code [30] with the 2/3 rule for dealiasing; and we
use a second-order, exponential time differencing Runge-
Kutta method [31] for time stepping. We use periodic
boundary conditions in a square simulation domain with
side L = 2π, with N2 collocation points. Together with
Eq.(2) we solve for the trajectories of Np heavy particles,
for each of which we solve Eq. (4) with an Euler scheme.
The use of an Euler scheme to evolve particles is justified
because, in time δt, a particle crosses at most one-tenth

of grid spacing. We obtain the Lagrangian velocity at
an off-grid particle position x, from the Eulerian velocity
field by using a bilinear-interpolation scheme [32]; for
numerical details see Refs. [16, 33–35].

We calculate the fluid energy-spectrum E(k) ≡∑
k−1/2<k′≤k+1/2 k

′2〈|ψ̂(k′, t)|2〉t, where 〈·〉t indicates a
time average over the statistically steady state. The pa-
rameters in our simulations are given in Table(II) of the
main part of this paper and in Table(III). These include
the Taylor-microscale Reynolds number, Reλ ≡ urmsλ/ν,
where λ ≡

√
νE/ε is the Taylor microscale and the

Stokes number St = τs/Tη. We use 20 different values
of St to study the dependence on St of the PDFs P(a),
P(at) and P(an), the cumulative PDF Q(κ), the mean
square displacement, and the number of inflection points
NI(t,St) at which a × v changes sign along a particle
trajectory.

A point in a 2D flow is vortical or strain-dominated
if the Okubo-Weiss parameter Λ = (1/8)(ω2 − σ2) is,
respectively, positive or negative [16–18]. We investigate
how the acceleration statistics of heavy particles depends
on the sign of Λ by conditioning the PDFs of at and κ
on this sign. In particular, we obtain the conditional
PDFs P+ and P−, where the superscript stands for the
sign of Λ. We find, on the one hand, that the tail of
P+(at) falls faster than that of P−(at) because regions
of the trajectory with high tangential accelerations are
associated with strain-dominated points in the flow. On
the other hand, the right tail of P+(κ) falls more slowly
than that of P−(κ), which implies that high-curvature
parts of a particle trajectory are correlated with vortical
regions of the flow. We give plots of P+(at), P+(κ),
P−(at), and P−(κ) in Fig. (7) and Fig. (8). These trends
hold for all values of St and kinj that we have studied.

FIG. 7: (Color online) Semilog (base 10) plots of the PDFs of
the tangential component of the acceleration for St = 0.1 in
vortical regions P(a+

t ) (red squares) and in strain-dominated
regions P(a−t ) (blue asterisks).
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FIG. 8: (Color online) Semilog (base 10) plots of PDF of
the curvature of trajectories for St = 0.1 in vortical regions
P(κ+η) (red squares), in strain-dominated regions P(κ−η)
(blue asterisks), and in general (i.e., without conditioning on
the sign of Λ) P(κη) (black triangles).

FIG. 9: (Color online) Log-log (base 10) plots for kinj = 50
of r2 versus t/Teddy for St = 0.1 (red asterisks) and St = 1
(black squares).

In Fig. (9), we plot the square of the mean-squared
displacement r2 versus time t for kinj = 50; here too
we see a crossove from ballistic to Brownian behaviors;
however, in contrast to the case kinj = 4, the crossover
time Tcross does not depend significantly on St.

In Fig. (10), we plot the PDF P(log10(κη)) versus
log10(κη), for St = 0.1 (blue asterisks), St = 1 (red
squares) and St = 2 (black circles). Such PDFs pro-
vide another convenient way of displaying the power-law
behaviors, as κ→∞ and κ→ 0, which we have reported
in the main part of this paper, where we have used the
cumulative PDF of κ to obtain the power-law exponents.

In Table(III) we report the values of α, αn, αt, and the
exponent hr of the right tail of the PDF of the trajectory

FIG. 10: (Color online) Semilog (base 10) plot of the PDF
P(log10(κη)) versus log10(κη), for St = 0.1 (blue asterisks),
301 St = 1 (red squares) and St = 2 (black circles).

Run St α αt αn hr

I1 0.1 0.39± 0.06 0.69± 0.02 0.40± 0.06 2.16± 0.09

I2 0.2 0.47± 0.05 0.81± 0.03 0.46± 0.05 2.14± 0.09

I3 0.3 0.55± 0.04 0.95± 0.02 0.54± 0.05 2.1± 0.1

I4 0.4 0.63± 0.04 1.09± 0.03 0.61± 0.04 2.10± 0.08

I5 0.5 0.71± 0.04 1.21± 0.02 0.68± 0.03 2.09± 0.09

I6 0.6 0.80± 0.03 1.34± 0.03 0.77± 0.03 2.08± 0.09

I7 0.7 0.88± 0.04 1.48± 0.04 0.85± 0.03 2.07± 0.09

I8 0.8 0.97± 0.03 1.60± 0.03 0.94± 0.04 2.07± 0.09

I9 0.9 1.05± 0.03 1.73± 0.03 1.01± 0.04 2.1± 0.1

I10 1.0 1.16± 0.03 1.87± 0.03 1.10± 0.03 2.1± 0.1

TABLE III: The values of α, αn, αt, and the exponent hr, for
the case kinj = 50 for different values of St.

curvature, for the case kinj = 50 and for different values
of St.

In Table(IV) we report the exponent hl, which charc-
terizes P(κη), as κ → 0, in both the cases kinj = 4 and
kinj = 50. In both these cases and for all the different
values of St we have studied, hl = 0.0± 0.1.

St 0.1 0.2 0.3 0.4 0.5 1.0

hl (FA) 0.0± 0.1 0.0± 0.1 0.0± 0.1 0.0± 0.1 0.0± 0.1 0.0± 0.1

hl (IA) 0.0± 0.1 0.0± 0.1 0.0± 0.1 0.0± 0.1 0.0± 0.1 0.0± 0.1

TABLE IV: The exponent hl that charcterizes P(κη), as κ→
0, in both the cases kinj = 4 and kinj = 50 and for different
values of St.
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