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OVERTWISTED DISKS AND EXOTIC SYMPLECTIC STRUCTURES

ROGER CASALS

Abstract. The symplectization of an overtwisted contact (R3, ξot) is shown to be an exotic sym-
plectic R

4. The technique can be extended to produce exotic symplectic R
2n using a GPS–structure

and applies to symplectizations of appropriate open contact manifolds.

Let (R2n, ω0) be the standard symplectic structure on R
2n. A symplectic structure ω on R

2n is exotic
if there exists no symplectic embedding

ϕ : (R2n, ω) −→ (R2n, ω0).

The non–existence of embedded exact Lagrangians in (R2n, ω0) and the h–principle for immersions
imply that R2n admits an exotic symplectic structure for n ≥ 2. See Exercise b. in page 344 in [Gr].

A symplectic structure on R
2 is symplectomorphic to the standard symplectic structure. In the case

of R4 and R
6 exotic symplectic structures are provided in [BP] and [Mu] respectively. The articles

[ML, SS] contain an approach to exotic Stein structures. Note that a finite type Stein manifold diffeo-
morphic to R

4 has to be symplectomorphic to (R4, ω0). The detection of exotic symplectic structures
often relies on symplectic arguments, such as the study of embedded Lagrangians. See also [Zu].

The aim of the present article is to show that techniques in contact topology can also be used to
construct and detect exotic symplectic structures. In particular the exotic symplectic structures we
describe are simple and explicit. The arguments we provide use known obstructions to fillability. See
[Ni, NP]. The proofs in these articles require pseudo–holomorphic curves. This is the only place where
non–elementary contact topology is invoked. The main result is the following

Theorem 1. Let (R3, ξot) be an overtwisted contact structure, then the symplectization SS(R3, ξot)
endows R

4 with an exotic symplectic structure.

Example 2. Let (ρ, ϕ, z) ∈ R
3 be cylindrical coordinates and (R3, ξ1) the contact structure defined

by the kernel of the contact form
α1 = cos ρdz + ρ sin ρdϕ.

Consider the symplectic 2–form ω1 = d(etα1) on R
4 ∼= R

3×R(t). Then (R4, ω1) is an exotic symplectic
structure. �

The arguments we use apply to several open contact manifolds. For instance:

Theorem 3. Let (M, ξ) be an exact symplectically fillable contact 3–fold and (U, ξ) ⊂ (M, ξ) an

open contact submanifold. Consider an overtwisted contact structure (U, ξot). Then SS(U, ξ) is not

symplectomorphic to SS(U, ξot).

The same techniques allow us to prove similar results in higher–dimensions. In particular we prove
that the exotic symplectic structures obtained in Theorem 1 are stable.

Theorem 4. Let (R3, ξot) be an overtwisted contact structure and (SS(R3, ξot), ωot) its symplectiza-

tion. Then (SS(R3, ξot)× R
2n−4, ωot + ω0) endows R

2n with an exotic symplectic structure.

The appropriate analogue of Theorem 3 also holds for higher dimensions.

I have been informed that Y. Chekanov may have a different argument for Theorem 1. K. Niederkrüger
explained to me that one can use bLobs as a generalization for the GPS–structure. The paper is or-
ganized as follows. Sections 1 and 2 introduce the ingredients used to prove the above results. The
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proof of Theorem 1 is detailed in Section 3. Section 4 contains the proof of Theorems 3 and 4 .
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1. Preliminaries

1.1. Contact structures on R
3. The study of contact structures in R

3 yielded to foundational work
in contact topology. The first step towards an isomorphism classification was the distinction between
the standard contact structure on R

3 and the overtwisted contact structure described in Example 2.
This is the work of D. Bennequin in [Be]. The isomorphism classification of contact structures on R

3

is completed after the seminal work of Y. Eliashberg in [E1, E2, E3].

The standard contact structure ξ0 on R
3(ρ, ϕ, z) is defined as the kernel of the contact form

α0 = dz + ρ2dϕ.

This is a normal form of any contact 1–form in a sufficiently small neighborhood of a point in a
contact 3–fold.

The contact structure ξ1 induced by the contact form α1 = cos ρdz+ρ sin ρdϕ contains an overtwisted
disk ∆ = {(ρ, ϕ, z) : ρ ≤ π, z = 0}.The arguments in [Be] imply that (R3, ξ0) and (R3, ξ1) are not
contactomorphic.

Consider the 3–sphere S
3. The main result in [E1] implies the existence of a unique overtwisted

contact structure in each homotopy class of plane distribution on S
3. There are H3(S3, π3(RP

2)) = Z

homotopy classes. Denote by ζk the overtwisted contact structure in the homotopy class identified
with k ∈ Z. Then ζk restricted to S

3 \ {p}, p ∈ S
3, defines an overtwisted contact structure on R

3. It
will still be denoted ζk. The classification result in [E3] is the following

Theorem 5. Each contact structure on R
3 is isotopic to one of the structures ξ0, ξ1 or ζk, for k ∈ Z.

These structures are pairwise non–contactomorphic.

Thus the overtwisted disk ∆ ⊂ (R3, ξ1) is the local model in a neighborhood of any overtwisted disk.
That is, any small ball containing an overtwisted disk in a contact 3–fold is necessarily contactomor-
phic to (R3, α1).

The symplectic structures we consider in this article are constructed with a contact structure. The
procedures we use to obtain a symplectic manifold from a contact manifold and viceversa will be
explained in the following subsections. This material can be found in [AG].

1.2. Symplectization. Let (M, ξ) be a contact manifold and SS(M, ξ) be the subbundle of the
cotangent bundle π : T ∗M −→ M whose fibre at a point p ∈ M consists of all non–zero linear func-
tions on the tangent space TpM which vanish on the contact hyperplane ξp ⊂ TpM and define its
given coorientation. Giving SS(M, ξ) as a subbundle of the cotangent bundle T ∗M is tantamount to
endowing M with a contact structure.

Consider the Liouville 1–form λ on T ∗M , the 2–form dλ restricts to a symplectic structure on
SS(M, ξ).

Definition 6. The symplectization of (M, ξ) is the exact symplectic manifold

(SS(M, ξ), dλ|SS(M,ξ)).

In our perspective the primitive is not part of the data, only the symplectic structure is. In the
study of Liouville domains the primitive is also part of the structure of a symplectization. This is
not the case. The bundle π : SS(M, ξ) −→ M is a trivial principal R+–bundle. The sections of
π are contact forms for the contact structure ξ. A choice of contact form α defines a trivialization
SS(M, ξ) ∼= M × R

+(t). In terms of this splitting λ|SS(M,ξ) = tα. In case a contact form α has been
given to (M, ξ), its symplectization SS(M, ξ) will also be denoted by SS(M,α). Contactomorphic
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contact manifolds yield symplectomorphic symplectizations.

In this article R
2n+2 is identified with the total space of SS(R2n+1, α). This is done with the diffeo-

morphism e : R(t) −→ R
+(t), e(t) = et. The use of t ∈ R

+ is more convenient since we consider t to
be a radius in certain polar coordinates of an annulus. The coordinate et ∈ R

+ shall sometimes be
used, as in the following example.

Example 7. Consider R
2n+1 with coordinates (x1, y1, . . . , xn, yn, z) = (ρ1, ϕ1, . . . , ρn, ϕn, z) and

endowed with the contact form

α0 = dz +

n∑

i=1

ρ2i dϕi.

Its symplectization is the symplectic manifold (R2n+1 × R(t), d(etα0)). This is symplectomorphic to
the standard symplectic (R2n+2, ω0) where ω0 =

∑n
i=1 dxi∧dyi+dt∧dz. Indeed, consider the contact

form α̃0 = dz−
∑n

i=1 yi ·dxi on R
2n+1. It is readily seen that (R2n+1, kerα0) ∼= (R2n+1, ker α̃0). Then

the diffeomorphism

f : R2n+2 −→ R
2n+2, f(x1, y1, . . . , xn, yn, z, t) = (x1, e

ty1, . . . , xn, e
tyn, e

tz, t)

pulls–back the standard symplectic form to

f∗

(
n∑

i=1

dxi ∧ dyi + dt ∧ dz

)
=

n∑

i=1

(
etdxi ∧ dyi + etyi · dxi ∧ dt

)
+ etdt ∧ dz =

= d

(
etdz −

n∑

i=1

etyi · dxi)

)
= d(etα̃0).

Hence SS(R2n+1, α0) ∼= (R2n+2, ω0). The permutation in the variables (z, t) has its geometric origin
in the dichotomy between convexity and concavity. Confer Section 1.4.

Remark 8. The contact structure ξ0 = kerα0 on R
2n+1 extends to a contact structure (S2n+1, ξ0)

via the one point compactification.

It is a natural question whether SS(R3, α0) and SS(R3, α1) are symplectomorphic. A symplec-
tic topology proof could be finding exact Lagrangian tori in SS(R3, α1), since these do not exist in
SS(R3, α0). Such a Lagrangian tori would also distinguish the symplectomorphism type of SS(R3, α0)
and SS(R3, ζk), k ∈ Z. Instead, we shall use contact topology.

Note also that the classic symplectic invariants such as volume, width and symplectic capacities are
necessarily infinite in the symplectization of a contact manifold.

1.3. Contactization. Let (V, λ) be an exact symplectic manifold with a Liouville 1–form λ.

Definition 9. The contactization C(V, λ) of (V, λ) is the contact manifold (V × R(s), λ− ds).

Note that a different choice of primitive λ for the symplectic structure dλ on V may lead to a different
contact structure on V × R. In case there exists a function f : V −→ R such that λ0 − λ1 = df , the
map

F : C(V, λ0) −→ C(V, λ1), F (p, s) = (p, s− f(p))

is a strict contactomorphism. Note that for V = R
2n, or more generally H1(V ;R) = 0, such a poten-

tial f exists.

The coordinate s ∈ R in V × R(s) can be considered to be an angle s ∈ S
1. In particular, the

contactization C(V, λ) can be compactified to V × S
1(s). This compactification is also referred to as

the contactization of (V, λ).
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1.4. Contact fibration of CSS(M, ξ) over D
2. Let (M, ξ) be a contact manifold and α an associated

contact form. The symplectization SS(M,α) ∼= (M × R
+(t), d(tα)) is an exact symplectic manifold.

Thus CSS(M, ξ) is defined, the choice of Liouville form in this case is λ = tα. The underlying smooth
manifold M ×R

+(t)×R(s) can be compactified to M ×R
+(t)×S

1(s). Then the coordinates (t, s) can
be considered to be polar coordinates on R

2 \ {0} and projection onto the latter two factors defines
a smooth fibration

π : M × R
+(t)× S

1(s) −→ R
2 \ {0}.

A smooth fibration p : X −→ B is said to be contact for a codimension–1 distribution ξ ⊂ TX if ξ
restricts to a contact structure on any fibre. The map p = π satisfies this condition for the natural
contact structure on CSS(M, ξ).

Proposition 10. The smooth fibre bundle

π : M × R
+ × S

1 −→ R
2 \ {0}, (p, t, s) 7−→ (t, s).

is a contact fibration for ξ = ker{tα−ds}. There exists a diffeomorphism G between contact fibrations

such that

(M × R
+ × (0, 2π), ker{α+ r2dθ})

G
//

p

��

(M × R
+ × R, ker{tα− ds})

p

��

R
+ × (0, 2π)

∼=
// R

+ × R

is commutative, the map p being in both cases the projection onto the rightmost two factors.

Proof. The first statement is readily verified. For the second statement, consider the following change
of coordinates

(r, θ) ∈ R
+ × (0, 2π)

g
−→ (t, s) ∈ R

+ × R, 1/t = −4 cos2 (θ/4) · r2, s = tan (θ/4) .

The map g defines a contactomorphism

G = (id, g) : (M × R
+ × (0, 2π), ker{α+ r2dθ}) −→ (M × R

+ × R, ker{tα− ds})

since G∗(α − (1/t) · ds) = α+ r2dθ. The map G commutes with the projections. �

From the viewpoint of differential topology the projection π from M × R
+ × S

1 is appropriate.
Nevertheless from a symplectic perspective the two ends M− = M × {0} × {s0} and M+ = M ×
{∞} × {s0} are quite different, for any fixed s0 ∈ S

1(s). The negative end M− of a symplectization
is concave and the positive end M+ is convex. Consider polar coordinates (r, θ) ∈ R

2 restricting to

(r, θ) ∈ R
+ × (0, 2π) = R

2 \ L,

where L = {(r, θ) : r ≥ 0, θ = 0}. Then the convexity of the boundary at infinity leads to the change
of coordinates in Proposition 10. This is a more natural symplectic coordinate system: the binding
of the natural open book in CSS(M, ξ) induced by polar coordinates on the disk D

2(r, θ) lies above
the origin of the disk. It is then natural to compactify not only smoothly, but in a contact sense, the
contact manifold (M ×R

+× (0, 2π), ker{α+ r2dθ}) to the contact manifold (M ×D
2, ker{α+ r2dθ}).

2. Overtwisted disks and GPS

The concepts and results of this Section are part of the content of [Ni, NP].

Definition 11. Let (M5, ξ) be a contact 5–fold and ξ = kerα. A GPS–structure is an immersion

ι : S1 × D
2(r, θ) −→ M conforming the following properties

- ι∗α = f(r)dθ, for f ≥ 0 and f(r) = 0 only at r = 0, 1.
- There exists ε > 0 such that the self–intersection points are of the form

p1 = (s1, r1, θ) and p2 = (s2, r2, θ), r1, r2 ∈ (ε, 1− ε).

- There exists an open set with no self–intersection points joining S
1 × {0} and S

1 × ∂D2.

The existence of a GPS–structure partially restricts the fillability properties of the contact manifold
(M, kerα). In particular, we can use the main result in [NP]. It implies the following

Theorem 12. Let (M, kerα) be a contact manifold with a GPS–structure. Then (M, kerα) does not

admit an exact symplectic filling.
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The construction of a GPS–structure through the use of a contact fibration was introduced in [Pr].
In Section 4 of [NP] details for the following result are provided.

Proposition 13. Let (R3, kerαot) be an overtwisted contact structure and (p, r, θ) ∈ R
3 × D

2(r0)
polar coordinates. There exists R ∈ R

+ sufficiently large such that the contact manifold (R3 ×
D

2(R), ker{αot + r2dθ}) contains a GPS–structure.

3. Symplectization of an overtwisted structure

In this section we prove Theorem 1. Let (R3, kerαot) be an overtwisted contact structure. The
idea is simple: the contactization C(R4, etαot) of the exact symplectic manifold (R4, d(etαot)) is not
contactomorphic to (R5, ξ0) ∼= CSS(R3, ξ0). Indeed, it will be proven that C(R4, etαot) does not embed
into (S5, ξ0) whereas (R

5, ξ0) does. The geometric model is that of Subsection 1.4 and thus (R4, etαot)
is seen as (R3 × R

+, tαot).

Lemma 14. Let (p, r, θ) ∈ R
3 × R

2 be polar coordinates and L = {(p, r, θ) : r ≥ 0, θ = 0}. There

exists a contactomorphism

Φ : (R3 × (R2 \ L), ker{αot + r2dθ}) −→ C(R3 × R
+, tαot).

Proof. Consider the map G in the proof of Proposition 10. The contactization C(R3 × R
+, tαot) is

contactomorphic to

C(R3 × R
+, tαot) =

(
R

3 × R
+ × R(s), ker{αot − (1/t)ds}

) G−1

−→ (R3 × R
+ × (0, 2π), ker{αot + r2dθ})

which is (R3 × (R2 \ L), ker{αot + r2dθ}). �

Lemma 15. Let (p, x, y) = (p, r, θ) ∈ R
3 × R

2 be cartesian and polar coordinates. There exists a

strict contactomorphism

Ψ : (R3 × R
2, ker{αot + r2dθ}) −→ (R3 × R

2, ker{αot − ydx}).

which preserves the fibres of the projection onto the second factor.

Proof. The contact form αot+ r2dθ in Cartesian coordinates reads β0 = αot+
1
2 (xdy−ydx). Consider

the homotopy of contact forms

βt = αot − ydx+
1− t

2
(xdy + ydx), t ∈ [0, 1].

It begins at β0 and ends at β1 = αot − ydx. Let us find an isotopy τt solving the equation τ∗t βt = 0.
Suppose that τt is the t–time flow of a vector field Xt. The derivative of the equation reads

τ∗t (LXt
βt + β̇t) = 0, i.e. dιXt

αt + ιXt
dαt −

1

2
(xdy + ydx) = 0.

Note that d(xy) = xdy + ydx and thus the autonomous vector field

X =
xy

2
Rot

is the solution to this equation, where Rot denotes the Reeb vector field of αot. The vector field X is
a complete vector field in R

3 × R
2. Let τ be its 1–time flow. Then the diffeomorphism

Ψ : R3 × R
2 −→ R

3 × R
2, Ψ(p, x, y) = (τ(p, x, y), x, y)

satisfies Ψ∗(αot − ydx) = αot + r2dθ. �

Theorem 16. There exists no contact embedding CSS(R3, αot) −→ CSS(R3, α0).

Proof. The contact manifold CSS(R3, α0) is contactomorphic to (R5, kerα0). Thus it embeds via the
inclusion j into (S5, kerα0). The contact manifold (S5, kerα0) admits an exact symplectic filling by
the standard symplectic ball (D6, ω0|D6). Suppose that there exists a contact embedding

h : CSS(R3, αot) −→ CSS(R3, α0).

Proposition 13 implies the existence of a GPS–structure on the contact manifold

NR = (R3 × D
2(R), ker{αot + r2dθ})

for R large enough. Let us show that NR contact embeds into CSS(R3, αot). Lemma 14 identifies
this contactization via Φ with (R3 × (R2 \ L), ker{αot + r2dθ}). The contactomorphism Ψ in Lemma
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15 allows us to use (R3 × (R2 \ L), ker{αot − ydx}).

Consider an arbitrary R0 ∈ R
+, the inclusion i : D2(R0) −→ R

2(x, y) as a disk centered at the origin
and the diffeomorphism fR ∈ Diff(R2) defined as fR(x, y) = (x − R, y). The image of NR0

via the
contact embedding (id, fR ◦ i) is contained in R

3 × (R2 \ L) if R > R0. It is readily verified that

γ : Φ ◦Ψ−1 ◦ (id, f2R0
◦ i) : NR0

−→ CSS(R3, αot)

is a contact embedding. The radius R0 can be chosen arbitrarily large. The map j ◦ h ◦ γ endows
(S5, kerα0) with a GPS–structure. This contradicts Theorem 12. �

Proof of Theorem 1: Suppose that symplectic structure SS(R3, αot) is not exotic. Then there exists
an embedding i : SS(R3, αot) −→ SS(R3, α0). It induces a contact embedding

j : CSS(R3, αot) −→ CSS(R3, α0).

This contradicts Theorem 16. �

Note that the symplectic structure SS(R3, ξot) is never standard at infinity. It has been proven by
M. Gromov that a symplectic structure on R

4 standard at infinity is necessarily isomorphic to the
standard symplectic structure (R4, ω0).

The contact structures ξ0 and ξ1 on R
3 are homotopic through contact structures. This homotopy

can be obtained by dilating the overtwisted disks off to infinity. This geometric path of contact
structures yields a path of exact symplectic forms joining the standard symplectic structure ω0 and the
symplectic structure on SS(R3, ξ1). A visual homotopy between ξ0 and ζk can be readily constructed
using contractions to a Darboux ball. This also induces a homotopy between ω0 and the symplectic
form of SS(R3, ζk).

4. Examples of Non–Isomorphic Symplectizations

In this Section we provide details on Theorem 3 and Theorem 4.

4.1. Open contact 3–folds. In Section 2 we have shown that SS(R3, α0) is not symplectomorphic
to SS(R3, αot). The procedure we used yields several examples of open manifolds exhibiting this
behaviour. In particular Theorem 3 stated in the introduction.

Theorem 3. Let (M, ξ) be an exact symplectically fillable contact manifold and (U, ξ) ⊂ (M, ξ) an

open contact submanifold. Consider an overtwisted contact structure (U, ξot). Then SS(U, ξ) is not

symplectomorphic to SS(U, ξot).

Proof. Consider an exact symplectic filling (W,λ) for (M, ξ), ξ = kerα. Note that SS(M, ξ) embeds
into (W,λ) as a neighborhood of the boundary. The contact 5–fold C(W,λ) = (W × S

1, λ − ds)
has boundary M × S

1. In order to obtain a closed contact 5–fold (X,Ξ) we glue the manifold
(M × D

2, α + ρ2dϕ) along their common boundary M × S
1. The manifold (X,Ξ) admits an exact

symplectic filling.

Observe that the open contact manifold (U, ξ) embeds into (X,Ξ) with an arbitrarily large neighbor-
hood. Indeed, (M, ξ) has an arbitrarily large symplectic neighborhood in (W,λ). For instance, it can
be obtained by expanding a given neighborhood with the Liouville flow.

The open contact manifold CSS(U, ξot) contains a GPS–structure. Suppose that SS(U, ξ) is symplec-
tomorphic to SS(U, ξot), then SS(U, ξot) embeds into (W,λ). Hence the contact manifold CSS(U, ξot)
embeds into (X,Ξ). This contradicts Theorem 12. �

Remark 17. The manifold (X,Ξ) used in the proof is not unique. The relative suspension using

a composition of positive Dehn twists also yields an exact symplectically fillable manifold and the

argument applies.
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4.2. Higher Dimensions. Consider an overtwisted contact structure (R3, ξot) and polar coordinates
(ρ1, ϕ1, . . . , ρn−2, ϕn−2) ∈ R

2n−4. The contact structure ξex defined by the kernel of the 1–form

αex = αot +

n−2∑

i=1

ρ2i dϕi

contains a GPS–structure. Thus it is not contactomorphic to (R2n−1, ξ0). The statement of Propo-
sition 13 also holds for the contact manifold (R2n−1, ξex). That is, there exists a GPS–structure on
(R2n−1×D

2(R), αex+r2dθ). Confer [NP] for details. The existence of this GPS–structure and the ana-
logues of Lemmas 14 and 15 prove that CSS(R2n−1, αex) does not contact embed into CSS(R2n−1, α0).
The same argument used in Theorem 1 yields the following

Proposition 18. Let (R3, ξot) be an overtwisted contact structure, ξot = kerαot. Then the symplec-

tization SS(R2n−1, αex) endows R
2n with an exotic symplectic structure. �

This allows us to conclude Theorem 4 stated in the introduction.

Proof of Theorem 4: Consider the diffeomorphism

f : R2n −→ R
2n, f(ρ, ϕ, z, t; ρ1, ϕ1, . . . , ρn−2, ϕn−2) = (ρ, ϕ, z, t; et/2ρ1, ϕ1, . . . , e

t/2ρn−2, ϕn−2).

Consider the 1–forms

λ̃ex = etαot +

n−2∑

i=1

ρ2i dϕi, λex = etαex = et(αot +

n−2∑

i=1

ρ2i dϕi)

The diffeomorphism f pulls–back f∗λ̃ex = λex. In particular

(SS(R3, ξot)× R
2n−4, ωot + ω0) ∼= SS(R2n−1, αex)

are symplectomorphic. This concludes the statement. �

Proposition 18 can also be used to prove an analogue of Theorem 3 in higher dimensions.
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