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Diversified homotopic behavior of closed orbits of some R-covered

Anosov flows
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Abstract − We produce infinitely many examples of Anosov flows in closed 3-manifolds where the set of periodic

orbits is partitioned into two infinite subsets. In one subset every closed orbit is freely homotopic to infinitely other

closed orbits of the flow. In the other subset every closed orbit is freely homotopic to only one other closed orbit.

The examples are obtained by Dehn surgery on geodesic flows. The manifolds are toroidal and have Seifert pieces

and atoroidal pieces in their torus decompositions.

1 Introduction

This article deals with the question of free homotopies of closed orbits of Anosov flows [An] in 3-manifolds.
In particular we deal with the following question: how many closed orbits are freely homotopic to a given
closed orbit of the flow? Suspension Anosov flows have the property that an arbitrary closed orbit is
not freely homotopic to any other closed orbit. Geodesic flows have the property that every closed
orbit (which corresponds to a geodesic in the surface) is only freely homotopic to one other closed orbit.
The other orbit corresponds to the same geodesic in the surface, but being traversed in the opposite
direction. About twenty years ago the author proved that there is an infinite class of Anosov flows
in closed hyperbolic 3-manifolds satisfying the property that every closed orbit is freely homotopic to
infinitely many other closed orbits [Fe1]. Obviously this was diametrically opposite to the behavior of
the previous two examples and it was also quite unexpected. This property in these examples is strongly
connected with the large scale properties of Anosov flows when lifted to the universal cover. In particular
in these examples the property of infinitely orbits which are freely homotopic to each other implies that
the flows are not quasigeodesic, that is, orbits are not uniformly efficient in measuring length in the
universal cover [Fe1]. This provided the first examples of Anosov flows in hyperbolic 3-manifolds which
are not quasigeodesic. The analysis of freely homotopic closed orbits of Anosov flows is also extremely
important in other situations, for example: 1) Analysing the interaction between incompressible tori
in the manifold and the Anosov flow [Barb-Fe], 2) Studying the structure of the Anosov flow when
“restricted” to a Seifert piece of the torus decomposition of the manifold [Barb-Fe].

We define the free homotopy class of a closed orbit of a flow to be the collection of closed orbits which
are freely homotopic to the original closed orbit. For an Anosov flow each free homotopy class is at most
infinite countable as there are only countably many closed orbits of the flow [An]. In this article we are
concerned with the cardinality of free homotopy classes. Suspensions have all free homotopy classes with
cardinality one and geodesic flows have all free homotopy classes with cardinality two. In the hyperbolic
examples mentioned above every free homotopy class has infinite cardinality. In addition if we do finite
covers of geodesic flows, where we “unroll the fiber direction”, then we can get examples satisfying the
property that every free homotopy class has cardinality 2n where n is a positive integer. The question we
ask is whether we can have mixed behavior for an Anosov flow. In other words, can some free homotopy
classes be infinite while others have finite cardinality? In this article we produce infinitely many examples
where this indeed occurs.
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Main theorem − There are infinitely many examples of Anosov flows Φ in closed 3-manifolds so that
the set of closed orbits is partitioned in two infinite subsets A and B so that the following happens. Every
closed orbit in A has infinite free homotopy class. Every closed orbit in B has free homotopy class of
cardinality two. The examples are obtained by Dehn surgery on closed orbit of geodesic flows.

We thank the reviewer, whose suggestions greatly improved the presentation of this article.

2 Previous results and definitions

A three manifold M is irreducible if every sphere bounds a ball [He]. An incompressible torus is the image
of an embedding f : T 2 → M which does not have compressing disks [He]. A 3-manifold is homotopically
atoroidal if every π1-injective map f : T 2 → M is homotopic into the boundary. The manifold is
geometrically atoroidal if every incompressible torus is homotopic to the boundary. A 3-manifold M is
Seifert fibered if it has a 1-dimensional foliation by circles [He, Ep]. The torus decomposition states that
every compact, irreducible 3-manifold M can be decomposed by finitely incompressible tori T1, ..., Tk so
that the closure of every component of (M−∪Tk) is either Seifert fibered or atoroidal [Ja, Ja-Sh]. A graph
manifold is an irreducible 3-manifold whose pieces of the torus decomposition are all Seifert fibered. The
base space of a Seifert fibered space is the quotient of M by the Seifert fibration. It is a 2-dimensional
orbifold with finitely many cone points. The Seifert space is called small if the base is either the disk
with less than 3 cone points or the sphere with less than 4 cone points.

If M closed admits an Anosov flow then M is irreducible [Ro]. But M may be toroidal, for example
this happens in the case of geodesic flows or suspensions. In the case of geodesic flows the whole manifold
is Seifert fibered.

2.1 Anosov flows and R-covered Anosov flows

Let Φ be an Anosov flow in M3 and let Λs,Λu be its stable and unstable foliations respectively. The
leaves of Λs,Λu can only be planes, annuli and Möbius bands [An]. A leaf L of Λs or Λu is an annulus
or Möbius band if and only L contains a closed orbit of Φ [An]. Let Λ̃s, Λ̃u be the lifted foliations to the

universal cover M̃ . Let F be a leaf of Λ̃s or Λ̃u. By the above, the leaf F has non trivial stabilizer if
and only if π(F ) has a closed orbit of Φ. Here the map π : M̃ → M is the universal covering map. The
stabilizer of F is {g ∈ π1(M) | g(F ) = F}.

Theorem 2.1. ([Fe2, Fe3]) Suppose that Φ is an Anosov flow in M3 and suppose that α and β are closed
orbits of Φ which are freely homotopic to each other, as oriented curves. Then there is γ periodic orbit
of Φ so that α is freely homotopic to γ−1 as oriented curves.

For an arbitrary Anosov flow Φ the orbit space O of the lifted flow Φ̃ to the universal cover is
homeomorphic to the plane R2 [Fe1]. The lifted foliations Λ̃s, Λ̃u are invariant by the flow Φ̃ so they
induce one dimensional foliations Os,Ou in O.

Definition 2.2. A foliation F in M is R-covered if the leaf space of the lifted foliation F̃ to the universal
cover M̃ is homeomorphic to the real numbers R [Fe1].

Definition 2.3. An Anosov flow is R-covered if its stable foliation (or equivalently its unstable foliation
[Ba1, Fe1]) is R-covered.

Examples of R-covered Anosov flows are suspensions and geodesic flows [Fe1]. In [Fe1] the author
showed that there is an infinite class of R-covered Anosov flows on hyperbolic 3-manifolds. Barbot [Ba2]
proved that the Handel-Thurston Anosov flows [Ha-Th] are R-covered, as well as an infinite class of
Anosov flows in graph manifolds. The Anosov flows in the Main theorem are R-covered. On the other
hand the class of non R-covered Anosov flows is extremely large. For example Barbot [Ba1] proved that
R-covered Anosov flows are transitive. Hence the intransitive Anosov flows constructed by Franks and



§2. Previous results and definitions 3

Williams [Fr-Wi] are notR-covered. In addition the Bonatti and Langevin examples [Bo-La] are transitive
Anosov flows which are not covered. Barbot [Ba2] constructed many other examples of transitive Anosov
flows in graph manifolds and these examples were greatly generalized in [Barb-Fe]. In all of these examples
the underlying manifold is toroidal and consequently not hyperbolic.

2.2 R-covered Anosov flows

Suppose that Φ is an R-covered Anosov flow. Then there are two possibilities for the topological structure
of the lifted stable and unstable foliations Λ̃s, Λ̃u to M̃ [Ba1, Fe1] or equivalently for the topological
structure of the foliations Os,Ou in O ∼= R2.

• Suppose that every leaf of Λ̃s intersects every leaf of Λ̃u. In this case Φ is said to have the product
type. Then Barbot [Ba1] showed that Φ is topologically equivalent to a suspension Anosov flow.
This implies that M fibers over the circle with fiber a torus.

• The other possibility is that Φ is a skewed R-covered Anosov flow. This means that O has a
model homeomorphic to an infinite strip (0, 1) ×R. In addition the model satisfies the following
properties. The stable foliation Os in O is a foliation by horizontal segments in (0, 1) × R. The
unstable foliation is a foliation by parallel segments in (0, 1) × R which make and angle θ which
is not π/2 with the horizontal. That is, they are not vertical and hence an unstable leaf does not
intersect every stable leaf and vice versa. We refer to figure 1. Notice that every unstable leaf u of
Ou intersects an interval Ju of stable leaves of Os. This is a strict subset of the leaf space of Os.
The model implies that different leaves u of Ou generate different intervals Ju.

In [Fe3] the author proved that if Φ is a skewed R-covered Anosov flow then the underlying manifold is
orientable. With this one can also produce infinitely many examples of transitive non R-covered Anosov
flows where the underlying manifold is hyperbolic.

Proposition 2.4. Proposition 3.1 of [Ba-Fe] Let γ be a closed orbit of an Anosov flow Φ. Then any lift

γ̃ of γ to M̃ is unknotted. In particular π1(M̃ − γ̃) is Z and M̃ − γ̃ is an open solid torus.

2.3 Dehn surgery and Fried’s flow Dehn surgery

Dehn filling - Let N be a 3-manifold which is the interior of a compact 3-manifold N̂ so that the
boundary of N̂ is a union of tori P1, ..., Pk. Choose simple closed curve generators ai, bi for each π1(Pi).
Let N(x1,y1),...,(xk,yk) be the manifold obtained by Dehn filling N (or more specifically N̂) with k solid
tori Vi as follows: for each i glue the boundary of the solid torus Vi to Pi by a homeomorphism so that
the meridian in Vi is glued to the curve xiai + yibi in Pi. We require that the pair of integers xi, yi are
relatively prime to ensure that xiai+yibi is a simple closed curve in Pi. The topological type of the Dehn
filled manifold is completely determined by the collection of pairs of integers (xi, yi). They are called the
Dehn surgery coefficients.

Dehn surgery - Let M be a closed 3-manifold and γ an orientation preserving simple closed curve in
M . Let N(γ) be a solid torus neighborhood of γ and M ′ = M − N̊(γ). Choose a pair of generators for
∂N(γ) ⊂ ∂M ′. Then Dehn surgery on γ with coefficients x, y is the Dehn filled manifold M ′

(x,y).

Remarks 1) More generally one can do Dehn surgery on γ if M has boundary, or is not compact. 2)
Dehn surgery is very general: any closed orientable 3-manifold can be obtained from the 3-sphere by
iterated Dehn surgery [Li].

Hyperbolic Dehn surgery [Th1, Th2, Be-Pe] - Let M be a complete hyperbolic manifold with
finite volume and not compact. Then M is homeomorphic to the interior of a compact manifold M̂ with
boundary components P1, ..., Pk which we assume are tori. Each such torus corresponds to a cusp in M .
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As above one can do Dehn filling to obtain the closed manifold M(x1,y1),...,(xk,yk). Thurston proved except
for finitely many choices of the integers xi, yi the manifold M(x1,y1),...,(xk,yk) admits a hyperbolic structure.
If one fills only one of the cusps, or a subset of the cusps, then for big enough surgery coefficients, the
resulting manifold is hyperbolic but not closed, it still has some cusps. The reference [Th1] has a very
extensive and detailed proof of this in the case of the figure eight knot complement in the sphere S3. The
book [Be-Pe] has a proof in the general case.

Fried’s flow Dehn surgery [Fr] - Suppose that Φ is an Anosov flow and that γ is a closed orbit which is
orientation preserving in M , and so that the stable leaf Λs(γ) of γ is an annulus (as opposed to a Möbius
band). Let N(γ) be a solid torus neighborhood of γ. Choose generators for π1(P ) where P = ∂(N(γ))
as follows. Let a be a meridian in N(γ) − unique up to inverse in π1(P ). Let b be the intersection of
the local stable leaf of γ with ∂N(γ). Choose the orientation in b to be the one induced by the positive
flow direction in γ. This is the “longitude” in ∂N(γ) in this case. Do (1, n) Dehn surgery on γ. Fried
[Fr] showed how to do this along the flow: blow up the orbit γ (producing a boundary torus). Then blow
down this boundary torus to a closed curve according to the surgery coefficients (1, n). The resulting flow
is still an Anosov flow and is denoted by Φ(1,n). The orbit γ blows up to a torus and then blows down
to an orbit of Φ(1,n). With this construction notice that there is a bijection between the orbits of Φ and
the orbits of the surgered flow Φ(1,n).

Theorem 2.5. (Fe1) Let Φ be an R-covered Anosov flow in M3 of skewed type. Let γ be a closed orbit
so that Λs(γ) is an annulus. Then under a positivity condition, every Anosov flow Φ(1,n) is R-covered
and of skewed type. Under appropriate choices of the basis of π1(N(γ)) the positivity condition is satisfied
for all positive n. In particular this is true if Φ is the geodesic flow in T1S where S is a closed hyperbolic
surface.

In general the positivity condition is satisfied either for all positive n or for all negative n [Fe1]. The
issue is that the meridian is well undefined up to inverse. Hence there are two possibilities for the basis,
and one of them satisfies the positivity condition for every positive n. As it is not needed in this article
we do not specify exactly when the positivity condition holds.

Theorem 2.6. ([Fe1]) Let M = T1S where S is a closed, orientable hyperbolic surface and let Φ be the
geodesic flow in M . Let γ be a closed geodesic in S which fills S. Let γ1 be a periodic orbit of Φ which
projects to γ in S. Do (1, n) Dehn surgery on γ1 satisfying the positivity condition to generate manifold
Ms and Anosov flow Φs. By theorem 2.5 Φs is R-covered. Suppose that n is big enough so that Ms is
hyperbolic. Then every closed orbit of Φ is freely homotopic to infinitely many other closed orbits.

3 Atoroidal submanifolds of unit tangent bundles of surfaces

Let S be a closed hyperbolic surface and let M = T1S be the unit tangent bundle of S. Notice that M is
orientable, whether S is orientable or not. In the next section we will do Dehn surgery on a closed orbit
of the geodesic flow to obtain the examples of flows for our Main theorem. We use the following notation
to denote the projection map

τ : M = T1S → S

which is the projection of a unit tangent vector to its basepoint in S.
Let Φ be the geodesic flow in M . It is well known that Φ is an Anosov flow [An]. Let α be a closed

geodesic in S. This geodesic of S generates two orbits of Φ, let α1 be one such orbit. This is equivalent
to picking an orientation along α. Let S1 be a subsurface of S that α fills. If α is simple then S1 is an
annulus. If α fills S then S1 = S. Let S2 be the closure in S of S − S1 − which may be empty. Let
Mi = T1Si, i = 1, 2. Notice that both M1 and M2 are Seifert fibered (with boundary).

The purpose of this section is to prove the following result.
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Proposition 3.1. (atoroidal) The submanifold M1 − α1 is homotopically atoroidal.

Proof. We will prove that M1−α1 is geometrically atoroidal. This statement means the following: notice
that M1 − α1 is not compact, but M1 − N̊(α1) is compact. The statement means that M1 − N̊(α1) is
homotopically atoroidal. Notice that M1 − α1 is irreducible [He]. Gabai [Ga] showed that since M1 − α1

is not a small Seifert fibered space then M1 − α1 is also homotopically atoroidal.
Let T be an incompressible torus in M1 − α1. We think of T as contained in M . There are 2

possibilities:

Case 1 − T is π1-injective in M .
Here T is contained in M −M2. We use that M is Seifert fibered. In addition T is incompressible, so

it is an essential lamination in M [Ga-Oe]. By Brittenham’s theorem [Br] T is isotopic to either a vertical
torus or a horizontal torus in M . Vertical torus means it is a union of S1 fibers of the Seifert fibration.
Horizontal torus means that it is transverse to these fibers. Since S is a hyperbolic surface, there is no
horizontal torus in M = T1S. It follows that T is isotopic to a vertical torus T ′. In addition since T itself
is disjoint from M2 and M2 is saturated by the Seifert fibration, we can push the isotopy away from M2

and suppose it is contained in M1. Finally the isotopy forces an isotopy of the orbit α1 into a curve α′

disjoint from T ′. This isotopy projects by τ to an homotopy in S from α to a curve α∗ and the image of
this homotopy is contained in S1, since the isotopy in M has image in M1. The curve α∗ is disjoint from
the projection τ(T ′). Since T ′ is vertical this projection is a simple closed curve β in S1. Since α fills S1,
α∗ is homotopic to α in S, and β is disjoint from α∗, it now follows that β is a peripheral curve in S1.
By another isotopy we can assume that β does not intersect α or that T ′ does not intersect α1.

In addition the isotopy from T to T ′ can be extended to an isotopy from M1 to itself. The geometric
intersection number of T, T ′ with α1 is zero. So we can adjust the isotopy so that the images of T
under the isotopy never intersect α1, and consequently we can further adjust it so that it leaves α1 fixed
pointwise. In other words this induces an isotopy in M1−α1 from T to T ′. This shows that T is peripheral
in M1 − α1. This finishes the proof in this case.

Case 2 − T is not π1-injective in M .
In particular since T is two sided (as M is orientable), then T is compressible [He]. This means that

there is a closed disk D which compresses T [He], chapter 6. Since T is incompressible in M1 − α1, then
D intersects α1. Let D1,D2 be parallel isotopic copies of D very near D which also are compressing disks
for T . Then D1,D2 intersect T in two curves which partition T into two annuli. One annulus is very near
both D1 and D2, we call it A1, let A be the other annulus which is almost all of T . Then A∪D1 ∪D2 is
an embedded two dimensional sphere W . Since M is irreducible then W bounds a 3-ball B. There are
two possibilities for the sphere W and ball B. In addition A2 ∪D1 ∪D2 also obviously bounds a ball B1

which is very near the disk D.

Suppose first that the ball B contains the torus T . This means that A2 and consequently also B1, are
both contained in B. In addition B1 is a regular tubular neighborhood of a properly embedded arc γ in
B. The intersection of α1 with B1 is a collection of arcs which are isotopic to the core γ of B1. Let δ1 be
one such arc. By Proposition 2.4 flow lines of Anosov flows lift to unknotted curves in M̃ . This implies
that γ is unknotted in B and also implies that π1(B − γ) is Z. In particular the torus T is compressible
in B−B1, that is, the closure of B−B1 is a solid torus. It follows that the T is compressible in M1−α1.
This contradicts the assumption that T is incompressible in M1 − α1.

The second possibility is that the ball B does not contain T . In particular B and B1 have disjoint
interiors and the the union B ∪ B1 is a solid torus V with boundary T . The union of B and B1 cannot
be a solid Klein bottle because M is orientable. This solid torus lifts to an infinite solid tube Ṽ in M̃
with boundary T̃ which is an infinite cylinder. Notice that there is a lift α̃1 of α1 contained in Ṽ so T̃
cannot be compact. Again by the result of Proposition 2.4, the infinite curve α̃1 is unknotted in M̃ and
hence it is isotopic to the core of Ṽ .
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Let β be a simple closed curve in V which is isotopic to the core of V . If α1 is not isotopic to β then
it is homotopic to a power βn where n > 1. Projecting β to τ(β) in S we obtain a closed curve in S so
that (τ(β))n is freely homotopic to α. But α is an indivisible closed geodesic and represents an indivisible
element of π1(S). It follows that this cannot happen. We conclude that α1 is isotopic to the core of V .
It follows that T is isotopic to the boundary of a regular neighborhood of α1 in M1 − α and hence again
T is peripheral in M1 − α1.

This finishes the proof of proposition 3.1.

Remark In the case that α fills S Proposition 3.1 is well known and there is a written proof by Foulon
and Hasselblatt in [Fo-Ha].

Since M1 − α1 is atoroidal the geometrization theorem in the Haken case [Th1, Th2] shows that
M1 − α1 admits a hyperbolic structure. The hyperbolic Dehn surgery theorem of Thurston implies that
for almost all Dehn fillings along α1, the resulting manifold Ms is hyperbolic. Notice that since M1

has boundary, the statement Ms is hyperbolic means that the interior of Ms has a complete hyperbolic
structure of finite volume, and each (torus) component of M1 generates a cusp in the hyperbolic structure
in the interior of Ms.

4 Diversified homotopic behavior of closed orbits

First we prove the statements about free homotopy classes of suspension Anosov flows and geodesic flows
mentioned in the introduction. Suppose first that Φ is the geodesic flow in M = T1S, where S is a closed,
orientable hyperbolic surface. Suppose that α, β are closed orbits of Φ which are freely homotopic to
each other in M . Then the projections τ(α), τ(β) of these orbits to the surface S are freely homotopic in
S. But τ(α), τ(β) are closed geodesics in a hyperbolic surface, so they are freely homotopic if and only
if they are the same geodesic. If α and β are distinct, this can only happen if they represent the same
geodesic τ(α) of S which is being traversed in opposite directions. Conversely if τ(α) = τ(β) and they are
traversed in opposite directions, there is a free homotopy from α to β. This is achieved by considering all
unit tangent vectors to τ(α) in the direction of α and then at time t, 0 ≤ t ≤ 1, rotating all these vectors
by an angle of tπ. At t = π we obtain the tangent vectors to τ(α) pointing in the opposite direction, that
is, the direction of β. This shows that every free homotopic class of the geodesic flow has exactly two
elements. The orientability of S is used because if S is not orientable and τ(α) is an orientation reversing
closed geodesic, one cannot continuously turn the angle along τ(α).

Now consider a suspension Anosov flow Φ. By Theorem 2.1, given an arbitrary Anosov flow which
admits freely homotopic closed orbits, then the following happens. There are closed orbits α and β so
that α is freely homotopic to β−1 as oriented periodic orbits. For suspension Anosov flows this is a
problem as follows. This is because there is a cross section W which intersects all orbits of Φ. Suppose
that the algebraic intersection number of α and W is positive. Then since α is freely homotopic to
β−1 it follows that the algebraic intersection number of β and W is negative. But this is impossible as
W is a cross section and transverse to Φ. This shows that every free homotopy class of a suspension
is a singleton. Another proof of this fact is the following. There is a path metric in M which comes
from a Riemannian metric in the universal cover M̃ ∼= R3 with coordinates (x, y, t) given by the formula
ds2 = λ2t

1 dx
2 + λ−2t

2 dy2 + dt2 (1), where λ1, λ2 are real numbers > 1. The lifted flow Φ̃ has formula

Φ̃t(x, y, t0) = (x, y, t0 + t) (2). If α, β are freely homotopic closed orbits of Φ̃, then they lift to two
distinct orbits of Φ̃ which are a bounded distance from each other. But formulas (1) and (2) show that
no two distinct entire orbits of Φ̃ are a bounded distance from each other. This also shows that free
homotopy classes are singletons.

For the property of infinite free homotopy classes for the examples in hyperbolic 3-manifolds see
Theorem 2.6.

We now proceed with the construction of the examples with diversified homotopic behavior and we
prove the Main theorem.



§4. Diversified homotopic behavior of closed orbits 7

Let S be a hyperbolic surface and α a closed geodesic that does not fill S. As in the previous section
let S1 be a subsurface that α fills and let S2 be the closure of S − S1. Let M = T1S and Φ the geodesic
flow of S in M . Let α1 be an orbit of Φ so that τ(α1) = α. Let Mi = T1Si, i = 1, 2. In the previous
section we proved that M1 − α1 is atoroidal.

Now we will do Fried’s Dehn surgery on α1. For simplicity we will assume that the unstable foliation of
Φ (or equivalently the stable foliation of Φ) is transversely orientable. This is equivalent to the surface S
being orientable. In particular this implies that the stable leaf of α1 is a annulus. Let Z be the boundary
of a small tubular solid torus neighborhood Z0 of α1 contained in M1. Then Z is a two dimensional torus
and we will choose a base for π1(Z) = H1(Z). We assume that Z is transverse to the local sheet of the
stable leaf of α1. Then this local sheet intersects Z in a pair of simple closed curves. Each of these defines
a longitude (0, 1) in π1(Z), choose the direction which is isotopic to the flow forward direction along α1.
The boundary of a meridian disk in Z0 defines the meridian curve (0, 1) in π1(Z). The meridian is well
defined up to sign. If the stable foliation of Φ were not transversely orientable and α were an orientation
reversing curve, then the stable leaf of α would be a Möbius band and the intersection of the local sheet
with Z would be a single closed curve. This closed curve would intersect the meridian twice and could
not form a basis of H1(Z) jointly with the meridian. We do not want that, hence one of the reasons to
restrict to S orientable.

Now we perform Fried’s Dehn surgery on α1 [Fr] as described in section 2. We do (1, n) surgery on
α1, so that the following happens. The resulting flow is Anosov in the Dehn surgery manifold Mα. The
meridian is chosen so that for any n > 0 the Dehn surgery flow Φα with new meridian the (1, n) curve
is an R-covered Anosov flow. Recall that there is a bijection between the orbits of the surgered flow Φα

and the orbits of the original flow Φ. Given an orbit γ of Φα we let γ′ be the corresponding orbit of Φ
under this bijection.

We are now ready to prove the prove the main result of this article, which is restated with more detail
below.

Theorem 4.1. (diversified homotopic behavior) Let S be an orientable, closed hyperbolic surface with a
closed geodesic α which does not fill S. Let S1 be a subsurface of S which is filled by α and let S2 be the
closure of S − S1. We assume also that S2 is not a union of annuli. Let M = T1S with geodesic flow Φ
and let Mi = T1Si, i = 1, 2. Let α1 be a closed orbit of Φ which projects to α in S. Do (1, n) Fried’s
Dehn surgery along α1 to yield a manifold Mα and an Anosov flow Φα so that Φα is R-covered. Since
M2 is disjoint from α1 it is unaffected by the Dehn surgery and we consider it also as a submanifold of
Mα. Let M3 be the closure of Mα −M2. We still denote by α1 the orbit of Φα corresponding to α1 orbit
of Φ. Proposition 3.1 implies that M3−α1 is atoroidal and for n big the hyperbolic Dehn surgery theorem
[Th1, Th2] implies that M3 is hyperbolic. Choose one such n. Consider the bijection β → β′ between
closed orbits of Φα and those of Φ. Then the following happens:

• i) Let γ be a closed orbit of Φα so that the corresponding orbit γ′ of Φ is homotopic into the
submanifold M2. Equivalently γ′ projects to a geodesic in S which is disjoint from α in S. Then γ
is freely homotopic in Mα to just one other closed orbit of Φα.

• ii) Let γ be a closed orbit of Φα which corresponds to a closed orbit γ′ of Φ which is not homotopic
into M2. Equivalently γ′ projects to a geodesic in S which transversely intersects α. Then γ is
freely homotopic in Mα to infinitely many other closed orbits of Φα.

• In addition both classes i) and ii) have infinitely many elements.

Proof. First we prove that both classes i) and ii) are infinite. Since orbits of Φα are in one to one
correspondence with orbits of Φ, one can think of these as statements about closed orbits of Φ. Any
closed geodesic of S which intersects α is in class ii). Clearly there are infinitely many such geodesics so
class ii) is infinite. On the other hand since S2 is not a union of annuli, there is a component S′ which is
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Figure 1: The picture of the orbit space O ∼= (0, 1) ×R of a skewed R-covered Anosov flow. The stable foliation

Os is the foliation by horizontal segments in (0, 1)×R. The unstable foliation Ou is the foliation by the parallel

slanted segments. This picture also shows how to construct the orbits β̃i starting with the orbit β̃0.

not an annulus. Any geodesic β of S which is homotopic into S′ creates an orbit in class i). Since S′ is
not an annulus, there are infinitely many such geodesics β. This proves that i) and ii) are infinite subsets.

An orbit δ of Φ which projects in S to a geodesic intersecting α cannot be homotopic into M2.
Otherwise the homotopy projects in S to an homotopy from a geodesic intersecting α to a curve in S2

and hence to a geodesic not intersecting α. This is impossible as closed geodesics in hyperbolic surfaces
intersect minimally. Conversely if an orbit δ projects to a geodesic not intersecting α, then this geodesic
is homotopic to a geodesic contained in S2. This homotopy lifts to a homotopy in M from δ to a curve
in M2. This proves the equivalence of the first 2 statements in i) and in ii).

Now we prove that conditions i), ii) imply the respective conclusions about the size of the free

homotopy classes. Let Φ̃α be the lifted flow to the universal cover M̃α.
The flow Φα is R-covered. As explained in section 2 there are two possibilites for Φα, either product

or skewed. If Φα is product then Mα fibers over the circle with fiber a torus. But in our case, Mα has
a torus decomposition with one hyperbolic piece M3 and one Seifert piece M2. Therefore it cannot fiber
over the circle with fiber a torus. We conclude that this case cannot happen.

Therefore Φα is skewed.
Let then β0 be a closed orbit of Φα. since Φα is an skewed R-covered Anosov flow we will produce

orbits βi, i ∈ Z which are all freely homotopic to β0. However it is not a priori true that all the orbits
βi are distinct from each other, this will be analysed later.

Here we identify the fundamental group of the manifold with the set of covering translations of the
universal cover.

Construction of the orbits β̃j.

Lift β0 to an orbit β̃0 contained in a stable leaf l0 of Os. Let g be the deck transformation of M̃α

which corresponds to β0 in the sense that it generates the stabilizer of β̃0. Then u = Ou(β̃0) intersects
an open interval Ju of stable leaves. This is a strict subset of the leaf space of Os (equal to leaf space
of Λ̃s) by the skewed property. Let l1 be one of the two stable leaves in the boundary of this interval.
The fact that there are exactly two boundary leaves in this interval is a direct consequence of the fact
that Os (or Λ̃s) has leaf space R and this fact is not true in general. Since g(Ou(β̃0)) = Ou(β̃0) and g
preserves the orientation of Os (because Λs is transversely orientable), then g(l1) = l1. But this implies
that there is an orbit β̃1 of Φ̃α in l1 so that g(β̃1) = β̃1. We refer to fig. 1 which shows how to obtain leaf
l1 and hence the orbit β̃1. This orbit projects to a closed orbit β1 of Φα in Mα. Since both are associated
to g, it follows that β0, β1 are freely homotopic. More specifically if we care about orientations then the
positively oriented orbit β0 is freely homotopic to the inverse of the positively oriented orbit β1.

Remark − Transverse orientability of Λs is necessary for this. If for example Λs were not transversely
orientable and the unstable leaf of β0 were a Möbius band then the transformation g as constructed
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above does not preserve the leaf l1 as constructed above. Therefore β0 is not freely homotopic to β1 as
unoriented curves. But g2 preserves l1 and from this it follows that the square β2

0 (as a non simple closed
curve) is freely homotopic to β2

1 .

We proceed with the construction of freely homotopic orbits of Φα. From now on we iterate the
procedure above: use Ou(β̃1) to produce a leaf l2 of Os invariant by g, and a closed orbit β2 freely
homotopic to β1 − if we consider them just as simple closed curves. We again refer to fig. 1. Now iterate
and produce β̃i, i ∈ Z orbits of Φ̃α so that they are all invariant under g and project to closed orbits βi
of Φα which are all freely homotopic to β0 as unoriented curves.

Orbits freely homotopic to β0.
The covering translation g preserves the leaf Ou(β̃0). Since β0 is the only periodic orbit in Λu(β0), it

follows that g only preserves the orbit β̃0 in Ou(β̃0). Therefore g does not leave invariant any stable leaf
between Os(β̃0) and Os(β̃1) and similarly g does not leave invariant any stable leaf between Os(β̃i) and
Os(β̃i+1) for any i ∈ Z. It follows that the collection {Os(β̃i), i ∈ Z} is exactly the collection of stable
leaves left invariant by g.

Suppose now that δ is an orbit of Φα which is freely homotopic to β0. We can lift the free homotopy
so that β0 lifts to β̃0 and δ lifts to δ̃. In particular g leaves invariant δ̃ and hence leaves invariant Os(δ̃).
It follows that Os(δ̃) = Os(β̃i) for some i ∈ Z. As a consequence δ̃ = β̃i for β̃i is the only orbit of Φ̃α left
invariant by g in Os(β̃i). It follows that δ is one of {βj , j ∈ Z}.

Conclusion − The free homotopy class of β0 is finite if and only if the collection {βi, i ∈ Z} is finite.

Suppose now that βi = βj for some i, j distinct. Hence there is f ∈ π1(Mα) with f(β̃i) = β̃j . Then

f sends Ou(β̃i) to Ou(β̃j). By the definition of β̃i+1 it follows that f sends β̃i+1 to β̃j+1. Iterating this

procedure shows that f preserves the collection {β̃k, k ∈ Z}. In addition it follows easily that f sends
β̃0 to β̃k for k = j − i. The free homotopy from β0 to βk = β0 produces a π1-injective map of either
the torus or the Klein bottle into M . We have to consider the Klein bottle because the free homotopy
may be from β0 to the inverse of β0 when we account for orientations along orbits. Taking the square of
this free homotopy if necessary we produce a π1-injective map of the torus into M . The torus theorem
[Ja, Ja-Sh] shows that the free homotopy is homotopic into a Seifert piece of the torus decomposition of
Mα. Therefore in our situation the homotopy is freely homotopic into M2. It follows that the orbit β′

0 of
Φ associated to β0 is freely homotopic into M2. Therefore the geodesic τ(β′

0) of S does not intersect α.
This proves part ii) of the theorem: If the geodesic τ(β′

0) intersects α then the orbit β0 of Φα is freely
homotopic to infinitely many other closed orbits of Φα.

Consider now a closed orbit β0 of Φα so that it corresponds to a geodesic in S which does not intersect
α. This geodesic is τ(β′

0) which we denoted by γ. There is a non trivial free homotopy in M = T1S
from β′

0 to itself with the same orientation, obtained by turning the angle along γ by a full turn, from 0
to 2π. Notice that this free homotopy at some point is exactly β′

0 and at another point it is exactly the
orbit corresponding to the geodesic γ being traversed in the opposite direction. This free homotopy is
entirely contained in M2 and therefore this free homotopy survives in the Dehn surgered manifold Mα.
By construction the image of the free homotopy in Mα contains two distinct closed orbits of Φα, one of
which is β0. In particular the free homotopy class of β0 has at least two elements. In addition the free
homotopy produces a π1-injective map from T 2 into M . Choose a basis g, f for π1(T

2) (seen as covering

translations in M̃) so that g leaves invariant a lift β̃0 of β0. Then

gf(β̃0) = fg(β̃0) = f(β̃0).

So g also leaves invariant f(β̃0). As seen in the paragraphs “Orbits freely homotopic to β0”, it follows
that f(β̃0) = β̃j for some j in Z. This implies that the free homotopy class of β0 is finite.

Let now δ be a closed orbit of Φα which is freely homotopic to β0. In particular the free homotopy
class of δ is the same as the free homotopy class of β0 and in the part entitled “Orbits freely homotopic
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to β0” we showed that this free homotopy class is finite in this case. In addition from what we already
proved in the theorem, it follows that δ is isotopic into M2 and choosing M2 appropriately we can assume
that β0, δ are contained in M2. Let the free homotopy from β0 to δ be realized by a π1-injective annulus
A which is in general position. The annulus A is a priori only immersed. Let T = ∂M3 = ∂M2 an
embedded torus in Mα which is π1-injective. Put A in general position with respect to T and analyse
the self intersections. Any component which is null homotopic in T can be homotoped away because Mα

is irreducible [He, Ja]. After this is eliminated each component of A − T is an a priori only immersed
annulus. But since M3 is a hyperbolic manifold with a single boundary torus T it follows that M3 is
acylindrical [Th1, Th2]. This means that any π1-injective properly immersed annulus is homotopic rel
boundary into the boundary. This is because parabolic subgroups of the fundamental group of M3 − as a
Kleinian group, have an associated maximal Z2 parabolic subgroup [Th1, Th2]. In particular this implies
that the annulus A can be homotoped away from M3 to be entirely contained in M2. Therefore the free
homotopy represented by the annulus A survives if we undo the Dehn surgery on α. This produces a
free homotopy between β′

0 and δ′ in M = T1S. But the free homotopy classes of geodesic flows all have
exactly two elements. Therefore there is only one possibility for δ if δ is distinct from β0. This shows
that the free homotopy class of β0 has exactly two elements.

This finishes the proof of theorem 4.1

5 Generalizations

There are a few ways to generalize the main result of this article. Here we mention two of them.

1) Finite covers and Dehn surgery
Let M = T1S where S is a closed orientable surface. Let Φ be the geodesic flow in M . First take a

finite cover of order n of M unrolling the circle fibers. Let this be the manifold M1 with lifted Anosov
flow Φ1. Then every closed orbit of Φ1 is freely homotopic to 2n− 1 other closed orbits of the flow. The
flow Φ1 is a skewed R-covered Anosov flow. We use the covering map η : M1 → M and the projection
τ : M → S. We do Dehn surgery on closed orbits of Φ1. Essentially the same proof as the Main theorem
yields the following result.

Theorem 5.1. Let S be a closed orientable surface and M = T1S with Anosov flow Φ. Let M1 be a finite
cover of M where we unroll the Seifert fibers and let Φ1 be the lifted flow to M1. Do (1, n) Fried’s flow
Dehn surgery on a closed orbit γ of the Φ1 so τ ◦ η(γ) is a closed geodesic in S which does not fill S and
some complementary component of τ ◦ η(γ) in S is not an annulus and so that the surgery satisfies the
positivity condition. Let Φs be the resulting Anosov flow in the surgery manifold. Given β a closed orbit
of Φs, it has an associated unique orbit of Φ1 which in turn projects under τ ◦ η to a closed geodesic β′ of
S. Then i) If β′ does not intersect τ ◦ η(γ) it follows β is freely homotopic to exactly 2n− 1 other orbits
of Φs. In addition ii) If β′ intersects τ ◦ η(γ) then β is freely homotopic to infinitely many other closed
orbits of Φs.

2) Dehn surgery on more than one closed orbit
In essentially the same way as in the proof of the Main theorem We obtain a result similar to the

Main theorem under Dehn surgery on finitely many closed orbits as follows.

Theorem 5.2. Let S be a closed orientable surface and M = T1S with geodesic flow Φ. Let {αi, 1 ≤ i ≤
i0} be a finite collection of disjoint closed geodesics in S which are pairwise disjoint and some component
of the complement of their union is not an annulus. Let γi be a closed orbit of Φ which projects to αi in
S. For each i do (1, ni) Fried’s flow Dehn surgery on γi to yield an Anosov flow Φs in the Dehn surgery
manifold Ms and so that the surgery satisfies the positivity condition. Then Φ1 is an R-covered Anosov
flow. There is a bijection between orbits of Φ1 and orbits of Φ. Given an orbit β of Φs consider the orbit
of Φ associated to it and project it to a closed geodesic β′ in S. Then the following happens. i) If β′ is
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disjoint from the union of the {αi} then β is freely homotopic to a single other closed orbit of Φs. ii) If
β′ intersects the union of {αi} then β is freely homotopic to infinitely many other closed orbits of Φs.

One can also combine the two constructions above.
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