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Abstract

In this paper, we study the behaviour of TF-isomorphisms, a natu-
ral generalisation of isomorphisms. TF-isomorphisms allow us to sim-
plify the approach to seemingly unrelated problems. In particular,
we mention the Neighbourhood Reconstruction problem, the Matrix
Symmetrization problem and Stability of Graphs. We start with a
study of invariance under TF-isomorphisms. In particular, we show
that alternating trails and incidence double covers are conserved by
TF-isomorphisms, irrespective of whether they are TF-isomorphisms
between graphs or digraphs. We then define an equivalence relation
and subsequently relate its equivalence classes to the incidence double
cover of a graph. By directing the edges of an incidence double cover
from one colour class to the other and discarding isolated vertices we
obtain an invariant under TF-isomorphisms which gathers a number
of invariants. This can be used to study TF-orbitals, an analogous
generalisation of the orbitals of a permutation group.

1 Introduction

Consider the two graphs shown in Figure 1. One is the well-known Petersen
graph which we denote by Π and the other is a graph which is not so well-
known which we sometimes refer to as Petersen’s cousin, for reasons which
will soon become apparent, and which we denote by Λ. What relationship
could there be between them? Consider the set of neighbourhoods of the
vertices in the two graphs. These are:

Neighbourhoods of Π: {2,5,6}, {1,3,7}, {2,4,8}, {3,5,9}, {1,4,10}, {1,8,9},
{2,9,10}, {3,6,10}, {4,6,7}, {5,7,8}.
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Figure 1: The Petersen graph Π and its less well-known cousin Λ.

Neighbourhoods of Λ: {4,6,7}, {3,5,9}, {2,4,8}, {1,3,7}, {2,9,10}, {1,8,9},
{1,4,10}, {3,6,10}, {2,5,6}, {5,7,8}.

Up to a re-ordering, both graphs have the same family of neighbour-
hoods. It is therefore clear that if one were given just the family of neigh-
bourhoods of the Petersen graph one would not be able to determine that
the graph they came from was Petersen—it could have been the second
graph which also has the same neighbours.

In the literature the following problem (the Neighbourhood Reconstruc-
tion Problem) has been proposed (for example, in [1] and [2]): given the
neighbourhoods of the vertices of of G, can G be determined uniquely up to
isomorphism? The two graphs above clearly show that the answer to this
question is “no” in general. The Petersen graph is not reconstructible this
way because the second graph shown in the figure is a reconstruction of the
Petersen which is not isomorphic to it. Why does this happen? We shall
explain this below. How many other reconstructions of the Petersen graph
can be obtained this way? We shall see later on that this second graph is
the only such reconstruction of the Petersen graph.

There are a few other problems which have been considered in the graph
theory literature which, as we shall see, are closely related to the neighbour-
hood reconstruction problem.

1. The Realisability Problem. When is a given family of vertices the
neighbourhood family of a graph or a digraph? What is the compu-
tational complexity of determining whether such a given family is the
neighbourhood family of a graph or a digraph?
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2. The Matrix Symmetrization Problem. Given a (0, 1)-matrix A,
is it possible to change it into a symmetric matrix using (indepen-
dent) row and column permutations? Although it is not immediately
obvious, we shall see that this problem is related to the Realisability
Problem. This problem was first studied in the paper [13] starting
with a matrix A which is already symmetric.

3. Stability. This problem was first raised and studied in [13]. Given the
categorical product G×K2 of a graph or digraph G with the complete
graph K2, the graph G is said to be unstable when the automorphism
group of the product is not isomorphic to Aut(G) × Z. When is a
graph unstable? This question was heavily studied in [14, 18, 19, 20],
and again, although not immediately clear why, it is strongly related
to the previous questions.

The excellent survey paper [4] gives a good historical picture of work
done on these problems.

In this paper we shall present a new type of isomorphism between graphs
and digraphs which, we believe, has independent interest but also unifies
the above problems, as we shall demonstrate along the way while presenting
our results.

2 Notation

A mixed graph is a pair G = (V (G), A(G)) where V (G) is a set and A(G) is
a set of ordered pairs of elements of V (G). The elements of V (G) are called
vertices and the elements of A(G) are called arcs. When referring to an arc
(u, v), we say that u is adjacent to v and v is adjacent from u. The vertex
u is the tail and v is the head of a given arc (u, v). An arc of the form
(u, u) is called a loop. A mixed graph cannot contain multiple arcs, that is,
it cannot contain the arc (u, v) more than once. A set S of arcs is self-paired
if, whenever (u, v) ∈ S, (v, u) is also in S. If S = {(u, v), (v, u)}, then we
identify S with the unordered pair {u, v}; this unordered pair is called an
edge.

It is useful to consider two special cases of mixed graphs. A graph is a
mixed graph without loops whose arc-set is self-paired. The edge set of a
graph is denoted by E(G). A digraph is a mixed graph with no loops in
which no set of arcs is self-paired. The inverse G′ of a mixed graph G is
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obtained from G by reversing all its arcs, that is V (G′) =V (G) and (v, u) is
an arc of G′ if and only if (u, v) is an arc of G. A digraph G may therefore
be characterised as a mixed graph for which A(G) and A(G′) are disjoint
and a graph as one for which A(G) = A(G′). The underlying graph Ĝ of
a mixed graph G is a graph with the vertex set V (Ĝ) = V (G) and the
edge set E(Ĝ) defined by {x, y} ∈ E(Ĝ) if and only if either (x, y) or (y, x)
is an element of A(G). Two arcs are incident in G if the corresponding
edges in the underlying graph Ĝ have a common vertex. When we say that
a mixed graph is connected, we mean that the underlying graph is connected.

Given a mixed graph G and a vertex v ∈ V (G), we define the in-
neighbourhood Nin(v) by Nin(v) = {x ∈ V (G) − (x, v) ∈ A(G)}. Similarly
we define the out-neighbourhood Nout(v) by Nout(v) = {x ∈ V (G)− (v, x) ∈
A(G)}. The in-degree ρin(v) of a vertex v is defined by ρin(v) = |Nin(v)|
and the out-degree ρout(v) of a vertex v is defined by ρout(v) = |Nout(v)|.
When G is a graph, these notions reduce to the usual neighbourhoodN(v) =
Nin(v) = Nout(v) and degree ρ(v) = ρin(v) = ρout(v). A vertex v is called a
source if ρin(v) = 0 and a sink if ρout(v) = 0. A vertex is said to be isolated
when it is both a source and a sink, that is, it is not adjacent to or from any
vertex.

A mixed graph G is called bipartite if there is a partition of V (G) into
two sets X and Y , which we call colour classes, such that for each arc (u, v)
of G the set {u, v} intersects both X and Y . We call a bipartite digraph
having one colour class consisting of sources and the other colour class con-
sisting of sinks as a strongly bipartite digraph.

Let G be a digraph and let (u, v) be an arc of G. If in G − (u, v), the
vertices u, v are either both sources or both sinks, then we call (u, v) an
S-arc of G.

A set P of arcs of G is called a trail if its elements can be ordered in
a sequence a1, a2, . . . , ak such that each ai is incident with ai+1 for all
i = 1, . . . , k − 1. If u is the vertex of a1, that is not in a2 and v is the
vertex of ak which is not in ak−1, then we say that P joins u and v; u is
called the first vertex of P and v is called the last vertex with respect to the
sequence a1, a2, . . . , ak. If, whenever ai = (x, y), either ai+1 = (x, z) or
ai+1 = (z, y) for some new vertex z, P is called an alternating trail orA-trail.

If the first vertex u and the start-vertex v of an A-trail P are different,
then P is said to be open. If they are equal then we have to distinguish
between two cases. When the number of arcs is even then P is called closed
while when the number of arcs is odd then P is called semi-closed. Note
that if P is semi-closed then either (i) a1 = (u, x) for some vertex x and
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ak = (y, u) for some vertex y or (ii) a1 = (x, u) and ak = (u, y). If P is closed
then either a1 = (u, x) or ak = (u, y) or a1 = (x, u) and ak = (y, u). Observe
also that the choice of the first (equal to the last) vertex for a closed A-trail
is not unique but depends on the ordering of the arcs. However, this choice
is unique for semi-closed A-trails as this simple argument shows. Suppose
P is semi-closed and the arcs of P are ordered such that u is the unique
(in that ordering) first and last vertex, that is, it is the unique vertex such
as the first and the last arcs in the ordering in P do not alternate in direc-
tion at the meeting point u. Therefore, it is easy to see that both ρin(u)
and ρout(u) (degrees taken in P as a subgraph induced by its arcs) are odd
whereas any other vertex v in the trail has both ρin(v) and ρout(v) even.
This is because, in the given ordering, arcs have to alternate in direction
at v and therefore in-arcs of the form (x, v) are paired with out-arcs of the
form (v, y). Therefore, in no ordering of the arcs of P can u be anything but
the only vertex at which the first and last arcs do not alternate. The same
argument holds for open A-trails. Therefore, open and semi-closed A-trails
are similar at least in the sense that the first and last vertices are uniquely
determined regardless of the sequence of the arcs. This similarity will be
strengthened by the results which we shall shortly present.

Let G be a mixed graph. If, for every u, v ∈ V (G), there exists anA-trail
which joins them, then we say that G is A-connected. Clearly, a connected
graph G with at least two edges is always A-connected since we can always
choose any orientation for a given edge. In the case of a mixed graph, A-
connectedness is not guaranteed. In fact, there are easy counterexamples
also among digraphs.

In a connected graph, the length (that is, number of edges) of a shortest
path between two given vertices u, v is denoted by d(u, v). Any other graph
theoretical terms which we use are standard and can be found in textbooks
such as [3] and [5]. Information on automorphism groups of a graph can be
found in [12].

Let G and H be two mixed graphs and α, β be bijections from V (G)
to V (H). The pair (α, β) is said to be a two-fold isomorphism (or TF-
isomorphism) if the following holds: (u, v) is an arc of G if and only if
(α(u), β(v)) is an arc of H. We then say that G and H are TF-isomorphic
and write G ∼=TF H. Note that when α = β the pair (α, β) is a TF-
isomorphism if and only if α itself is an isomorphism. If α 6= β, then the
given TF-isomophism (α, β) is essentially different from a usual isomorphism
and hence we call (α, β) a non-trivial TF-isomorphism. In this case, we also
say that G and H are non-trivially TF-isomorphic. If (α, β) is a non-trivial
TF-isomorphism from a mixed graph G to a mixed graph H, the bijections
α and β need not necessarily be isomorphisms from G to H. This is illus-
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trated by examples found in [10], and also others found below.
When G = H, (α, β) is said to be a TF-automorphism and it is again called
non-trivial if α 6= β. The set of all TF-automorphisms of G with multiplica-
tion defined by (α, β)(γ, δ) = (αγ, βδ) is a subgroup of SV (G)×SV (G) and it is
called the two-fold automorphism group of G and is denoted by AutTF(G).
Note that if we identify an automorphism α with the TF-automorphism
(α,α), then Aut(G) ⊆ AutTF(G). When a graph has no non-trivial TF-
automorphisms, Aut(G) =AutTF(G). It is possible for an asymmetric graph
G, that is a graph with |Aut(G)| = 1, to have non-trivial TF-automorphisms
[10].

3 Some double covers and invariants under TF-

isomorphisms

Let G be a mixed graph. The incidence double cover of G, denoted by
IDC(G) is a bipartite graph with vertex set V (IDC(G))⊆ V (G) × {0, 1}
and edge set E(IDC(G)) = {(u, 0), (v, 1)} | (u, v) ∈ A(G)}. The reader
may refer to [8] for more information regarding the incidence double cover
of graphs and its relevance to the study of association schemes. The A-cover
of G, denoted by ADC(G) is a strongly bipartite digraph with vertex set
V (ADC(G)) ⊆ V (G) × {0, 1} and arc set A(ADC(G)) = {(u, 0), (v, 1)}
| (u, v) ∈ A(G)}. For a more concise notation, very often we use u0 or u1
to label the elements of V (G)× {0, 1} instead of (u, 0) or (u, 1). It is clear
that ADC(G) is obtained from IDC(G) by removing isolated vertices and
changing every edge {u0, v1} into an arc (u0, v1).

Theorem 3.1. Let G, H be mixed graphs. Then G and H are two-fold
isomorphic if and only if IDC(G) and IDC(H) are isomorphic.

Proof. Let (α, β) be any two-fold isomorphism from G to H. This im-
plies that, for any (u, v) ∈ A(G), (α(u), β(v)) ∈ A(H). Consequently,
given the corresponding {(u, 0), (v, 1)} ∈ E(IDC(G)), {(α(u), 0), (β(v), 1)}
∈ E(IDC(H)). Define φ : V (IDC(G)) → V (IDC(H)) such that φ(x, 0) =
(α(x), 0) and φ(x, 1) = (β(x), 1) for any x ∈ A(G) such that φ is an isomor-
phism from IDC(G) to IDC(H).

Conversely, let α be any isomorphism from IDC(G) to IDC(H) such
that α{(u, 0), (v, 1)} = {(u′, 0), (v′, 1)}. Clearly (u, v) ∈ A(G) and (u′, v′) ∈
A(H) by the definition of IDC. Define α : V (G) → V (H) such that α(u) =
u′ if and only if φ(u, 0) = (u′, 0). Similarly define β : V (G) → V (H)
such that β(v) = v′ if and only if φ(v, 1) = (v′, 1). Given any (x, y) ∈
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A(G), (α(x), β(y)) ∈ A(H) since {(x, 0), (y, 1)} ∈ E(IDC(G)) if and only
if {φ(x, 0), φ(y, 1)} = {(x′, 0), (y′, 1)} in E(IDC(H)) if and only if (x′, y′) ∈
A(H). �

We now present what was Theorem 3.7 in [9], one of our main results in
[9], as a corollary to Theorem 3.1.

The canonical double cover (CDC) of a graph or digraphG (also called its
duplex especially in computational chemistry literature, for example, [17])
is the graph or digraph whose vertex set is V (G)×{0, 1} and in which there
is an arc from (u, i) to (v, j) if and only if i 6= j and there is an arc from u to
v in G. The canonical double cover of G is often described as the direct or
categorical product G×K2 [7, 6], and is sometimes also called the bipartite
double cover of G. For graphs, the canonical double cover is identical to the
incidence double cover.

Corollary 3.2. Two graphs G, H are TF-isomorphic if and only if CDC(G)
and CDC(H) are isomorphic.

Proof. In fact, since G andH are graphs, IDC(G) ∼=CDC(G) and IDC(H)
∼= CDC(H). �

Therefore, in general the IDC of a mixed graph G is a structure which
is invariant under the action of a TF-isomorphism acting on G. In the case
of mixed graphs which are not graphs, Theorem 3.1 is a significant improve-
ment over Theorem3.7 in [9] which only considered TF-isomorphic graphs
(not mixed graphs) and the canonical double cover.

3.1 Digression

Now we can see how the neighbourhood reconstruction problem and the
other problems we discussed in the first section can be described in terms
of TF-isomorphisms. First, consider this alternative way of looking at TF-
isomorphisms. An incidence structure or, alternatively, a hypergraph, is a
finite set of vertices with a system of subsets (blocks) some of which can
be repeated. Number the n vertices of a hypergraph in some arbitrary but
fixed way, and do similarly for the b blocks of the hypergraph. The inci-
dence matrix of the hypergraph is the n× b matrix whose ij entry is 1 if the
ith vertex is in the j block, and is zero otherwise. Let H1,H2 be two such
hypergraphs with incidence matrices B1, B2, respectively. Then usually H1

and H2 are said to be isomorphic if there is a bijection α from V (H1) to
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V (H2) (effectively, a relabelling of the vertices of H1) such that, under the
resulting relabelling, the blocks of α(H1) are the same as the blocks of H2,
possibly in a different order. Similarly, an automorphism of a hypergraph
H is a permutation of V (H) (a relabelling of the vertices) such that the new
blocks are a re-odering of the old blocks.

In other words, we have a permutation α of the rows of the incidence
matrix B1 such that the columns become a permutation of the columns of
B2. We can remove this last detail and make even the columns the same as
those of B2 by saying that an isomorphism from H1 to H2 is an independent
re-ordering α of the rows and β of the columns of B1 such that it becomes
B2. Similarly, an automorphism of H is an independent re-ordering of the
rows and columns of B which leaves B unchanged. Therefore if we consider
the adjacency matrix A of a graph G as an incidence matrix of a hypergraph
with n vertices (corresponding to the rows) and b = n blocks (corresponding
to the columns), a TF-isomorphism (TF-automorphism) is an isomorphism
(automorphism) of the hypergraph represented by A.

Looking back at the example of the Petersen graph Π and what we have
called its cousin Λ we see that their neighbourhoods considered as the blocks
of two hypergraphs give isomorphic hypergraphs which means, according to
the previous discussions, that Π and Λ are non-trivially TF-isomorphic, and
that is why one is a neighbourhood reconstruction of the other! What non-
trivial TF-isomorphism can we write from one to the other? Looking at
how the list of neighbourhoods of the vertices {1, 2, . . . , 10} of the second
graph appear as a permutation of the same list of neighbourhoods of the
first graph easily indicates that if α = id and β = (1 9)(2 4)(5 7) then (α, β)
is a TF-isomorphism from the Π to Λ as labelled in Figure 1.

But how do we know that Λ is the only graph which is a neighbourhood
reconstruction of (that is, TF-isomorphic to) the Petersen graph? We shall
soon see this when below, we present one more result on canonical double
covers.

The Matrix Symmetrization Problem can also be described in terms
of TF-isomorphisms: given a digraph D, is there a graph G to which D is
non-trivially TF-isomorphic? In the case when the matrix A is already sym-
metric, as the problem was originally posed in [13], this question becomes:
given a graph G is it non-trivially isomorphic to some other graph (possibly
G itself)?

Let us now return to the Petersen graph Π and its cousin Λ from Figure
1. Since these two graphs are TF-isomorphic then they have the same CDC,
and in fact, their common CDC is the well known Desargues graph shown
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Figure 2: The Desargues graph.

in Figure 2. (We have labelled Petersen’s cousin by Λ in honour of Livio
Porcu who seems to have been the first one to observe in [16] that Π and Λ
have the same CDC.)

But now we can explain why these two graphs are the only ones with
the same neighbourhood family. First we recall this result proved by Pacco
and Scapellato in [15]. As an easy reference, Theorem 5.3 of [15] may be
restated as follows using our current terminology.

Theorem 3.3. Given a connected bipartite mixed graph H, the number
of non-isomorphic mixed graphs G such that CDC(G) ∼= H is equal to
the number of conjugacy classes of involutions in Aut(H) that interchange
the two colour classes of H. The number of non-isomorphic loopless mixed
graphs H such that CDC(G) ∼= H is equal to the number of conjugacy
classes of involutions in Aut(H) that interchange the two colour classes of
H and do not take any vertex u to a vertex v such that (u, v) is an arc. �

Now, the automorphism group of the Desergues graph D is isomorphic
to S5 ×Z2, and has order 240. Letting β be the automorphism of D taking
(v, 0) into (v, 1) and vice versa, note that β belongs to the centre of the
group. Hence, each involution of Aut(D) takes the form (α, id) or (α, β),
where α is an involution of S5. Only the latter swaps the two colour classes;
its conjugacy classes are as many as those of involutions of S5. The number
of conjugacy classes of involutions of S5 is exactly 2, corresponding to trans-
positions and double transpositions. Therefore, by Theorem 3.3, there are
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exactly two non-isomorphic mixed graphs whose CDC is D. One of them
must be Petersen itself, while the other one is Λ, for which we know already
that the CDC is D. So in this case, only these proper graphs occur, not
more general mixed graphs.

Observe that since the Petersen graph’s automorphism group is isomor-
phic to S5, this graph is stable. However, Aut(Λ) is isomorphic to S3 × Z2.
Thus the index of the automorphism group of Λ in Aut(D) is 20 and so it
is unstable.

4 TF-isomorphism and alternating trails

We shall consider isomorphisms and TF-isomorphisms between pairs of
mixed graphs, that is, we shall allow loops, directed arcs and edges. Config-
urations conserved by TF-isomorphisms must also be conserved by isomor-
phisms since the latter are just a special case of the former. However, the
converse does not necessarily hold. It is well known that loops, paths and
cycles are all conserved by isomorphisms, but it is easy to see that they are
not necessarily conserved by TF-isomorphisms. For example, an arc (u, v)
can be mapped into a loop by a TF-isomorphism (α, β) if α(u) = β(u).

An isomorphism conserves degrees, in-degrees and out-degrees. In the
case of TF-isomorphisms, the situation is slightly more elaborate. First note
that α must conserve the out-degree of each vertex but not the in-degree.
Likewise, β must conserve the in-degree of each vertex but not the out-
degree. Therefore, if some vertex u ∈ V (G) is a source, α(u) might not be
a source but it is certainly not a sink. If u ∈ V (G) is a sink, then α(u)
must also be a sink. An analogous argument holds for β. Hence in the case
of a digraph whose vertex set consists only of sources and sinks, α and β
must take sources to sources and sinks to sinks. Also, if G and H are graphs
and (α, β) is a TF-isomorphism from G to some graph H, then α, β must
preserve the degree ρ(v) of any vertex v ∈ V (G) since for every vertex v in
a graph, ρ(v) = ρin(v) = ρout(v).

The definitions of the term path found in the literature tacitly imply a
specific direction from one vertex to the subsequent vertex in a sequence.
For example, if u, v, w is a path in graph G and α is an isomorphism from G
to H, then the arcs (u, v) and (v,w) are mapped into the arcs (α(u), α(v))
and (α(v), α(w)) in H, with the common vertex α(v). But, if (α, β) is a TF-
isomorphism from G to H then the arc (u, v) is mapped into (α(u), β(v))
and it is the arc (v,w) which is mapped into (α(w), β(v)) containing the
common vertex β(v) with the previous arc. That is, to obtain a common
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vertex between images of successive arcs, we need to alternate the direc-
tions in the original path as (u, v), (w, v). This motivates our definition of
A-trails and indicates the trend of our next results which show what type
of A-trails are conserved by TF-isomorphisms.

Proposition 4.1. Let G and G′ be mixed graphs and P be an A-trail in
G. Let (α, β) be any TF-isomorphism from G to G′. Then there exists an
A-trail P ′ in G′ such that (α, β) restricted to P maps P to P ′.

Proof. For an A-trail consisting of just one arc, the result is trivial. Let
us therefore consider an A-trail consisting of k arcs with k ≥ 2. Let the
start vertex of a given A-trail P be x0 and label the successive vertices by
x1, . . . , xk. Assume without loss of generality that x0 is the tail of a1. The
TF-isomorphism maps the arc a1 = (x0, x1) into the arc a′1 = (α(x0), β(x1)).
The next arc in P is a2 = (x2, x1) which is mapped by the TF-isomorphism
to the arc a′2 = (α(x2), β(x1)) with β(x1) as a common vertex with a′1. By
repeating the process until all arcs of P have been included, we obtain an
A-trail P ′ of G′. Then, by restricting the action of the pair (α, β) to P we
obtain P ′ as its image. �

This proposition immediately gives the following corollary.

Corollary 4.2. If G is a A-connected mixed graph which is TF-isomorphic
to H, then H is also A-connected. �

Proposition 4.1 implies that Z-trails are invariant under the action of
a TF-isomorphism. The following remarks are aimed to present a clearer
picture to the reader. Recall that in an A-trail vertices may be repeated so
that different alternating trails such as the A-trails P and P ′ described in
Proposition 4.1, when taken as digraphs in their own right, may not neces-
sarily be TF-isomorphic. This is illustrated in Figure 3.

For G and G′ as in Figure 3, let α map 5, 7, 3 into 5′, 3′, 7′ respectively
and let it map arbitrarily the rest of the vertices of G to the rest of the
vertices of G′. Let β map 6, 5, 1, 4, 2 into 4′, 2′, 1′, 6′, 5′ respectively
and let it map the rest of the vertices of G to the rest of the vertices of G′.
The maps α and β may be represented as shown below where the entries
labelled by ∗ may be replaced arbitrarily but without repetitions by any of
the vertices to which there is no defined mapping.

α =

(
1 2 3 4 5 6 7
* * 7′ * 5′ * 3′

)
β =

(
1 2 3 4 5 6 7
1′ 5′ * 6′ 2′ 4′ *

)
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Figure 3: G and G′ are TF-isomorphic digraphs but P and P ′ are not.

The pair (α, β) is then a TF-isomorphism from G to G′. However, the al-
ternating trails P and P ′ in Figure 3 are not TF-isomorphic digraphs. On
the other hand, as stated in Proposition 4.1, any A-trail of a given graph,
mixed graph or digraph G is mapped by a TF-isomorphism to some A-trail
of graph G′ whenever G and G′ are TF-isomorphic. This is also the case of
the trails P and P ′ in Figure 3. In fact it is easy to check that the open
trail P is mapped to the semi-closed trail P ′ by the pair (α, β) as defined
above. However P and P ′ are not TF-isomorphic.

Proposition 4.3. Let G and H be mixed graphs. Then a TF-isomorphism
(α, β) from G to H takes closed A-trails of G to closed A-trails of H.

Proof. A closed trail P has an even number of arcs and so it cannot be
mapped to a semi-closed trail. Besides, if P were mapped to an open trail,
then α or β must map some vertex of P to both the first vertex and last
vertex of the open A-trail, which is a contradiction since α and β are bijec-
tions. As regards the latter case, note that a semi-closed A-trail has an odd
number of arcs and a closed A-trail has an even number of arcs. �

Therefore, closed A-trails are preserved by TF-isomorphisms just as they
are by isomorphisms, but the situation is different for open and semi-closed
A-trails.
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Proposition 4.4. Let G and H be A-connected mixed graphs. Then any
non-trivial TF-isomorphism (α, β) from G to H takes at least one open A-
trail into a semi-closed A-trail and vice-versa.

Proof. As (α, β) is non-trivial, there is at least one vertex u ∈ V (G) such
that α(u) 6= β(u). Since both α and β are bijections, we get α(u) = β(v) for
some v 6= u. Since G is Z-connected, there exists an A-trail joining u and v.
Clearly P is open. Its image P ′ under (α, β) is an A-trail of H, that starts
by α(u) and ends by β(v), but since they are equal, P ′ is semi-closed.

Since (α, β) is a non-trivial TF-isomorphism from G to H, (α−1, β−1)
is a non-trivial TF-isomorphism from H to G. Therefore, we may use the
same arguments to show that (α−1, β−1) must take an open A-trail of H to
a semi-closed A-trail of G. This implies that (α, β) must take some semi-
closed A-trail in G to an open A-trail in H. �

Consider the following example. Let G be a closed A-trail with 6 ver-
tices and let H consist of a K3 and 3 isolated vertices. Note that G is
A-connected whereas H is not. It is straightforward to check that G and H
are TF-isomorphic. However, any TF-isomorphism from G to H is clearly
non-trivial and maps an open A-trail of length 3 in G to a semi-closed A-
trail of H. Therefore, the result of Proposition 4.4 is false if the hypothesis,
namely that both G and H are A-connected, is dropped.

As an application of Proposition 4.4 we get the following result.

Corollary 4.5. A bipartite graph and a non-bipartite graph cannot be TF-
isomorphic. Indeed if G is bipartite and (α, β) is a TF-isomorphism from G
to some other graph H, then α = β.

Proof. Let G be a graph and let (α, β) be a non-trivial TF-isomorphism
from G to some graph H. Then, in view of Proposition 4.4, there is an open
A-trail of G that is taken to a semi-closed A-trail of H. Therefore H has an
odd cycle and is non-bipartite. Conversely, (α−1, β−1) is a non-trivial TF-
isomorphism from H to G and therefore, by the same argument G cannot
be bipartite. �

The next section contains a more detailed study of how, using A-trails, a
mixed graph G can be made to correspond to a strongly bipartite digraphs,
extending the results of Zelinka, particularly those exposed in [21]. It will
turn out that this digraph is a double cover of G which we have already
encountered.
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5 Alternating double covers and an equivalence

relation on arcs

Let G be any mixed graph. Consider the relation R on the set A(G) de-
fined by: xRy if and only if x and y are the first and last arcs of an A-trail
of G. Clearly xRx since any given arc is the first and also the last arc of an
A-trail containing only one arc. If xRy then yRx since if x is the first arc
of an A-trail, then y is the last arc and vice-versa. Now suppose that xRy
and yRz. If x is the first arc of an A-trail P , then y is the last arc of the
P . Then if y is the first arc of an A-trail Q and z is the last arc of Q, then
the set-theoretical union of P and Q is an A-trail which has x as first arc
and z as last arc.

Lemma 5.1. Let G be a connected graph. Then every two edges of G are
joined by trails of both odd and even length if and only if G is not bipartite.

Proof. Let G be non-bipartite. Take any two edges e1, e2 and fix an odd
cycle C of G and two vertices v1, v2 of C. Choose two trails P1, P2 joining
e1, e2 with v1, v2 respectively. Let P ′ and P ′′ the two trails that join v1 and
v2 using the edges of C. Then there are two trails joining e1, e2, namely
P1, P

′, P2 and P1, P
′′, P2. One of them has odd length and the other even

because if P ′′ is odd, P ′ is even and vice versa and therefore, the inclusion
of one instead of the other switches parity. Conversely, suppose that there
are trails of odd and even length between two fixed edges. In the subgraph
induced by these paths, the vertices cannot be partitioned in two distinct
colour classes and hence this subgraph must be non-bipartite and hence
must contain an odd circuit. Hence G contains an odd circuit and is also
non-bipartite. �

Corollary 5.2. Let G be a connected graph. Then R has one equivalence
class if G is not bipartite and two if it is bipartite.

Proof. Suppose that G is non-bipartite. Consider two arcs x1 and x2 and
take the corresponding edges as e1 and e2. Start from x1. On each edge
of trails joining e1 and e2, choose the arc to obtain an A-trail. Note that
before this process may continue for all edges except at most e2. When e2 is
reached, the arc corresponding to edge incident with e2 may form an A-trail
of order 2 or a directed path. But this depends on whether the concerned
trail has odd or even length, so one of the two will give a whole A-trail
containing both x and y. On the other hand, if G is bipartite, given that x
and y form a directed path, which always happens, then every trail joining
x and y will be of even length; but an A-trail of even length is open and
can’t allow directed paths. �
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Each equivalence class of R is a set, to which one can naturally associate
an A-connected sub-digraph, whose arcs are the elements of the class and
whose vertices are those incident to at least one of such arcs. In general, the
relation R may yield any number of classes, not just one or two as in the
case of graphs, as we shall see in Theorem 5.6 below.

If v is any vertex, two different arcs that have v as a first vertex form
an A-trail; the same can be said for two different arcs having v as a head.
Therefore, the arcs incident with v belong to only one class or two. In the
latter case, we say that v is a frontier vertex. Let F (G) be the set of all
frontier vertices of G. In view of Corollary 5.2, if G is a graph then F (G) is
either empty (if G is not bipartite) or F (G) = V (G) (if G is bipartite).

The proof of the next result is straightforward.

Proposition 5.3. Let G be a connected mixed graph. The following are
equivalent:

(i) All classes of R are singletons.

(ii) All A-trails of G are singletons.

(iii) Each vertex of G has both in-degree and out-degree less than or equal
to 1.

(iv) G is a directed path or a directed cycle. �

Proposition 5.4. Let G be a connected mixed graph. Then R has only one
class if and only if the set F (G) is empty.

Proof. The condition is clearly necessary, for if v were an element of F (G)
then by definition we would have at least two different classes. On the other
hand, if there is more than one class, let x and y be arcs that belong to
different classes. Since G is connected, there is a trail P that joins x and
y. Somewhere in P there must be x′ and y′ that belong to different classes
and are incident with a vertex v. Thus v ∈ F (G). �

Proposition 5.5. Let G be a connected mixed graph. Then F (G) is empty
or F (G) = V (G) or F (G) is a disconnected set of the underlying graph.

Proof. We can assume that F (G) is a proper subset of V (G). By Proposition
5.4, there are at least two classes for R. Letting x, y be elements of different
classes, by the same argument as in Proposition 5.4 we infer that each trial
joining x and y must pass through a vertex v ∈ F (G). Therefore, removing
F (G) the arcs x and y end up in different connected components. �
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Theorem 5.6. For every pair (m,k) of positive integers, there exists a
mixed graph on which the equivalence relation R induces m classes and hav-
ing k frontier vertices if and only if m− 1 ≤ k.

Proof. Let us first construct a mixed graph with m classes and k frontier
vertices whenever m− 1 ≤ k. Note that if m− 1 = k a directed path satis-
fies the statement (each class consists of a single arc). The same holds for
m− 2 = k and a directed cycle. Assume then that m− 3 ≤ k. Consider the
4-set {a, b, c, d} and consider m − 2 mixed graphs Hi for i = 1, . . . ,m − 2
where V (Hi) = {(a, i), (b, i), (c, i), (d, i), (a, i+1)} and A(Hi) contains all the
arcs of the triangle (b, i), (c, i), (d, i), plus the additional arcs ((a, i), (b, i))
and ((d, i), (a, i+1)). Take any connected bipartite graph K with k−m+2
vertices and fix a vertex u of K. Let L be the digraph consisting of the
single arc (u, (a, 1)).

Let G be the (standard graph-theoretical) union of K, L, H1, . . . ,Hm−2.
Then G is a connected mixed graph. The classes for R in G are: (i) the
class of K containing the arcs incident to u; (ii) the class of K containing
the arcs incident from u, together with the extra arc (u(a, 1)); (iii) each of
the Hi’s for i = 1, . . . , m−2. Hence, their number is m. Moreover, F (G) =
V (K)∪{(a, 1), (a, 2), ..., (a,m−2)}, then |F (G)| = (k−m+2)+(m−2) = k.
Therefore, for all cases where the stated inequality holds, there is a mixed
graph G as claimed.

Conversely, consider now any mixed graph G and define a graph X such
that V (X) = V (G)/R (that is, the set of classes of R in G) and two vertices
are adjacent when the associated mixed graphs share a frontier vertex. Then
m = |X|, while the number k′ of edges of X is less or equal to k = |F (G)|
(because two classes might share more than a frontier vertex). The known
inequality m− 1 ≤ k′ implies m− 1 ≤ k as claimed. �

As remarked earlier, a strongly bipartite digraph can be associated with
each equivalence class of R. Now let these strongly bipartite digraphs
D1,D2, . . . ,Dk corresponding to the different classes of R obtained from
the mixed graph G. Let any vertex u of V (G) which appears as a source in
Di be labelled u0 and let any vertex v of V (G) which appears as a sink in
Di be labelled v1. Therefore, an arc (u, v) in Di now becomes (u0, v1). It
turns out that the strongly bipartite digraph consisting of the components
Di labelled this way is ADC(G) which we have already defined earlier.

Figure 4 shows an example which may be used to illustrate the following
remarks which highlight certain properties of ADC(G) in relation to the
mixed graph G:
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1. We know that, for any vertex u of G, all incoming arcs (x, u) of G are in
the same component of ADC(G) and similarly all outgoing arcs (u, x)
of G are in the same component of ADC(G). Therefore u0 if present
in ADC(G), cannot appear in two different components. Similarly
for u1. However, as we see in examples below, u0, and u1 can, in
some cases, appear in the same component and they can, in other
cases, appear in different components. In particular, if G is a bipartite
graph they appear in different components as shown in Figure 6(ii)
and if G is a non-bipartite graph, they are in the same component as
shown in Figure 5(ii).

2. ADC(G) is a strongly bipartite digraph.

3. By definition, there is no u0 in ADC(G) if u is a sink in G, and there
is no u1 if u is a source.

1

2 3 4

56

G

(i)

ADC(G)

D2

11

20 31 40

5161

30 41

D1

60

10

(ii)

Figure 4: ADC(G) obtained from a digraph G.
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1
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G

10 
11

20 21

30 31

ADC(G)

(i) (ii)

D1

Figure 5: ADC(G) obtained form a non-bipartite graph G.

1

2

3

G

4

11

ADC(G)

10 

21

30

41

20

31

40

(i) (ii)

D1 D2

Figure 6: ADC(G) obtained from a bipartite graph G.

6 TF-isomorphisms and mixed graph covers

The following result can be seen as a corollary to Theorem 3.1 and the proof
is easy since the IDC of a mixed graph G can be obtained fromADC(G) sim-
ply by removing the directions of the arcs and isolated vertices are irrelevant.
Here we give an direct proof because it will help us in later constructions.

Theorem 6.1. Let G, H be mixed graphs. The G and H are TF-isomorphic
if and only if ADC(G) and ADC(H) are isomorphic.

Proof. Let (α, β) be a TF-isomorphism from G to H. Let (u, v) be an arc
of G. First note that if (α(u), β(v)) is an arc of H, then (u0, v1) is an arc
of ADC(G) and (α(u)0, β(u)1) is an arc of ADC(H). Let f be a map
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from V (ADC(G)) to V (ADC(H)) such that f : u0 7→ x0 if x = α(u) and
f : v1 7→ y1 if y = β(v). Consider any arc (u, v) of G and consider the cor-
responding arc (u0, v1) in A(ADC(G)). Let (α, β)(u, v) = (x, y). Then by
definition f takes (u0, v1) to (x0, y1) in A(ADC(H)). The function f maps
arcs of ADC(G) to arcs of ADC(H) and it is clearly bijective. Hence, f is
an isomorphism from ADC(G) to ADC(H).

Now suppose that ADC(G) and ADC(H) are isomorphic. This implies
that there exists a map f such that f(u0, v1) = (x0, y1). Note that the arcs
must always start from a vertex whose label has 0 as subscript and incident
to a vertex whose label has 1 as subscript, by virtue of the construction
presented above. Define α, β from V (G) to V (H) as follows. Let α(u) = x
if f(u0) = x0 where u ∈ V (G) and x ∈ V (H) and let β(v) = y if f(v1) = y1
where v ∈ V (G) and y ∈ V (H). Then (α, β) takes any arc (u, v) ∈ A(G) to
some (x, y) in A(H). This two-fold mapping is bijective and hence (α, β) is
a TF-isomorphism from G to H. �

Corollary 6.2. Let (α, β) be a TF-isomorphism from a mixed graph G to
a mixed graph H. Then there exists an isomorphism fα,β from ADC(G)
to ADC(H) such that fα,β(u0, v1) = (x0, y1) if and only if x = α(u) and
y = β(v) for some TF-isomorphism (α, β) from G to H.

Proof. The result follows from the proof of Theorem 6.1. �

Refer to Figure 7. An isomorphism f from ADC(G) to ADC(H) and
the corresponding maps α and β from V(G) onto V(H), which are derived
from f as described in the proof of Theorem 6.1, are given below.

f : 10 7→ 1′0 f : 11 7→ 1′1

f : 21 7→ 2′0 f : 21 7→ 3′1

f : 30 7→ 3′0 f : 31 7→ 2′1

f : 40 7→ 6′0 f : 41 7→ 5′1

f : 50 7→ 7′0 f : 51 7→ 4′1

f : 60 7→ 5′0 f : 61 7→ 6′1

f : 70 7→ 4′0 f : 71 7→ 7′1
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α : 1 7→ 1′ β : 1 7→ 1′

α : 2 7→ 2′ β : 2 7→ 3′

α : 3 7→ 3′ β : 3 7→ 2′

α : 4 7→ 6′ β : 4 7→ 5′

α : 5 7→ 7′ β : 5 7→ 4′

α : 6 7→ 5′ β : 6 7→ 6′

α : 7 7→ 4′ β : 7 7→ 7′

Figure 8 shows a digraph G and its alternating double cover ADC(G)
which in this case has three components, namely D1, D2 and D3. Figure 8
also shows how the components of ADC(G) can be combined by associating
vertices of the form u0 with vertices of the form v1, irrespective of whether
u = v or u 6= v, to form G or other digraphs such as G1, G2 and G3 having
the same number of vertices as G. It is easy to check that G, G1, G2 and
G3 are pairwise two-fold isomorphic as expected from the result of Theorem
6.1 since each of these digraphs have the same number of vertices and have
isomorphic ADCs.

Proposition 6.3. (i) A digraph H is isomorphic to ADC(G) for some G if
and only if H is strongly bipartite. (ii) For every digraph G, ADC(ADC(G))
is isomorphic to ADC(G).

Proof. We already know that the condition stated in (i) is necessary in order
to have H isomorphic to some ADC(G). Conversely, if H has this property,
define map f : V (H) → V (ADC(H)) as follows: f(u) = u0 if u is a source,
f(u) = u1 if u is a sink. Clearly f is a bijection If (u, v) is an arc of H
then by our assumption u is a source and v is a sink of H. Then (u0, v1)
= (f(u), f(v)) is an arc of ADC(H). Likewise, each arc of ADC(H) takes
the form (u0, v1), with u source and v sink of H and hence (u0, v1) is the
image of (u, v) under f . This proves that f is an isomorphism from H to
ADC(H), so (i) is satisfied with G = H.

Now (ii) is a straightforward consequence of (i), taking H = ADC(G). �
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Figure 7: G and H are TF-isomorphic graphs and have isomorphic ADCs.
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Figure 8: G and H are TF-isomorphic graphs and have isomorphic ADCs.
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7 Two-fold orbitals

Let Γ ≤ S = S|V | × S|V |. For a fixed element (u, v) of V × V let

Γ(u, v) = {(α(u), β(v) | (α, β) ∈ Γ}.

The set Γ(u, v) is called a two-fold orbital or TF-orbital. A two-fold orbital
is the set of arcs of a digraph G having vertex set V which we call two-fold
orbital digraph or TF-orbital digraph. If for every arc (x, y) in Γ(u, v), the
oppositely directed arc (y, x) is also contained in Γ(u, v), then G is a two-
fold orbital graph or TF-orbital graph. This generalisation of the well-known
concept of orbital (di)graph has been discussed in [9].

Proposition 7.1. Let G be a strongly bipartite digraph. Then

(i) There is a homomorphism ψ of AutTF(G)onto Aut(G).

(ii) If G is a TF-orbital digraph, then it is also an orbital digraph.

Proof. If (α, β) is a TF-automorphism of G, define ψ(α, β) = f : V (G) →
V (G) as follows: f(u) = α(u) if u is a source and f(u) = β(u) if u is a
sink. Since α preserves sources then f takes sources to sources. Similarly,
since β preserves sinks, then f takes sinks to sinks. Since both α and β are
permutations, the restrictions of f to the set of sources and to the set of
sinks are also permutations. Hence f is a permutation of V(G). Given any
arc (u, v) of G, note that (α, β) takes (u, v) to (α(u), β(v)), which is equal
to (f(u), f(v)) because u is a source and v is a sink. Hence f is an automor-
phism of G. so ψ maps AutTF(G) to Aut(G). A direct computation proves
that ψ is a group homomorphism, hence (i) holds.

Assume now that G = Γ(u, v) for some Γ. Then Γ is a subgroup of
AutTF(G) and ψ(Γ) is a subgroup of Aut G. Each arc of G takes the form
(α(u), β(v)), where (α, β) ∈ Γ and u, v are a source and a sink respectively.
Letting f = ψ(α, β) this arc is (f(u), f(v)), so it belongs to the orbital di-
graph ψ(Γ)(u, v). This proves that G is contained in this orbital digraph.
The opposite inclusion can be shown the same way, so that G = ψ(Γ)(u, v)
and (ii) follows. �

Corollary 7.2. Let G be a strongly bipartite digraph. Then G is a two-fold
orbital digraph if and only if CDC(G) is an orbital digraph.

Proof. By Proposition 6.3, G and ADC(G) are isomorphic. If either of
them is a TF-orbital, then of course the same holds for the other one, but
by Proposition 7.1 in this case these TF-orbitals are both orbitals. �
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8 Conclusion

We believe that TF-isomorphisms is a relatively new concept. The only
other author who considered them was Zelinka in a short paper motivated
by the concept of isotopy in semigroups [22, 23]. Our papers ([9] and [10])
are the first attempts at a systematic study of TF-isomorphisms.

In this paper we have shown close links between TF-isomorphisms and
double covers, and how the decomposition of a particular double cover can
be used to obtain TF-isomorphic graphs.

We have also seen that TF-isomorphisms give a new angle for look-
ing at some older problems in graph theory. But does the notion of TF-
isomorphism add anything new to these older questions? We believe that it
does. For example, in [11] we prove this result which explains instability of
graphs in terms of TF-automorphisms.

Theorem 8.1. Let AutTF(G) be the group of TF-automorphisms of a mixed
graph G. Then Aut(CDC(G)) is isomorphic to the semi-direct product
AutTF(G) ⋊ Z2. Therefore G is unstable if and only if it has a non-trivial
TF-automorphism. �

Also, it is not very likely that looking at these questions without the
notion of TF-isomorphisms would lead one to the notion of A-trails, a tech-
nique which we feel is very useful, or the construction of asymmetric graphs
with a non-trivial TF-isomorphism, an interesting notion which would be
not so natural to formulate using only matrix methods, say. Some results
and proofs are clearer in the TF-isomorphism setting. For example, in some
of the papers cited we find this result about graph reconstruction from neigh-
bourhoods.

Theorem 8.2 ([1]). If G is a connected bipartite graph, then any noniso-
morphic graph H with the same neighbourhood family as G must be a dis-
connected graph with two components which themselves have identical neigh-
bourhood hypergraphs. �

From the TF-isomorphism point of view, this result follows from three
very basic facts: (i) two graphs have the same neighbourhood family (equiv-
alent to being TF-isomorphic) if and only if they have the same canonical
double cover; (ii) the canonical double cover of a graph G is disconnected
if and only if G is bipartite; and (iii) when G is bipartite, the canonical
double cover of G is simply two disjoint copies of G. Therefore, for H to
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have the same canonical double cover as G, it must consist of two compo-
nents isomorphic to K, where G is the canonical double cover of K. This
gives Theorem 8.2. And moreover, from these remarks we also see that
the only bipartite graphs for which there are non-isomorphic graphs with
the same neighbourhood hypergraph are those which are canonical double
covers. The Realisability Problem restricted to bipartite graphs therefore
becomes: given a bipartite graph G, is there a graph K such that G is the
canonical double cover of K? A result in this direction was proved in [14],
where graphs whose canonical double covers are Cayley graphs are charac-
terised

So it seems that the TF-isomorphism point of view can give a new han-
dle on some of these problems. We intend to pursue this line of research in
a forthcoming work.
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