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This paper studies the asymptotic behavior of processes with switching.
More precisely, the stability under fast switching for diffusion processes and
discrete state space Markovian processes is considered. The proofs are based
on semimartingale techniques, so that no Markovian assumption for the mod-
ulating process is needed.
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1. Introduction
Stochastic processes with dynamics depending on a further source of randomness have
been of interest as well for theoretical reasons as from the point of view of application.
Such processes are called processes with switching and usually switching involves an
additional Markovian source of randomness with a finite number of states. For diffusion
processes (Xt)t∈[0,∞) given by a stochastic differential equation, the dynamics then ad-
ditionally depend on a modulating Markovian process (Yt)t∈[0,∞) with finite state space.
Mao and Yuan (2006) gives an extensive treatment of this subject. If (Xt)t∈[0,∞) is itself
a Markovian process with a discrete state space then the intensity matrix will depend
on the modulating process.
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In this paper we are interested in the stability under fast switching. This concerns the
behavior of the switching process when the modulating process depends on an additional
parameter ε > 0 which lets it fluctuate more and more rapidly when ε tends to 0, so
we have processes (Xε

t )t∈[0,∞) and (Y εt )t∈[0,∞). The question of interest concerns the
asymptotic stability, i.e. convergence in a distributional sense, of (Xε

t )t∈[0,∞) as ε tends
to 0 which is by no means obvious as the processes (Y εt )t∈[0,∞) fluctuate more and more
rapidly.
In fast Markovian switching we look at processes (Y εt )t∈[0,∞) with intensity matrix

1
εG for a given intensity matrix G; in pathwise terms we would look at (Yt/ε)t∈[0,∞). In
Skorokhod (1989) and Sarafyan and Skorokhod (1987) the asymptotic stability in the
stochastic differential equation setting was shown, and in DiMasi and Kabanov (1995,
1993) this stability was derived for conditionally Poisson processes. For the proofs the
assumption of Markovian switching was essential and the technical details can be seen
as complicated and technically involved. Note that the processes (Xε

t )t∈[0,∞) themselves
are not Markovian so that the usual machinery for showing distributional convergence
of Markov processes cannot be applied directly and has to be adapted.
This note stems from the observation that the processes (Xε

t )t∈[0,∞) are semimartin-
gales, so that we may show stability using the convergence theorem for families of semi-
martingales. As demonstrated here, this can indeed be done. Section 2 is devoted to the
case of diffusion processes which is technically more involved relying on some uniform
estimates for switching diffusions; Section 3 treats discrete state space Markovian pro-
cesses where the proofs are simpler. The Appendix A contains the proof of the analytical
Lemma 2.4 which is essential for obtaining the main results.
An advantage of the semimartingale approach is that the Markovian assumption for the
modulating process is no longer needed, only an assumption of ergodicity. Furthermore,
the proofs turn out to be less complicated than using an approach based Markov theory.
As switching processes have various applications in financial market modeling, see e.g
Irle et al. (2011) or Christensen et al. (2014), where the modulating process may corre-
spond to macroeconomic influences, this generalization might be of interest in this field.
In particular, the findings discussed in Christensen et al. (2014) are based on the results
presented in this paper.

2. Diffusion processes
We consider càdlàg processes (Xt)t∈[0,∞),(Yt)t∈[0,∞), where Xt : Ω→ I for some interval
I ⊆ R, Yt : Ω→Y for some suitable space Y . Assume that for

b : I×Y → R, σ : I×Y → R

the process (Xt)t∈[0,∞) fulfills the stochastic differential equation

dXt = b(Xt,Yt)dt+σ(Xt,Yt)dWt,

where (Wt)t∈[0,∞) is a Wiener process independent of (Yt)t∈[0,∞). Note that the dynamics
of the processX depend on the modulating process Y , so that we may also writeX =XY .
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Lemma 2.1. Assume that there exist C1,C2 such that

max{|b(x,y)|, |σ(x,y)|} ≤ C1 +C2|x| for all x ∈ I,y ∈ Y .

Let q≥ 1, E|X0|q <∞. Then for all T > 0 there exists some constant C3, only depending
on q,C1,C2,T and E|X0|q, such that

sup
t∈[0,T ]

E|Xt|q ≤ C3.

Proof. This follows immediately from (Krylov, 1980, Lemma 2 and Corollary 6 in Section
2.5).

It is important to note that this estimate holds uniformly in all processes (Yt)t∈[0,∞)
taking values in Y , and this will also be explicitly stated in the following result:

Lemma 2.2. Under the assumptions of Lemma 2.1 let E|X0|<∞. Then for any δ > 0
there exists some K > 0 such that

P

(
sup
t≤T
|Xt| ≥K

)
≤ δ

uniformly in all Y-valued modulating processes (Yt)t∈[0,∞) for X =XY .

Proof. Use 3K instead of K. Then we see that

P

(
sup
t≤T

∣∣∣X0 +
∫ t

0
b(Xs,Ys)ds+

∫ t

0
σ(Xs,Ys)dWs

∣∣∣≥ 3K
)

≤P (|X0| ≥K) +P

(
sup
t≤T

∣∣∣ ∫ t

0
b(Xs,Ys)ds

∣∣∣≥K)+P

(
sup
t≤T

∣∣∣ ∫ t

0
σ(Xs,Ys)dWs

∣∣∣≥K)

The first term is trivial, so we start by looking at the second term. Clearly

sup
t≤T

∣∣∣∣∣
∫ t

0
b(Xs,Ys)ds

∣∣∣∣∣≤
∫ T

0
|b(Xs,Ys)|ds≤

∫ T

0
(C1 +Cs|Xs|)ds= C1T +

∫ T

0
C2|Xs|ds.

Now, using Lemma 2.1,

E
∫ T

0
C2|Xs|ds=

∫ T

0
C2E|Xs|ds≤ C2C3T,

so that the expectation of the second term is bounded by (C1 +C2C3)T , and the second
term is bounded by Markov’s inequality by

P

(
sup
t≤T
|
∫ t

0
b(Xs,Ys)ds| ≥K

)
≤ (C1 +C2C3)T

K
.
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Now we consider the third term: The stochastic process
(∫ t

0 σ(Xs,Ys)dWs

)
t≥0

is, for an-
other Wiener process (W ′t)t≥0, equal to (W ′β(t))t≥0, where β(t) =

∫ t
0 σ

2(Xs,Ys)ds. Hence,
for any γ > 0

P

(
sup
t≤T
|
∫ t

0
σ(Xs,Ys)dWs| ≥K

)
= P

(
sup
t≤T
|W ′β(t)| ≥K

)
= P

 sup
t≤β(T )

|W ′t | ≥K


≤ P (β(T )≥ γ) +P

(
sup
t≤γ
|W ′t | ≥K

)
.

Note that

Eβ(T )≤ E
∫ T

0
(C1 +C2|Xs|)2ds=

∫ T

0
E(C1 +C2|Xs|)2ds≤ C4

by Lemma 2.1 for some C4 only depending on C1,C2 and T . So firstly choose γ with
C4/γ = δ/4, hence

P (β(T )≥ γ)≤ δ

4 .

Now choose K with

P

(
sup
t≤γ
|W ′t | ≥K

)
≤ δ

4 , P (|X0| ≥K)≤ δ

4 ,
(C1 +C2C3)T

K
≤ δ

4 .

Altogether, we obtain

P

(
sup
t≤T
|Xt| ≥ 3K

)
≤ δ.

For fixed ρ,T > 0 define τ0 = 0 and

τi = inf{s≥ τi−1 : |Xs−Xτi−1|= ρ}∧T, nT = sup{k : τk < T}.

It is rather obvious that for a fixed process Y it holds that P (τ1 = 0) = 0 and P (nT <
∞) = 1. In the following Lemma, we show a version of this observation, that holds
uniformly in all modulating processes (Yt)t∈[0,∞) taking values in Y .

Lemma 2.3. In addition to the assumptions of Lemma 2.1, let us assume that

sup
|x|≤K,y∈Y

(|b(x,y)|+σ2(x,y))<∞ for all K > 0. (1)

Then for any ρ,T,δ > 0 there exist K ′,ρ′ > 0, such that

P (τ1 ≥ ρ′)≥ 1− δ, P (nT ≤K ′)≥ 1− δ

for all processes (Yt)t∈[0,∞) taking values in Y.
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Proof. (a) We start by looking at τ1. As in the proof of Lemma 2.2 and using the same
notation we have for ρ′ < T

P (τ1 ≤ ρ′) = P

(
sup
t≤ρ′
|Xt−X0| ≥ ρ

)

≤(C1 +C2C3)ρ′
ρ/2 +P (β(ρ′)≥ γ) +P

(
sup
t≤γ
|W ′t | ≥

ρ

2

)

≤C ′1
ρ′

ρ
+ Eβ(ρ′)

γ
+P

(
sup
t≤γ
|W ′t | ≥

ρ

2

)

≤C ′1
ρ′

ρ
+C ′2

ρ′

γ
+P

(
sup
t≤γ
|W ′t | ≥

ρ

2

)
.

Firstly we choose γ such that P
(
supt≤γ |W ′t | ≥ ρ/2

)
≤ δ/3. Then we choose ρ′ such that

C ′1
ρ′

ρ ≤ δ/3, C
′
2
ρ′

γ ≤ δ/3, which gives the first estimate of the assertion.
(b) Let δ > 0. Choose K according to Lemma 2.2 such that

P

(
sup
t≤T
|Xt| ≥K

)
≤ δ

2 .

We set
C = sup

|x|≤K,y∈Y
|b(x,y)|, D = sup

|x|≤K,y∈Y
σ2(x,y).

The following estimates are always considered on A= {supt≤T |Xt| ≤K}. Note that for
any τ,s≥ 0 ∣∣∣∣∣

∫ τ+s

τ
b(Xs,Ys)ds+

∫ τ+s

τ
σ(Xs,Ys)dWs

∣∣∣∣∣≥ ρ
implies ∫ τ+s

τ
|b(Xs,Ys)|ds≥

ρ

2 or
∣∣∣∣∣
∫ τ+s

τ
σ(Xs,Ys)dWs

∣∣∣∣∣≥ ρ

2 .

Hence on A ∫ τ+s

τ
Cds≥ ρ

2 or
∣∣∣∣∣
∫ τ+s

τ
σ(Xs,Ys)dWs

∣∣∣∣∣≥ ρ

2
so that

τi− τi−1 ≥min
{
ρ

2C , inf{s : |
∫ τi−1+s

τi−1
σ(Xs,Ys)dWs| ≥

ρ

2}
}
.

Now we may argue in the following way. If τk < T then there exist k disjoint stochastic
intervals [τi−1, τi) = Ji ⊆ [0,T ) such that

the length of Ji is ≥ ρ
2C or sups∈Ji |

∫ s
τi−1 σ(Xs,Ys)dWs| ≥ ρ/2.

5



The number m of intervals Ji with length ≥ ρ
2C must fulfil m ρ

2C < T so that there are
at least

k− T2C
ρ

intervals Ji with sup
s∈Ji

∣∣∣∣∣
∫ s

τi−1
σ(Xs,Ys)dWs

∣∣∣∣∣≥ ρ

2 .

To obtain a bound independent of the particular process (Yt)t we transfer this to the
process (W ′t)t. Looking at the intervals [β(τi−1),β(τi)) = J ′i these are disjoint intervals
⊆ [0,β(T )) and for at least k− T2C

ρ of them we have

sup
t∈J ′i
|W ′t −W ′β(τi−1)| ≥

ρ

2 .

Note that on A
β(T ) =

∫ T

0
σ2(Xt,Yt)dt≤DT.

So it follows that τk < T implies the existence of at least k− T2C
ρ such disjoint intervals

J ′i ⊆ [0,DT ].
For a formal statement define the random variable

Zρ′,T ′ = sup{k : There exist k disjoint intervals ⊆ [0,T ′) with sup
ai≤t≤bi

|W ′t −W ′ai| ≥ ρ
′}.

By path continuity we see that

P (Zρ′,T ′ =∞) = 0, hence P (Zρ′,T ′ ≥ k)→ 0 as k→∞.

The foregoing reasoning implies

P (nT ≥ k) = P (τk < T )≤ P (Ac) +P

(
Zρ/2,DT ≥ k−

T2C
ρ

)
.

So we only have to choose K ′ such that P (Zρ/2,DT ≥ K ′− T2C
ρ ) ≤ δ/2 to obtain the

second estimate. Note that K ′ is independent of the particular process (Yt)t∈[0,∞).

Before coming to the main result of this section, we provide an analytical lemma which
is essential for the following.

Lemma 2.4. Let f : R→ R be measurable such that

1
T

∫ T

0
f(x)dx→ 0 as T →∞, sup

T

1
T

∫ T

0
|f(x)|dx <∞.

Then for any continuous h : [0,1]→ R

1
T

∫ T

0
h
(
x

T

)
f(x)dx→ 0 as T →∞.
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The proof can be found in the appendix.
Let us now fix some process (Yt)t∈[0,∞) with state space Y . From now on we assume

that Y is a finite set, which implies that condition (1) hold true. We assume that
(Yt)t∈[0,∞) is ergodic in the sense that

1
t

∫ t

0
(1{Ys=y}−π(y))ds→ 0 a.s., as t→∞

for some probability distribution π(y),y ∈ Y . We increase the speed of the process by
looking at processes (Y εt )t∈[0,∞), ε > 0, having the same distribution as (Yt/ε)t∈[0,∞).
The first processes have to be adapted to a filtration for which (Wt)t∈[0,∞) is a Wiener
process, and we let (Xε

t )t∈[0,∞) be the solution of the corresponding stochastic differential
equation

dXε
t = b(Xε

t ,Y
ε
t )dt+σ(Xε

t ,Y
ε
t )dWt,

with starting value independent of ε. In our proof we will work with Y εt = Yt/ε. For these
processes to live on a common filtration with the Wiener process (Wt)t∈[0,∞) we assume
that

(Wt)t∈[0,∞) and (Yt)t∈[0,∞) are independent
and then we may use (Yt/ε)t∈[0,∞) for (Y εt )t∈[0,∞). This is no restriction in generality when
compared with Skorokhod (1989), Sarafyan and Skorokhod (1987). When (Yt)t∈[0,∞) is
a Markov process with discrete state space living on the same filtration as (Wt)t∈[0,∞)
then these two processes are necessarily independent. This is shown in Shreve (2004)
for a Poisson process and can be generalized to general Markov processes with discrete
state space; see e.g. Christensen (2014).

Theorem 2.5. Let B : I×Y →R be such that B(·,y) is continuous for all y ∈ Y . Then
for all T > 0,y ∈ Y it holds that

sup
0≤r≤T

∣∣∣∣∫ r

0
B(Xε

t ,y)
(
1{Y εt =y}−π(y)

)
dt
∣∣∣∣→ 0 in probability as ε→ 0.

Proof. Fix T > 0, y ∈ Y . Let η > 0. We want to show that

P

(
sup
r≤T

∣∣∣∣∫ r

0
B(Xε

t ,y)
(
1{Y εt =y}−π(y)

)
dt
∣∣∣∣> η

)
→ 0 as ε→ 0.

Let δ > 0. Choose K according to Lemma 2.2 such that

P

(
sup
t≤T
|Xε

t | ≥K
)
≤ δ for all ε > 0.

Let
Aε =

{
sup
t≤T
|Xε

t |<K

}
.

The following estimates are always considered on Aε. Let

C = sup{|B(x,y)| : |x| ≤K}<∞;
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thus for r0 = η/C

sup
r≤r0

∫ r

0

∣∣∣B(Xε
t ,y)

(
1{Y εt =y}−π(y)

)∣∣∣dt≤ η.
By a change of variable, we obtain∫ r

0
B(Xε

t ,y)(1{Y εt =y}−π(y))dt=
∫ r

0
B(Xε

t ,y)(1{Yt/ε=y}−π(y))dt

=ε
∫ r/ε

0
B(Xε

εs,y)(1{Ys=y}−π(y))ds.

Note that the integral

ε

r

∫ r/ε

0
B(Xε

rsε/r,y)(1{Ys=y}−π(y))ds

has exactly the form considered in the proof of Lemma 2.4 (see Appendix A) with t= r/ε,
g =B(·,y), h(s) =Xε

rs, and f(s) = 1{Ys=y}−π(y). On Aε one has

|Xε
rs| ≤K for all s≤ 1.

Let δ > 0. Since B(·,y) is uniformly continuous on [−K,K] we may choose ρ > 0 such
that

|B(x,y)−B(x′,y)| ≤ η

2T for |x−x′| ≤ ρ, x,x′ ∈ [−K,K].

Next, let σε,r0 = 0,

σε,ri = inf{s≥ σε,ri−1 : |Xε
rs−Xε

σε,ri−1
|= ρ}∧1, nε,r = sup{i : σε,ri < 1}.

The estimate in in the proof of Lemma 2.4 with C1 = 1,C2 = C yields∣∣∣∣∣ε
∫ r/ε

0
B(Xε

rsε/r,y)(1{Ys=y}−π(y))ds
∣∣∣∣∣≤ rη2 + 2rC

nε,r+1∑
i=1

∣∣∣∣∣ε
∫ σε,ri r/ε

0
(1{Ys=y}−π(y))dy

∣∣∣∣∣ .
Setting τ ε0 = 0,

τ εi = inf{s≥ τ εi−1 : |Xε
s−Xε

τ εi−1
|= ρ}∧T, nε = sup{k : τ εk < T},

it follows that rσε,ri = τ εi ∧ r, nε,r ≤ nε and∣∣∣∣∣ε
∫ r/ε

0
B(Xε

εs,y)(1{Ys=y}−π(y))ds
∣∣∣∣∣≤ η

2 + 2C
nε,r+1∑
i=1

ε
∫ τ εi ∧r/ε

0
(1{Ys=y}−π(y))ds.

Next, according to Lemma 2.3, we may choose K ′,ρ′ ≤ r0 such that

P (nε ≤K ′)≥ 1− δ, P (τ ε1 ≥ ρ′)≥ 1− δ for all ε > 0,

hence also
P (τ ε1 ∧ r ≥ ρ′)≥ 1− δ for all ε > 0, r ≥ r0.

8



Due to the ergodicity assumption

1
t

∫ t

0
(1{Ys=y}−π(y))ds→ 0 a.s., as t→∞.

So we may choose ε0 > 0 such that for

Dε =
{

sup
t≥ρ′

∣∣∣ε∫ t/ε

0
(1{Ys=y}−π(y))ds

∣∣∣≤ η

2
1

2(K ′+ 1)C

}

we have P (Dε)≥ 1− δ for all ε≤ ε0.
Altogether, we obtain on Aε∩{nε≤K ′}∩{τ ε1 ≥ ρ′}∩Dε that for all r0≤ r≤ T, 0< ε≤ ε0∣∣∣∣∣ε

∫ r/ε

0
B(Xε

εs,y)(1{Y εs =y}−π(y))ds
∣∣∣∣∣≤ η

2 + 2C(nε+ 1)η2
1

2(K ′+ 1)C ≤ η,

hence

sup
0<r≤T

∣∣∣∣∫ r

0
B(Xε

s,y)(1{Y εs =y}−π(y))ds
∣∣∣∣≤ η,

the case r ≤ r0 being obvious as remarked in the beginning of the proof. It follows that

P

(
sup

0<r≤T

∣∣∣∣∫ r

0
B(Xε

s,y)(1{Y εs =y}−π(y))ds
∣∣∣∣> η

)
≤ P (Acε) +P (nε ≥K ′) +P (τ ε1 ≤ ρ′) +P (Dc

ε)≤ 4δ,

for all 0< ε≤ ε0.

Now, the previous result can be utilized to prove the convergence in distribution for
fast switching diffusions as follows.
Define

b̂ : I → R, b̂(x) =
∑
y∈Y

b(x,y)π(y),

σ̂ : I → R, σ̂(x) =
∑
y∈Y

σ(x,y)π(y),

and (X̂t)t∈[0,∞) as the solution of the corresponding stochastic differential equation

dX̂t = b̂(X̂t)dt+ σ̂(X̂t)dWt.

Theorem 2.6.

(Xε
t )t∈[0,∞)→ (X̂t)t∈[0,∞) in distribution as ε→ 0.
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Proof. The infinitesimal characteristics are

b(Xε
t ,Y

ε
t ), σ(Xε

t ,Y
ε
t ) for the semimartingale (Xε

t )t∈[0,∞),

and
b̂(X̂t), σ̂(X̂t) for the semimartingale (X̂t)t∈[0,∞).

Theorem 2.5 shows that for all T > 0

sup
0≤r≤T

∫ r

0

(
b(Xε

t ,Y
ε
t )− b̂(Xε

t )
)
dt→ 0 in probability as ε→ 0,

and similarly for σ, σ̂. This implies the assertion by the semimartingale convergence
theorem; see (Jacod and Shiryaev, 2003, Theorem 3.21, Chapter IX).

3. Discrete state processes
In the case of a discrete state space we start with a càdlàg process (Yt)t∈[0,∞) with a finite
state space Y , assumed a subset of R without loss of generality, and discrete jump times
γ0 = 0 < γ1 < γ2 < .... Here, the term discrete jump times means that these times are
strictly increasing and the process Y is constant on [γi+1,γi) for all i. Furthermore, let
I ⊆R be countable, and for each y ∈Y let q(·, ·|y) be an intensity matrix. Conditionally,
we generate the switching process in the following way: In zero, we start a continuous
time Markov chain X̃0 with starting state x0 and intensity matrix q(·, ·|Y0). In the first
jump time γ1, we start a new chain X̃1 with starting point X̃0

γ1 and intensity matrix
q(·, ·|Yγ1). In the same way we define X̃i+1, starting in X̃i

γi . We define the switching
process X =XY by setting Xt = X̃i

t−γi for γi ≤ t < γi+1.
Note that when using diffusion processes X̃i with coefficients depending on y instead of
Markov chains in the previous construction, (ignoring some technical issues) the process
X is a switching diffusion as considered in Section 2. In this section we consider the
jump counterpart for the results obtained there.
We make the assumption that for some finite set J ⊆ R\{0}

q(i, i+ j|y) = 0 for all i ∈ I, y ∈ Y , j 6∈ J,

so i+J is the set of states which can be reached from i. Thus q(i|y) :=∑
i′ 6=i q(i, i′|y)<∞

for all y ∈ Y , and we furthermore assume that

q := sup
i,y

q(i|y)<∞.

If the state space I of the process X is finite, these assumptions are of course fulfilled,
and they imply that there is no explosion in finite time.
Define the jumps time of (Xt)t≥0 by τ0 = 0 and

τi = inf{t≥ τi−1 :Xt 6=Xτi−1}.

The following lemma is the analogon to Lemma 2.3 and gives again an estimate, which
is uniform in all modulating processes Y . The proof now turns out to be much easier
due to the discrete nature of situation.
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Lemma 3.1. Let T > 0, nT = sup{k : τk <T}. Let δ > 0. Then there exists ρ′> 0, K ′ ∈N
such that

P (τ1 ≥ ρ′)≥ 1− δ, P (nT <K ′)≥ 1− δ
for all processes (Yt)t∈[0,∞) taking values in Y.

Proof. Denote the counting process of (Xt)t∈[0,∞) by (Nt)t∈[0,∞), and by (N i
t )t∈[0,∞) for

(Xi
t)t∈[0,∞), i.e. Nt (resp. N i

t ) denotes the number of jumps of X (resp. Xi) before time
t. Let the random index jt be given by γjt ≤ t < γjt+1. Then we consider

{τ1 > t}= {Nt = 0}= {N0
γ1 = 0}∩{N1

γ2−γ1 = 0}∩ ...∩{N jt
t−γjt

= 0}.

It follows by conditioning that

P (Nt = 0) = E
(
e−q(X0|Y0)γ1e−q(Xγ1 |Yγ1)(γ2−γ1)...e

−q(Xγjt |Yγjt )(t−γjt)
)
≥ e−qt.

Now, let (N∗t )t∈[0,∞) denote a Poisson process with intensity q and corresponding jump
times τ∗j , j ≥ 0. Then the previous arguments show that P (τ1 > t)≥ P (τ∗1 > t). Together
with the Markov property, the same arguments can be used for τj , τ∗j , j > 1, so that
P (τj > t)≥ P (τ∗j > t). Hence

P (τ1 ≥ ρ)≥ P (τ∗1 ≥ ρ)→ 1 as ρ→ 0,
P (nT ≤K) = P (τk+1 > T )≥ P (τ∗K+1 > T )→ 1 as K→∞.

Lemma 3.2. Assume the situation of Lemma 3.1. For any ε > 0 there exists K such
that

P

(
sup
t≤T
|Xt| ≥K

)
≤ ε

uniformly in all Y-valued modulating processes (Yt)t∈[0,∞) for X =XY .

Proof. Using Markov’s inequality we have

P

(
sup
t≤T
|Xt| ≥K

)
≤ E(sup

t≤T
|Xt|)/K ≤ (|x0|+E(nT + 1)sup

j∈J
|j|)/K.

Therefore, it is enough to show that E(nT ) is bounded uniformly in Y . But this holds by
the proof of the preceding Lemma since EnT is not larger than the expected number of
jumps of the Poisson process (N∗t )t∈[0,∞) in [0,T ], which is well-known to be finite.

As in Section 2 we fix a process (Yt)t∈[0,∞) with the property

1
t

∫ t

0
(1{Ys=y}−π(y))ds→ 0 a.s., as t→∞.

Furthermore, we take (Y εt )t∈[0,∞) = (Yt/ε)t∈[0,∞) with corresponding (Xε
t )t∈[0,∞).
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Theorem 3.3. Let Q : I×Y→R be such that sup|i|≤K |Q(i,y)|<∞ for all y ∈Y , K > 0.
For all y ∈ Y , T > 0 it holds that

sup
0≤r≤T

∣∣∣∣∫ r

0
Q(Xε

t ,y)
(
1{Y εt =y}−π(y)

)
dt
∣∣∣∣→ 0 in probability as ε→ 0.

Proof. Fix y,T . For δ > 0 choose K according to Lemma 3.2 such that

P

(
sup
t≤T
|Xε

t | ≥K
)
≤ δ for all ε > 0.

Write
Aε = {sup

t≤T
|Xε

t | ≤K}, C = sup{|Q(i,y)| : |i| ≤K}<∞.

Then for r0 = η/C on Aε

sup
r≤r0

∫ r

0
|Q(Xε

t ,y)(1{Yt=y}−π(y))|dt≤ η.

We may proceed with a simplified version of the proof of Theorem 2.5 without the use
of Lemma 2.4. It holds that∫ r

0
Q(Xε

t ,y)(1{Y εt =y}−π(y))dt= ε
∫ r/ε

0
Q(Xε

rsε/r,y)(1{Ys=y}−π(y))ds.

Define σε,ri as in the proof of Theorem 2.5 replacing = ρ by > 0 to obtain the jump times,
with corresponding nε,r. Then, on Aε∣∣∣∣∣ε
∫ r/ε

0
Q(Xε

rsε/r,y)(1{Y εs =y}−π(y))ds
∣∣∣∣∣≤

∣∣∣∣∣∣ε
nε,r+1∑
i=1

Q(Xε
rσε,ri

,y)
∫ σε,ri r/ε

σε,ri−1r/ε
(1{Ys=y}−π(y))ds

∣∣∣∣∣∣
≤ 2C(nε,r + 1)

∣∣∣∣∣ε
∫ σε,r

nε,r+1r/ε

0
(1{Ys=y}−π(y))ds

∣∣∣∣∣
Using Lemma 3.1, the proof is concluded as in Theorem 2.5.

Define the intensity matrix

q̂(·, ·) =
∑
y∈Y

q(·, ·|y)π(y)

with corresponding Markov process (X̂t)t∈[0,∞).

Theorem 3.4.

(Xε
t )t∈[0,∞)→ (X̂t)t∈[0,∞) in distribution as ε→ 0.

12



Proof. The infinitesimal jump characteristics are given by

q(Xε
t ,X

ε
t + j|Y εt ) for the semimartingale (Xε

t )t∈[0,∞),

and
q̂(X̂t, X̂t+ j) for the semimartingale (X̂t)t∈[0,∞).

Theorem 2.5 shows that for all T > 0, j ∈ J

sup
0≤r≤T

∫ r

0
(q(Xε

t ,X
ε
t + j|Y εt )− q̂(Xε

t ,X
ε
t + j))dt→ 0 in probability as ε→ 0

using Q(i,y) = q(i, i+ j|y). Again this implies the assertion by the semimartingale con-
vergence theorem; see (Jacod and Shiryaev, 2003, Theorem 3.21, Chapter IX).
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A. Proof of Lemma 2.4
Proof of Lemma 2.4. Note that in the proof we shall provide a more precise inequality
which will be used in proving Theorem 2.5. Due to this reason we shall use a further
continuous mapping g : R→R and write g(h(x/T )) instead of h(x/T ). For the assertion
of this analytical lemma, g is just the identity. Let [α,β] = h([0,1]). Let δ > 0. Since g
is uniformly continuous on [α,β] there exists ρ > 0 such that

|g(y)−g(y′)| ≤ δ

C1
for |y−y′| ≤ ρ,y,y′ ∈ [α,β],

where C1 = supT 1
T

∫ T
0 |f(x)|dx; also let C2 = supy∈[α,β] |g(y)|. Set

s0 = 0, si = inf{s≥ si−1 : |h(s)−h(si−1)|= ρ}∧1,
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furthermore n= sup{i : si < 1}, where, due to the continuity of h, n is finite. Now∣∣∣∣∣1t
∫ t

0
g (h(x/t))f(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣∣1t
n+1∑
i=1

∫ tsi

tsi−1
(g (h(x/t))−g (h(si)))f(x)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣1t

n+1∑
i=1

∫ tsi

tsi−1
g (h(si))f(x)dx

∣∣∣∣∣∣
≤1
t

δ

C1

n+1∑
i=1

∫ tsi

tsi−1
|f(x)|dx+ 1

t

n+1∑
i=1
|g (h(si))|

∣∣∣∣∣
∫ tsi

tsi−1
f(x)dx

∣∣∣∣∣
≤ δ

C1

1
t

∫ t

0
|f(x)|dx+ 1

t

n+1∑
i=1

C2

∣∣∣∣∣
∫ tsi

0
f(x)dx−

∫ tsi−1

0
f(x)dx

∣∣∣∣∣
≤δ+ 2C2

n+1∑
i=1

∣∣∣∣∣1t
∫ tsi

0
f(x)dx

∣∣∣∣∣ .
Now choose t0 such that

sup
s≥s1

∣∣∣∣∣1t
∫ ts

0
f(x)dx

∣∣∣∣∣≤ δ

2C2(n+ 1) for all t≥ t0,

thus ∣∣∣∣∣1t
∫ t

0
g (h(x/t))f(x)dx

∣∣∣∣∣≤ δ+ 2C2(n+ 1) δ

2C2(n+ 1) = 2δ.

14



References
S. Christensen. A note on the independence of Wiener processes and Markov processes.
Working paper, University of Kiel, 2014.

S. Christensen, A. Irle, and J. Kauschke. Agent based models with varying switching
rates. Preprint, 2014.

G. B. DiMasi and Yu. M. Kabanov. The strong convergence of two-scale stochastic
systems and singular perturbations of filtering equations. J. Math. Systems Estim.
Control, 3:207–224, 1993.

G. B. DiMasi and Yu. M. Kabanov. A first order approximation for the convergence of
distributions of the Cox processes with fast Markov switches. Stoch. Stoch. Report,
54:211—219, 1995.

A. Irle, J. Kauschke, T. Lux, and M. Milakovic. Switching rates and the asymptotic
behaviour of herding models. Adv. Complex Systems, 14:359–376, 2011.

J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, second edition, 2003.

N.V. Krylov. Controlled diffusion processes. Springer-Verlag, Berlin, 1980.

X. Mao and C. Yuan. Stochastic differential equations with Markovian switching. Impe-
rial College Press, London, 2006.

V. V. Sarafyan and A. V. Skorokhod. Dynamical systems with fast switchings. (Russian).
Teor. Veroyatnost. i Primenen., 32:658–669, 1987.

S. Shreve. Stochastic calculus for finance II. Springer, New York, 2004.

A. V. Skorokhod. Asymptotic methods in the theory of stochastic differential equations,
volume 78 of Translations of Mathematical Monographs. American Mathematical So-
ciety, Providence, RI, 1989. Translated from the Russian by H. H. McFaden.

15


	1 Introduction
	2 Diffusion processes
	3 Discrete state processes
	A Proof of Lemma 2.4
	Literature

