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Abstract

We study the factorization of four dimensional N = 1 superconformal index for
U(N)(SU(N)) SQCD with NF fundamental and anti-fundamental chiral multiplets.
When both the anomaly free R-charge assignment and the traceless condition for
total vorticities are satisfied, we find that the superconformal index factorizes to a
pair of the elliptic uplift of the vortex partition functions. We also study the relation
between open topological string and the the elliptic uplift of the vortex partition
functions. In the three dimensional limit, we show index for U(N) theory reduces
to the factorized form of the partition function on the three dimensional squashed
sphere.
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1 Introduction

The localization computation of three dimensional N ≥ 3 supersymmetric theories are

performed in [1, 2]. The results are generalized to N = 2 with general charge assignments

[3, 4, 5, 6]. In the localization calculation, the path integrals reduce to the matrix model

like multi-contour integrals.

It is revealed in [7] that U(1) gauge theories on the three dimensional squashed sphere

S3
b possess a remarkable vortex and anti-vortex factorization property by performing con-

tour integral. Such a vortex and anti-vortex factorization is generalized to G = U(N)

gauge group in [8, 9]. See also Abelian quiver case [10]. In general, the partition functions

of three dimensional N = 2 theories on S1 × S2 or S3
b are believed to be factorized, at

least theory has sufficient global symmetries to make the vacua gapped. The fundamental

building block for the partition functions for N = 2 theories in the three dimension is

called holomorphic block [11]. The difference between partition function on S1 × S2 and

that on S3
b is only sewing procedure and holomorphic block is the universal.

It is natural to think that the partition function of N = 1 theories in four dimen-

sions also possess factorization properties and there also exists four dimensional analog of

holomorphic block which becomes fundamental building block for the partition function

on S1 × S3 or T 2 × S2. In this article, we present the first evidence for factorization

for N = 1 superconformal index in four dimensions. We consider the U(N) SQCD with
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NF -flavors fundamental chiral multiplets and anti-fundamental chiral multiplets without

the superpotential. We perform the contour integrals for the superconformal index and

study relation to the vortex and anti-vortex factorization.

This article is organized as follows. In section 2, we introduce N = 1 the supercon-

formal index in four dimensions. In section 3, we first evaluate the contour integral for

the formal superconformal index for the U(1) gauge theory and show that the vortex and

anti-vortex factorization only occurs when the anomaly free R-charge charge assignment

is satisfied. Next we generalize the calculation to non-Abelian gauge group U(N). In

this case, we find that the factorization only occurs when both the anomaly free R-charge

charge assignment and traceless condition for total vorticities are satisfied. The vortex

partition function for the four dimensional theory becomes elliptic (theta function) uplift

of two dimensional vortex partition function. In section 4, we study the open topological

string which give the elliptic uplift of vortex partition function. In section 5, we take

the three dimensional limit and study the relation between superconformal index and the

factorized partition function on S3
b . The section 6 is devoted to summary.

2 N = 1 superconformal index in four dimensions

The partition function on S1×S3 with twisted periodic boundary condition along S1 which

respect supersymmetries define the certain BPS index. The index called superconformal

index in four dimensions is introduced in [12, 13]. The N = 1 superconformal index in

four dimensions is defined by

I = tr

(

(−1)F eD− 3
2
R−2JLs2JL+2JR−R

2 t2JR−2JL−
R
2

∏

I

zFI

I

)

. (2.1)

Here D, R, JL(JR) and FI are the dilation, the R-charge, the Cartan generators of

left(right) SU(2) isometry of S3 and the flavor charges. The superconformal index counts

the BPS operators which saturate the bound D − 3
2
R − 2JL ≥ 0. The superconformal

index can be expressed in multi-contour representation as

I =
((s; s)∞(t; t)∞)r

|W |

∮

Tr

r
∏

a=1

dxa

2πixa

Z1−loop
vec Z1−loop

chi . (2.2)

Here r is the rank of gauge group G. Z1−loop
vec is the one-loop determinant of the vector

multiplet and Z1−loop
chi is the one-loop determinant of the chiral multiplets. They are given
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by

Z1−loop
vec =

∏

α>0

θ(eiα(y); s)θ(e−iα(y); t), (2.3)

Z1−loop
chi =

∏

ρ∈R

∏

I

Γ((st)
R
2 e−iρ(y)zFI

I ; s, t), (2.4)

with xa = eiya . The definition of the theta function θ(x, q) and the elliptic gamma function

Γ(x; s, t) are summarized in appendix. The integration contours are taken as unit circles.

We can also introduce FI-term for over all U(1) factor of gauge group

LFI = ζTr(
2i

r3
A4 −D), (2.5)

which only contributes to the saddle point value in the localization calculation. Here ζ

is the FI-parameter and r3 is the radius of S3. A4 is the gauge field along the S1 circle.

For simplicity, we omit the FI-term in the later calculation, but it is easy to recover its

contribution. We consider the FI-term contribution in section 5; we study the relation

between the superconformal index in four dimensions and the partition function in three

dimensions.

When the gauge group isG = U(N) and the matter chiral multiplets are theNF -flavors

with fundamental representation and NF -flavors with anti-fundamental representation,

the superconformal index is written as

IU(N)
NF

=
(s; s)N(t; t)N

N !

∮

TN

N
∏

a=1

dxa

2πi

∏

a>b

θ(xax
−1
b ; s)θ(x−1

a xb; t)

N
∏

a=1

NF
∏

I=1

Γ((st)
R
2 x−1

a zI ; s, t)Γ((st)
R̃
2 xaz̃I ; s, t). (2.6)

In the next section, we evaluate the above multi-contour integrals and study the relation

to the vortex partition function and anti-vortex partition function factorization.

3 Factorization of superconformal index

3.1 Abelian case

In this subsection, we consider the Abelian gauge group G = U(1). Since the Abelian

gauge theories in the four dimensions is infrared free, the index (2.6) of this theory is

the formal object, but it is useful to see the factorization property and to generalize to

non-Abelian case. We assume that fugacities are analytically continued to the region
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|pqzI | < 1 and the residues are evaluated at the poles of the one-loop determinant of

NF fundamental chiral multiplets. As in the case of 3d N = 2 superconformal indices

[8], By shifting zI → zI(st)
cI , we can set R = 0 and R̃ = 0. In the same reason, we

have omitted the Baryonic charges from the beginning . Then we evaluate residues at

pole x = zI′s
jtk, (j, k ∈ Z≥0, I = 1, · · · , NF ) in the one-loop determinant of the chiral

multiplets.

The index is written as

IU(1)
NF

= −
NF
∑

I′=1

∞
∑

j,k=0

(s; s)∞(t; t)∞ Res
x=zI′ t

jtk

NF
∏

I=1

Γ(x−1zI ; s, t)Γ(xz̃I ; s, t). (3.1)

The contributions from one-loop determinant of the fundamental chiral multiplet are given

by

NF
∏

I=1
I 6=I′

Γ(x−1zI ; s, t)
∣

∣

∣

x=zI′s
jtk

=

NF
∏

I=1
I 6=I′

Γ(s−jt−kz−1
I′ zI ; s, t)

=

NF
∏

I=1
I 6=I′

(−z−1
I′ zI)

−jksk
j(j+1)

2 tj
k(k+1)

2

j
∏

l=1

θ−1(s−lz−1
I′ zI ; t)

k
∏

m=1

θ−1(t−mz−1
I′ zI ; s)Γ(z

−1
I′ zI ; s, t).

(3.2)

Here we have used an identity (A.12) for the elliptic gamma function. The residue is

evaluated as

Res
y=s−jt−k

Γ(y; s, t)

= (−y)jksk
j(j−1)

2 tj
k(k−1)

2

j−1
∏

l=0

θ−1(sly; t)
k−1
∏

m=0

θ−1(tmy; s)
∣

∣

∣

y=s−jt−k
Res

y=s−jt−k

Γ(sjtky; s, t)

= (−1)jk+1sk
j(j+1)

2 tj
k(k+1)

2 (s; s)−1
∞ (t; t)−1

∞

j
∏

l=1

θ−1(s−l; t)
k
∏

m=1

θ−1(t−m; s). (3.3)

From the second line to third line in (3.3), we have used the relation (A.5) and

Res
y=1

Γ(y; s, t) = −(s; s)−1
∞ (t; t)−1

∞ . (3.4)

In a similar manner, we can evaluate the contribution from the anti-fundamental chiral
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multiplets as

NF
∏

I=1

Γ(yz̃I ; s, t)
∣

∣

∣

y=zI′s
jtk

=

NF
∏

I=1

Γ(sjtkzI′ z̃I ; s, t)

=

NF
∏

I=1

(−zI′ z̃I)
−jks−k

j(j−1)
2 t−j

k(k−1)
2

j−1
∏

l=0

θ(slzI′ z̃I ; t)

k−1
∏

m=0

θ(tmzI′ z̃I ; s)Γ(zI′ z̃I ; s, t). (3.5)

From (3.2), (3.3) and (3.5), we obtain the index as

IU(1)
NF

=

NF
∑

I′=1

(

NF
∏

I=1

Γ(zI′ z̃I ; s, t)
)(

NF
∏

I=1
I 6=I′

Γ(z−1
I′ zI ; s, t)

)

∞
∑

j,k=0

(

NF
∏

I=1

(zI z̃I)
−1st

)jk

(

j
∏

l=1

∏NF

I=1 θ(s
l−1zI′ z̃I ; t)

θ(s−l; t)
∏NF

I=1
I 6=I′

θ(s−lz−1
I′ zI ; t)

)(

k
∏

m=1

∏NF

I=1 θ(t
m−1zI′ z̃I ; s)

θ(t−m; s)
∏NF

I=1
I 6=I′

θ(t−mz−1
I′ zI ; s)

)

.

(3.6)

Since we have shifted fugacity as zIold → zInew(st)
cI to set the R-charges zero, it satisfies

(zI z̃I)
−1
newst = (zI z̃I)

−1
old(st)

−(R
2
+ R̃

2
)+1. In order to occur complete factorization, the R-

charges have to satisfy R = R̃ = 1. In this case, we find the complete factorization

occurs, because the original flavor fugacities for SU(NF )× SU(NF ) satisfy
∏NF

I=1 zI,old =
∏NF

I=1 z̃I,old = 1. R = R̃ = 1 is precisely the R-charge assignments determined from

the anomaly free condition. In this R-charge assignments, the superconformal index has

completely factorized form:

IU(1)
NF

=

NF
∑

I′=1

(

NF
∏

I=1

Γ(zI′ z̃I ; s, t)
)(

NF
∏

I=1
I 6=I′

Γ(z−1
I′ zI ; s, t)

)

[

∞
∑

j=0

j
∏

l=1

∏NF

I=1 θ(s
l−1zI′ z̃I ; t)

θ(s−l; t)
∏NF

I=1
I 6=I′

θ(s−lz−1
I′ zI ; t)

][

∞
∑

k=0

k
∏

m=1

∏NF

I=1 θ(t
m−1zI′ z̃I ; s)

θ(t−m; s)
∏NF

I=1
I 6=I′

θ(t−mz−1
I′ zI ; s)

]

.

(3.7)

Here we emphasize that U(1) formal superconformal index never factorize, if the number of

fundamental chiral multiplets is different from that of anti-fundamental chiral multiplets.

This is quite different structure from two or three dimensional theories. In two or three

dimensions, the factorization occurs when the number of fundamental chiral multiplets is

different from that of anti-fundamental chiral multiplets.
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Next, we study the relation between the superconformal index and vortex partition

functions [14, 15, 16]. In the two dimensions, it is shown in [17, 18] that partition functions

on S2 factorized to vortex and anti-vortex partition functions. In the three dimensional

case, the factorized partition functions become trigonometric (hyperbolic) uplift of the

vortex partition function [7, 8, 9]. Thus we expect the above factorized form is related

to elliptic uplift of the vortex partition function. To see this, we introduce s = eiε, zI =

eimI , z̃I = e−im̃I . Then a factorized part is written as

j
∏

l=1

∏NF

I=1 θ(s
l−1zI′ z̃I ; t)

θ(s−l; t)
∏NF

I=1
I 6=I′

θ(s−lz−1
I′ zI ; t)

=

j
∏

l=1

∏NF

I=1 θ(e
i(l−1)ε+mI′−m̃I); t)

θ(e−ilε; t)
∏NF

I=1
I 6=I′

θ(ei(−lε+mI−mI′ ); t)
. (3.8)

By changing θ(eix; t) → x, we find that (3.8) agrees with the two dimensional U(1) vortex

partition function of NF fundamental flavors and anti-fundamental flavors with vorticity

j at a vacuum labeled by twisted mass mI′ . Thus (3.8) is precisely the elliptic uplift

of vortex partition function in two dimensions. In section 5, we will also show that the

elliptic uplift of the vortex partition functions reduce to the three dimensional vortex

partition function by the dimensional reduction.

3.2 Non-Abelian case

In this subsection, we generalize the result in the previous subsection to non-Abelian gauge

group U(N). As in the case of three dimensions [9], by use of the Cauchy determinant

formula of the theta function, we find that the poles in the vector multiplet one-loop

determinant do not contribute to the evaluation. Thus, It is enough to evaluate the

residues at pole xa = zIas
jatka , (a = 1, · · · , N), ja, ka ≥ Z≥0 in the chiral multiplet one-

loop determinant. The evaluation of the residues for chiral multiplet is quite parallel to

the Abelian case in the previous section. The contribution of vector multiplet is as follows.
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Substituting xa = zIas
jatka into the vector multiplet one-loop determinant, we obtain

∏

a>b

θ(zIaz
−1
Ib
sja−jbtka−kb; s)θ(z−1

Ia
zIbs

jb−jatkb−ka; t)

=
∏

a>b

(−zIaz
−1
Ib
)jb−ja−ka+kbs

1
2
(ja−jb)(ja−jb−1)t

1
2
(kb−ka)(kb−ka−1)(st)(jb−ja)(ka−kb)

(

N
∏

b=1

(−1)jbs−
1
2
jb(jb+1)

)(

∏

a>b

s−ja(jb+1)

)(

N
∏

a,b=1

sjb(ja+1)

)

(

N
∏

a=1

(−1)kat−
1
2
ka(ka+1)

)(

∏

a>b

t−kb(ka+1)

)(

N
∏

a,b=1

tka(kb+1)

)

(

N
∏

a,b=1

ka−1
∏

m=0

θ(zIaz
−1
Ib
t−m−1; s)

θ(zIaz
−1
Ib
t−m+kb ; s)

)(

∏

a>b

θ(zIaz
−1
Ib

; s)

)

(

N
∏

a,b=1

jb−1
∏

m=0

θ(zIbz
−1
Ia
s−l−1; t)

θ(zIbz
−1
Ia

s−m+ja; t)

)(

∏

a>b

θ(zIbz
−1
Ia
; t)

)

. (3.9)

Therefore superconformal index is written as

IU(N)
NF

=
∑

1≤I1<···IN≤NF

(

∏

a>b

θ(zIaz
−1
Ib
; s)θ(zIbz

−1
Ia

; t)

)(

N
∏

a=1

NF
∏

I=1

Γ(zIa z̃I ; s, t)

)







N
∏

a=1

NF
∏

I=1
I 6=Ia

Γ(z−1
Ia
zI ; s, t)







∞
∑

{j},{k}=0

(

NF
∏

I=1

zI z̃Ist

)jaka

(st)
∑

a>b(jb−ja)(ka−kb)

(

∏

a>b

(−zIaz
−1
Ib
)jb−ja

)

(−1)
∑N

b=1 jbs
∑

a>b( 1
2
(ja−jb)(ja−jb−1)−ja(jb+1))−

∑N
a=1

1
2
ja(ja+1)+

∑N
a,b=1 jb(ja+1)

(

∏NF

I=1

∏N
a=1

∏ja
l=1 θ(s

l−1zIa z̃I ; t)
∏N

a,b=1

∏jb−1
l=0 θ(zIbz

−1
Ia
s−l+ja; t)

∏N
a=1

∏ja−1
l=0

∏

I 6∈A θ(s−lz−1
Ia
zI ; t)

)

(

∏

a>b

(−zIaz
−1
Ib
)kb−ka

)

(−1)
∑N

a=1 kat
∑

a>b( 1
2
(kb−ka)(kb−ka−1)−kb(ka+1))−

∑N
b=1

1
2
ka(ka+1)+

∑N
a,b=1 ka(kb+1)

(

∏NF

I=1

∏N
a=1

∏ka
m=1 θ(t

m−1zIa z̃I ; s)
∏N

a,b=1

∏kb−1
m=0 θ(zIbz

−1
Ia
t−m+ka ; s)

∏N

a=1

∏ka−1
m=0

∏

I 6∈A θ(t−mz−1
Ia
zI ; s)

)

. (3.10)
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Here we defined A := {I1, · · · , IN}. The elliptic uplift of the U(N) vortex partition

function with a-th U(1) vorticity ja and a vacuum labeled by A is given by

ZV
{ja},{Ia} =

∏NF

I=1

∏N
a=1

∏ja
l=1 θ(s

l−1zIa z̃I ; t)
∏N

a,b=1

∏jb−1
l=0 θ(zIbz

−1
Ia
s−l+ja; t)

∏N

a=1

∏ja−1
l=0

∏

I 6∈A θ(s−lz−1
Ia
zI ; t)

,

(3.11)

and that of the anti-vortex partition function with a-th U(1) vorticity ka and a vacuum

labeled by A is given by

Z V̄
{ka},{Ia} =

∏NF

I=1

∏N

a=1

∏ka
m=1 θ(t

m−1zIa z̃I ; s)
∏N

a,b=1

∏kb−1
m=0 θ(zIbz

−1
Ia
t−m+ka ; s)

∏N
a=1

∏ka−1
m=0

∏

I 6∈A θ(t−mz−1
Ia
zI ; s)

.

(3.12)

The (3.10) almost factorize, but contains the non-factorized factor with respect to the

vorticity ja and the anti-vorticity ka which is given by

(

NF
∏

I=1

(zI z̃I)
−1st

)

∑N
a=1 jaka

(st)
∑

a>b(jb−ja)(ka−kb). (3.13)

The non-factorizable factor is rewritten as

(

NF
∏

I=1

(zI z̃I)
−1
newst

)

∑N
a=1 jaka

(st)
∑

a>b(jb−ja)(ka−kb)

= (st)[−NF (R
2
+ R̃

2
)+(Nf−N)](

∑N
a=1 jaka)+(

∑N
a=1 ja)(

∑N
a=1 ka). (3.14)

Therefore, the conditions for the complete factorization becomes

R = R̃ = 1−
N

NF

, (3.15)

N
∑

a=1

ja = 0 and

N
∑

a=1

ka = 0. (3.16)

The condition (3.15) is again the R-charges assignments determined uniquely by the

anomaly free condition for SU(N) SQCD with NF fundamental and anti-fundamental

chiral multiplets without superpotential. If the traceless condition is imposed for the

gauge group U(N) (namely gauge group becomes SU(N)) , the condition (3.16) is sat-

isfied. When the delta function constraint δ(
∑N

a=1 xa) is inserted in the integrations

(2.6), these conditions are satisfied. Up to the Weyl permutations, we assume that

ja, ka(a = 1, · · · , N −1) run non-negative integers and jN = −
∑N−1

a=1 ja, kN = −
∑N−1

a=1 ka

8



is imposed. It is interesting to study the the relation between index computation and the

fact that the overall U(1) factor is decoupled in the infrared limit.

Under the condition (3.15) and (3.16), the superconformal index completely factorize

as

ISU(N)
NF

=
∑

1≤I1<···IN≤NF

Z1−loop
v.H Z1−loop

chi.H Z1−loop
a.chi.HZVZV̄ , (3.17)

with

Z1−loop
v.H =

∏

a>b

θ(zIaz
−1
Ib
; s)θ(zIbz

−1
Ia
; t), (3.18)

Z1−loop
v.H =

N
∏

a=1

NF
∏

I=1
I 6=Ia

Γ(z−1
Ia
zI ; s, t), (3.19)

Z1−loop
a.chi.H =

N
∏

a=1

NF
∏

I=1

Γ(zIa z̃I ; s, t), (3.20)

ZV =
∑

{j}′

(

N
∏

a=1

zNja
Ia

)

s
∑

a>b( 1
2
(ja−jb)(ja−jb−1)−ja(jb+1))−

∑N
a=1

1
2
j2a

(

∏NF

I=1

∏N
a=1

∏ja
l=1 θ(s

l−1zIa z̃I ; t)
∏N

a,b=1

∏jb−1
l=0 θ(zIbz

−1
Ia
s−l+ja; t)

∏N
a=1

∏ja−1
l=0

∏

I 6∈A θ(s−lz−1
Ia
zI ; t)

)

, (3.21)

ZV̄ =
∑

{k}′

(

N
∏

a=1

zNka
Ia

)

t
∑

a>b( 1
2
(kb−ka)(kb−ka−1)−kb(ka+1))−

∑N
b=1

1
2
k2a

(

∏NF

I=1

∏N

a=1

∏ka
m=1 θ(t

m−1zIa z̃I ; s)
∏N

a,b=1

∏kb−1
m=0 θ(zIbz

−1
Ia
t−m+ka ; s)

∏N
a=1

∏ka−1
m=0

∏

I 6∈A θ(t−mz−1
Ia
zI ; s)

)

.(3.22)

Here we defined
∑

{j}′ :=
∑N−1

a=1

∑∞
ja=0.

We refer to the relation with Higgs branch localization first introduced in [17]. In the

ordinary localization, the saddle point values admit constant field (holonomy or the scalar

in vector multiplet) configurations which lead to multi-contour integrals. On the other

hand, in the Higgs branch localization, saddle point admit the discrete vacua of root of

Higgs branch and the point like BPS (anti-BPS) equations at the north (south) pole of S2.

Again, the partition function can be evaluated in the WKB approximation around the

discrete vacua. In the four dimensions, after the torus compactification, the combinations

of the flavor holonomies along torus on T 2 × R2 play the role of twisted masses (real

masses). Then, (3.18), (3.19) and (3.20) can be interpreted as the one-loop determinant

9



Figure 1: Left: The (p, q)-web for the Calabi-Yau 3-folds. Two vertical external legs are
identified and becomes an internal line. Qa, (a = 1, · · · , 2NF ) represents the exponenti-
ated Kahler parameter of a-th internal line. Right: a A-brane is inserted at ra-th right
horizontal external leg (a = 1, · · · , N) and the representation is 1ka . The other external
legs are the trivial representation

of the vector multiplet, the fundamental chiral multiplets and anti-fundamental chiral

multiplets in the Higgs branch localization, respectively. In the Higgs branch localization

in three dimensions [19, 20], the point like vortices exist at the north pole of base space

S2 of S3 and the point like anti-vortices exist at the south pole. Then vortex(anti-vortex)

world volume becomes one-dimensional circle S1 which is the circle fiber at the north

(south) pole, respectively. In the case of S1 × S3, there is an additional trivial S1-fiber

and vortex world volume becomes two dimensional torus T 2. From the point like vortices,

base S2 can be regarded as flat space R2, namely it is equivalently to consider the vortex

partition function of the N = 1 theory on T 2 × R
2. Then Kaluza-Klein momenta along

the T 2 will provide the elliptic deformation of vortex partition function. This is quite

analogous to the Nekrasov’s instanton partition function is elliptically deformed, when

N = 2 supersymmetric gauge theories is uplifted to torus compactified the six dimensional

N = (1, 0) theories on T 2 × R4 [21].

The matter contents we considered in this section is the electric theory in the Seiberg

duality. When we consider the the magnetic theory, the factorization again occurs, if and

only if both the traceless condition and the correct R-charges assignments are satisfied.
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4 Relation to open topological string

It is shown in [7, 9] that the vortex partition function in the factorized partition functions

coincides the open topological string partition function of strip geometry. In this section,

we study open topological string amplitude which give the elliptic uplift of vortex partition

function (3.11). We consider the Calabi-Yau 3-fold described by (p, q)-web in the figure

1. The topological vertex [22] gives topological string amplitudes on this geometry. The

(refined) topological string on the geometry we concern are studied in detail [23] [24] (

see also [21] ). The open topological string amplitude for the left of figure 1 is given by

W
α1···αNF

∅···∅

W ∅···∅
∅···∅

=

(

NF
∏

I=1

q
||αI ||

2

2 Z̃αI
(q)

)

NF
∏

r,l=1

J∅αr+l
(Q2r,2r+2l−2; q)Jαr∅(Q2r−1,2r+2l−3; q)

Jαrαr+l
(Q2r−1,2r+2l−2; q)

.

(4.1)

Here we defined

Jµν(x, q) :=

∞
∏

k=1

∏

(i,j)∈µ

(1−Qk−1
U xqµi+νti−i−j+1)

∏

(i,j)∈ν

(1−Qk−1
U xq−µt

j−νi+i+j−1), (4.2)

with QU =
∏2N

r=1Qr and Qa,b =
∏b

r=aQr. The Z̃µ(q) is defined by

Z̃µ(q)=
∏

s∈µ

(1− qlµ(s)+aµ(s)+1)−1, (4.3)

with lµ(s) = µi − j, aµ(s) = µt
j − i for s = (i, j) in the partition µ.

We set the representation of ra-th right external horizontal leg as αra = 1ka for a =

1, · · ·N and the others as trivial representation αr = βr = ∅. Then the non-trivial

Jµν(x, q) are following three types:

J1ka∅(x, q) =
∞
∏

k=1

ka
∏

i=1

(1− xQk−1
U q1−i),

J∅1ka (x, q) =
∞
∏

k=1

ka
∏

i=1

(1− xQk−1
U q−1+i),

J1ka1kb (x, q) =

∞
∏

k=1

ka
∏

i=1

(1− xQk−1
U q1+kb−i)

kb
∏

j=1

(1− xQk−1
U q−1−ka+j). (4.4)
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It follows from (4.4) that

NF
∏

r,l=1

J∅αr+l
(Q2r,2r+2l−2; q)Jαr∅(Q2r−1,2r+2l−3; q) =

NF
∏

r=1

N
∏

a=1

ka−1
∏

i=0

θ(qiQ2ra−1,2r−1;QU),

NF
∏

r,l=1

Jαrαr+l
(Q2r−1,2r+2l−2; q)

=

(

N
∏

a,b=1

ka
∏

i=1

θ(Q2ra−1,2rb−2q
1+kb−i;QU)

)





∏

r 6∈{r1,···rN}

N
∏

a=1

ka
∏

i=1

θ(Q2ra−1,2r−2q
1−i;QU)



 .

(4.5)

Here we used the relation Q−1
U Qa,b = Qb+1,a−1. Therefore open topological string ampli-

tude becomes

W ∅···∅1k1 ···1kN ∅···∅
∅·········∅

W ∅···∅
∅···∅

=

(

N
∏

a=1

q
ka
2

ka
∏

i=1

(1− qi)−1

)

NF
∏

r=1

N
∏

a=1

ka−1
∏

i=0

θ(qiQ2ra−1,2r−1;QU)

(

N
∏

a,b=1

ka
∏

i=1

θ(Q2ra−1,2rb−2q
1+kb−i;QU)

)





∏

r 6∈{r1,···rN}

N
∏

a=1

ka
∏

i=1

θ(Q2ra−1,2r−2q
1−i;QU)





(4.6)

If we identify the parameters as q = s, QU = t, Q2Ia−1,2I−1 = zIa z̃I , ka = ja and

Q2Ia−1,2I−2 = z−1
Ia
zI , it finds that the open topological string amplitude agrees with (3.11)

up to the over all factor
∏N

a=1 q
ka
2

∏ka
i=1(1− qi)−1.

5 Three dimensional limit

When the radius of S1 goes to zero, it shown in [25], [26], [27] (See also [29]) that the

superconformal indices in four dimension reduces to the partition functions on the three

dimensional (squashed) sphere. In this section, we consider the three dimensional limit

of U(N) index (2.6) and study the relation to the partition function on three dimensional

squashed sphere [27], [28]. We set parameter as

s = eβω1 , t = eβω2 , ω1ω2 = 1, b :=

√

ω1

ω2
, Q := b+

1

b
.

zI = eiβmI , z̃I = e−iβm̃I . (5.1)

12



Here β = r1
r3

is the ratio of the S1 radius r1 and S3 radius r3. In the limit r1 → 0, the

theta function and elliptic gamma function reduce to a trigonometric and the double-sin

function, respectively:

lim
β→0

θ(eβσ; eβω1) = 2 sin πb−1σ, lim
β→0

θ(eβσ; eβω2) = 2 sinπbσ, (5.2)

lim
β→0

Γ(eβσ; eβω1 , eβω2) = sb

(

iσ + i
Q

2

)

= s−1
b

(

−iσ − i
Q

2

)

. (5.3)

Then it follows that

lim
β→0

θ(zIaz
−1
Ib
; s)θ(zIbz

−1
Ia
; t) = 4 sinh πb−1 (mIb −mIa) sinh πb (mIa −mIb) , (5.4)

lim
β→0

Γ(z−1
Ia
zI ; s, t) = sb

(

mIa −mI + i
Q

2

)

, (5.5)

lim
β→0

Γ(zIa z̃I ; s, t) = s−1
b

(

mI − m̃I − i
Q

2

)

, (5.6)

and

lim
β→0

ZV
{ja},{Ia}

=

∏NF

I=1

∏N
a=1

∏ja
l=1 2 sinh πb (mIa − m̃I − i(l − 1)b)

N
∏

a,b=1

jb−1
∏

l=0

2 sinh πb (mIb −mIa + i(l − ja)b)

N
∏

a=1

ja−1
∏

l=0

∏

I 6∈A

2 sinhπb (mI −mIa + ilb)

,

(5.7)

lim
β→0

Z V̄
{ka},{Ia}

=

∏NF

I=1

∏N
a=1

∏ka
l=1 2 sinh πb

−1 (mIa − m̃I − i(l − 1)b−1)
N
∏

a,b=1

kb−1
∏

l=0

2 sinh πb−1
(

mIb −mIa + i(l − ka)b
−1
)

N
∏

a=1

ka−1
∏

l=0

∏

I 6∈A

2 sinh πb−1
(

mI −mIa + ilb−1
)

.

(5.8)

We find that the right hand sides of (5.4), (5.5) and (5.6) correctly reproduce the one-

loop determinant of the three dimensional vector multiplet, the NF -flavors fundamental

chiral multiplets and NF -flavors anti-fundamental chiral multiplets in the Higgs branch

localization, respectively. Moreover, (5.7) and (5.8) also agree the vortex and anti-vortex

partition functions on the squashed sphere, respectively. Next we consider the contribu-

tion of FI-parameter (2.5). We substitute the saddle point value at the xa = zIas
jatka to

the eiAa

lim
β→0

exp(−SFI) = e−4π2r23ζ
∑

a(mIa+bja+b−1ka) (5.9)
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This also correctly reproduces the FI-term contribution in the three dimensions. There-

fore, in the three dimensional limit, we find that the index of U(N) theory in four dimen-

sions directly reduces to the factorized partition function of U(N) theory with NF -flavors

fundamental chiral multiples and NF -flavors anti-fundamental chiral multiples on the

three dimensional squashed sphere.

6 Summary

In this article, we have studied factorization properties of N = 1 superconformal index

in the four dimensions. In the U(1) case, the index factorize, when the following two

conditions are satisfied: the number of fundamental and anti-fundamental multiplets is

same, the correct R-charge assignments are satisfied. In the factorized form, the elliptic

uplift of the vortex partition function and anti-vortex function appear. In the non-Abelian

case, it found that the superconformal index completely factorize to the elliptic uplift of

the vortex partition function and anti-vortex function, only when the traceless condition in

addition to the above two condition is satisfied. We comment on several future directions.

• Higgs branch localization.

In the direct contour integral evaluation, It is obscure the reason why the vortex and

anti-vortex partition functions appear. Higgs branch localization directly explains

them. It is interesting to perform the Higgs branch localization in four dimensions

and explain the origin of the parameters in the factorized form.

• The relation between the elliptic uplift of the vortex partition and N = (0, 2) elliptic

genus.

The instanton partition functions on T 2×R4 is equivariant elliptic genera of instan-

ton moduli space. In the case of N = 1 supersymmetric theories in four dimensions,

it is known that vortex world volume preserves N = (0, 2) supersymmetry in two

dimensions [30]. Thus, the elliptic uplift of the vortex partition should be N = (0, 2)

elliptic genera of vortex moduli space. The N = (0, 2) flavored elliptic genus is in-

troduced in [31], [32] and localization is studied in detail. It is interesting to derived

the elliptic uplift of vortex partition function directly from elliptic genus of vortex

moduli space via localization.

• Factorization of partition functions on T 2 × S2 or S1 × S3/Zn.
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Recently, a partition function on T 2 × S2 is studied in [33, 34]. From the Higgs

branch localization perspective, partition function on T 2× S2 should also factorize.

Because, point like vortices (anti-vortices ) exist on S2 and the trivial T 2-fiber exists.

In [35], the factorization of partition functions on S3/Zn is studied. This suggest

that the partition function on S1 × S3/Zn [36] can be regarded S1 uplift of S3/Zn

also factorized into two parts. Because we have found that U(N) theory correctly

reduces to the factorized partition function in three dimensions.

In the case of S1 × S3/Zn, S
1-fiber is Zn orbifolded. Then the vortex world volume

becomes S1 × S1/Zn. This means that N = (0, 2) elliptic genus of vortex moduli

space is orbifolded elliptic genus and twisted sectors appear. The twisted sectors are

combined to reproduce a weak Jacobi form or modular covariance in the Landau-

Ginzburg orbifolds [37, 38]. It is interesting to study the modular properties of the

orbifolded elliptic genus of vortex moduli space.

• Holomorphic blocks in four dimensions

To construct general theory of holomorphic blocks in four dimensions is one of the

most interesting and challenging future directions. In three dimensions, the partition

function on S1 × S2 is constructed from identity fusion of holomorphic blocks and

the partition function on S3
b is constructed from S-fusion. The holomorphic block is

universal in these two spaces. We conjecture that the partition functions on T 2×S2

is identity fusion of holomorphic block in four dimensions and the partition functions

on S1 × S3 is S-fusion of holomorphic block in four dimensions:

ZT 2×S2 =
∑

A

||BA(s, t)||id =
∑

A

BA(s̃, t̃)BA(s̃, t̃) (6.1)

ZS1×S3 =
∑

A

||BA(s, t)||S =
∑

A

BA(s, t)BA(t, s) (6.2)

Here
∑

A runs all the possible choice of vacua up to the Weyl permutations. s̃, t̃

in the identity fusion mean that s̃ = e2πiτ , t̃ = e2πiσ. (τ, σ) parametrizes complex

structure of T 2 × S2.

Acknowledgment

The author is grateful to Masashi Fujitsuka, Masazumi Honda, Ryuichiro Kitano, Takahiro

Nishinaka and Seiji Terashima for useful discussions and comments. On this occasion, the

author would express his thanks to several collaborators for patiently waiting for his late

correspondence, when the author could not take time to study due to part-time jobs to

15



earn his daily rice. Finally, I am appreciate my parents for their constant support, when

I was suffered from a chronic disease.

A Conventions and useful formula

A q-pochhammer symbols is defined by

(a; q)n =

n
∏

i=1

(1− aqi−1) (A.1)

The theta function is defined by

θ(x; q) =
∞
∏

n=0

(1− xqn)(1− x−1qn+1), x ∈ C
∗, |q| < 1. (A.2)

It satisfies the following relations

θ(x; q) = θ
( q

x
; q
)

= −xθ

(

1

x
; q

)

(A.3)

From this, it follows for n > 0

θ(qnx; q) = (−x)−nq−
n(n−1)

2 θ(x; q) (A.4)

θ(q−nx; q) = (−x)nq−
n(n+1)

2 θ(x; q) (A.5)

The elliptic gamma function is defined by

Γ(x; s, t) =

∞
∏

j,k=0

1− x−1sj+1tk+1

1− xsjtk
, |s|, |t| < 1. (A.6)

The elliptic gamma function satisfies the following relations.

Γ(sx; s, t) = θ(x; t)Γ(x; s, t) (A.7)

Γ(tx; s, t) = θ(x; s)Γ(x; s, t) (A.8)

Γ(s−1x; s, t) = θ−1(xs−1; t)Γ(x; s, t) (A.9)

Γ(t−1x; s, t) = θ−1(xt−1; s)Γ(x; s, t) (A.10)

For j, k ∈ Z≥0, the above equations lead to the following identities

Γ(sjtkx; s, t)

Γ(x; s, t)
= (−x)−jks−k

j(j−1)
2 t−j

k(k−1)
2

j−1
∏

l=0

θ(slx; t)

k−1
∏

m=0

θ(tmx; s), (A.11)

Γ(s−jt−kx; s, t)

Γ(x; s, t)
= (−x)−jksk

j(j+1)
2 tj

k(k+1)
2

j
∏

l=1

θ−1(s−lx; t)
k
∏

m=1

θ−1(t−mx; s). (A.12)
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The double-sin function is defined by

sb(x) =
∞
∏

j,k=0

jb+ kb−1 +Q/2− ix

jb+ kb−1 +Q/2 + ix
(A.13)

which satisfies the relation sb(x)s
−1
b (x) = 1.
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