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Riemann-Liouville and higher dimensional Harday operators for

non-negative decreasing function in Lp(·) spaces

Ghulam Murtaza and Muhammad Sarwar

Abstract. In this paper one-weight inequalities with general weights for Riemann-
Liouville transform and n− dimensional fractional integral operator in variable ex-
ponent Lebesgue spaces defined on R

n are investigated. In particular, we derive
necessary and sufficient conditions governing one-weight inequalities for these oper-
ators on the cone of non-negative decreasing functions in Lp(x) spaces.
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1. introduction

We derive necessary and sufficient conditions governing the one-weight inequality
for the Riemann-Liouville operator

Rαf(x) =
1

xα

x
∫

0

f(t)

(x− t)1−α
dt 0 < α < 1,

and n−dimensional fractional integral operator

Iαg(x) =
1

|x|α

∫

|y|<|x|

g(t)

|x− t|n−α
dt 0 < α < n,

on the cone of non-negative decreasing function in Lp(x) spaces.
In the last two decades a considerable interest of researchers was attracted to the

investigation of the mapping properties of integral operators in so called Nakano
spaces Lp(·) (see e.g., the monographs [5], [7] and references therein). Mathematical
problems related to these spaces arise in applications to mechanics of the continuum
medium. For example, M. Ružička [19] studied the problems in the so called rheo-
logical and electrorheological fluids, which lead to spaces with variable exponent.

Weighted estimates for the Hardy transform

(Hf)(x) =

x
∫

0

f(t)dt, x > 0,
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in Lp(·) spaces were derived in the papers [8] for power-type weights and in [11], [12],
[15], [6], [17] for general weights. The Hardy inequality for non-negative decreasing
functions was studied in [3], [4].

Weighted problems for the Riemann-Liouville transform in Lp(x) spaces were ex-
plored in the papers [10], [11], [2], [14] (see also the monograph [18]).

Historically, one and two weight Hardy inequalities on the cone of non-negative
decreasing functions defined on R+ in the classical Lebesgue spaces were character-
ized by M. A. Arino and B. Muckenhoupt [1] and E. Sawyer [22] respectively.

It should be emphasized that the operator Iαf(x) is the weighted truncated po-
tential. The trace inequity for this operator in the classical Lebesgue spaces was
established by E. Sawyer [21] (see also the monograph [13], Ch.6 for related topics).

In general, the modular inequality

1
∫

0

∣

∣

∣

x
∫

0

f(t)dt
∣

∣

∣

q(x)

v(x)dx ≤ c

1
∫

0

∣

∣f(t)
∣

∣

p(t)
w(t)dt (∗)

for the Hardy operator is not valid (see [23] , Corollary 2.3, for details). Namely the
following fact holds: if there exists a positive constant c such that inequality (*) is
true for all f ≥ 0,where q; p; w and v are non-negative measurable functions, then
there exists b ∈ [0 1] such that w(t) > 0 for almost every t < b; v(x) = 0 for almost
every x > b, and p(t) and q(x) take the same constant values almost everywhere for
t ∈ (0; b) and x ∈ (0; b) ∩ {v 6= 0}.

To get the main result we use the following pointwise inequities

c1(Tf)(x) ≤ (Rαf)(x) ≤ c2(Tf)(x),

c3(Hg)(x) ≤ (Iαg)(x) ≤ c4(Hg)(x),

for non-negative decreasing functions, where c1, c2, c3 and c4 are constants are
independents of f , g and x, and

Tf(x) =
1

x

x
∫

0

f(t)dt, Hg(x) =
1

|x|n

∫

|y|<|x|

g(y)dy.

In the sequel by the symbol Tf ≈ Tg we means that there are positive constants
c1 and c2 such that c1Tf(x) ≤ Tg(x) ≤ c2Tf(x). Constants in inequalities will be
mainly denoted by c or C; the symbol R+ means the interval (0,+∞).

2. preliminaries

We say that a radial function f : Rn −→ R+ is decreasing if there is a decreasing
function g : R+ −→ R+ such that g(|x|) = f(x), x ∈ R

n. We will denote g
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again by f. Let p : Rn −→ R
n be a measurable function, satisfying the conditions

p− = ess inf
x∈Rn

p(x) > 0, p+ = ess sup
x∈Rn

p(x) <∞.

Given p : Rn −→ R+ such that 0 < p− ≤ p+ <∞, and a non-negative measurable
function (weight) u in R

n, let us define the following local oscillation of p :

ϕp(·),u(δ) = ess sup
x∈B(0,δ)∩ supp u

p(x) − ess inf
x∈B(0,δ)∩ supp u

p(x),

where B(0, δ) is the ball with center 0 and radius δ.
We observe that ϕp(·),u(δ) is non-decreasing and positive function such that

lim
δ→∞

ϕp(·),u(δ) = p+u − p−u , (1)

where p+u and p−u denote the essential infimum and supremum of p on the support
of u. respectively.

By the similar manner it is defined (see [3]) the function ψp(·),u(η) for an exponent
p : R+ 7→ R+ and weight v on R+:

ϕp(·),v(ε) = ess sup
x∈B(0,δ)∩ supp v

p(x) − essinf
x∈(0,η)∩ supp v

p(x),

Let D(R+) be the class of non-negative decreasing functions on R+ and let
DR(Rn) be the class of all non–negative radially decreasing functions on R

n. Sup-
pose that u is measurable a.e. positive function (weight) on R

n. We denote by
Lp(x)(u,Rn), the class of all non–negative functions on R

n for which

Sp(f) =

∫

Rn

|f(x)|p(x)u(x)dµ(x) <∞.

For essential properties of Lp(x) spaces we refer to the papers [16] [20] and the
monographs [7], [5].

Under the symbol L
p(x)
dec (u,R+) we mean the class of non-negative decreasing func-

tions on R+ from Lp(x)(u,Rn) ∩DR(Rn).
Now we list the well-known results regarding one-weight inequality for the oper-

ator T . For the following statement we refer to [1].
Theorem A. Let r be constant such that 0 < r <∞. Then the inequity

∞
∫

0

v(x)(Tf(x))rdx ≤ c

∞
∫

0

v(x)(f(x))rdx, f ∈ Lr(v,R+), f ↓ (2)
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for a weight v holds, if and only if there exists a positive constant C such that for
all s > 0

∞
∫

s

(

s

x

)r

v(x)dx ≤ C

s
∫

0

v(x)dx. (3)

Condition (3) is called Br condition and was introduced in [1].

Theorem B[3]. Let v be a weight on (0,∞) and p : R+ −→ R+ such that 0 <
p− ≤ p+ <∞, and assume that ψp(·),v(0+) = 0. The following facts are equivalent:
(a) There exists a positive constant c such that for any f ∈ D(R+),

∞
∫

0

(

Tf(x)
)p(x)

v(x)dx ≤ C

∞
∫

0

(

f(x)
)p(x)

v(x)dx. (4)

(b) For any r, s > 0,
∞
∫

r

(

r

sx

)p(x)

v(x)dx ≤ C

r
∫

0

v(x)

sp(x)
dx. (5)

(c) p|supp v ≡ p0 a.e and v ∈ Bp0.

Proposition 2.1. For the operators T,H,Rα and Iα, the following relations hold:
(a)

Rαf ≈ Tf, 0 < α < 1, f ∈ D(R+);

(b)
Iαg ≈ Hg, 0 < α < n, g ∈ DR(Rn).

Proof. (a) Upper estimate. Represent Rαf as follows:

Rαf(x) =
1

xα

x/2
∫

0

f(t)

(x− t)1−α
dt+

1

xα

x
∫

x/2

f(t)

(x− t)1−α
dt = S1(x) + S2(x).

Observe that if t < x/2, then x/2 < x− t. Hence

S1(x) ≤ c
1

x

x/2
∫

0

f(t)dt ≤ cTf(x),

where the positive constant c does not depend on f and x. Using the fact that f is
decreasing we find that

S2(x) ≤ cf(x/2) ≤ cTf(x).
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Lower estimate follows immediately by using the fact that f is non-negative and
the obvious estimate x− t ≤ x and 0 < t < x.

(b) Upper estimate. Let us represent the operator Iα as follows:

Iαg(x) =
1

|x|α

∫

|y|<|x|/2

g(y)

|x− y|n−α
dy +

1

|x|α

∫

|x|/2<|y|<|x|

g(y)

|x− y|n−α
dy

=: S ′
1(x) + S ′

2(x).

Since |x|/2 ≤ |x− y| for |y| < |x|/2 we have that

S ′
1(x) ≤

c

|x|n

∫

|y|<|x|/2

g(y)dy ≤ cHg(x).

Taking into account the fact that f is radially decreasing on R
n we find that there

is a decreasing function f : R+ −→ R+ such that

S ′
2(x) ≤ f(|x|/2) ·

1

|x|α

∫

|x|/2<|y|<|x|

|x− y|α−ndy

Let Fx = {y : |x|/2 < |y| < |x|}. Then we have

∫

Fx

|x− y|α−ndy =

∞
∫

0

∣

∣{y ∈ Fx : |x− y|α−n > t}
∣

∣dt

≤

|x|α−n

∫

0

∣

∣{y ∈ Fx : |x− y|α−n > t}
∣

∣dt+

∞
∫

|x|α−n

∣

∣{y ∈ Fx : |x− y|α−n > t}
∣

∣dt

=: I1 + I2.

It is easy to see that

I1 ≤

|x|α−n

∫

0

|B(0, |x|)|dt = c|x|α,

while using the fact that n
n−α

> 1 we find that

I2 ≤

∞
∫

|x|α−n

∣

∣{y ∈ Fx : |x− y| ≤ t
1

α−n}
∣

∣dt ≤ c

∞
∫

|x|α−n

t
n

α−ndt = cα,n|x|
α.

Finally we conclude that

S ′
2(x) ≤ cf(|x|/2) ≤ cHf(x).
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Lower estimate follows immediately by using the fact that f is non-negative and the
obvious estimate |x− y| ≤ |x|, where 0 < |y| < |x|. �

We will also need the following statement:

Lemma 2.2. Let r be a constant such that 0 < r <∞. Then the inequality
∫

Rn

(

Hf(x)
)r
u(x)dx ≤ C

∫

Rn

(

f(x)
)r
u(x)dx, f ∈ Lr

dec(u,R
n) (6)

holds, if and only if there exists a positive constant C such that for all s > 0,
∫

|x|>s

( s

|x|

)r

|x|r(1−n)u(x)dx ≤ C

∫

|x|<s

|x|r(1−n)u(x)dx. (7)

Proof. We shall see that inequality (6) is equivalent to the inequality
∞
∫

0

ũ(t)
(

T f̄(t)
)r
dt ≤ C

∞
∫

0

ũ(t)
(

f̄(t)
)r
dt,

where ũ(t) = t(n−1)(1−r)ū(t), f̄(t) = tn−1f(t) and ū(t) =
∫

S0

u(tx̄)dσ(x̄).

Indeed, using polar the coordinates in R
n we have

∫

Rn

(

Hf(x)
)r
u(x)dx =

∫

Rn

u(x)

(

1

|x|n

∫

|y|<|x|

f(y)dy

)r

dx

=

∞
∫

0

tn−1

(

1

|t|n

∫

|y|<|x|

f(y)dy

)r(∫

S0

u(tx̄)dσx̄

)

dt

= C

∞
∫

0

tn−1t−nrtr
(

1

t

t
∫

0

τn−1f(τ)dτ

)r

ū(t)dt

= C

∞
∫

0

tn−1tr(1−n)ū(t)

(

1

t

t
∫

0

f̄(τ)dτ

)r

dt

≤ C

t
∫

0

ũ(t)
(

f̄(t)
)r
dt

= Ct(n−1)(1−r)t(n−1)r
(

f(t)
)r
dt

= C

∫

Rn

(

f(x)
)r
u(x)dx.
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3. the main results

To formulate the main results we need to prove

Proposition 3.1. Let u be a weight on R
n and p : Rn −→ R+ such that 0 < p− ≤

p+ <∞, and assume that ϕp(·),u(0+) = 0. The following statements are equivalent:
(a) There exists a positive constant C such that for any f ∈ DR(Rn),

∫

Rn

(

Hf(x)
)p(x)

u(x)dx ≤ C

∫

Rn

(

f(x)
)p(x)

u(x)dx. (8)

(b) For any r, s > 0,
∫

|x|>r

(

r

s|x|n

)p0

u(x)dx ≤ C

∫

B(0,r)

|x|(1−n)p0u(x)

sp0
dx. (9)

(c) p|supp u
≡ p0 a.e and u ∈ Bp0.

Proof. We use the arguments of [3]. To show that (a) implies (b) it is enough to
test the modular inequality (8) for the function fr,s(x) =

1
s
χB(0,r)(x)|x|

1−n, s, r > 0.
Indeed, it can be checked that

Hfr,s(x) =



















1
|x|ns

∫

|y|≤|x|

|y|1−ndy, if |x| ≤ r;

1
|x|ns

∫

|y|≤r

|y|1−ndy, if |x| > r
.

Further, we find that
∫

|x|>r

u(x)
(

Hfr,s
)p(x)

dx ≤

∫

Rn

u(x)
(

Hfr,s
)p(x)

dx ≤ C

∫

Rn

u(x)

(

1

s
χB(0,r)(x)|x|

1−n

)p(x)

dx.

Therefore
∫

|x|>r

u(x)

(

r

s|x|n

)p(x)

dx ≤ C

∫

B(0,r)

|x|(1−n)p(x)u(x)

sp(x)
dx.

To obtain (c) from (b) we are going to prove that condition (b) implies that ϕp(·),u(δ)

is a constant function, namely ϕp(·),u(δ) = p+u − p−u for all δ > 0. This fact and the
hypothesis on ϕp(·),u(δ) implies that ϕp(·),u(δ) ≡ 0, and hence due to (1),

p|supp u ≡ p+u − p−u ≡ p0 a.e..
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Finally (9) means that u ∈ Bp0. Let us suppose that ϕp(·),u is not constant. Then
one of the following conditions hold:
(i) there exists δ > 0 such that

α = ess sup
x∈B(0,δ)∩supp u

p(x) < p+u <∞, (10)

and hence, there exists ǫ > 0 such that
∣

∣{|x| > δ : p(x) ≥ α + ǫ} ∩ supp u
∣

∣ > 0,

or
(ii) there exists δ > 0 such that

β = ess inf
x∈B(0,δ)∩supp u

p(x) > p−u > 0, (11)

and then, for some ǫ > 0,
∣

∣{|x| > δ : p(x) ≤ β − ǫ} ∩ suppu
∣

∣ > 0.

In the case (i) we observe that condition (b) for r = δ, implies that
∫

|x|>δ

(

δ

s

)p(x)
u(x)

|x|np(x)
dx ≤ C

∫

B(0,δ)

|x|(1−n)p(x)u(x)

sp(x)
dx.

Then using (10) we obtain, for s < min(1, δ),
(

δ

s

)α+ǫ ∫

{|x|≥δ:p(x)≥α+ǫ}

u(x)

|x|np(x)
dx ≤

C

sα

∫

B(0,δ)

u(x)|x|(1−n)p(x)dx,

which is clearly a contradiction if we let s ↓ 0. Similarly in the case (ii) let us consider
the same condition (b) for r = δ, and fix now s > 1. Taking into account (11) we
find that:

1

sβ−ǫ

∫

{|x|≥δ:p(x)≤β−ǫ}

(

δ

|x|n

)p(x)

u(x)dx ≤
C

sβ

∫

B(0,δ)

|x|(1−n)p(x)u(x)dx,

which is a contradiction if we let s ↑ ∞.
Finally, the fact that condition (c) implies (a) follows from[1,Theorem 1.7] �

Theorem 3.2. Let u be a weight on (0,∞) and p : R+ −→ R+ such that 0 < p− ≤
p+ <∞. Assume that ψp(·),v(0+) = 0. The following facts are equivalent:
(i) There exists a positive constant C such that for any f ∈ D(R+),

∫

R+

(

Rαf(x)
)p(x)

v(x)dx ≤ C

∫

R+

(

f(x)
)p(x)

v(x)dx.

(ii) condition (5) holds;
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(iii) condition (c) of Theorem B is be satiesfied.

Proof. Proof follows by using Theorems B and Proposition 2.1(a). �

Theorem 3.3. Let u be a weight on R
n and p : Rn −→ R+ such that 0 < p− ≤

p+ <∞, and assume that ϕp(·),u(0+) = 0. The following facts are equivalent:
(i) There exists a positive constant C such that for any f ∈ DR(Rn),

∫

Rn

(

Iαf(x)
)p(x)

u(x)dx ≤ C

∫

Rn

(

f(x)
)p(x)

u(x)dx.

(ii) condition (9) holds;
(iii) condition (c) of Proposition 3.1 holds.

Proof. Proof follows by using Propositions 3.1 and Proposition 2.1 (b). �
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