
ar
X

iv
:1

40
3.

20
71

v3
  [

m
at

h.
D

G
] 

 3
1 

D
ec

 2
01

7

A fast convergence theorem for nearly multiplicative

connections on proper Lie groupoids

Giorgio Trentinaglia

Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico,

Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

Motivated by the study of a certain family of classical geometric problems we

investigate the existence of multiplicative connections on proper Lie groupoids. We

show that one can always deform a given connection which is only approximately

multiplicative into a genuinely multiplicative connection. The proof of this fact that

we present here relies on a recursive averaging technique. As an application we point

out that the study of multiplicative connections on general proper Lie groupoids

reduces to the study of longitudinal representations of regular groupoids. We regard

our results as a preliminary step towards the elaboration of an obstruction theory for

multiplicative connections.
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Introduction

This paper is supposed to be the first of a series devoted to the study of multiplicative

connections on Lie groupoids, also known as Cartan connections in the literature. Exam-

ples of Cartan groupoids i.e. of Lie groupoids endowed with multiplicative connections

abund in nature. Quite often in situations when a notion of “finite order symmetry” can

be associated with a certain kind of geometric structures naturally, it is also possible to

associate a Cartan groupoid with each structure of that kind—just as naturally. In many

cases, the Cartan groupoids arising in this way happen to be proper, or even compact. The

list of classical geometric structures which give rise to proper Cartan groupoids includes

e.g. “absolute parallelisms” on manifolds (i.e. tangent bundle trivializations), Riemann-

ian metrics, G-structures endowed with compatible connections [6, 16, 25] for compact

G, and more generally, “Cartan geometries” i.e. Cartan forms on principal G-bundles

[4, 11, 23], again for compact G. All these structures which we have just mentioned give

rise to transitive Cartan groupoids, but there are also many intransitive examples, among

which we highlight the Cartan groupoids associated with general Lie pseudo-groups of

finite type [5, 12].

The point of view that Cartan connections (and other closely related multiplicative

structures on Lie groupoids and Lie algebroids) provide a convenient setting for formu-

lating and studying a variety of problems in geometry has inspired a flare of research in

the course of the last decade or so; we mention the papers of Blaom [1, 2, 3, 4, 5], Crainic,

Salazar and Struchiner [7], Jotz and Ortiz [15], Salazar’s thesis [21], Yudilevich’s [34],

and also the recent book [9]. All these works either promote the aforesaid point of view

through the study of old and new examples and the reinterpretation of classical problems,

methods and results in the new language, and/or focus on the correspondence between

Cartan connections on Lie groupoids and their “infinitesimal counterparts” on Lie alge-

broids. The intuitive idea behind the latter global-to-local correspondence can easily be

described. Given an arbitrary source connected Lie groupoid and an arbitrary open cover

of its base, any multiplicative connection will uniquely be determined by its restrictions

over the open sets of the cover, because any given arrow can (by source connectedness)

be broken into some path of composable arrows each one having its end-points lying both

within the same set of the cover—so that the value of the connection on the given arrow

can be recovered by “multiplying” its values on the individual arrows of some such path.

Conversely, providing that our groupoid is source simply connected, for any collection of

local multiplicative connections subordinated to some open cover of the groupoid’s base

which agree on the overlaps of their domains of definition there will be a unique multi-

plicative connection whose restrictions over the open sets of the cover coincide with the

given connections, because the results of “multiplying” local values along different paths

that compose up to the same arrows will coincide. In the limit when you make the diam-

eters of the open sets shrink to zero, any such “net” of local multiplicative connections

will approximately look like the Lie algebroid version of a Cartan connection.

The perspective of the present paper is somewhat different. On the one hand, we are

interested in a problem whose nature is essentially global. We want to be able to deal with

Lie groupoids which possibly have non simply connected, or even disconnected, source

fibers. On the other hand, the tools that we use narrow the scope of our theory down to

the proper case; in fact, the non-proper case exhibits pathologies (see below) which make

it unrealistic to hope for systematic results similar to those that we are going to present in
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this paper. The problem that we want to consider is a far-reaching generalization of the

classical problem of finding the obstructions to the existence of G-structures on manifolds

[11, 16, 24]. Specifically, we are interested in the following sort of questions:

(a) When does a Lie groupoid admit Cartan connections? Better, given any Lie group-

oid, decide whether it admits Cartan connections or not.

(b) When can two Cartan connections on a Lie groupoid be deformed into each other

through Cartan connections?

(c) Same questions, but for flat i.e. Frobenius integrable (as vector distributions) Car-

tan connections.

The objects mentioned in (c) are sometimes called “pseudo-actions” [5, 26]. The above

questions underlie a number of seemingly unrelated problems in geometry. Suppose we

know that certain geometric structures canonically give rise to Cartan groupoids. Then,

the obstructions to the existence of Cartan connections automatically translate into ob-

structions to the existence of those structures. Similarly, the obstructions to deforming

Cartan connections into one another translate into information about the classification of

the same structures up to homotopy. Another example of a problem where the questions

(a)–(c) are relevant is that of determining whether a singular foliation arises as the orbit

foliation of some Lie group action; this is simply one instance of a more general type of

problem—that of finding the global symmetries of an abstract geometric object.

The present paper will exclusively be concerned with the first two questions, (a) and

(b); answering (c) would seem to require some kind of multiplicative analogue of Hae-

fliger–Thurston’s theory for foliations [14, 27, 28]. Of course, understanding the first two

questions is propaedeutic to answering the third one. We observe that in this respect, (b)

appears to be particularly relevant.

Both (a) and (b) can be viewed as special cases of a more general extension problem

(Problem 1.9). Our main result (Theorem 1.8) implies that in the proper case, the study of

this extension problem reduces to the study of its regular subcase. Now for proper regular

groupoids the problem can be so rephrased that it takes the form of a standard problem in

equivariant (orbifold) obstruction theory—whose methods and techniques may then be

put to use. Our main result is essentially a direct application of a fast convergence theo-

rem for nearly multiplicative connections (Theorem 1.7), which, we think, is of interest

in its own right. The reader is referred to §1—which can be regarded as a continuation

of this introduction—for a detailed description of all these ideas and results.

General conventions

With few exceptions, in what follows all the manifolds will be (C∞-)differentiable, non-

empty, of constant dimension, separated, and will possess a countable basis of open sets.

We shall call every differentiable manifold with these properties a smooth manifold. All

the maps between smooth manifolds, as well as all the vector bundles, will be smooth,

i.e., (C∞-)differentiable. For any vector bundle E over a manifold X, we shall let Γ∞(X; E)

denote the (infinite-dimensional) vector space of differentiable cross-sections of E. We

shall regard Γ∞(X; E) as a Fréchet space, the topology being that of uniform convergence

on compact sets up to all orders of derivation (this being also known as the C∞-topology).

In the course of the paper we shall meet operators which are “differentiable” in the

intuitive sense that they are defined through differentiable expressions, but which operate
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between spaces whose differentiable structures, typically infinite-dimensional, are much

less intuitively defined. In order to rigorously keep track of the differentiability properties

of these operators, but at the same time avoid unnecessary technical complications, we

shall adopt the following standard conceptual shortcut. Let Mfd denote the category of

smooth manifolds. For any given “space” X , let Set(−,X ) : Mfdop → Set denote the

presheaf which to every smooth manifold S assigns the set Set(S ,X ) of maps from S to

X . By a C∞-structure on X , we mean a subsheaf S of Set(−,X ) that contains all the

locally constant maps (the sheaf property being with respect to arbitrary open covers).

We refer to X = (X ,S) as a C∞-space. A C∞ mapping between two C∞-spaces will

be one which by forward composition gives rise to a natural transformation between the

corresponding C∞-structures. For any smooth vector bundle E → X, there is on the space

Γ∞(X; E) a canonical C∞-structure consisting of those maps S → Γ∞(X; E) which give

rise to smooth maps S × X → E. Most of the C∞-spaces that we shall encounter will be

C∞-spaces of this kind, or subspaces thereof.

We shall assume familiarity with the theory of Lie groupoids at the level say of Chap-

ters 5–6 of the textbook [17]. The notations which we shall be using will be fairly stan-

dard, with the only possible exception that we shall be writing Γx resp. Γx for the source

fiber s−1(x) resp. target fiber t−1(x) of a groupoid Γ at a base point x, and Γx
y for the set

Γx ∩ Γy = Γ(x, y) of arrows with source x and target y, in particular Γx
x for the isotropy

group at x. Another minor departure from [17] concerns the terminology. We shall be us-

ing the term ‘Lie groupoid’ in a more restrictive sense, namely as a synonym to ‘smooth

groupoid’, meaning that the manifold of objects and the manifold of arrows are both

smooth. (This usage seems to be closer to the standard practice of Lie group theory.) On

the few occasions when we actually meet examples which do not fit this more restrictive

definition, we shall use the term ‘differentiable groupoid’.

1. Outline

Let Γ ⇒ M be a Lie groupoid. Let s, t : Γ → M denote the groupoid source resp. target

map. Let E be any vector bundle over M. A pseudo-representation of Γ ⇒ M on E is

a vector bundle morphism from s∗E to t∗E, in other words, a global cross-section of the

vector bundle L(s∗E, t∗E). To every arrow g ∈ Γ a pseudo-representation λ : s∗E → t∗E
assigns a linear map λg : Esg → Etg between the fibers of E corresponding to the source

and to the target of g. We call λ invertible if λg is for every g a linear isomorphism of

Esg onto Etg. We call λ unital if λ1x = idEx for all x in M. We call λ a representation
if λ is unital and the identity λg′g = λg′λg holds for every pair of arrows g′, g which are

composable in other words satisfy the condition sg′ = tg.

A connection on Γ ⇒ M is a right splitting η of the following short exact sequence

of morphisms of vector bundles over the manifold Γ:

0 // ker ds // TΓ ds
// s∗T M

ηcc
// 0. (1)

We identify η with the subbundle H := im η of TΓ, and refer to η = (ds | H)−1 as the

horizontal lift associated with H, also written ηH. Letting 1 : M → Γ denote the groupoid

unit map x 7→ 1x, we call η unital when the condition η1x = Tx1 is satisfied for all x in

M. Lie groupoids always admit unital connections. One can compose the horizontal lift

ηH : s∗T M → TΓ with the vector-bundle morphism dt : TΓ → t∗T M so as to obtain a
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pseudo-representation λH of Γ ⇒ M on T M; we call λH the effect of H. By an effective
connection we mean one whose effect is a representation.

The tangent groupoid of Γ ⇒ M is the Lie groupoid TΓ ⇒ T M whose structure

maps are obtained by differentiating those of Γ ⇒ M. A connection H on Γ ⇒ M is said

to be multiplicative if H ⊂ TΓ constitutes a subgroupoid of TΓ ⇒ T M (of necessity over

the whole of T M). Trivially, multiplicative connections are unital. A unital connection H
on Γ ⇒ M is multiplicative if and only if the identity below holds for every composable

pair of arrows g′, g for all tangent vectors 3 ∈ TsgM.

ηH
g′g3 = (ηH

g′λ
H
g 3)η

H
g 3 (2a)

Multiplicative connections are always effective, as one can see by applying the linear

map Tgt to both sides of this identity.

Let Γ÷ denote the submanifold of Γ ×Γ formed by the pairs of arrows (g, h) such that

sg = sh. We shall call any such pair a divisible pair. Let q÷ stand for the division map
Γ÷ → Γ, (g, h) 7→ gh−1. For any divisible pair of arrows 41,42 in the tangent groupoid

TΓ ⇒ T M let 41 ÷ 42 denote the “ratio” 4142
−1 = (Tq÷)(41,42). Then for any unital

connection H on Γ ⇒ M the above multiplicativity equations (2a) take the following,

alternative form, where g, h is any divisible pair of arrows in Γ ⇒ M and 3 ∈ Tsg=sh M is

any tangent vector:

ηH
gh−1λ

H
h 3 = η

H
g 3 ÷ ηH

h 3. (2b)

We shall let Conn(Γ) denote the space of connections on Γ ⇒ M. This is the affine

subspace of Γ∞
(
Γ; L(s∗T M, TΓ)

)
formed by those differentiable cross-sections η of the

vector bundle L(s∗T M, TΓ) which are solutions for the equation ds◦η = ids∗T M. We shall

view Conn(Γ) as a C∞-space throughout. We shall moreover let Conn1(Γ), Econ(Γ), and

Mcon(Γ) denote the subspaces of Conn(Γ) respectively formed by the unital, effective,

and multiplicative connections.

Averaging

Call non-degenerate a connection H on Γ ⇒ M whose effect λH is an invertible pseudo-

representation. Let Conn÷(Γ) denote the subspace of Conn(Γ) formed by the non-degen-

erate connections.

Definition 1.1. For any non-degenerate connection H on Γ ⇒ M, and for any divisible

pair (g, h) ∈ Γ÷, put

δH(g, h)
def
= (ηH

g ÷ ηH
h ) ◦ (λH

h )−1 ∈ L(Tth M, Tgh−1Γ). (3a)

Let s÷ stand for the map of Γ÷ into M given by (g, h) 7→ th. The global cross-section

δH ∈ Γ∞(Γ÷; L(s∗÷T M, q∗÷TΓ)
)

(3b)

shall be referred to as the “division cocycle” associated with H.

From now on, let us assume that Γ ⇒ M is proper and hence can be endowed with

a normalized Haar system; recall that any such system ν = {νx} assigns each base point

x ∈ M a positive Radon measure νx on the target fiber Γx = t−1(x) in such a way that the

following three conditions are satisfied:
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(A) For some differentiably varying family τ = {τx} of volume densities on the target

fibers and for some differentiable non-negative function c on M with the property

that for each compact subset K of M the intersection supp c ∩ ΓK is compact, one

has dνx = (c ◦ sx)dµx for all x, where µx denotes the positive Radon measure on Γx

associated with the volume density τx, and sx denotes the restriction of the map s
along Γx.

(B) For every arrow g, and for all Borel subsets A of the target fiber Γsg,

νtg(gA) = νsg(A). (4a)

(C) νx(Γx) = 1 for every x.

The first condition implies that C0(Γx) ⊂ L1(νx). The second condition, left invariance,

can be rephrased by saying that for every continuous function ϕ on Γsg

w
ϕ(g−1h) dνtg(h) =

w
ϕ(h) dνsg(h). (4b)

Next, let f : P→ M be a map of some manifold of “parameters” into the base of our

groupoid. If E is any vector bundle over P then, letting prP denote the projection from

the fiber product P f×t Γ := {(y, h) ∈ P × Γ : f (y) = th} onto P, every cross-section ϑ

of the vector bundle pr∗PE can be turned into a cross-section
r
ϑ dν of E by integration

along the target fibers:

P ∋ y 7→ (r
ϑ dν

)
(y)

def
=

w
ϑ(y, h) dν f (y)(h) ∈ Ey (5a)

(the integrand here being a vector-valued differentiable function on Γ f (y) with values in

the finite-dimensional vector space Ey). The resulting “integration functional”

Γ∞(P f×t Γ; pr∗PE) −→ Γ∞(P; E), ϑ 7→
r
ϑ dν (5b)

is continuous (as a linear map between Fréchet spaces).

Appendix B may be consulted for additional information.

Definition 1.2. Let H be a non-degenerate connection on Γ ⇒ M. For every arrow g ∈ Γ
let η̂H

g denote the linear map

TsgM ∋ 3 7→ η̂H
g 3

def
=

w

tk=sg

δH(gk, k)3 dk ∈ TgΓ. (6a)

[This expression makes sense because δH(gk, k) is a linear map of Ttk=sg M into Tgkk−1=gΓ

for all
g
←− k←−.] We shall refer to the global cross-section

η̂H ∈ Γ∞(Γ; L(s∗T M, TΓ)
)

(6b)

as the multiplicative average of H. (Our definition depends of course on the choice of a

normalized Haar system on Γ ⇒ M.)
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The multiplicative average η̂H of every non-degenerate groupoid connection H on Γ

happens to be itself the horizontal lift for a unique groupoid connection Ĥ on Γ. This

new connection, Ĥ, is always unital. We shall call it too the multiplicative average of H.

We have the following integral formula for λ̂H
g := Tgt ◦ η̂H

g , the effect of the multiplicative

average of H, in terms of the effect of H.

λ̂H
g =

w

tk=sg

λH
gk ◦ (λH

k )−1 dk (7)

Details will be supplied in §3, along with a proof of the following result:

Proposition 1.3. Let Φ be any effective—a fortiori, non-degenerate—connection on a
proper Lie groupoid Γ ⇒ M. Then, for an arbitrary choice of normalized Haar systems
on Γ ⇒ M, the multiplicative average Φ̂ of Φ is a multiplicative connection.

In fact, for any proper Lie groupoid Γ endowed with some choice of normalized Haar

systems the process that to each non-degenerate groupoid connection Φ on Γ assigns the

multiplicative average of Φ defines a C∞ mapping between C∞-spaces

Conn÷(Γ) −→ Conn1(Γ), Φ 7→ Φ̂, (8)

which we call the averaging operator for groupoid connections on Γ. The multiplicative

connections lie within the fixed-point set of this operator. By the proposition, this opera-

tor carries effective connections into multiplicative connections. Notice that since when-

ever Φ is effective so is every connection on the line segment {Φ + t(Φ̂ −Φ) : 0 ≤ t ≤ 1}
the averaging operator must provide a strong C∞ deformation retraction of the C∞-space

Econ(Γ) onto its subspace Mcon(Γ). In general, the statement that Econ(Γ) retracts onto

Mcon(Γ) is false for non-proper Lie groupoids; cf. Example 2.9 below.

Evidently, every connection on a Lie bundle is effective. (By a Lie bundle we mean a

Lie groupoid whose source and target map coincide.) More in general, the same is true

of every connection on any Lie groupoid whose associated Lie algebroid has zero an-

chor map. It follows from Proposition 1.3 that in the proper case these groupoids always

admit multiplicative connections. Generalizing further, it is easy to see that every regu-

lar Lie groupoid whose longitudinal bundle is trivializable admits effective connections.

(Cf. Example 2.7 below; by definition, the longitudinal bundle of a regular Lie groupoid

Γ ⇒ M is the subbundle of T M consisting of all the vectors tangent to the orbits of Γ.)

Again, Proposition 1.3 implies that any such groupoid which is also proper admits mul-

tiplicative connections. These remarks serve to illustrate the usefulness of our averaging

method already at the relatively low level of sophistication of this section thus far.

Fast convergence

Next, for a general (non effective) non-degenerate connection Φ we want to consider the

sequence of connections Φ̂, ̂̂Φ, . . . that one obtains by repeatedly averaging Φ (provided

this sequence is at all defined), and understand its limiting behavior.

Let E be an arbitrary vector bundle over the base M of our proper Lie groupoid Γ.

Let Psr(Γ; E) denote the C∞-space Γ∞
(
Γ; L(s∗E, t∗E)

)
of pseudo-representations of Γ on

E. Also, let Psr÷(Γ; E) ⊂ Psr(Γ; E) denote the subspace of invertible pseudo-represen-

tations, and Psr1(Γ; E) that of unital pseudo-representations. Motivated by the formula
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(7), for every λ ∈ Psr÷(Γ; E), g ∈ Γ we set

λ̂(g)
def
=

w

tk=sg

λ(gk) ◦ λ(k)−1 dk. (9)

It follows from the fundamental properties of Haar integrals depending on parameters

recalled previously that λ̂ belongs to Psr1(Γ; E) i.e. is a unital pseudo-representation of

Γ on E. The integral formula (9) gives rise to a C∞-mapping between C∞-spaces

Psr÷(Γ; E) −→ Psr1(Γ; E), λ 7→ λ̂, (10)

which we call the averaging operator for pseudo-representations of Γ on E.

Let us endow E with some vector-bundle metric φ of class C∞ (Riemannian or Hermi-

tian, depending on whether E is real or complex). For every pair of base points x, y ∈ M
we have a norm ‖ ‖x,y on L(Ex, Ey) given by

‖λ‖x,y := sup
|3|x=1

|λ3|y, (11)

where | |x stands for the usual norm on Ex defined by |3|x :=
√
φx(3, 3). Now for every

λ ∈ Psr(Γ; E) let us set

b(λ) := sup
g∈Γ
‖λ(g)‖sg,tg and (12a)

c(λ) := sup
(g′,g)∈Γs×tΓ

‖λ(g′g) − λ(g′) ◦ λ(g)‖sg,tg′ . (12b)

For all λ ∈ Psr1(Γ; E) satisfying the condition c(λ) < 1, it is possible to show that λmust

be invertible and that the following estimates hold (compare §4).

‖λ̂(g)‖sg,tg ≤
b(λ)

1 − c(λ)
(13a)

‖λ̂(g′g) − λ̂(g′) ◦ λ̂(g)‖sg,tg′ ≤ 2

(
b(λ)

1 − c(λ)

)2

c(λ)2 (13b)

Lemma 1.4. Let {b0, b1, . . . , bl} and {c0, c1, . . . , cl} be two finite sequences of non-nega-
tive real numbers of length say l + 1 ≥ 2. Suppose that for every index i between 0 and
l − 1 the following implication is true:

ci < 1⇒



bi+1 ≤
bi

1 − ci
and

ci+1 ≤ 2

(
bi

1 − ci

)2

c2
i .

(14)

Also suppose that b0 ≥ 1 and that ε := 6b2
0
c0 ≤ 2

3
. Then, the following inequalities must

hold for every index i = 0, 1, . . . , l.

ci ≤
ε2i

6b2
0

(15a)

bi

1 − ci
≤
√

3b0 (15b)
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The proof will be given in §4. For an arbitrary open subset U of M let λ |U denote the

pseudo-representation of the open subgroupoid Γ | U ⇒ U of Γ ⇒ M on E | U induced

by λ upon restriction. The above lemma motivates our next definition.

Definition 1.5. A unital pseudo-representation λ ∈ Psr1(Γ; E) is nearly multiplicative or

a near representation if for each point in M one can find an invariant open neighborhood

U = ΓU with the property that the inequality below holds for some choice of C∞ metrics

on E | U.

c(λ | U) ≤ 1

9
b(λ | U)−2 (16)

A unital connection Φ ∈ Conn1(Γ) is nearly effective if the associated pseudo-represen-

tation λΦ ∈ Psr1(Γ; T M) (i.e. the effect of Φ) is a near representation.

We might occasionally refer to nearly effective connections improperly as “nearly multi-

plicative” connections, as we did in the title.

Near representations turn out to be always invertible (cf. §5) so for any near represen-

tation λ it makes sense to consider the pseudo-representation λ̂ defined by our averaging

formula (9). One can then show that λ̂ itself must be a near representation. One therefore

obtains a whole sequence of averaging iterates λ̂(i) of λ which one constructs recursively

by setting λ̂(0) := λ and λ̂(i+1) := (λ̂(i))∧ for all i.

Theorem 1.6 (Fast Convergence Theorem A). Let Γ ⇒ M be a proper Lie groupoid.
Let λ ∈ Psr1(Γ; E) be a unital pseudo-representation of Γ ⇒ M on some vector bundle
E over M. Suppose that λ is nearly multiplicative. Then, for every choice of normalized
Haar systems on Γ ⇒ M, the sequence of successive averaging iterates of λ obtained by
recursive application of the formula (9)

λ̂(0) := λ, λ̂(1) := λ̂, . . . , λ̂(i+1) := (̂λ̂(i)), . . . ∈ Psr1(Γ; E)

converges within the Fréchet space Γ∞
(
Γ; L(s∗E, t∗E)

)
(endowed with the C∞-topology)

towards a unique representation, say, λ̂(∞), of Γ ⇒ M on E.

The proof can be found in §5.

Next, our formula (7) says that λΦ̂ equals (λΦ)∧ for any non-degenerate connectionΦ.

We thus have that any nearly effective connectionΦ gives rise, by recursive averaging, to

a sequence of nearly effective connections {Φ̂(i)}∞i=0. Our next result—whose proof is to

be found in §6—is essentially a corollary of the preceding one.

Theorem 1.7 (Fast Convergence Theorem B). Let Γ ⇒ M be a proper Lie groupoid.
Let Ψ ∈ Conn1(Γ) be a unital connection on Γ ⇒ M. Suppose that Ψ is nearly effective.
Then for any choice of normalized Haar systems on Γ ⇒ M the sequence of successive
averaging iterates of Ψ constructed by recursive application of the averaging operator
(8)

Ψ̂ (0) := Ψ, Ψ̂ (1) := Ψ̂ , . . . , Ψ̂ (i+1) :=̂(Ψ̂ (i)), . . . ∈ Conn1(Γ)

converges within the affine Fréchet submanifold Conn(Γ) ⊂→ Γ∞(Γ; L(s∗T M, TΓ)
)
, H 7→

ηH towards a unique multiplicative connection Ψ̂ (∞) on Γ ⇒ M.

9
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Applications

Let Γ ⇒ M be any proper Lie groupoid. The orbit Γx corresponding to each base point

x will be a smooth submanifold of M. For every non-negative integer q let

Mq := {x ∈ M : dimΓx = q}
M≤q := {x ∈ M : dimΓx ≤ q}

denote the set of base points x which lie on orbits Γx of dimension equal to—resp., not

greater than—q; also, let M<q denote the set-theoretic difference M≤q r Mq. Every M≤q

is obviously an invariant closed subset of M. Moreover, since Γ ⇒ M is proper, every

Mq is an invariant differentiable submanifold of M, in which case we refer to Mq, or to

the differentiable subgroupoid Γ | Mq ⇒ Mq of Γ ⇒ M, as the q-th regular stratum of

Γ ⇒ M. (Note that the restriction of Γ |Mq ⇒ Mq over each invariant component of Mq is

an ordinary Lie groupoid, but different invariant components of Mq might have different

dimensions.)

Let Z ⊂ M be an arbitrary invariant differentiable submanifold. Every connection H
on Γ ⇒ M restricts to a connection on Γ | Z ⇒ Z, which we designate H | Z and refer to

as the connection induced by H along Z. Explicitly,

ηH|Z
g := ηH

g | TsgZ : TsgZ → (Tgs)−1(TsgZ) = Tg(Γ | Z).

Because of the invariance of Z, the effect under H of each arrow g ∈ ΓZ
Z must carry the

linear subspace TsgZ ⊂ TsgM into the linear subspace TtgZ ⊂ TtgM. Hence

λH|Z
g = λH

g | TsgZ. (17)

Moreover, H | Z will be effective or multiplicative whenever so is H.

The next result is substantially a direct consequence of Theorem 1.7:

Theorem 1.8. Let Γ ⇒ M be a Lie groupoid that is proper. Suppose C is an invariant
closed subset of M and U is an open neighborhood of C. Let Z be an invariant differen-
tiable submanifold of M. Suppose further that a multiplicative connection Φ is given on
Γ |U ⇒ U and that Θ is a multiplicative connection on Γ | Z ⇒ Z whose restriction over
Z∩U coincides with the connection induced by Φ on Γ |U∩Z ⇒ U∩Z. Then there exist
open neighborhoods V of C ∪ Z and multiplicative connections Ψ on Γ | V ⇒ V which
induce Θ along Z and agree with Φ over some open neighborhood of C within U ∩ V.

The proof is to be found in §7. The main application of this theorem is intended to be

to the case C = M<q, Z = Mq. Whenever we are given some multiplicative connection Φ

defined around M<q which we know how to extend along Mq, the theorem enables us to

extendΦ over a whole open neighborhood of M≤q at the expense of shrinking the domain

of definition of Φ around M<q. Note however that the shrinkage need not exceed the size

of any invariant open neighborhood of M<q whose closure is contained within the domain

of definition of Φ.

For every point s of a smooth manifold S and open subset U of the product M × S let

Us ⊂ M denote the open set {x ∈ M : (x, s) ∈ U}. Let us call U invariant if so is Us for

every s. By a C∞ parametric family H = {H(s) ∈ Conn(Γ | Us)} of local connections on

Γ ⇒ M indexed over S with domain U ⊂ M×S we simply mean an ordinary connection

H on the restriction over U of the product Lie groupoid Γ × S ⇒ M × S . Notice that the

10
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horizontal lift of any such connection H is necessarily of the form ηH
(g,s)
= η

H(s)
g × idTsS ,

where H(s) stands for the connection on Γ |Us ⇒ Us which H induces along the invariant

submanifold Us = U ∩ (M × {s}) ⊂ U, so H is completely determined by the associated

family H(s) (s ∈ S ) of “partial” connections on Γ ⇒ M with “variable domains”.

Problem 1.9. Let Γ ⇒ M be any Lie groupoid. Let S be any smooth manifold. Let U, V
be open subsets of M × S such that U ⊂ V , and let Φ = {Φ(s) ∈ Mcon(Γ |Vs)} be any C∞

parametric family of local multiplicative connections on Γ indexed over S with domain

of definition V . What are the precise obstructions to extending Φ | U to a C∞ parametric

family S → Mcon(Γ) of (globally defined) multiplicative connections on Γ?

As we anticipated in the course of the introduction the two questions below are special

cases of Problem 1.9 of particular interest to us:

(a) What are the obstructions to the existence of multiplicative connections on Γ?

(b) What are the obstructions to deforming two multiplicative connections Φ0 and Φ1

on Γ smoothly into each other through multiplicative connections?

The first question, of course, corresponds to the parameter-free case S = ∗ with U = V =
∅, the second one, to the case S = R with, e.g., U = M × (R r [0, 1]), V = M × (Rr { 1

2
}),

and Φ(s) given for s < 1
2

by Φ0 and for s > 1
2

by Φ1.

Let us now confine attention to the situation of proper Γ. We contend that in this case

we simply need to understand the answer to Problem 1.9 for Γ regular. (Then under the

hypothesis of regularity the problem appears amenable to treatment by the methods of

standard equivariant obstruction theory, a viewpoint which we try to substantiate further

in §8.) Our strategy for the reduction of the problem to the regular case goes as follows.

To begin with, we observe that at the expense of replacing Γ with the product groupoid

Γ × S ⇒ M × S we can always assume that we are in the parameter-free case S = ∗. We

can then try to build an extension of Φ |U inductively by means of Theorem 1.8, starting

with an arbitrary multiplicative connection defined around U∪M0 whose restriction over

U coincides withΦ |U, and then extending this connection along the regular strata Mq of

higher orbit dimension q ≥ 1, one dimension at the time.

Further in detail, imagine that you have constructed some extension Φq of Φ |U over

a suitable open neighborhood Vq of U ∪M<q within M. (When q = 0, you may of course

take V0 = V , Φ0 = Φ.) Suppose that for all proper, rank q, regular Lie groupoids of a

certain type you know what the obstructions of Problem 1.9 are, and that (every invariant

component of) the q-th regular stratum Γ |Mq ⇒ Mq of Γ is a groupoid of that type. (We

shall provide examples featuring complete descriptions of such obstructions in §8 for

q = 1, 2.) Fix an arbitrary open neighborhood Uq of U ∪M<q so that Uq ⊂ Vq. Whenever

the obstructions to the existence of a multiplicative connection Θq ∈ Mcon(Γ |Mq) whose

restriction over Mq∩Uq equalsΦq |Uq∩Mq vanish, Theorem 1.8 applied to C = U∪M<q,

Z = Mq, Φq |Uq, and Θq implies that there ought to beΦq+1 ∈ Mcon(Γ |Vq+1) defined over

some open neighborhood Vq+1 of (U ∪ M<q) ∪ Mq = U ∪ M≤q which coincides with Φq

around U∪M<q and hence, a fortiori, extendsΦ |U. You may then transfer the problem to

the regular stratum of the next higher orbit dimension—until you eventually meet some

non vanishing obstruction or else exhaust the whole of M.

Notice that Theorem 1.8 also guarantees that in the above inductive process the germs

of any two extensionsΦq+1 around U ∪M≤q (for givenΦq and Θq) have to be homotopic,

11
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so one’s particular choice of Φq+1 will not influence the outcome (feasibility) of the next

step of the process. The choice of Θq however might. Question (b) is therefore relevant

even if one is only interested in Question (a). The two questions are tightly interwoven.

2. First examples

In order to help the reader digest the results described above and get some intuition about

the topics under discussion, we pause for a while and give a list of basic examples. More

advanced examples will be supplied in the final section of the paper. We start by looking

into the simple case of action groupoids, which is already instructive.

Let G be an arbitrary Lie group. Let g stand for its Lie algebra. Recall that the Mau-
rer–Cartan form on G is the Lie-algebra valued 1-form ω : TG → g given at each group

element g ∈ G by ωg := Tgτg
−1 : TgG ∼→ T1G = g, where τg denotes right translation by

g. The differential T(g,h)m of the group multiplication law m : G × G → G at any pair of

elements g, h ∈ G is easily seen to be given by the following expression.

T(g,h)m = ωgh
−1 ◦ (ωg ◦ pr1 + AdG(g) ◦ ωh ◦ pr2) : TgG ⊕ ThG → TghG (18)

Example 2.1 (Action groupoids). Now suppose that our Lie group G is acting on some

smooth manifold U. Let pr stand for the projection G×U → U. An arbitrary connection

H on the action groupoid G ⋉ U ⇒ U gives rise to a Lie-algebra valued map

XH : pr∗TU → g

obtained by composing the connection horizontal lift ηH : pr∗TU → T (G × U) = TG ×
TU, first, with the projection on the TG factor, and then, with the Maurer–Cartan form of

G. Note that given any smooth map X : pr∗TU → g which fibrates into a family of linear

maps Xg,u : TuU → g (g ∈ G, u ∈ U) there is exactly one connection H on G ⋉ U ⇒ U
for which X = XH.

Now, in virtue of (18), the condition of multiplicativity of H (2a) can be reformulated

as a system of cocycle equations to be satisfied by the linear maps XH
g,u:

AdG(g) ◦ XH
h,u − XH

gh,u + XH
g,hu ◦ λH

h,u = 0. (19a)

The condition of unitality of H can likewise be reformulated as

XH
1,u = 0. (19b)

We point out that the zero morphism is always trivially a solution to (19), hence the con-

nectionΦ on G⋉U ⇒ U characterized by the condition XΦ = 0 is always multiplicative.

Example 2.2 (Bundles of compact abelian Lie groups). Next, let us restrict attention to

the case of a trivial G action; in such case, our action groupoid G ⋉U ⇒ U is simply the

trivial Lie-group bundle G × U over U with fiber G.

Given a multiplicative connection Φ on G × U, let us choose any base tangent vector

3 ∈ TuU and consider the Lie-algebra valued function Z : G → g, g 7→ XΦg,u3. Since λH is

trivial for every groupoid connection H on G × U, (19a) tells that Z must be a 1-cocycle

for the Lie-group cohomology of G with coefficients in the adjoint representation:

AdG(g)Z(h) − Z(gh) + Z(g) = 0.

12
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If our Lie group G is commutative, so that AdG is the trivial representation, 1-cocycles

Z will be the same thing as additive functions: Z(gh) = Z(g) + Z(h). Now if α : R → G
is an arbitrary one-parameter subgroup of G then the composition Z ◦ α is a continuous

additive map of R into g and hence is an R-linear map. If the image of α is a compact

subgroup of G then the image of this subgroup under Z is a compact linear subspace of

g and hence is necessarily equal to {0}. We conclude that Z(g) = 0 for every g lying on a

compact one-parameter subgroup of G.

If our Lie group G is further compact (besides being commutative) then the set of all

those group elements that lie on compact one-parameter subgroups of G is dense within

the identity component G0 of G. Every additive function Z must then vanish identically

over G0. Being additive, Z can take only finitely many values, one for each component

of G. But the image of Z also has to be a Z-sublattice of g; it can therefore only be zero.

We conclude that on any compact commutative Lie group, the only 1-cocycle is the zero

function.

So, in summary, the only multiplicative connectionΦ on any trivial Lie bundle G×U
with compact abelian fiber G is the one characterized by the condition XΦ = 0. It follows

at once that every locally trivial bundle of compact abelian Lie groups admits exactly one

multiplicative connection.

Example 2.3 (Pair groupoids). On a pair groupoid M × M ⇒ M the multiplicative con-

nections are easily recognized to be the same as the global trivializations of the tangent

bundle T M. Thus M × M ⇒ M possesses multiplicative connections iff M is paralleliz-

able. In fact, the pair groupoids over non-parallelizable manifolds constitute the simplest

examples of proper Lie groupoids which do not admit any multiplicative (not even non-

degenerate) connections.

Example 2.4 (Counterexample). The nonexistence of multiplicative connections can be

due to a variety of independent reasons. In our next example, Γ is a compact Lie groupoid

with orbits of dimension ≤ 1 over the two-sphere S 2 which does not admit multiplicative

connections, even though its restriction over the complement of each orbit does.

Let the non-trivial element of Z/2 act as inversion on the circle group T := {z ∈ C :

|z| = 1}. Let the corresponding semi-direct product (Lie) group T ⋊ Z/2 act on complex

numbers ζ by the rule (z,−1)ζ := zζ̄. Also let the product group T × Z/2 act on complex

numbers by the rule (z, ν)ζ := zζ. Glue the two action groupoids (T ⋊ Z/2) ⋉ C⇒ C and

(T × Z/2) ⋉ C⇒ C together along the Lie-groupoid isomorphism

(T ⋊ Z/2) ⋉ Cr0 ∋ (z, ν; ζ) 7→ (zζνζ̄/|ζ |2, ν; ζ/|ζ |2) ∈ (T × Z/2) ⋉ Cr0.

The resulting Lie groupoid Γ ⇒ S 2 is proper, hence compact. Its orbits, namely the north

pole, the south pole, and the regular level sets for the “latitude” function, are connected.

However, the effect of the isotropic arrow (1,−1; 1) under any multiplicative connection

on (T ⋊ Z/2) ⋉ C ⇒ C must be non-trivial (of period two), whereas its effect under any

multiplicative connection on (T × Z/2) ⋉ C ⇒ C must be trivial. Hence Γ ⇒ S 2 cannot

admit any (globally defined) multiplicative connection.

Example 2.5 (Counterexample). Our next example features a source-connected, compact

Lie groupoid over the three-sphere S 3 which does not admit multiplicative connections.

Let the Lie group SO(3) × R/Z act on R3 by the law

(P, [θ]) ·
[ x

y
z

]
:= P

[ x
y
z

]
.
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Identify R3
r0 with the product R>0 × S 2 (“spherical coordinates”). Then, consider the

following automorphism of the action groupoid
(
SO(3) × R/Z) ⋉ R3

r0⇒ R3
r0,

(P, [θ]; r,
[ x

y
z

]
) 7→ (P exp

(
2πθ

[
0 −z y
z 0 −x
−y x 0

])
, [θ]; 1/r,

[ x
y
z

]
). (20)

(That this is a well-defined Lie-groupoid homomorphism, follows from the basic relation

P exp

[
0 −z y
z 0 −x
−y x 0

]
P−1 = exp

[
0 −z′ y′

z′ 0 −x′

−y′ x′ 0

]
, where

[ x′

y′

z′

]
= P

[ x
y
z

]
.)

The Lie groupoid Γ ⇒ S 3 obtained by gluing two copies of the action groupoid
(
SO(3)×

R/Z
)
⋉ R

3 along the automorphism (20) is compact and source connected. Its orbits are

the two poles and the “isolatitudinal” spheres. We leave it as an exercise for the reader to

confirm that Γ ⇒ S 3 can admit no multiplicative connections, even though—like in our

previous example—its restriction over the complement of each orbit does.

The regular case

The remainder of this section is devoted to a preliminary survey of effective connections

in the regular case. By a longitudinal representation of a regular Lie groupoid we intend a

representation on the vector distribution tangent to the orbit foliation associated with the

groupoid. As it is not hard to imagine, effective connections on any regular groupoid bear

a close relationship to longitudinal representations. We start by making such relationship

precise.

Lemma 2.6. Let Γ ⇒ M be an arbitrary regular Lie groupoid. Let Λ ⊂ T M denote the
longitudinal bundle of Γ ⇒ M. Suppose ρ : Γ → GL(T M) is a tangent representation of
Γ ⇒ M having the property that for all arrows g the linear maps ρ(g) : TsgM ∼→ Ttg M
carry longitudinal subspaces Λsg ⊂ TsgM into longitudinal subspaces Λtg ⊂ Ttg M and
the resulting quotient linear maps TsgM/Λsg

∼→ Ttg M/Λtg coincide with the infinitesimal

effects of the arrows [29, §1]. Also suppose that Φ is a groupoid connection defined on
the restriction of Γ ⇒ M over some open subset V ⊂ M whose effect λΦ coincides with
ρ | V. Then, for every open subset U ⊂ M such that U ⊂ V, there is some connection on
Γ ⇒ M whose effect coincides with ρ and whose restriction over U coincides with Φ |U.

Proof. Endow M with some Riemannian metric. For every x ∈ M, let Nx := Λx
⊥ ⊂ Tx M

stand for the orthogonal complement of Λx ⊂ TxM with respect to the metric. The matrix

of ρ relative to the vector-bundle decomposition T M � Λ ⊕ N reads

ρ(g) =:

(
α(g) ∗

0 ν(g)

)
,

where ν(g) : Nsg
∼→ Ntg matches the infinitesimal effect of g under the canonical vector-

bundle identification N � T M/Λ.

Next, pick an arbitrary connection H on Γ ⇒ M whose restriction over U coincides

with Φ | U, and consider the difference

δH,ρ(g) := λH(g) − ρ(g) =

(
λH
Λ

(g) ∗
0 λH

N(g)

)
−

(
α(g) ∗

0 ν(g)

)
=

(
∗ ∗
0 0

)
,
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to be regarded as a vector-bundle morphism δH,ρ : s∗T M → t∗Λ. Now dt : ker ds→ t∗Λ is

an epimorphism of vector bundles over Γ and, therefore, splits. Fix an arbitrary splitting

ξ : t∗Λ→ ker ds, and set

ηΨg := ηH
g − ξg ◦ δH,ρ

g .

Clearly this is the horizontal lift for some effective connection, say, Ψ , with effect λΨ = ρ.

Moreover since δH,ρ vanishes identically over U, it follows that Ψ coincides with H and,

hence, Φ over U. �

As a consequence of the lemma, every regular Lie groupoid Γ ⇒ M which admits

representations on its own longitudinal bundle Λ ⊂ T M necessarily also admits effective

connections. Indeed if one is given any such representation α : Γ → GL(Λ), one can fix

an arbitrary Riemannian metric on M and then, in the notations of the preceding proof,

define ρ : Γ → GL(T M) with respect to the decomposition T M � Λ ⊕ N to be

ρ :=

(
α 0

0 ν

)
.

Example 2.7. Every regular Lie groupoid Γ ⇒ M whose longitudinal bundle Λ ⊂ T M
is trivializable admits effective connections, because any vector-bundle trivialization τ :

R
q × M ∼→ Λ gives rise to a longitudinal representation, Γ → GL(Λ), g 7→ τtg ◦ τsg

−1.

Example 2.8. A transitive Lie groupoid Γ ⇒ M over a parallelizable manifold M always

admits effective connections.

Example 2.9 (Counterexample). If in the last two examples Γ ⇒ M is also taken to be

proper, then, by Proposition 1.3, Γ ⇒ M admits multiplicative connections. In general,

in the absence of properness, the existence of effective connections does not—even in the

regular case—imply that of multiplicative connections, as our next example shows.

Let us define Γ := ∆/K → R to be the quotient of the trivial Lie bundle ∆ := R×R
pr2−−→

R by the étale Lie kernel (cf. [29, appendix])

K := {(2πn/t, t) : n ∈ Z & t ∈ ]0,∞[} ∪ 0 × R.

If Γ admitted a multiplicative connection, the inverse image of that connection along the

quotient projection (local diffeomorphism) ∆ → Γ would be a multiplicative connection

on ∆. Now, the restriction of Γ over the positive half-line ]0,∞[ is a circle bundle, so,

by Example 2.2, it admits a unique multiplicative connection, whose inverse image along

the quotient projection necessarily coincides with the vector distribution tangent to the

hyperbolae t 7→ (θ/t, t) (θ ∈ R). But no groupoid connection on ∆ could possibly be an

extension of that vector distribution.

3. The averaging operator

Throughout the present section and in the next four, we shall be dealing with a fixed (but

otherwise arbitrary) proper Lie groupoid, say, Γ ⇒ M. Our goal in this section is to pro-

vide a proof of Proposition 1.3 and, with that, establish the equivalence of the following

two properties: (i) Γ admits an effective connection; (ii) Γ admits a multiplicative con-
nection. As a matter of fact, the definition of our averaging operator (8) was originally
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inspired to us by the deformation argument used in [8, Sections 2.3 to 2.5] to give a new

proof of the linearization theorem for proper Lie groupoids. A rather special case of our

definition is also implicit in Weinstein’s proof of the local triviality of proper Lie bundles

[33, Theorem 7.1]. The history of these ideas goes back at least as far as to Palais and

Stewart [18].

Just as a warm-up, before starting proving Proposition 1.3, let us verify the assertions

that precede its statement; the computations are straightforward, but exceptionally in this

case we give the details because we think they are useful to further clarify our definitions.

Let us begin with the equation ds ◦ η̂H = ids∗T M . We have

Tgs ◦ η̂H
g =

w

tk=sg

Tgs ◦ (ηH
gk ÷ ηH

k ) ◦ (λH
k )−1 dk

=

w

tk=sg

Tkt ◦ ηH
k ◦ (λH

k )−1 dk

=

w

tk=sg

λH
k ◦ (λH

k )−1 dk

=

w

tk=sg

idTtkM dk = idTsgM .

Next, we must check that η̂H
1x equals Tx1 for every x ∈ M (unitality). We have (ηH

k ÷ ηH
k ) ◦

(λH
k )−1 = Ttk1 ◦Tkt ◦ ηH

k ◦ (λH
k )−1 = Ttk1 ◦λH

k ◦ (λH
k )−1 = Ttk1, whence η̂H

1x =
r

tk=x Ttk1 dk =
Tx1. Finally, there remains to check Eq. (7) giving the effect of η̂H:

Tgt ◦ η̂H
g =

w

tk=sg

Tgt ◦ (ηH
gk ÷ ηH

k ) ◦ (λH
k )−1 dk

=

w

tk=sg

Tgkt ◦ ηH
gk ◦ (λH

k )−1 dk

=

w

tk=sg

λH
gk ◦ (λH

k )−1 dk.

Multiplicativity equations relative to a “background” connection

When dealing with multiplicative connections on action groupoids (cf. Example 2.1) we

exploited the natural splitting of the tangent bundle of an action groupoid into its vertical

and horizontal subbundles for the purpose of rewriting the condition of multiplicativity in

terms of the vertical component of a connection. That proved to be useful, then, from the

point of view of computations (cf. Example 2.2). We now want to carry out an analogous

rewriting of the condition of multiplicativity in the more general context of the present

section.

Let g → M denote the Lie algebroid of Γ ⇒ M i.e. the vector bundle over M given

by 1∗ ker ds. For every arrow g ∈ Γ the right translation map τg
−1 : Γsg ≈→ Γtg, h 7→ hg−1

is a diffeomorphism which makes g correspond to 1tg. The invertible linear maps ωg
def
=

Tgτg
−1 : TgΓ

sg ∼→ T1tgΓ
tg fit together into an isomorphism of vector bundles over Γ,

ω : ker ds ∼→ t∗g (21)

which generalizes the familiar “Maurer–Cartan form” from Lie group theory.
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Even though in the case of a general proper Lie groupoid there may be no global—let

alone, canonical—trivializations of the source map available, we can at least always find

such trivializations at the infinitesimal level. Namely, let us randomly fix some connec-

tion Φ on Γ ⇒ M. We shall henceforth refer to Φ as our “background” connection. The

choice of Φ defines a splitting of the tangent bundle of Γ into a “vertical” and a “horizon-

tal” component (with respect to the tangent source map) as in the diagram below, where

πΦ
def
= idTΓ − ηΦ ◦ ds : TΓ → ker ds indicates the vertical projection associated with Φ.

σΦ
def
= (ω ◦ πΦ, ds) : TΓ

ds
��
✲
✲
✲
✲
✲
✲
∼→ t∗g ⊕ s∗T M

pr2
��✂✂
✂✂
✂✂
✂

s∗T M

(22)

This splitting determines an analogous decomposition of the tangent division map Tq÷ :

TΓ÷ (= TΓ T s×T s TΓ)→ TΓ; namely, for each divisible pair of arrows (g, h) ∈ Γ÷, there

is a linear map of gtg⊕gth⊕Tsg=sh M into gtg [resp. TthM] hereafter denoted q̇Φg,h [resp. ṡΦg,h]

characterized through the commutativity of the following diagram.

TgΓ Tgs×Th s ThΓ
∼ // (gtg ⊕ TsgM) pr2

×pr2
(gth ⊕ TshM)

T(g,h)Γ÷

T(g,h)q÷

��

gtg ⊕ gth ⊕ Tsg=sh M

(q̇Φg,h ,ṡ
Φ
g,h)

��

Tgh−1Γ ∼ // gtg ⊕ Tth M

(23)

Evidently, ṡΦg,h factors as

gtg ⊕ gth ⊕ TshM
pr

// gth ⊕ TshM
(σΦh )−1

// ThΓ
Tht

// Tth M, (24)

where pr stands for the projection (X, Y, 3) 7→ (Y, 3). The expression ṡΦg,h(X, Y, 3) must then

be independent of g and X: we may abbreviate it into ṡΦh (Y, 3). Let us introduce a bunch

of related shorthand, of which we are going to make use at our convenience.

q̇Φl (g, h) := q̇Φg,h(−,−, 0) ṡΦl (h) := ṡΦh (−, 0) (25a)

q̇Φ↔(g, h) := q̇Φg,h(0, 0,−) ṡΦ↔(h) := ṡΦh (0,−) (25b)

Any other connection H on Γ ⇒ M will entirely be encoded into its vertical compo-
nent XH:Φ relative to the chosen “background” connection Φ:

XH:Φ def
= ω ◦ πΦ ◦ ηH : s∗T M → t∗g. (26)

By the above definitions, we haveσΦg (ηH
g 3) = ([ωg◦πΦg ]ηH

g 3,(Tgs)ηH
g 3) = (XH:Φ

g 3, 3) for

all g ∈ Γ, 3 ∈ TsgM. Since σΦg is an invertible linear map, the multiplicativity condition

(2b) on H for (g, h) ∈ Γ÷, 3 ∈ Tsg=sh M will be satisfied if, and only if,

(XH:Φ
gh−1λ

H
h 3, λ

H
h 3) = σ

Φ

gh−1(η
H
gh−1λ

H
h 3)

= σΦgh−1(η
H
g 3 ÷ ηH

h 3)

17
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= σΦgh−1

(
T(g,h)q÷(η

H
g 3, η

H
h 3)

)

=
(
q̇Φg,h(XH:Φ

g 3, XH:Φ
h 3, 3), ṡΦh (XH:Φ

h 3, 3)
)

by (23)

Suppressing 3 from the last identity, and making use of (25), we get the following couple

of equations.

XH:Φ

gh−1λ
H
h = q̇Φl (g, h)(XH:Φ

g , XH:Φ
h ) + q̇Φ↔(g, h) (27a)

λH
h = ṡΦl (h)XH:Φ

h + ṡΦ↔(h) (27b)

We observe that the second of these equations is a tautology; indeed, by the above remark

to the effect that ṡΦh (Y, 3) equals (Tht)(σΦh )−1(Y, 3), cf. (24), we have

λH
h − ṡΦh (XH:Φ

h , id) = Tht ◦ ηH
h − Tht ◦ (σΦh )−1(XH:Φ

h , id)

= Tht ◦ (ηH
h − ηH

h ) = 0.

The multiplicativity condition (2b) is therefore tantamount to the following single equa-

tion, which one obtains by substituting (27b) into (27a), and which only involves the Φ-

vertical component of H.

q̇Φl (g, h)(XH:Φ
g , XH:Φ

h ) = XH:Φ
gh−1 ◦

(
ṡΦ↔(h) + ṡΦl (h)XH:Φ

h

) − q̇Φ↔(g, h) (28)

In (28), the two “horizontal” terms q̇Φ↔(. . .) and ṡΦ↔(. . .) can be given slightly more in-

tuitive expressions, as follows. For the first, since ṡΦh (0, 3) = (Tht)(σΦh )−1(0, 3) = (Tht)ηΦh 3
for 3 ∈ TshM, we see that

ṡΦ↔(h) = λΦh . (29a)

As to the second, assuming thatΦ is non-degenerate, and letting ∆Φ
def
= q∗÷ω◦q∗÷π

Φ ◦ δΦ :

s∗÷T M → q∗÷t
∗
g denote the Φ-vertical component of the “division cocycle” (3) of Φ, it is

equally easy to see that

q̇Φ↔(g, h) = ∆Φ(g, h)λΦh . (29b)

For any choice of a non-degenerate “background” connection Φ on Γ ⇒ M, a unital
connection H on Γ ⇒ M will thus be multiplicative if, and only if, its vertical component

XH:Φ relative toΦ satisfies the following equation for every divisible pair of arrows (g, h).

q̇Φl (g, h)(XH:Φ
g , XH:Φ

h ) = XH:Φ

gh−1 ◦
(
λΦh + ṡΦl (h)XH:Φ

h

) − ∆Φ(g, h)λΦh (30)

Cocycle equations for the “background” connection

Let g, h, k ∈ Γ satisfy sg = sh = sk. Then

q÷(g, k) = q÷
(
q÷(g, h), q÷(k, h)

)
.

If for every pair of indices i , j ∈ {1, 2, 3}we let qi j denote the map of Γ s×s Γ s×s Γ into

Γ given by (g1, g2, g3) 7→ q÷(gi, g j), we can rewrite the last identity more succinctly as

q13 = q÷(q12, q32).

Differentiating the latter identity at (g, h, k), and taking into account the obvious relations

T(g1 ,g2,g3)qi j = T(gi ,g j)q÷ ◦pri j, where pri j denotes the projection (41,42,43) 7→ (4i,4 j), we

get

(T(g,k)q÷)pr13 = (T(gh−1 ,kh−1)q÷)
(
(T(g,h)q÷)pr12, (T(k,h)q÷)pr32

)
.

18
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After composing to the left with the invertible linear map σΦgk−1 and to the right with

the linear map (ηΦg , η
Φ
h , η

Φ
k ), and making repeated use of the commutativity of the diagram

(23), we obtain the following pair of equations for 3 ∈ Tsg=sh=sk M.

q̇Φg,k(0, 0, 3) = q̇Φgh−1,kh−1

(
q̇Φg,h(0, 0, 3), q̇Φk,h(0, 0, 3), ṡΦh (0, 3)

)

ṡΦk (0, 3) = ṡΦkh−1

(
q̇Φk,h(0, 0, 3), ṡΦh (0, 3)

)

Recalling our shorthand (25) and the identity (29a) and (for Φ non-degenerate) (29b), we

may rewrite these equations as follows.

∆Φ(g, k)λΦk 3 = q̇Φl (gh−1, kh−1)
(
q̇Φ↔(g, h)3, q̇Φ↔(k, h)3

)

+ q̇Φ↔(gh−1, kh−1)ṡΦ↔(h)3

= q̇Φl (gh−1, kh−1)
(
∆Φ(g, h)λΦh 3,∆

Φ(k, h)λΦh 3
)

+ [∆Φ(gh−1, kh−1)λΦkh−1]λΦh 3

λΦk 3 = ṡΦl (kh−1)q̇Φ↔(k, h)3 + ṡΦ↔(kh−1)ṡΦ↔(h)3

= ṡΦl (kh−1)∆Φ(k, h)λΦh 3 + λ
Φ
kh−1λΦh 3

After suppressing 3 from these equations and setting kh−1 =: h′ in the second of them, we

are left with the following tautological expressions, which we call “cocycle equations”.

q̇Φl (gh−1, kh−1)
(
∆Φ(g, h),∆Φ(k, h)

)
λΦh = ∆

Φ(g, k)λΦk

− ∆Φ(gh−1, kh−1)λΦkh−1λΦh
(31a)

λΦh′h − λΦh′λΦh = ṡΦl (h′)∆Φ(h′h, h)λΦh (31b)

Proof of Proposition 1.3

We have to confirm the validity of Eq. (30) for the (unital) connection H := Φ̂ relative to

the given (non-degenerate) “background” connection Φ. It will be convenient to abridge

the expressions λΦ̂ and XΦ̂:Φ into λ̂ and X̂ respectively; we shall moreover systematically

suppress ‘Φ’ superscripts. For any divisible pair of arrows (g, h), we have

q̇l(g, h)(X̂g, X̂h) = q̇l(g, h) ◦
w

tk=sg=sh

(
∆(gk, k),∆(hk, k)

)
dk

=

w
q̇l(g, h)

(
∆(gk, k),∆(hk, k)

)
dk

[by (31a): ]
=

w
[∆(gk, hk)λhk(λk)

−1 − ∆(g, h)λh] dk

[by (31b): ]
=

w
∆(gk, hk) ◦ (

ṡl(h)∆(hk, k) + λh
)

dk

−
w
∆(g, h)λh dk

[by (27b), (29a): ]
=

w
∆(gk, hk) ◦ (

ṡl(h)∆(hk, k) − ṡl(h)X̂h
)

dk

+

w

tk=sh

∆(gk, hk)λ̂h dk − ∆(g, h)λh

[by (4b): ]
=

w
∆(gk, hk)ṡl(h) ◦ (∆(hk, k) − X̂h

)
dk

+

w

tk=th

∆(gh−1k, k)λ̂h dk − ∆(g, h)λh

19
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=

x
∆(gk, hk)ṡl(h) ◦ (

∆(hk, k) − ∆(hk′, k′)
)

dk dk′

+ X̂gh−1 λ̂h − ∆(g, h)λh.

Thus far, we have not used the assumption that Φ was effective. Now if that is the case,

then by (31b) the double integral term must vanish. �

4. Basic recursive estimates

Recursive averaging provides a general method to construct exact solutions of problems

which, a priori, are only known to admit “approximate” solutions. In the theory of topo-

logical groups, this method has been applied to prove the existence of homomorphisms of

compact Lie groups near any given “almost homomorphism” [13] and, again for compact

groups, of representations by bounded Hilbert space operators near any given “approxi-

mate representation” [10]. The statements to be presented in this section lead to a similar

type of result for (continuous) pseudo-representations of proper groupoids. We stress that

our computations are by no means a reproduction of arguments from the cited references,

compared to which, they appear to be significantly shorter and simpler.

4.1. Let Γ ⇒ M be as before. If for any tangent pseudo-representation λwhich coincides

with the effect of some non-degenerate groupoid connection Φ we set

∆λ(h′h, h) := ṡΦl (h′)∆Φ(h′h, h)

in the tautological expression (31b) and then, for (g, h) ∈ Γ÷, make h′ := gh−1, we obtain

the identity

∆λ(g, h) = λ(g)λ(h)−1 − λ(gh−1). (32a)

Regarding this as our definition of ∆λ when λ is an arbitrary invertible pseudo-represen-

tation of Γ ⇒ M on some vector bundle E over M, and letting s÷, t÷ : Γ÷ → M indicate

the maps (g, h) 7→ th, 7→ tg [compare (3b)], we obtain a global cross-section

∆λ ∈ Γ∞(Γ÷; L(s∗÷E, t∗÷E)
)
. (32b)

4.2. The following equations hold:

λ̂(g′g) − λ̂(g′)λ̂(g) =
w

tk=sg

∆λ(g′gk, gk)∆λ(gk, k) dk

−
x

tk=sg
tl=sg

∆λ(g′gk, gk)∆λ(gl, l) dk dl
(33a)

λ̂(g) = λ(g) +
w

tk=sg

∆λ(gk, k) dk (33b)

Proof. The second equation is a straightforward consequence of our Haar integral being

normalized: λ̂g =
r
λgk(λk)

−1 dk =
r
λg dk +

r
[λgk(λk)

−1 − λg]dk = λg +
r
∆λ(gk, k) dk.

As to the first equation, we use both left invariance and normality of the Haar integral:

λ̂g′g − λ̂g′λ̂g =

w
λg′gk(λk)

−1 dk −
(w
λg′k′(λk′)

−1 dk′
)
◦
(w
λgk(λk)

−1 dk
)
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=

w
λg′gk(λk)

−1 dk −
(w
λg′gk(λgk)

−1 dk
)
◦
(w
λgl(λl)

−1 dl
)

=

w
λg′gk(λk)

−1 dk −
w
λg′gk(λgk)

−1λg dk

−
w
λg′λgk(λk)

−1 dk + λg′λg

−
x
λg′gk(λgk)

−1λgl(λl)
−1 dk dl +

w
λg′gk(λgk)

−1λg dk

+

w
λg′λgl(λl)

−1 dl − λg′λg

=

w (
λg′gk(λgk)

−1 − λg′
) ◦ (λgk(λk)

−1 − λg
)

dk

−
x (
λg′gk(λgk)

−1 − λg′
) ◦ (
λgl(λl)

−1 − λg
)

dk dl,

which happens to be the desired expression. �

No matter what the vector-bundle metric that we put on E, the norms ‖ ‖x,y (11) will

satisfy the inequalities

‖µ ◦ λ‖x,z ≤ ‖µ‖y,z‖λ‖x,y; (34)

in particular, End(Ex) will be a (unital) Banach algebra under the norm ‖ ‖x,x.

Lemma 4.3. Let A be a Banach algebra, with unit element e. Let a real constant 0 ≤ c <
1 be given. For every element 3 of A such that |3| ≤ c, the element e − 3 is invertible and

|(e − 3)−1 − e| ≤ c(1 − c)−1.

Proof. Since |3| < 1, the element e − 3 is invertible, with inverse

(e − 3)−1 = e + 3 + 32 + 33 + · · · ,

so that |(e − 3)−1 − e| ≤ |3| + |3|2 + |3|3 + · · · = |3|(1 − |3|)−1 ≤ c(1 − c)−1. �

4.4. Let λ ∈ Psr1(Γ; E) be a unital pseudo-representation of Γ ⇒ M on E. Suppose that
c(λ) < 1 (12b). Then λ is invertible.

Proof. The assumptions entail that 1 > ‖id−λg−1 ◦λg‖sg,sg for any g. Since End(Esg) (with

the norm ‖ ‖sg,sg) is a (unital) Banach algebra, λg−1 ◦ λg must be an invertible element of

End(Esg) and therefore λg must be a left invertible (hence injective) linear map. Similarly

λg must be right invertible (hence surjective). �

4.5. The estimates below hold for every unital pseudo-representation λ ∈ Psr1(Γ; E) that
satisfies the condition c(λ) < 1 [cf. (12)]:

‖λ(g)−1‖tg,sg ≤
b(λ)

1 − c(λ)
(35a)

‖∆λ(g, h)‖th,tg ≤
(

b(λ)

1 − c(λ)

)
c(λ) (35b)

Proof. To prove the first inequality, (35a), let us apply Lemma 4.3 to the Banach algebra

A := End(Esg) (with norm ‖ ‖sg,sg), the number c := c(λ) < 1, and the Banach algebra

element 3 := id − λg−1 ◦ λg. We get (omitting norm subscripts)

‖λg
−1(λg−1)−1 − id‖ = ‖[id − (id − λg−1 ◦ λg)]−1 − id‖ ≤ c(1 − c)−1.
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Using the inequalities (34), we obtain

‖λg
−1 − λg−1‖ = ‖[λg

−1(λg−1)−1 − id] ◦ λg−1‖ ≤ c(1 − c)−1‖λg−1‖

whence

‖λg
−1‖ ≤ ‖λg−1‖ + ‖λg

−1 − λg−1‖ ≤
(
1 +

c
1 − c

)
‖λg−1‖ =

‖λg−1‖
1 − c

.

As to (35b), it is an immediate consequence of (35a):

‖λg(λh)−1 − λgh−1‖ = ‖(λg − λgh−1λh) ◦ λh
−1‖ ≤ c(λ)‖λh

−1‖. �

The estimates (13) drop out now as a corollary of the identities (33) and of the pre-

ceding inequalities (35); indeed the Haar integrals involved in (33) are normalized so one

can estimate each one of them simply by the sup norm of the integrand.

Proof of Lemma 1.4

We claim that if the inequality (15a) holds for every integer i between zero and a certain

non-negative value of n ≤ l then the inequality (15b) must also hold for i = n. Indeed,

suppose that ci ≤ ε2i
/(6b2

0
) for i = 0, . . . , n and—only provisionally—that n > 0. Under

such assumptions, we must have ci < 1 for i = 0, . . . , n−1 (because by hypothesis b0 ≥ 1

and ε < 1), and consequently, by (14), bi+1 ≤ bi/(1−ci). Combining all these inequalities

recursively as i runs from zero to n − 1, we conclude that bn ≤ b0

/
(1 − c0) · · · (1 − cn−1).

Hence

bn/(1 − cn) ≤ b0

/
(1 − c0) · · · (1 − cn). (36)

This inequality is true also when n = 0 (trivially). We proceed to study the quantity

1
/∏n

i=0(1 − ci) =
(
exp log

∏n
i=0(1 − ci)

)−1
= exp

(−∑n
i=0 log(1 − ci)

)
.

For every real number x such that |x| < 1 we have −|x| + |log(1 + x)| ≤ |x − log(1 + x)| =∣∣∣∣∣
x2

2
− x3

3
+

x4

4
−· · ·

∣∣∣∣∣ ≤
|x|2
2
+
|x|3
2
+
|x|4
2
+ · · · = |x|

2

2

1

1 − |x| . This quantity is ≤ |x|2 whenever

|x| is ≤ 1/2. Hence, substituting x with −x, we see that

0 ≤ x ≤ 1

2
⇒ − log(1 − x) ≤ x + x2. (37)

Since 2i ≥ 2i for every integer i ≥ 0, and since by hypothesis b0 ≥ 1 and ε ≤ 2/3 < 1,

for every integer 0 ≤ i ≤ n it must be true that ci ≤ ε2i
/(6b2

0
) ≤ ε2i/6, in particular, that

ci < 1/2, whence by (37),

exp

(
n∑

i=0

− log(1 − ci)

)
≤ exp

(
n∑

i=0

ci + c2
i

)

≤ exp

(
1

6

n∑
i=0

ε2i

)
exp

(
1

62

n∑
i=0

ε4i

)

≤ exp

(
1

6

1

1 − ε2

)
exp

(
1

62

1

1 − ε4

)

≤ exp

(
1

6

9

5
+

1

62

81

65

)
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≤ exp

(
1

2

[
3

5
+

1

5

1

2

9

13

])

≤ exp(1/2) ≤
√

3.

Combining this with (36), we obtain the desired inequality: bn/(1 − cn) ≤
√

3b0.

To finish the proof of the lemma, we are going to show that the inequality (15a) holds

for every integer i between zero and n by reasoning inductively on n. Our claim is valid

by hypothesis for n = 0. Assume that the claim holds for a certain value ≥ 0, ≤ l − 1 of

n. Then, by the above, bn/(1 − cn) ≤
√

3b0, whence by (14)

cn+1 ≤ 2

(
bn

1 − cn

)2

c2
n ≤ 2 · 3b2

0

(ε2n
)2

(6b2
0
)2
=
ε2n+1

6b2
0

. �

5. Fast convergence theorem A (pseudo-representations)

The present section is devoted in its entirety to the proof of Theorem 1.6. Recall that we

are assigned a proper Lie groupoid Γ ⇒ M endowed with some specific normalized Haar

system, say, ν, a vector bundle E over M, and a near representation (cf. Definition 1.5)

λ ∈ Psr1(Γ; E). These data shall be kept fixed throughout the section.

To begin with, we observe that λ is necessarily invertible. Indeed, by our near multi-

plicativity condition (16), since b(λ |U) ≥ 1 in consequence of the unitality of λ, we must

have c(λ | U) ≤ 1/9 < 1 so our earlier remark 4.4 implies that λ | U is invertible.

In virtue of invertibility, it makes sense to consider the (unital) pseudo-representation

λ̂ ∈ Psr1(Γ; E) that one obtains by averaging λ against ν by means of the formula (9). We

contend that the pseudo-representation arising in this way is itself nearly multiplicative.

Indeed, let U ⊂ M be any invariant open subset satisfying (16) for some choice of metrics

on E |U. Let us write b, c, b̂ and ĉ respectively as short for b(λ |U), c(λ |U), b(λ̂ |U) and

c(λ̂|U). By unitality, b ≥ 1, so by (16), c ≤ 1/9 < 1. Then by (13a), b̂ ≤ b/(1−c) ≤ 9
8
b, so

b̂−2 ≥ (8
9

)2b−2 ≥ 1
2
b−2. Also, by (13b) and (16), ĉ ≤ 2b2(1−c)−2c2 ≤ 2b2

(
1− 1

9

)−2(1
9

)2b−4 =

2
(9

8

)2(1
9

)2b−2 ≤ 1
9

1
2
b−2. Hence ĉ ≤ 1

9
b̂−2.

From the above remarks it follows that λ gives rise to a sequence {λ̂(i)}∞i=0 of averaging
iterates λ̂(i) ∈ Psr1(Γ; E), constructed recursively by setting λ̂(0) := λ, λ̂(i+1) := (λ̂(i))∧.

Making use of our computations from the previous section, we proceed to show that as a

sequence of smooth cross-sections of the vector bundle L(s∗E, t∗E) this is Cauchy within

Γ0
(
Γ; L(s∗E, t∗E)

)
, the Fréchet space of cross-sections of class C0 of L(s∗E, t∗E), and thus

converges within the same space to a (unique) pseudo-representation, say, λ̂(∞), which a

priori will only be of class C0 (i.e. continuous).

The idea is to apply Lemma A.1 from Appendix A to the open cover of Γ consisting of

all those relatively compact open subsets Ω ⊂ Γ for which invariant open subsets U ⊂ M
which satisfy (16) for some choice of metrics on E |U exist so that Ω ⊂ s−1(U) ∩ t−1(U).

We contend that for any such Ω the sequence of restrictions {resΓ
Ω

(λ̂(i))} is Cauchy within

Γ0
(
Ω; L(s∗E, t∗E)

)
relative to the C0-norm topology (Appendix A). Given Ω, let us fix U

together with a metric on E |U as indicated. The C0-norm topology on Γ0
(
Ω; L(s∗E, t∗E)

)

is then generated by the following norm—recall our notations (11):

p(0)

Ω
(ζ) := sup

g∈Ω
‖ζ(g)‖sg,tg. (38)
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Since U is invariant, upon restriction, the selected normalized Haar system ν on Γ ⇒ M
induces a similar system, say, ν |U, on Γ |U ⇒ U, relative to which the following equation

holds for all invertible pseudo-representations ζ ∈ Psr÷(Γ; E).

ζ̂ | U = (ζ | U)∧ (39)

We may hence suppose that U = M, without loss of generality. Now, either b(λ) = ∞, in

which case c(λ) = 0 and λ is multiplicative (a representation) so λ̂(i) = λ for all i and our

sequence is constant, or 1 ≤ b(λ) < ∞. In the latter case, by our estimates (13) and by

the near multiplicativity condition (16), the two sequences of non-negative real numbers

bi := b(λ̂(i)), ci := c(λ̂(i)) must satisfy the hypotheses of Lemma 1.4. Then, by the identity

(33b) and by the estimates (35b) and (15), for some number 0 ≤ ε ≤ 2/3 we must have

p(0)

Ω

(
resΓ
Ω

(λ̂(i+1)) − resΓ
Ω

(λ̂(i))
) ≤

(
b(λ̂(i))

1 − c(λ̂(i))

)
c(λ̂(i))

≤
√

3/6 · b(λ)−1 · ε2i ≤ ε2i

for all i. This clearly implies that our sequence is Cauchy.

Next, let us confirm that λ̂(∞) is a representation. Since C0-convergence implies point-

wise convergence, for every arrow g the sequence of linear maps {λ̂(i)(g)} converges to

λ̂(∞)(g) in the finite-dimensional vector space L(Esg, Etg). Hence λ̂
(∞)

1x = lim λ̂
(i)
1x = id for

all x in M, since every λ̂(i) is a unital pseudo-representation. Further, given any compos-

able pair of arrows (g′, g), there exists U as before such that g′, g ∈ s−1(U) ∩ t−1(U); for

any metric on E | U, we then have the following inequality (omitting norm subscripts),

‖λ̂(∞)

g′g − λ̂
(∞)

g′ λ̂
(∞)
g ‖ ≤ ‖λ̂

(∞)

g′g − λ̂
(i)
g′g‖ + ‖λ̂

(i)
g′g − λ̂

(i)
g′ λ̂

(i)
g ‖

+ ‖λ̂(i)
g′ − λ̂

(∞)

g′ ‖ ‖λ̂
(i)
g ‖ + ‖λ̂

(∞)

g′ ‖ ‖λ̂
(i)
g − λ̂(∞)

g ‖

whose right-hand side becomes arbitrarily small as i grows sufficiently large, in view of

considerations from the preceding paragraph.

There remains to be seen whether λ̂(∞) is actually a smooth cross-section of the vector

bundle L(s∗E, t∗E). It will be enough to show that the sequence of averaging iterates {λ̂(i)}
is Cauchy within the Fréchet space Γ∞

(
Γ; L(s∗E, t∗E)

)
. The idea is the same as before:

apply Lemma A.1 to a suitable cover of Γ by relatively compact open subsets. This time,

however, some extra care will be needed in the choice of the cover.

Sketch of the argument for uniform convergence up to order r

We are going to define a suitable open cover of Γ consisting of relatively compact open

subsets Ω ⊂ Γ selected from among those considered previously. For each Ω in the cover

and for each non-negative integer r = 0, 1, 2, . . .we are going to define suitable “standard

Cr-norms” (cf. Appendix A)

p(r)

Ω
on Γr(Ω; L(s∗E, t∗E)

)
, (40a)

p̄(r)

Ω
on Γr(Ω; L(t∗E, s∗E)

)
, (40b)

q(r)

Ω
on Γr(Ω2; L(s∗2E, t∗2E)

)
, (40c)

where Ω2 := Ω s×tΩ and s2, t2 : Γ2 := Γ s×t Γ → M denote the two maps (g′, g) 7→ sg, 7→
tg′, so that p(r)

Ω
≤ p(r+1)

Ω
, etc. for all r. For r = 0, the norm (40a) is going to be defined by
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(38), the other two are going to be defined analogously. Then, letting m, pr1, pr2 : Γ2 → Γ
respectively stand for law of arrow composition, first, and second projection, henceforth

regarding Ω as fixed, for any (where appropriate, invertible) pseudo-representation ζ ∈
Γ∞

(
Γ; L(s∗E, t∗E)

)
we set

b(r)(ζ) := p(r)

Ω

(
resΓ
Ω

(ζ)
)
,

b̄(r)(ζ) := p̄(r)

Ω

(
resΓ
Ω

(ζ)−1),
c(r)(ζ) := q(r)

Ω

(
resΓ2

Ω2

(m∗ζ − pr∗1ζ ◦ pr∗2ζ)
)

(by abuse of notation, the latter expression indicates the difference between the following

two composite vector bundle morphisms,

s∗2E � pr∗2s∗E � m∗s∗E
m∗ζ
−−→ m∗t∗E � pr∗1t∗E � t∗2E,

s∗2E � pr∗2s∗E
pr∗

2
ζ

−−−→ pr∗2t∗E � pr∗1s∗E
pr∗

1
ζ

−−−→ pr∗1t∗E � t∗2E).

Our definitions will be such that the three inequalities below hold for every invertible

pseudo-representation ζ ∈ Γ∞(Γ; Lis(s∗E, t∗E)
)

which satisfies the condition c(0)(ζ) < 1;

b̄(0)(ζ) ≤ b(0)(ζ)
/(

1 − c(0)(ζ)
)

(41a)

b(0)(ζ̂ − ζ) ≤ [
b(0)(ζ)

/(
1 − c(0)(ζ)

)]
c(0)(ζ) (41b)

c(0)(ζ̂) ≤ 2
[
b(0)(ζ)

/(
1 − c(0)(ζ)

)]2 (
c(0)(ζ)

)2
(41c)

moreover, there will exist positive constants A(r), B(r) and C(r) such that the further three

inequalities below hold for all ζ ∈ Γ∞(Γ; Lis(s∗E, t∗E)
)
.

b̄(r+1)(ζ) ≤ (
b̄(r)(ζ)

)2b(r+1)(ζ)A(r) (42a)

b(r+1)(ζ̂ − ζ) ≤ [b̄(r)(ζ)b(r+1)(ζ)c(r)(ζ) + c(r+1)(ζ)] b̄(r)(ζ)B(r) (42b)

c(r+1)(ζ̂) ≤ [b̄(r)(ζ)b(r+1)(ζ)c(r)(ζ) + c(r+1)(ζ)]
(
b̄(r)(ζ)

)2c(r)(ζ)C(r) (42c)

Back to our near representation λ, now, let us introduce the following abbreviations

for every order of iteration i = 0, 1, 2, . . . :

b(r)

i := b(r)(λ̂(i)),

b̄(r)

i := b̄(r)(λ̂(i)),

c(r)

i := c(r)(λ̂(i)).

Arguing by induction on r on the basis of the inequalities (42), we are going to show that

for some number 0 ≤ ε < 1 (independent of i and r) the four statements S1–S4 hereafter

must be true for all r.

S1. The sequence
{
b(r)

i

}
is bounded.

S2. The sequence
{
b̄(r)

i

}
is bounded.

S3. There exists some positive constant R(r) such that c(r)

i+1
≤ (

c(r)

i

)2R(r) for every i.

S4. There exists some non-negative integer i(r) such that c(r)

i ≤ ε2i−i(r)

for all i ≥ i(r).
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For r = 0, we can already verify the truth of these statements. Indeed, the two inequalities

(41b) and (41c) imply at once that the two sequences of non-negative real numbers bi :=

b(0)

i , ci := c(0)

i satisfy the hypothesis (14) of Lemma 1.4; in addition, 6
(
b(0)

0

)2c(0)

0
≤ ε :=

6 b(λ | U)2 c(λ | U) ≤ 2/3 by (16), and b(0)

0
≥ 1 by unitality, so all the hypotheses of that

lemma are satisfied. The same lemma then entails that c(0)

i < 1 for all i, and: (S1) b(0)

i+1
≤

b(0)

i /(1 − c(0)

i ) ≤
√

3b(0)

0
, by (41b) and (15b); (S2) b̄(0)

i ≤ b(0)

i /(1 − c(0)

i ) ≤
√

3b(0)

0
, by

(41a) and (15b); (S3) c(0)

i+1
≤ 2

[
b(0)

i

/(
1 − c(0)

i

)]2(c(0)

i

)2 ≤ (
c(0)

i

)2
6
(
b(0)

0

)2
, by (41c) and (15b);

(S4) c(0)

i ≤
1
6

(
b(0)

0

)2
ε2i
< ε2i

, by (15a) because b(0)

0
≥ 1.

Now, for an arbitrary order of derivation r, the validity of the above statements S1 to

S4 enables one to conclude that the sequence of restrictions {resΓ
Ω

(λ̂(i))} is Cauchy within

Γr(Ω; L(s∗E, t∗E)
)

relative to the Cr-norm topology (compare Appendix A). (From this,

the C∞-convergence of the sequence {λ̂(i)} drops out immediately, as before by virtue of

the lemma A.1.) Indeed, on the basis of the identity (33b) and of the inequality (42b), for

every order of iteration i we have the following estimate,

p(r)

Ω

(
resΓ
Ω

(λ̂(i+1)) − resΓ
Ω

(λ̂(i))
) ≤ p(r+1)

Ω

(
resΓ
Ω

(λ̂(i+1)) − resΓ
Ω

(λ̂(i))
)

≤ (b̄(r)

i b(r+1)

i c(r)

i + c(r+1)

i ) b̄(r)

i B(r)

≤ sup
{
(b̄(r)

i b(r+1)

i + 1)b̄(r)

i

}
B(r)c(r+1)

i

in the derivation of which we use the fact that c(r)

i ≤ c(r+1)

i (a consequence of the inequality

p(r)

Ω
≤ p(r+1)

Ω
).

Inductive step (from r to r+ 1)

We begin to fill in the details of our argument by showing that, once the inequalities (42)

are taken for granted, the validity for any given value of r of the statements S1–S4 implies

their validity also for the next higher value of r. By (42), there must be positive constants

B(r) and C(r) (independent of i) such that the two inequalities below hold for all i.

b(r+1)

i+1
≤ b(r+1)

i + (b̄(r)

i b(r+1)

i c(r)

i + c(r+1)

i ) b̄(r)

i B(r)

c(r+1)

i+1
≤ (b̄(r)

i b(r+1)

i c(r)

i + c(r+1)

i )
(
b̄(r)

i

)2c(r)

i C(r)

Our inductive hypothesis S2 then entails the existence of a positive constant L(r) such that

the following two inequalities are satisfied for all i.

b(r+1)

i+1
≤ b(r+1)

i + (b(r+1)

i c(r)

i + c(r+1)

i ) L(r)

c(r+1)

i+1
≤ (b(r+1)

i c(r)

i + c(r+1)

i ) c(r)

i L(r)

In order to complete the inductive step, we need to “solve” this recursive system.

Lemma 5.1. Let {c0, c1, c2, . . . }, {b′0, b′1, b′2, . . . }, and {c′
0
, c′

1
, c′

2
, . . . } be sequences of non-

negative real numbers. Let ε, L,R be positive real constants, with ε < 1. Suppose that

b′i+1 ≤ b′i + (b′ici + c′i) L, (43a)

c′i+1 ≤ (b′ici + c′i) ciL, (43b)

ci+1 ≤ c2
i R, (43c)
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and that ci ≤ c′i for all i. Further, assume there exists I for which ci ≤ ε2i−I
when i ≥ I.

Then, the following three statements hold: (a) The sequence {b′i} is bounded. (b) There
exists some constant R′ > 0 such that c′i+1

≤ (c′i)
2R′ for all i. (c) There exists I′ ≥ I such

that c′i ≤ ε2i−I′
for i ≥ I′.

Proof. At the expense of re-indexing our sequences, it will be no loss of generality to

assume that I = 0. Under such assumption, for every i we will have ci ≤ ε2i ≤ ε < 1, and

therefore, c2
i ≤ ci. Let us put a′i := b′ici + c′i . Then

a′i+1 = b′i+1ci+1 + c′i+1

≤ b′ic
2
i R + a′ic

2
i LR + c′i+1 by (43a) and (43c),

≤ b′ic
2
i R + a′iciLR + c′i+1 because c2

i ≤ ci,

≤ b′ic
2
i R + (LR + L)a′i ci by (43b),

≤ (L + LR)a′i ci + b′ic
2
i R + c′iciR a fortiori,

= (L + LR)a′i ci + (b′ici + c′i)ciR

= (L + LR + R)a′ici

and thus, setting K := L + LR + R,

a′i+1 ≤ Ka′ici,

whence a′1 ≤ Ka′0c0, a′2 ≤ KKa′0c0c1, a′3 ≤ KK2a′0c0c1c2 and, in general,

a′i ≤ a′0Ki
i−1∏
n=0

cn. (44)

Since 1 + 2 + · · · + 2i−1 = 2i − 1, it follows from (43a) in combination with (44) and with

the hypothesis cn ≤ ε2n
that

b′i+1 ≤ b′i + La′i ≤ b′i + La′0Kiε1+2+···+2i−1

= b′i + La′0ε
−1Kiε2i

and, therefore, by induction,

b′i ≤ b′
0
+ La′

0
ε−1

i−1∑
n=0

Knε2n
.

The last inequality implies that the sequence {b′i} has to be bounded, which was our first

claim (a). Using this fact in combination with the hypothesis ci ≤ c′i and with (43b), we

are then able to establish our second claim (b) as well:

c′i+1 ≤ (b′ici + c′i) ciL ≤ (b′ic
′
i + c′i) c′i L = (c′i)

2(b′i + 1)L.

As to our third claim (c), we have

c′i+1 ≤
(
a′0Ki

i−1∏
n=0

cn

)
ciL by (43b) and (44),

≤ a′0Kiε1+2+···+2i−1

ε2i
L because cn ≤ ε2n

,

= (La′0ε
−1Kiε2i

)ε2i
,

the parenthesized factor being < 1 for i sufficiently large because lim Kiε2i
= 0. �
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By virtue of the inductive hypotheses S3 and S4 and of the inequality q(r)

Ω
≤ q(r+1)

Ω
, the

three sequences of non-negative real numbers ci := c(r)

i , b
′
i := b(r+1)

i , c′i := c(r+1)

i satisfy the

assumptions of Lemma 5.1 with L := L(r), R := R(r). The truth of the inductive claims S1,

S3 and S4 (for the next higher value of r) is then precisely the content of the lemma. As

to the remaining inductive claim S2, this follows from the estimate (42a) in conjunction

with the already proven inductive claim S1 and the inductive hypothesis S2.

Choice of the relatively compact open cover {Ω} and of the standard Cr-norms p(r)

Ω
,

p̄(r)

Ω
and q(r)

Ω
(40)

Whenever the near multiplicativity inequality (16) is satisfied on an invariant open subset

U ⊂ M for some choice of metrics on E |U, the same inequality must be satisfied on any

open (not necessarily invariant) subset of M whose closure lies within U for some choice

of a globally defined metric on E.

Suppose that U ⊂ M is a relatively compact open subset on which (16) holds for some

choice of metrics on E; furthermore, suppose that U is adjusted to the given normalized

Haar system ν (Appendix B). The property of being ν-adjusted entails that ν restricts on

Γ |U ⇒ U to a normalized Haar system ν |U such that the same identity as in the invariant

case (39) is satisfied; in other words, averaging commutes with restriction over U when

U is ν-adjusted.

For U as in the preceding paragraph, let Ω := s−1(U) ∩ t−1(U). The open sets Ω thus

obtained form an open cover of Γ. Since the closure U of U within M is compact, so will

be the closure Ω of Ω within Γ, because of properness. Moreover, Ω2 := Ω s×t Ω will be

a relatively compact open subset of Γ2 := Γ s×t Γ, Ω3 := Ω s×t Ω s×t Ω will be a similar

subset of Γ3 := Γ s×t Γ s×t Γ, and so forth.

Considering U as fixed now, endow E with some vector-bundle metric so that (16) is

satisfied. Regard L(s∗E, t∗E) as a normed vector bundle (see Appendix A) by endowing

it with the continuous vector-bundle norm defined by (11); similarly for L(t∗E, s∗E) and

L(s∗
2
E, t∗

2
E). In addition, choose any three locally finite trivializing vector-bundle atlases,

say, A for L(s∗E, t∗E), Ã for L(t∗E, s∗E), and B for L(s∗
2
E, t∗

2
E). Then, in the notations of

Appendix A (53), make the following definitions for every natural number r.

p(r)

Ω
:= ‖ ‖CrΩ;L(s∗E,t∗E),A

p̄(r)

Ω
:= ‖ ‖CrΩ;L(t∗E,s∗E),Ã

q(r)

Ω
:= ‖ ‖CrΩ2;L(s∗

2
E,t∗

2
E),B

We leave it as an exercise for the reader to verify that with these definitions the three

inequalities (41) are in fact satisfied. Further, the estimate (42a) is a general consequence

of Lemma A.5 (57). So, to finish the proof of Theorem 1.6, we only need to establish the

other two estimates, (42b) and (42c).

Proof of the estimate (42b)

Let dν denote the Haar integration functional (5b)

Γ∞
(
Γ2; pr∗1L(s∗E, t∗E)

) −→ Γ∞(Γ; L(s∗E, t∗E)
)
, ϑ 7→ 〈ϑ, dν〉 :=

r
ϑ dν
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depending on parameters in Γ
s−→ M. Also recall from §4 that an invertible pseudo-repre-

sentation ζ ∈ Psr÷(Γ; E) determines a cross-section (32)

∆ζ ∈ Γ∞(Γ÷; L(s∗÷E, t∗÷E)
)
.

Let a denote the diffeomorphism Γ2
≈→ Γ÷, (g, k) 7→ (gk, k). Regarding a∗∆ζ as a cross-

section of the vector bundle pr∗1L(s∗E, t∗E) over Γ2—and likewise regarding similar ex-

pressions occurring hereafter as cross-sections of the appropriate vector bundles—by the

identity (33b) we have, making use of the indicated lemmas from Appendix A and B,

‖resΓ
Ω

(ζ̂ − ζ)‖Cr+1 = ‖resΓ
Ω
〈a∗∆ζ , dν〉‖Cr+1

[by Lemma B.2: ] ≤ ‖resΓ2

Ω2

(a∗∆ζ)‖Cr+1 (†)

[by Lemma A.2: ] = ‖resΓ2

Ω2

(m∗ζ − pr∗1ζ ◦ pr∗2ζ) ◦ resΓ2

Ω2

(pr∗2ζ
−1)‖Cr+1

[by Lemma A.4 (56b): ] ≤ ‖resΓ2

Ω2

(m∗ζ − pr∗1ζ ◦ pr∗2ζ)‖Cr‖resΓ2

Ω2

(pr∗2ζ
−1)‖Cr+1

+ ‖resΓ2

Ω2

(m∗ζ − pr∗1ζ ◦ pr∗2ζ)‖Cr+1‖resΓ2

Ω2

(pr∗2ζ
−1)‖Cr

[by Lemma A.3: ] ≤ ‖. . .‖Cr‖resΓ
Ω

(ζ−1)‖Cr+1 + ‖. . .‖Cr+1‖resΓ
Ω

(ζ−1)‖Cr

[by Lemma A.5 (57): ] ≤ ‖. . .‖Cr‖resΓ
Ω

(ζ−1)‖2Cr‖resΓ
Ω

(ζ)‖Cr+1 + ‖. . .‖Cr+1‖resΓ
Ω

(ζ−1)‖Cr .

Plugging in the norms (40), this translates into the desired estimate (42b).

Proof of the estimate (42c)

Let m23, pr12, pr23 : Γ3 → Γ2 denote the maps which to (g′, g, k) ∈ Γ3 associate, respec-

tively, (g′, gk), (g′, g), (g, k) ∈ Γ2. Let d2ν stand for the Haar integration functional (5b)

Γ∞
(
Γ3; pr∗12L(s∗2E, t∗2E)

) −→ Γ∞(Γ2; L(s∗2E, t∗2E)
)
, ϑ 7→ 〈ϑ, d2ν〉 :=

r
ϑ dν

depending on parameters in Γ2

s2−→ M. By the identity (33a), since by virtue of the left

invariance of our Haar system ν the double integral therein occurring can be rewritten as

r (r
∆(g′gk, gk) dk

)
◦ ∆(gl, l) dl =

r (r
∆(g′k′, k′) dk′

)
◦ ∆(gl, l) dl

=
(r
∆(g′k′, k′) dk′

)
◦
(r
∆(gk, k) dk

)
,

we have (making tacit use of Lemma A.2 at the appropriate places)

‖resΓ2

Ω2

(m∗ζ̂ − pr∗1ζ̂ ◦ pr∗2ζ̂)‖Cr+1 ≤ ‖resΓ2

Ω2

〈m∗23a∗∆ζ ◦ pr∗23a∗∆ζ , d2ν〉‖Cr+1

+ ‖resΓ2

Ω2

(pr∗1〈a∗∆ζ , dν〉) ◦ resΓ2

Ω2

(pr∗2〈a∗∆ζ , dν〉)‖Cr+1

[by Lemma B.2: ] ≤ ‖resΓ3

Ω3

(m∗23a∗∆ζ) ◦ resΓ3

Ω3

(pr∗23a∗∆ζ)‖Cr+1

+ ‖resΓ2

Ω2

(pr∗1〈. . .〉) ◦ resΓ2

Ω2

(pr∗2〈. . .〉)‖Cr+1

[by Lemma A.4 (56b): ] ≤ ‖resΓ3

Ω3

(m∗23a∗∆ζ)‖Cr‖resΓ3

Ω3

(pr∗23a∗∆ζ)‖Cr+1

+ ‖resΓ3

Ω3

(m∗23a∗∆ζ)‖Cr+1‖resΓ3

Ω3

(pr∗23a∗∆ζ)‖Cr

+ ‖resΓ2

Ω2

(pr∗1〈. . .〉)‖Cr‖resΓ2

Ω2

(pr∗2〈. . .〉)‖Cr+1

+ ‖resΓ2

Ω2

(pr∗1〈. . .〉)‖Cr+1‖resΓ2

Ω2

(pr∗2〈. . .〉)‖Cr
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[by Lemma A.3: ] ≤ ‖resΓ2

Ω2

(a∗∆ζ)‖Cr‖resΓ2

Ω2

(a∗∆ζ)‖Cr+1

+ ‖resΓ
Ω
〈a∗∆ζ , dν〉‖Cr‖resΓ

Ω
〈a∗∆ζ , dν〉‖Cr+1

[by Lemma B.2: ] ≤ ‖resΓ2

Ω2

(a∗∆ζ)‖Cr‖resΓ2

Ω2

(a∗∆ζ)‖Cr+1

[by Lemma A.4 (56): ] ≤ ‖resΓ2

Ω2

(m∗ζ − pr∗1ζ ◦ pr∗2ζ)‖Cr‖resΓ2

Ω2

(pr∗2ζ
−1)‖Cr

× ‖resΓ2

Ω2

(a∗∆ζ)‖Cr+1

[by Lemma A.3: ] ≤ ‖resΓ2

Ω2

(m∗ζ − pr∗1ζ ◦ pr∗2ζ)‖Cr‖resΓ
Ω

(ζ−1)‖Cr

× ‖resΓ2

Ω2

(a∗∆ζ)‖Cr+1 .

The latter factor can be estimated as in the preceding subsection after the mark (†). The

desired estimate (42c) then drops out by plugging in the norms (40).

6. Fast convergence theorem B (connections)

We proceed to prove Theorem 1.7. As in the previous section, we are given a proper Lie

groupoid Γ ⇒ M along with a normalized Haar system ν on Γ ⇒ M. We are also given

a nearly effective connection (cf. Definition 1.5) Ψ ∈ Conn1(Γ); we let λ := λΨ stand for

the effect of Ψ , which by definition, is a near representation. These data will remain fixed

throughout the sequel.

The first thing to see is that the sequence {η̂(i) := ηΨ̂
(i) | i = 0, 1, 2, . . . } is Cauchy within

Γ∞
(
Γ; L(s∗T M, TΓ)

)
, the Fréchet space of cross-sections of class C∞ of the vector bundle

L(s∗T M, TΓ), and hence convergent therein to a (unique) cross-section, say, η̂(∞), of class

C∞. Since C∞-convergence implies pointwise convergence—so that η̂
(∞)
g = lim η̂

(i)
g for all

g ∈ Γ—this has to be the horizontal lift for a (unique) connection, say, Ψ̂ (∞) on Γ ⇒ M,

necessarily unital; we contend that Ψ̂ (∞) is multiplicative.

Proving our first claim is tantamount to showing that the the sequence of differences

η̂(i) − η̂(0) is Cauchy within the Fréchet (i.e., closed) subspace Γ∞
(
Γ; L(s∗T M, ker ds)

) ⊂
Γ∞

(
Γ; L(s∗T M, TΓ)

)
, or alternatively by virtue of Lemma A.2 on p. 42, that the sequence

of Ψ -vertical components (26) X̂(i) := XΨ̂
(i):Ψ is Cauchy within Γ∞

(
Γ; L(s∗T M, t∗g)

)
. Our

method will be the same as before: apply Lemma A.1 (Appendix A), for each finite order

of derivation r, to a suitable relatively compact open cover {Ω} of the manifold Γ, namely,

the one associated with the near representation λ (= the effect of Ψ ) in the way described

in the preceding section.

Recall from §3 that for every non-degenerate connection Φ ∈ Conn÷(Γ) there is the

Φ-vertical component of the division cocycle (3) ∆Φ := q∗÷ω◦q∗÷πΦ◦δΦ, which by analogy

with 4.1 (32b), here we want to consider as a cross-section ∆Φ ∈ Γ∞(Γ÷; L(s∗÷T M, t∗÷g)
)
.

Similar to before, let us put Ω÷ := Ω s×s Ω. (By properness, this is a relatively compact

open subset of Γ÷.) Let us fix arbitrary standard Cr-norms, say,

p[r]

Ω
on Γr(Ω; L(s∗T M, t∗g)

)
, (45a)

q[r]

Ω
on Γr(Ω÷; L(s∗÷T M, t∗÷g)

)
, (45b)

and then for any connections H, Φ ∈ Conn(Γ) (where appropriate, non-degenerate) set

b[r](H :Φ) := p[r]

Ω

(
resΓ
Ω

(XH:Φ)
)
,
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c[r](Φ) := q[r]

Ω

(
resΓ÷
Ω÷

(∆Φ)
)
.

We are going to show that there exist positive constants B[r] and C[r] such that for any

non-degenerate connection Φ ∈ Conn÷(Γ)

b[r](Φ̂ :Φ) ≤ c[r](Φ)B[r] (46)

and, in the notations of §5, providing that Φ̂ itself is non-degenerate,

c[r](Φ̂) ≤ b̄(r)(λΦ)b̄(r)((λΦ)∧
)
c(r)(λΦ)c[r](Φ)C[r]. (47)

Let us suppose for a moment that we have already established these estimates. Let us

set

c[r]

i := c[r](Ψ̂ (i)).

From (47), we immediately deduce that for every i

c[r]

i+1
≤ b̄(r)

i b̄(r)

i+1
c(r)

i c[r]

i C[r].

By Statement S2 in the proof of Theorem 1.6 (§5), the sequence {b̄(r)

i } has to be bounded,

so there must be some positive constant K such that the inequality below holds for all i,

c[r]

i+1
≤ c(r)

i c[r]

i K

whence c[r]

1
≤ c(r)

0
c[r]

0
K, c[r]

2
≤ c(r)

1
c(r)

0
c[r]

0
KK, c[r]

3
≤ c(r)

2
c(r)

1
c(r)

0
c[r]

0
K2K and, in general, for

i ≥ i(r), where i(r) is as in Statement S4 in the proof of Theorem 1.6,

c[r]

i ≤
( i−1∏

n=0

c(r)
n

)
c[r]

0
Ki

=

(
Ki−i(r)

i−1∏
n=i(r)

c(r)
n

)
c[r]

0
Ki(r)

i(r)−1∏
n=0

c(r)
n

≤ (Ki−i(r)

ε1+2+···+2i−i(r)−1

)c[r]

0
Ki(r)

i(r)−1∏
n=0

c(r)
n

= (Ki−i(r)

ε2i−i(r)

)ε−1c[r]

0
Ki(r)

i(r)−1∏
n=0

c(r)
n . (†)

Now, in view of the obvious identity XH:Ψ − XΦ:Ψ = XH:Φ, valid for any H, Φ ∈ Conn(Γ),

thanks to (46) we see that for i ≥ i(r)

p[r]

Ω

(
resΓ
Ω

(X̂(i+1)) − resΓ
Ω

(X̂(i))
)
= p[r]

Ω

(
resΓ
Ω

(XΨ̂
(i+1):Ψ̂ (i)

)
)

= b[r](Ψ̂ (i+1) : Ψ̂ (i))

≤ c[r]

i B[r] ≤ (Ki−i(r)

ε2i−i(r)

) · constant.

From this, it follows immediately that the sequence of restrictions {resΓ
Ω

(X̂(i))} is Cauchy,

as claimed. AsΩ is let vary, from the estimates (†) it also follows that the sequence {∆Ψ̂ (i)}
converges within Γ∞

(
Γ÷; L(s∗÷T M, t∗÷g)

)
to zero; this implies multiplicativity of Ψ̂ (∞):

ωgh−1 ◦ (
(ηΨ̂

(∞)

g ÷ ηΨ̂ (∞)

h ) − ηΨ̂ (∞)

gh−1λ
Ψ̂ (∞)

h

)

= ωgh−1 ◦ (T(g,h)q÷ ◦ (η̂(∞)
g , η̂

(∞)

h ) − η̂(∞)

gh−1 ◦ Tht ◦ η̂(∞)

h

)
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= lim
{
ωgh−1 ◦ (

T(g,h)q÷ ◦ (η̂(i)
g , η̂

(i)
h ) − η̂(i)

gh−1 ◦ Tht ◦ η̂(i)
h

)}

= lim
{
ωgh−1 ◦ (

(η̂(i)
g ÷ η̂

(i)
h ) − η̂(i)

gh−1 λ̂
(i)
h

)}

= lim
{
ωgh−1 ◦ (

δΨ̂
(i)

(g, h) − ηΨ̂ (i)

gh−1

) ◦ λ̂(i)
h

}

=
{
lim∆Ψ̂

(i)
(g, h)

} ◦ λ̂(∞)

h = 0,

which proves that Ψ̂ (∞) satisfies the multiplicativity condition (2b) and hence (being uni-

tal, as we know) is multiplicative.

6.1. The equations below—which are the analogs for connections of (33a), (33b)—hold:

∆Φ̂(g, h)λ̂Φh =
r
∆Φ(gk, hk) ◦ ∆λΦ(hk, k) dk

−
r
∆Φ(gk, hk) dk ◦

r
∆λ
Φ

(hk, k) dk
(48a)

XΦ̂:Φ
g =

r
∆Φ(gk, k) dk (48b)

Proof. For every non-degenerate connection H ∈ Conn÷(Γ) the difference δH(g, h)−ηH
gh−1

is a linear map of TthM into ker Tgh−1 s, and

∆H(g, h) = ωgh−1 ◦ (
δH(g, h) − ηH

gh−1

)
,

so for any other non-degenerate groupoid connection Φ,

∆H(g, h)λH
h = ωgh−1 ◦ (δH(g, h) − ηH

gh−1

) ◦ λH
h

= ωgh−1 ◦ πΦgh−1 ◦
(
δH(g, h)λH

h − ηH
gh−1λ

H
h

)

= pr1 ◦ σΦgh−1 ◦
(
(ηH

g ÷ ηH
h ) − ηH

gh−1λ
H
h

)
by definition (22),

= q̇Φl (g, h)(XH
g , X

H
h ) + ∆Φ(g, h)λΦh − XH

gh−1λ
H
h by (25) and (29b).

Under the provision that Φ̂ be itself non-degenerate, making H := Φ̂, setting X̂Φ := XΦ̂:Φ,

and referring back to our computations in the proof of Proposition 1.3 (§3),

∆Φ̂(g, h)λ̂Φh = q̇Φl (g, h)(X̂Φg , X̂
Φ
h ) − X̂Φgh−1 λ̂

Φ
h + ∆

Φ(g, h)λΦh

=
s
∆Φ(gk, hk) ◦ ṡΦl (h) ◦ (

∆Φ(hk, k) − ∆Φ(hk′, k′)
)

dk dk′

=
r
∆Φ(gk, hk) ◦ ∆λΦ(hk, k) dk −

s
∆Φ(gk, hk) ◦ ∆λΦ(hk′, k′) dk dk′,

which evidently gives (48a). The other identity, (48b), is equally clear:

XΦ̂:Φ
g = ωg ◦ (η̂Φg − ηΦg ) = ωg ◦

r (
δΦ(gk, k) − ηΦg

)
dk

=
r
ωg ◦

(
δΦ(gk, k) − ηΦg

)
dk =

r
∆Φ(gk, k) dk. �

6.2. Proof of the estimate (46): Letting dν indicate the integration functional (5b)

Γ∞
(
Γ2; pr∗1L(s∗T M, t∗g)

) −→ Γ∞(Γ; L(s∗T M, t∗g)
)
, ϑ 7→ 〈ϑ, dν〉 :=

r
ϑ dν

depending on parameters in Γ
s−→ M, in view of the identity (48b) and of Lemma B.2, we

have

‖resΓ
Ω

(XΦ̂:Φ)‖Cr = ‖resΓ
Ω
〈a∗∆Φ, dν〉‖Cr

≤ ‖resΓ÷
Ω÷

(∆Φ)‖Cr ,

whence the desired estimate (46) by plugging in the specified standard Cr-norms (45).
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6.3. Proof of the estimate (47): Let pr÷ : Γ÷ → Γ indicate the map (g, h) 7→ h; further, let

r÷ : Γ÷ → M indicate the map (g, h) 7→ sg = sh, and then m÷ : Γ÷ r÷×t Γ → Γ÷ the map

(g, h; k) 7→ (gk, hk). Also, let d÷ν denote the appropriate Haar integration functional (5b)

depending on parameters in Γ÷
r÷−→ M associated with the vector bundle L(r∗÷T M, t∗÷g),

resp., L(s∗÷T M, t∗÷g). Finally, let dν have the same meaning as in the previous section. By

virtue of (48a) and of the appropriate lemmas from the appendices A and B, we have

‖resΓ÷
Ω÷

(∆Φ̂)‖Cr = ‖resΓ÷
Ω÷

(∆Φ̂◦ pr∗÷λ̂
Φ) ◦ resΓ÷

Ω÷
(pr∗÷λ̂

Φ)−1‖Cr

≤ ‖resΓ÷
Ω÷

(∆Φ̂◦ pr∗÷λ̂
Φ)‖Cr‖resΓ÷

Ω÷

(
pr∗÷(λ̂

Φ)−1)‖Cr

≤ ‖resΓ÷
Ω÷
〈m∗÷∆Φ◦ (pr÷× id)∗a∗∆λ

Φ

, d÷ν〉

− resΓ÷
Ω÷

(〈m∗÷∆Φ, d÷ν〉 ◦ pr∗÷〈a∗∆λ
Φ

, dν〉)‖Cr‖resΓ
Ω

(λ̂Φ)−1‖Cr

≤
(
‖resΓ÷r÷×tΓ

Ω÷r÷×tΩ

(
m∗÷∆

Φ◦ (pr÷× id)∗a∗∆λ
Φ)‖Cr

+ ‖resΓ÷
Ω÷
〈m∗÷∆Φ, d÷ν〉‖Cr‖resΓ÷

Ω÷
(pr∗÷〈a∗∆λ

Φ

, dν〉)‖Cr

)
‖resΓ

Ω
(λ̂Φ)−1‖Cr

≤
(
‖resΓ÷r÷×tΓ

Ω÷r÷×tΩ
(m∗÷∆

Φ)‖Cr‖resΓ÷r÷×tΓ

Ω÷r÷×tΩ

(
(pr÷× id)∗a∗∆λ

Φ)‖Cr

+ ‖resΓ÷r÷×tΓ

Ω÷r÷×tΩ
(m∗÷∆

Φ)‖Cr‖resΓ
Ω
〈a∗∆λΦ , dν〉‖Cr

)
‖resΓ

Ω
(λ̂Φ)−1‖Cr

≤ ‖resΓ÷
Ω÷

(∆Φ)‖Cr‖resΓ2

Ω2

(a∗∆λ
Φ

)‖Cr‖resΓ
Ω

(λ̂Φ)−1‖Cr

≤ ‖resΓ÷
Ω÷

(∆Φ)‖Cr‖resΓ2

Ω2

(m∗λΦ − pr∗1λ
Φ ◦ pr∗2λ

Φ)‖Cr

× ‖resΓ
Ω

(λΦ)−1‖Cr‖resΓ
Ω

(λ̂Φ)−1‖Cr ,

whence after plugging in our standard Cr-norms (45), the desired estimate (47).

7. Reduction to the regular case

We are finally in a position to prove the principal result of this paper, Theorem 1.8. We

start by establishing a special case of the theorem, Corollary 7.3, which is substantially

a direct consequence of the fast convergence result proved in the last section. By a fairly

classical argument (cf. [33, Proof of Theorem 7.1]), this corollary can be seen to imply

the local linearizability of proper Lie groupoids around fix-points. Hence, as a byproduct

of our fast convergence results, we obtain yet another proof of the linearization theorem,

alternative to Zung’s [35] and perhaps closer in spirit to Weinstein’s original idea of aver-

aging the action of a certain “near group” of bisections recursively (see the introduction

to [32]). With hindsight, we could say that our averaging operator (8) is the missing in-

gredient which was needed to generalize Weinstein’s arguments from bundles of compact

Lie groups to arbitrary proper Lie groupoids. In any case, we will not concern ourselves

with linearization problems here. The applications of Theorem 1.8—which, we stress, is

a global result—go well beyond Corollary 7.3.

We begin with a general remark. Let λ ∈ Psr(Γ; E) be an arbitrary pseudo-representa-

tion of our proper Lie groupoid Γ ⇒ M on some vector bundle E over M, and let S be an

invariant subset of M along which λ is multiplicative, meaning that λ(1x) = id for all base

points x ∈ S and that λ(g1g2) = λ(g1)λ(g2) for any composable arrows g1, g2 ∈ Γ(S , S ).

Let us endow E with some vector-bundle metric. By averaging the metric with respect
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to λ, we can always arrange for the situation when λ(g) is an isometry of Esg onto Etg for

every arrow g ∈ Γ(S , S ).

Lemma 7.1. Suppose that U is an open subset of M such that ΓU = M and such that
the intersection U ∩ ΓK is compact for any compact set K ⊂ U. Then within U one can
find a relatively invariant open neighborhood V = U ∩ΓV of the intersection U ∩ S with
the property that for all arrows g and composable pairs of arrows g1, g2 in Γ(V,V) the
following estimates, involving the operator norms (11), hold.

‖λ(g)‖ <
√

2 (49a)

‖λ(g1g2) − λ(g1) ◦ λ(g2)‖ < 1

18
(49b)

Proof. The union
⋃

Vi of any family of relatively invariant open subsets Vi ⊂ U over

which the estimates (49) hold must itself be one such subset of U. Thus, if we set C = S ,

it will be enough to show that each point x ∈ C∩U admits some relatively invariant open

neighborhood over which the desired estimates hold. Consider the open neighborhoods

Ω := {g ∈ Γ : ‖λg‖ <
√

2} of Σ := s−1(C) within Γ,

Ω2 :=

{
(g1, g2) ∈ Γ2 : ‖λg1g2

− λg1
λg2
‖ < 1

18

}
of Σ2 := Σ s×t Σ within Γ2.

Pick a sequence Bn ∋ x of relatively compact open balls with Bn ⊃ Bn+1 and
⋂

Bn = {x}.
Put Vn := ΓBn ∩ U, Kn := ΓBn ∩ U, and An := s−1(Kn) ∩ t−1(Kn). By properness, for n
large we will have An ⊂ Ω and An s×t An ⊂ Ω2. Since Γ(Vn,Vn) ⊂ An and Γ(Vn,Vn) s×t

Γ(Vn,Vn) ⊂ An s×t An, the neighborhood Vn ∋ x will have the required properties. �

Fix an arbitrary sequence U0,U1,U2, . . . of open sets as in the lemma with U0 ⊂ U1 ⊂
U2 ⊂ · · · and

⋃∞
n=0 Un = M. For each n let Vn be a relatively invariant open neighborhood

of the intersection Un ∩ S within Un such that the estimates (49) hold for all arrows g
and composable pairs of arrows g1, g2 in Γ(Vn,Vn), whose existence is guaranteed by the

lemma. Observe that when m < n,

Vm ∩ ΓVn = (Vm ∩ Um) ∩ ΓVn

⊂ Vm ∩ (Un ∩ ΓVn)

= Vm ∩ Vn.

Setting V =
⋃∞

n=0 Vn, if g1, g2 ∈ Γ(V,V) are composable then for some n both g1 and g2

must lie within Γ(Vn,Vn), so by (49) the following estimate must be true,

‖λg1g2
− λg1

λg2
‖ < 1

9

(
sup

g∈Γ(V,V)

‖λg‖
)−2

which tells one precisely that the restriction to Γ | V ⇒ V of λ is a near representation (at

least when λ is unital). We have therefore proved the first half of the following result:

Proposition 7.2. Let Γ ⇒ M be any Lie groupoid which is proper. Let H be an arbitrary
unital connection on it and let S ⊂ M be an invariant subset along which H is effective.
There exist open neighborhoods V of S within M for which H | V on Γ | V ⇒ V is nearly
effective; when Γ ⇒ M is source proper, V can be taken invariant.
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The remaining half (concerning the source-proper situation) can be proved by observing

that every neighborhood V of an orbit Γx must contain some invariant open tube around

x and then taking the union of all such tubes as x ranges across S .

As an immediate application of Proposition 7.2 (in combination with our fast conver-

gence theorem B—Theorem 1.7) we get the following special case of Theorem 1.8:

Corollary 7.3. Let Γ ⇒ M be an arbitrary proper Lie groupoid. Over some open neigh-
borhood V of its semi-fixed regular locus M0 the groupoid admits multiplicative connec-
tions; when Γ ⇒ M is source proper, such a neighborhood V can be taken invariant.

Proof of Theorem 1.8

Let us now turn to the demonstration of the general theorem. For clarity, we are going to

subdivide our argument into steps.

(Step 0; Preliminaries.) To begin with, let us point out that it is not restrictive to argue

under the extra hypothesis that C ∪ Z be closed within M. This can always be achieved

by taking M smaller around U ∪ Z and then replacing C with a slightly larger invariant

closed set, as follows. Since Z ⊂ M is a differentiable submanifold, we can find A ⊃ Z
open such that A ∩ Z ⊂ Z. At the expense of substituting M with A ∪U, we may assume

that Z r Z ⊂ U. If we now further replace C with C ∪ (Z r Z), we accomplish the desired

situation.

For any choice of a Riemannian metric on M, there is a normal vector bundle NZ over

Z defined at every z ∈ Z by setting NzZ := (TzZ)⊥, along with a canonical vector-bundle

decomposition

T M | Z � TZ ⊕ NZ.

For every x ∈ M, let Λx := Tx(Γx). Since Z is invariant, the infinitesimal effect (see [29,

§1]) of each arrow g ∈ Γ(Z, Z) will carry TsgZ/Λsg ⊂ TsgM/Λsg into TtgZ/Λtg ⊂ Ttg M/Λtg

and therefore descend, along the quotient projections TzM / Λz → TzM / TzZ � NzZ, to a

well-defined linear map, hereafter denoted νZ(g), of NsgZ into NtgZ; with this, we obtain

a well-defined smooth representation νZ of Γ | Z ⇒ Z on NZ.

(Step 1.) We proceed to prove that at the expense of taking M smaller around C ∪ Z and

U smaller around C, a Riemannian metric can be found on M which, on U, is invariant

under λΦ and, along Z, is invariant under λΘ. Let us choose an arbitrary open set U′ with

C ⊂ U′ ⊂ U′ ⊂ U. Clearly, one can find metrics φ0 on M which are λΦ-invariant on U′.
Making use of the above orthogonal decomposition with respect to any such metric, we

may promote λΘ : Γ | Z → GL(TZ) to a representation
(
λΘ 0

0 νZ

)
: Γ | Z −→ GL(T M | Z),

which, by the invariance under λΦ of the selected metric, will agree with λΦ over Z ∩U′.
Next, we may replace M with a smaller open neighborhood M′ of U′ ∪ Z so that we are

able to extend this representation to a unital pseudo-representation of Γ | M′ on T M′. By

averaging the metric φ0 along the invariant subset Z with respect to this pseudo-represen-

tation, we construct a metric φ1 on M′ whose restriction in∗Zφ1 to Z is λΘ-invariant. By

further averaging φ1 with respect to λΦ, we construct a metric φ2 on M′∩U which is both

λΦ-invariant and satisfies

in∗U∩Zφ2 = in∗U∩Zφ1.
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By using a partition of unity subordinated to the open cover M′ ∩ U, M′ \ U′ of M′, we

may finally glue φ1 together with φ2 in order to obtain a metric on M′ which is both λΦ-

invariant on U′ and λΘ-invariant along Z, as desired.

(Step 2.) Let Z′ ⊂ Z be any invariant differentiable submanifold which is both homoge-
neous—in the sense that it consists of orbits all of the same dimension—and such that

(C ∩Z)∪Z′ is closed within Z. We proceed to show that there must be some open neigh-

borhood V ′ ⊂ M of C∪Z′ together with some multiplicative connectionΨ ′ on Γ |V ′ ⇒ V ′

such that Ψ ′ coincides with Φ near C and such that Ψ ′ | V ′ ∩ Z = Θ | Z ∩ V ′.
At the expense of shrinking M around C ∪ Z and U around C, by following the same

order of ideas as in the proof of Lemma 2.6, we can construct some unital connection on

Γ ⇒ M which coincides with Φ over U, induces Θ along Z, and is effective along Z′. In

detail, let us put Σ := s−1(Z) and Σ′ := s−1(Z′). Let us consider an arbitrary splitting say

σ : (s∗T M) | Σ → TΓ | Σ to the following epimorphism of vector bundles over Σ,

TΓ | Σ ds|Σ−−−→ (s∗T M) | Σ

with the property that σ1z = Tz1 for all z ∈ Z and which coincides with ηΦ over Z ∩ U
(such splittings can always be found, perhaps at the cost of shrinking U around C a bit).

The vector-bundle morphism ηΘ,σ of (s∗T M) |Σ = (s |Σ)∗(T M |Z) = (s |Σ)∗TZ⊕(s |Σ)∗NZ
into TΓ | Σ given at all g ∈ Σ by

ηΘ,σg := ηΘg ◦ prTsgZ + σg ◦ prNsgZ : TsgM = TsgZ ⊕ NsgZ → TgΓ

evidently satisfies the condition ds ◦ ηΘ,σ = id, is unital, coincides with ηΦ over Z ∩ U,

and restricts to ηΘ along Z. In general, its effect will not be a representation of Σ ⇒ Z on

T M | Z. However, it will be possible to “correct” σ so that the effect of ηΘ,σ becomes a

representation along Z′. Namely, let us consider the following direct-sum decomposition

of differentiable vector bundles over Z′,

T M | Z′ = Λ′ ⊕ T ′ ⊕ N′

where for every z′ ∈ Z′ we set Λ′z′ := Λz′ , T ′z′ := (Λ′z′)
⊥ ∩ Tz′Z, and N′z′ := Nz′Z; we stress

that Λ′ and T ′ must be differentiable vector bundles in virtue of the hypothesis that Z′ is

homogeneous. Because of our thoughtful choice of metric (Step 1), the effect of an arrow

g′ ∈ Σ′ under ηΘ,σ expressed in matrix form relative to this decomposition will read


λΘ
Λ′(g

′) 0 δ(g′)

0 λΘT ′(g
′) µ(g′)

0 0 ν(g′)


: Tsg′M → Ttg′M.

Let us pack the linear maps δ(g′) : N′sg′ → Λ′tg′ together into a morphism δ : (s |Σ′)∗N′ →
(t |Σ′)∗Λ′. As in the proof of Lemma 2.6, we may lift δ to a (ker ds) |Σ′ valued morphism

of vector bundles over Σ′. Now Σ′ ⊂ Σ is a differentiable submanifold, and δ vanishes on

the units and over Z′ ∩U, hence we can extend this lift of δ to a vector-bundle morphism

ζ : (s∗T M) | Σ → (ker ds) | Σ vanishing on the units and over Z ∩ U. Let us replace σ

with σ − ζ. With this new splitting, the matrix for the effect of g′ will look like


λΘ
Λ′(g

′) 0 0

0 λΘT ′(g
′) µ(g′)

0 0 ν(g′)
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which defines a representation of Σ′ ⇒ Z′ on T M | Z′. By a standard partition of unity

argument, the partial vector-bundle section ηΘ,σ−ζ of L(s∗T M, TΓ) (defined over the sub-

manifold Σ of Γ) may be extended to a unital global section ηH satisfying the condition

ds ◦ ηH = id and coinciding with ηΦ over a suitable open sub-domain of U. Hence the H
defined by ηH will be a unital connection on Γ ⇒ M with the desired properties.

So, let H be a unital connection on Γ ⇒ M which coincides with Φ over U, in-

duces Θ along Z, and is effective along Z′. By Proposition 7.2, there must be some open

neighborhood V ′ of C ∪ Z′ over which H is nearly effective. By confining attention to

the restriction of Γ over V ′, we may without loss of generality suppose that H is nearly

effective over the whole M in other words that V ′ = M.

If we choose a random normalized Haar system say ν on Γ ⇒ M, the averaging limit

connection Ĥ(∞) relative to ν will be multiplicative and induce Θ along Z. However, it

will not in general restrict to Φ over a neighborhood of C. To accomplish this, we must

select ν more carefully. Let us pick an arbitrary open set U′ such that C ⊂ U′ ⊂ U′ ⊂ U
and such that ΓU′ is closed. Let us consider the open set

W := U ∪ (M \ ΓU′).

Clearly, M = ΓW. If we choose ν subordinated to W, now, the restriction over U′ of the

averaging limit connection Ĥ(∞) relative to ν will coincide with Φ | U′, as desired.

(Step 3.) The above argument constitutes enough of a proof if Z itself is homogeneous,

in which case we take Z′ := Z. For the general case, we need to argue a bit further. Let us

set C0 := C, U0 := U and, inductively, Cq+1 := Cq ∪ Zq. We have that Cq ∩ Z = (C ∩ Z)∪
Z0 ∪ · · · ∪ Zq−1 is a closed subset of Z and therefore that Cq is a closed subset of M, since

by hypothesis so was C ∪ Z (Step 0). We proceed by induction on q. Suppose we have

found some open neighborhood Uq of Cq along with some multiplicative connection Ψq

on Γ |Uq ⇒ Uq such thatΨq coincides withΦ near C and such that Ψq |Uq∩Z = Θ |Z∩Uq.

Then, by Step 2 applied to Cq and Zq, we can find some open neighborhood Uq+1 of Cq+1

together with some multiplicative connection Ψq+1 on Γ | Uq+1 ⇒ Uq+1 such that Ψq+1

coincides with Ψq near Cq (hence near C) and such that Ψq+1 | Uq+1 ∩ Z = Θ | Z ∩ Uq+1.

Proceeding in this way we eventually (for q big enough) reach some open neighborhood

Uq of C ∪ Z which has the properties required of V in the statement of the theorem.

8. More examples

In §1, we have explained how the extension problem 1.9 for a general proper Lie groupoid

Γ ⇒ M reduces to the case when S = ∗ (parameter-free case) and Γ ⇒ M is also regular.

In the present section, we focus on the latter special case of the problem, which we restate

below for convenience:

Problem 8.1. Given any Lie groupoid Γ ⇒ M that is both proper and regular, any pair of

open sets U,V ⊂ M such that U ⊂ V , and any multiplicative connectionΦ ∈ Mcon(Γ |V)

defined over V , what are the obstructions to extendingΦ |U ∈ Mcon(Γ |U) to a connection

which is both globally defined on Γ ⇒ M and multiplicative?

From Lemma 2.6 (or better, the commentary following its proof) in combination with

Proposition 1.3, one deduces immediately that Φ |U ∈ Mcon(Γ |U) can be extended to a
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multiplicative connection defined on all of Γ ⇒ M if, and only if, its longitudinal effect

λ
Φ|U
Λ
∈ Rep(Γ |U;Λ |U) can be extended to a longitudinal representation of the whole Γ ⇒

M. The argument behind this statement makes essential use of the averaging operator for

groupoid connections. In fact, the truth of this statement depends in a substantial way on

the hypothesis that Γ ⇒ M is proper (compare Example 2.9). The extension problem 8.1

is then equivalent to the following (a priori simpler) problem:

Problem 8.2. Let Γ ⇒ M, U,V ⊂ M be as in the statement of Problem 8.1. Suppose that

α ∈ Rep(Γ |V;Λ |V) is a longitudinal representation of Γ |V ⇒ V . Under what conditions

is it possible to extend α |U ∈ Rep(Γ |U;Λ |U) to some longitudinal representation of all

of Γ ⇒ M?

We now describe how Problem 8.2 can be rephrased as a standard problem in equiv-

ariant (orbifold) obstruction theory. This shift of perspective will offer us potential clues

as to how Problem 8.2 (and therefore Problem 1.9) could be approached in general. The

findings of some preliminary investigations that we have conducted in this respect, along

with several details that will be omitted in the course of the subsequent discussion, have

been collected in [30]. The development of a comprehensive obstruction theory for longi-

tudinal representations of proper regular groupoids—with applications to classical prob-

lems in geometry—is the subject of ongoing research, and will not be discussed further

in this paper.

Throughout the sequel, Γ ⇒ M shall be an arbitrary, yet fixed, proper regular group-

oid, unless otherwise specified. Let
∗
Γ denote the totally isotropic normal subgroupoid of

Γ formed by all its ineffective arrows (recall that an isotropic arrow g ∈ Γx
x is ineffective

if its intrinsic infinitesimal effect on the quotient tangent space Tx M/Λx is trivial; cf. [29,

§1]). By regularity and properness, this subgroupoid is of necessity smooth and closed.

As a consequence, [29, §A] the quotient groupoid

P = Γ/
∗
Γ ⇒ M

inherits a natural Lie groupoid structure, making it a smooth, proper, foliation groupoid.

The groupoid composition law Γ s×t Γ → Γ descends to a Lie-groupoid action Γ s×t P→
P. Let

Π = Γ ⋉ P⇒ P

stand for the Lie groupoid of translations corresponding to this action. The latter groupoid

is itself proper and regular. Notice that the Π-orbits coincide with the source fibers Px for

P⇒ M. Let Π x = Π | Px ⇒ Px indicate the restriction of Π ⇒ P over an orbit Px, and

R
Γ
x = Rep(Π x; T Px)

the space of all tangent representations of Π x ⇒ Px. We are going to regard the spaces

RΓx (x ∈ M) as the fibers of a set-theoretic fiber bundle RΓ over M. Right translation by

arrows of Γ induces a well-defined groupoid action P ×M RΓ → RΓ. There is a natural

C∞-structure on RΓ which makes the fiber-bundle projection RΓ → M and the groupoid

action P×M RΓ → RΓ into C∞ mappings and for which the C∞ sections to RΓ → M over

any open subset U of M correspond to the longitudinal representations of the restriction

of Π ⇒ P over PU =
⋃

u∈U Pu ⊂ P. Also, for U invariant, the equivariant C∞ sections to

RΓ → M over U correspond precisely to the inverse images, along the natural projection

of Π | PU ⇒ PU onto Γ | U ⇒ U, of the elements of Rep(Γ | U;Λ | U). We therefore see

that for U,V ⊂ M invariant Problem 8.2 can be rephrased as follows:
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Problem 8.3. Let U,V ⊂ M be invariant open sets such that U ⊂ V . Let ρ ∈ Γ∞(V; RΓ)P

be an arbitrary equivariant local C∞ section to RΓ → M defined over V . What are the

obstructions to extending ρ | U ∈ Γ∞(U; RΓ)P to a global equivariant C∞ section of RΓ?

We refer to the common dimension of the orbits of any regular groupoid as its rank.

Notice that the rank of Γ ⇒ M is the same as the rank of Π ⇒ P. Under relatively mild

assumptions on Γ ⇒ M (such as for instance source properness) the pullback i∗RΓ → S
of the P⇒ M equivariant C∞ fibration RΓ → M along an arbitrary completely transver-

sal submanifold i : S → M of dimension complementary to the rank of Γ ⇒ M turns

out to be i∗P ⇒ S equivariantly locally trivial. From a differentiable stacks perspective,

this means that the “orbibundle” [RΓ/P] → [M/P] is locally trivial. Accordingly, Prob-

lem 8.3 may be understood as asking when, for this locally trivial fibration of orbifold

stacks, a given partially defined section is extendable to a global section. This is a famil-

iar type of question in obstruction theory. Since the base [M/P] of our orbifold fibration

[RΓ/P]→ [M/P] is a finite-dimensional object, the classical methods of equivariant ob-

struction theory might be adapted to the study of Problem 8.3. We intend to explore this

order of ideas in a future paper.

Example 8.4. In the rank-zero situation, there are no obstructions to solving Problem 8.3;

indeed, for every x ∈ M one has dim Px = 0 and therefore RΓx = {∗}.

Example 8.5 (see Example 1.9 of [30]). When the rank is equal to 1, it might not always

be possible to solve Problem 8.3, as our counterexample 2.4 illustrates. However, in the

situation of connected source fibers, there are again no obstructions; the short argument

goes as follows. Let us fix any P ⇒ M invariant vector-bundle metric on the longitudinal

tangent distribution ofΠ ⇒ P (equivalently, any vector-bundle metric on the longitudinal

tangent distribution of Γ ⇒ M). Because of the rank = 1 hypothesis and of the source

connectedness of Π ⇒ P, for every x ∈ M there will be exactly one representation, say,

σx of Π x ⇒ Px on T Px which is orthogonal for the chosen metric. These representations

σx together must give a global equivariant C∞ section σ of RΓ. Now, because of source

connectedness, for each h ∈ ΠV there will be a unique number c(h) > 0 such that ρ(h) =

c(h)σ(h). By properness, this number will only depend on the pair (sh, th) ∈ P×P. Then,

for any choice of a smooth invariant function ϕ on M with ϕ | U = 1 and suppϕ ⊂ V , an

equivariant global C∞ prolongation ρ̃ of ρ | U can be obtained by setting

ρ̃(h) = exp
(
ϕ(th) log c(h)

)
σ(h).

Example 8.6 (see Theorem 6.2 of [30]). The obstructions become slightly more interest-

ing when the rank is two. Suppose that Γ ⇒ M is source proper, source connected, and

that its rank is two. Further suppose that its source fibers have finite fundamental groups.

Then, for any given U, V , and ρ, the extension problem 8.3 admits solutions if, and only

if, for every base point x the four conditions below, concerning the long exact sequence

of homotopy groups associated with the pointed fibration (Γx
x , 1x)

⊂−→ (Γx, 1x)
t−→ (Γx, x),

are simultaneously verified, where πfree
1

(−) denotes the fundamental group of a Lie group

modulo torsion:

a) π2(Γx) = 0.

b) F := im
(
π2(Γx)

∂2−→ π1(Γx
x)

pr
−→ πfree

1
(Γx

x)
)

sits inside πfree
1

(Γx
x) so that Ze ∩ F , 0 ⇒

2e ∈ F for all e.
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c) ∂1 : π1(Γx) → π0(Γx
x) is an isomorphism of groups.

d) πfree
1

(cg) = −id ∈ Aut
(
πfree

1
(Γx

x)
)

for any g ∈ Γx
x r

◦
Γx

x , where cg ∈ Aut(Γx
x) stands for

conjugation by g and
◦
Γx

x indicates the identity component of Γx
x .

Example 8.7 (see Corollary 6.4 of [30]). Combining 8.4–8.6 with Theorem 1.8, one gets

the following result: Let Γ ⇒ M be a Lie groupoid which is source proper, source con-

nected, and whose source fibers have finite fundamental groups. Suppose that dimΓx ≤ 2

for all x ∈ M, and that for every x ∈ M2 the conditions a) to d) of the preceding example

are satisfied. Then the C∞-space Mcon(Γ) is non-empty and C∞-path-connected.

Appendix A. Uniform convergence topologies on spaces of sections

The material collected in this appendix is relevant for Sections 5 and 6. We assume famil-

iarity with a few very basic concepts from the theory of topological vector spaces—such

as, for instance, the notion of locally convex topology generated by a family of seminorms
or the notion of Fréchet space—which are thoroughly discussed e.g. in [22, Chapter 2].

Throughout the appendix, X is going to denote a smooth manifold, and E a smooth vector

bundle over X. We are also going to let 0 ≤ k ≤ ∞ denote an arbitrary, but fixed, order of

differentiability.

We say that a cross-section ξ : S → E defined over an arbitrary subset S ⊂ X is of
class Ck if for each point x ∈ S there is some open neighborhood B of x in X over which

ξ | S ∩ B admits some extension to a cross-section of E of class Ck; notice that ‘class C0’

does not agree with ‘continuous’, in general, unless S is locally closed. We let Γk(S ; E)

denote the vector space formed by all the cross-sections of E over S of class Ck. For any

subset T of S we let

resS
T : Γk(S ; E) −→ Γk(T ; E) (50)

denote the linear map given by restriction from S to T .

Let ϕ : U ≈→ ϕU ⊂ Rn be any local C∞ coordinate chart for X. Also let τ : E | U ∼→
U ×KN be any C∞ vector-bundle trivialization for E over the domain of definition of the

chart. We can express an arbitrary cross-section ξ ∈ Γk(S ; E) locally over S ∩U in terms

of its component functions relative to τ, ϕ:

ξτ,ϕ := (ξ
τ,ϕ

1
, . . . , ξ

τ,ϕ

N ) := pr2 ◦ τ ◦ ξ ◦ ϕ−1 : ϕ(S ∩ U) → KN . (51)

For every multi-index α = (α1, . . . , αn) ∈ Nn of order |α| := α1 + · · · + αn ≤ k and for

every function f : V → K of class Ck which is defined on some open domain V ⊂ Rn, we

adopt the customary notational shorthand ∂α f :=
∂α1

∂tα1

1

· · · ∂
αn

∂tαn
n

f (conventionally we set

∂0

∂t0
i

f := f ). Let K be an arbitrary compact subset of U. For every natural number r ≤ k

and for every global cross-section ξ ∈ Γk(X; E) we set

pτ,ϕ,K,r(ξ) := max
I=1,...,N

max
α∈Nn,|α|≤r

sup
x∈K
|∂αξτ,ϕI (ϕx)|. (52)

Evidently, this expression defines a seminorm pτ,ϕ,K,r on the vector space Γk(X; E). The

topology of k-th order local uniform convergence—shortly, Ck-topology—on Γk(X; E) is
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the locally convex topology generated by all such seminorms pτ,ϕ,K,r. Since E is locally

trivial and X is locally compact, this topology is necessarily separated (i.e. Hausdorff).

The Ck-topology makes Γk(X; E) into a Fréchet space (= complete, metrizable, locally

convex, topological vector space). When X is compact and k is finite, the Fréchet space

Γk(X; E) turns out to be normable.

In practice, we want to work with a slightly more flexible notion of ‘generating semi-

norm for the Ck-topology’. By a continuous norm p on E, we shall mean the datum, on

each vector-bundle fiber Ex, of a norm px : Ex → R≥0 depending on x in such a manner

that the function on E defined by e 7→ pprE
X e(e) is continuous. For example, every (Rie-

mannian or Hermitian, depending on whether E is real or complex) metric φ on E gives

rise to a continuous norm on E defined on each fiber Ex by the rule e 7→
√
φx(e, e); also,

given a continuous norm p on E, and given a similar norm q on a second vector bundle

F over X, on the hom vector bundle L(E, F) there is a continuous norm defined on each

fiber L(E, F)x = L(Ex, Fx) by the rule λ 7→ suppx(e)=1 qx(λe).

Lemma. Let ξ1, . . . , ξN be a local frame for E defined over some open set U ⊂ X. Let
K be a compact subset of U. Let p be a continuous vector-bundle norm on E | U. Then,
there exists some constant c > 0 such that if for any cross-section ξ ∈ Γ0(U; E) we write
ξ =

∑
I aIξI with aI ∈ C0(U) then maxI‖aI‖K ≤ c supx∈K px

(
ξ(x)

)
.

Proof. Put

c−1 = inf
x∈K

inf
|z1 |2+···+|zN |2=1

px
(
z1ξ1(x) + · · · + zNξN(x)

)
.

Whenever |aI(x)| > 0 for some point x ∈ K and for some index I, say I = 1, put bI :=

aI(x)/a1(x) for all I and let ρ2 := 1 + |b2|2 + · · · + |bN |2 ≥ 1. Then (1/ρ)2 + |b2/ρ|2 +
· · · + |bN/ρ|2 = 1, whence c−1 ≤ ρc−1 ≤ px

(
ξ1(x) + b2ξ2(x) + · · · + bNξN(x)

)
and therefore

c−1|a1(x)| ≤ px
(
ξ(x)

)
. �

Now, let Ω be any relatively compact open subset of X; by definition, its closure Ω is

compact. Let p be any continuous norm on E. Consider E as endowed with p, and write

E = (E, p). Finally, let A = {(ϕi, τi)} be a trivializing atlas for E consisting of local C∞

coordinate charts ϕi : Ui
≈→ Rn and C∞ vector-bundle trivializations τi : E |Ui

∼→ Ui×KN .

For every index i, put Bi := ϕ−1
i

(
B1(0)

)
, and for every point u ∈ Ui, let |−|i,u indicate the

norm on KN corresponding to pu under the linear bijection τi,u : Eu
∼→ KN . Assume that

A is locally finite, in the sense that the open sets Bi form a locally finite cover of X. Then,

for any non-negative integer r and for any cross-section ξ ∈ Γr(Ω; E), put

‖ξ‖CrΩ;E,A := max
i

max
α∈Nn,|α|≤r

sup
u∈Bi∩Ω

|∂αξτi,ϕi(ϕiu)|i,u. (53)

We call the function ‖−‖CrΩ;E,A thus defined on Γr(Ω; E) a standard Cr-norm. As an easy

consequence of the previous lemma, we see that any two standard Cr-norms on Γr(Ω; E)

are equivalent. We refer to the (normable) locally convex topology on Γr(Ω; E) generated

by any standard Cr-norm as the Cr-norm topology. By a Cr-norm on Γr(Ω; E) we simply

mean any norm which is equivalent to some standard Cr-norm.

Lemma A.1. Let X be a smooth manifold and let E be a smooth vector bundle over X.
Then for an arbitrary relatively compact open subset Ω ⊂ X and an arbitrary non-neg-
ative integer r ≤ k ≤ ∞ the restriction map resX

Ω
: Γk(X; E) → Γr(Ω; E) is continuous
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relative to the Ck-topology on the first space and to the Cr-norm topology on the second
space. If U is any open cover of X by relatively compact open subsets, the Ck-topology
on Γk(X; E) coincides with the weak topology induced by the family of linear maps

{resX
Ω

: Γk(X; E)→ Γr(Ω; E) | Ω ∈ U, 0 ≤ r finite integer ≤ k};

in particular, a sequence {ξi} of global cross-sections of E is Cauchy within Γk(X; E) if,
and only if, so is the sequence {resX

Ω
(ξi)} within Γr(Ω; E) for every Ω ∈ U, r ≤ k.

Lemma A.2. Let ω : E → F be a fiberwise linear morphism between two smooth vector
bundles E, F over a manifold X. For any relatively compact open subset Ω ⊂ X and for
any non-negative integer r, the following linear map is Cr-continuous.

Γr(Ω; E) −→ Γr(Ω; F), ξ 7→ ω ◦ ξ (54)

For any smooth mapping f : Y → X, the pullback vector bundle f ∗E has the fiber

product Y ×X E as its total manifold and the first projection Y ×X E → Y as its bundle

projection onto Y . By the universal property of the fiber product, for each Ck cross-sec-

tion ξ of E there exists a unique Ck cross-section f ∗ξ of f ∗E such that prE ◦ f ∗ξ = ξ ◦ f ,

where prE denotes the projection Y ×X E → E.

Lemma A.3. Let f : Y → X be a smooth mapping and let E be a smooth vector bundle
over X. Then, for any relatively compact open subset Ω ⊂ X and for any similar subset
O ⊂ Y such that f (O) ⊂ Ω, the pullback operation on cross-sections gives rise for each
non-negative integer r to a Cr-continuous linear map

Γr(Ω; E) −→ Γr(O; f ∗E), ξ 7→ f ∗ξ | O. (55)

We proceed to describe a notational device which will spare us the nuisance of keep-

ing track of irrelevant scaling factors throughout. Let S be an arbitrary set. We introduce

a binary relation � on the set Func≥0(S ) of all non-negative real valued functions on S

by defining f � g to mean there exists some constant C > 0 such that f ≤ Cg. Since this

binary relation is reflexive and transitive, setting f ≡ g ⇔ ( f � g & g � f ) gives rise to

an equivalence relation ≡ on Func≥0(S ). Note that � descends to a partial order ≤ on the

set of all ≡ equivalence classes of functions. Also note that for f , g, h ∈ Func≥0(S )

f ≡ g entails f + h ≡ g + h and f h ≡ gh.

In addition, notice that if λ : T → S is any mapping then f ≡ g ∈ Func≥0(S ) implies

f ◦ λ ≡ g ◦ λ ∈ Func≥0(T ). Hence, the operations of sum, product, and pullback make

sense for ≡ equivalence classes of functions. Now, for E, Ω and r as before, let ‖−‖CrΩ;E

(or simply ‖−‖CrΩ or even ‖−‖Cr when there is no risk of confusion) denote the ≡ class of

any Cr-norm within Func≥0

(
Γr(Ω; E)

)
.

Lemma A.4. Let E, F and G be any three smooth vector bundles over a given manifold
X. Let Ω be an arbitrary relatively compact open subset of X. Let η denote a variable
ranging over Γr(Ω; L(E, F)

)
and ϑ one ranging over Γr(Ω; L(F,G)

)
for some finite order

of differentiability r ≥ 0. Then, the following two estimates hold (the second of which for
r ≥ 1), where ϑ ◦ η stands for the cross-section of L(E,G) obtained by composing ϑ with
η pointwise.

‖ϑ ◦ η‖Cr ≤ ‖ϑ‖Cr‖η‖Cr (56a)

‖ϑ ◦ η‖Cr ≤ ‖ϑ‖Cr‖η‖Cr−1 + ‖ϑ‖Cr−1‖η‖Cr (56b)
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Lemma A.5. Let E, F be any two smooth vector bundles over a given manifold X. Let
Ω be an arbitrary relatively compact open subset of X. Let η denote a variable ranging
over Γr(Ω; Lis(E, F)

)
for some finite order of differentiability r, where Lis(E, F) indicates

the open subset of L(E, F) formed by all the linear isomorphisms. Then, letting η−1 stand
for the cross-section of L(F, E) obtained by inverting η pointwise, providing that r ≥ 1,

‖η−1‖Cr ≤ (‖η−1‖Cr−1)2‖η‖Cr . (57)

Appendix B. Haar integrals depending on parameters

The present appendix is a continuation of the preceding one. Again the material collected

here is mostly needed in Sections 5 and 6. The classical sources on Haar integration over

(topological or Lie) groupoids include [19, 20, 31].

Let p : Y → X be any smooth and submersive mapping. We say that a subset S ⊂ Y
is properly located (with respect to p) if the restriction of p to S is a proper mapping. We

say that a function α on Y is properly supported if its support suppα is properly located.

By a (volume) density along the fibers of p, we mean any global (non-vanishing) smooth

section of the density (line) bundle associated with the vertical subbundle ker T p ⊂ TY .

For any such density δ, the following two statements are true:

(i) If α is any properly supported Ck function on Y , the function
r
αδ on X obtained

by integration along the fiber is also of class Ck.

(ii) For any properly located subset S ⊂ Y , the operation of integration along the fiber

gives rise to a Ck-continuous linear map Ck
S (Y) → Ck(X), α 7→

r
αδ, where Ck

S (Y)

denotes the closed linear subspace of Ck(Y) formed by those functions α such that

suppα ⊂ S .

(Both claims are clear when Y
p
−→ X is the projection Rm × Rn pr

−→ Rm; the general case is

seen to reduce to this special case by a straightforward partition of unity argument based

on Lemmas A.1–A.3.)

Lemma B.1. For any normalized Haar system ν on a proper Lie groupoid Γ ⇒ M and

any choice of “parameter data” {P
f
−→ M, E} the Haar integration functional ϑ 7→

r
ϑ dν

given by (5a) is a Ck-continuous linear map of Γk(P f×t Γ; pr∗PE) into Γk(P; E).

Proof. Since the integration can be done componentwise relative to any local vector-bun-

dle trivialization for E over the domain of definition of a local coordinate chart for P, our

task reduces at once to the case of functions (“trivial coefficients”).

Let τ and c be a volume density along the target fibers and a non-negative function on

M as in the definition of ‘normalized Haar system’ reviewed in §1. The projection map

prP : P f×tΓ → P is a surjective submersion; also, the tangent map of the other projection

prΓ : P f×t Γ → Γ induces an identification of vector bundles ker(TprP) � pr∗Γ(ker T s)

which makes it possible to regard the pullback pr∗Γτ as a volume density along the fibers

of prP. Now, the Haar integration map on functions can be expressed as the composition

of two linear maps which by Lemma A.2 and the above statement (ii) are already known

to be Ck-continuous, namely,

Ck(P f×t Γ)
α 7→ (c◦s◦prΓ)α

// Ck
supp c◦s◦prΓ

(P f×t Γ)
α 7→

r
αpr∗

Γ
τ
// Ck(P). �
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In the course of the previous proof we have tacitly made use of the equivalence be-

tween the following two properties, for any function c defined on the base M of a proper

Lie groupoid Γ ⇒ M:

• The function c ◦ s on Γ is properly supported with respect to t : Γ → M.

• The set supp c ∩ ΓK is compact for every compact K ⊂ M.

A function which enjoys these properties is commonly referred to as a “cut-off” function.

The existence of cut-off functions on the base of any proper Lie groupoid, which implies

the existence of normalized Haar systems, can easily be established by adapting the proof

of [31, Proposition 6.11] from the continuous to the smooth case.

We shall say that a (non-empty) open subset U of the base M of a proper Lie groupoid

Γ ⇒ M is adjusted to a cut-off function c if supp c ∩ ΓU ⊂ U. If U is adjusted to c, then

the restriction of c to U will be a cut-off function for Ω := Γ | U ⇒ U. If ν = (τ, c) is a

normalized Haar system on Γ ⇒ M and if U ⊂ M is any open subset which is adjusted

to ν in the sense that it is adjusted to c, then ν |U := (τ |Ω, c |U) will be a normalized Haar

system on Ω⇒ U; moreover, given f : P→ M and E as in the statement of Lemma B.1,

for every continuous cross-section ϑ ∈ Γ0(P f×t Γ; pr∗PE),

(r
ϑ dν

) | f −1(U) =
r
ϑ | f −1(U) f×t Ω d(ν | U). (58)

Lemma B.2. Let Γ ⇒ M, ν, f : P→ M and E be as in the statement of Lemma B.1. Let
U be any non-empty, relatively compact, open subset of M which is adjusted to ν, and
let V be any non-empty, relatively compact, open subset of P such that f (V) ⊂ U. Then,
for every finite order of differentiability r ≥ 0, setting Ω = s−1(U) ∩ t−1(U), there exists a
unique Cr-continuous linear map ?© that solves the commutativity problem below.

Γr(P f×t Γ; pr∗PE)

res
P f ×tΓ

V f ×tΩ
��

ϑ 7→
r
ϑ dν

(5a)
// Γr(P; E)

resP
V

��

Γr(V f×t Ω; pr∗PE)
?©

// Γr(V; E)

(59)

Proof. We are going to make use the same notations as in the proof of Lemma B.1 with-

out further notice. A straightforward partition of unity argument shows that the restriction

maps in (59) are surjective. There will therefore be at most one solution to the problem

represented by (59). To confirm that one such solution exists, one needs to verify that for

every cross-section ϑ ∈ Γr(P f×t Γ; pr∗PE) which vanishes on V f×t Ω the cross-sectionr
ϑ dν ∈ Γr(P; E) also vanishes on V . Now, for every y ∈ f −1(U) we have c(sh) = 0 for

h ∈ Γ f (y) r s−1(U) because U is adjusted to c. So, whenever y ∈ V ,

w
ϑ(y, h) dν f (y)(h) =

w
ϑ(y, h)c(sh) dµ f (y)(h) = 0.

Reduction to the case of trivial coefficients is clear when V is so small that its closure

V lies within the domain of definition of some local trivializing chart for the vector bundle

E. For general V , we first choose a finite cover {Vi} of V by relatively compact open sets

so that E trivializes around each closure Vi, and then a partition of unity {gi} over V
subordinated to this cover in the sense that supp gi ⊂ Vi and

∑
i gi = 1 on V . Then

r
ϑ dν =

∑
i gi

r
ϑ dν =

∑
i

r
(gi ◦ prP)ϑ dν.
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Now each correspondence ϑ 7→
r

(gi ◦ prP)ϑ dν can be viewed as a composite linear map

Γr(V f×t Ω; pr∗PE)
ϑ 7→ (gi◦prP)ϑ

// Γr(V f×t Ω; pr∗PE)
res

//

Γr([V ∩ Vi] f×t Ω; pr∗PE)
?© for V∩Vi

// Γr
V∩supp gi

(V ∩ Vi; E)
extension by zero

// Γr(V; E),

the first, second, and last map being clearly Cr-continuous. The problem is thus reduced

to the case of functions.

Let g stand for the function c◦ s◦prΓ on Γ, and let W stand for the relatively compact

open subset V f×t Ω of P f×t Γ. We contend that g is a properly supported function with

respect to prP and moreover that

prP(W) ⊂ V and pr−1
P (V) ∩ supp g ⊂ W. (†)

To see this, notice that for every subset A ⊂ P

pr−1
P (A) ∩ supp(c ◦ s ◦ prΓ) ⊂ pr−1

P (A) ∩ pr−1
Γ

(
supp(c ◦ s)

)

= A f×t supp(c ◦ s). (‡)

Now, if A is compact then t−1
(
f (A)

) ∩ supp(c ◦ s) is compact too, since c ◦ s is properly

supported with respect to t because c is a cut-off function. This shows that g has to be

properly supported with respect to prP. If on the other hand in (‡) we take A = V then,

since f (V) ⊂ U and since U is adjusted to c,

supp(c ◦ s) ∩ t−1( f (V)
) ⊂ s−1(supp c) ∩ t−1(U) ⊂ Ω,

which establishes (†).
Now, let δ := pr∗Γτ (regarded as a volume density along the fibers of prP). Our Haar

integration functional ?© on functions coincides with the linear map

Cr(W)→ Cr(V), α 7→
r
αgδ

described as follows: (1) extend αg to some properly supported Cr function defined on

some “tube” W1 = pr−1
P (V1) with V1 ⊃ V open [this is always possible in virtue of (†)];

(2) integrate the extended function against δ |W1; (3) restrict the result of the integration

from V1 to V . We leave it as an exercise for the reader to verify that the linear map thus

obtained is Cr-continuous. (Hint: By using a suitable partition of unity, reduce the proof

to a computation in local coordinates.) �
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