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We study tuples whose elements are positive integers of maximum value x and
impose certain coprimality conditions on pairs of elements. T6th [10] used an
inductive approach to give an asymptotic formula for the number of height
constrained tuples that exhibit pairwise coprimality. For a generalisation
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Abstract

Given a set A = {(i1,71),---, (im,Jm)} we say that (ai,...,a,)
exhibits pairwise coprimality if ged(a;,a;) = 1 for all (4,5) € A. For
a given positive x we give an asymptotic formula for the number of
(a1,...,ay) with 1 < aq,...,a, < x that exhibit pairwise coprimality.
Our error term is better than that of Hu.

Introduction

from pairwise coprimality to v-wise coprimality see [6].
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Recently Ferndndez and Fernandez, in [I] and in subsequent discussions
with the second author, have shown how to calculate the probability that
v positive integers of any size exhibit coprimality across given pairs. Their
approach is non-inductive. Hu [7] has estimated the number of (ay,...,a,)
with 1 < aq,...,a, < x that satisfy given coprimality conditions on pairs of
elements of the v-tuple. His inductive approach gives an asymptotic formula
with an upper bound on the error term of O(z"~"log" ™" z).

Coprimality across given pairs of elements of a v-tuple is not only inter-
esting in its own right. To date it has been necessary for quantifying v-tuples
that are totally pairwise non-coprime, that is, ged(i, j) > 1forall 1 <i,57 <w
(see [7],[5] and [8] and its comments regarding [2]).

Our main result gives a better error term than that of [7]. Unlike [7] our
approach is non-inductive.

We use a graph to represent the required primality conditions as fol-
lows. Let G = (V, E) be a graph with v vertices and e edges. The set of
vertices, V', will be given by V' = {1,...,v} whilst the set of edges of G,
denoted by FE, is a subset of the set of pairs of elements of V. That is,
E c {{1,2},{1,3},...,{r,s},....{v — 1,v}}. We admit isolated vertices
(that is, vertices that are not adjacent to any other vertex). An edge is al-
ways of the form {r, s} with r # s and {r,s} = {s,r}. For each real x > 0
we define the set of all tuples that satisfy the primality conditions by

G(z) = {(ay,...,a,) € N" 1 a, <z, ged(a,,as) =1if {r,s} € E}.

We also let g(x) = card(G(x)), and denote with d the maximum degree of
the vertices of G. Finally, let Qg(x) = 1+asx®+- - -+a,z" be the polynomial
associated to the graph G defined in Section 2.

Our main result is as follows.

Theorem 1. For real x > 0 we have
g(z) = 2¥pe + O(z" ' log” z),

where

pe= ][] Qc(%)-

» prime



2 Preparations

As usual, for any integer n > 1, let w(n) and o(n) be the number of distinct
prime factors of n and the sum of divisors of n respectively (we also set
w(1l) = 0). We also use p to denote the Mobius function, that is, u(n) =
(—1)¥(™ if n is square free, and p(n) = 0 otherwise. P7(n) denotes the
largest prime factor of the integer n > 1. By convention P*(1) = 1. We
recall that the notation U = O(V) is equivalent to the assertion that the
inequality |U| < ¢|V| holds for some constant ¢ > 0. We will denote the least
common multiple of integers z1,...,x, by [x1,...,Z,].

For each F' C E, a subset of the edges of G, let v(F') be the number of
non-isolated vertices of F. We define two polynomials Q¢ (z) and Qf(x) by

Qa(r) = Z(—l)card(p)x”(p), Qi(r) = Z 2P

FcrE FCE

In this way we associate two polynomials to each graph. It is clear that the
only F' C E for which v(F) = 0 is the empty set. Thus the constant term
of Qa(x) and Qf(x) is always 1. If F is non-empty then there is some edge
a={r,s} € F so that v(F) > 2. Therefore the coefficient of x in Qs (x) and
Q% (z) is zero. Since we do not allow repeated edges the only case in which
v(F) = 2 is when F consists of one edge. Thus the coefficient of 22 in Qf ()
is e, that is, the number of edges e in G. The corresponding x? coefficient in
Qq(x) is —e.

As a matter of notation we shall sometimes use r and s to indicate vertices.
The letter v will always denote the last vertex and the number of vertices in
a given graph. Edges will sometimes be denoted by a or b. As previously
mentioned, we use d to denote the maximum degree of any vertex and e to
denote the number of edges. We use terms like e; to indicate the j-th edge.

We associate several multiplicative functions to any graph. To define
these functions we consider functions £ — N, that is, to any edge a in the
graph we associate a natural number n,. We call any of these functions,
a — ng, an edge numbering of the graph. Given an edge numbering we
assign a corresponding vertex numbering function r — N, by the rule N, =
[Mbyy -y M, |, where E. = {by,...,b,} C E is the set of edges incident to r.
We note that in the case where r is an isolated vertex we will have E, = ()
and N, = 1. With these notations we define

fatm)=" " plm)---p(ne), fm)y= Y |u(m)---plno)l,

N1Na2---Ny=m N1Na2---Ny=m



where the sums extend to all possible edge numberings of G.
The following is interesting in its own right but will also be used to prove
Theorem [I1

Proposition 2. Let f : N — C be a multiplicative function. For any graph
G the function

gra(m) = Z f(na) - f(ne)

NiNy--Ny=m
1s multiplicative.
Proof. Let m = mymy where ged(my,me) = 1. Let us assume that for a
given edge numbering of G we have Ny --- N, = m. For any edge a = {r, s}
we have n,|N, and n,|N,. Therefore n?|m. It follows that we may express

Mg 8S Ng = Ny oMo q With 1y 4|my and ng 4|me. In this case ged(ny 4, n2y) = 1,
and we will have

NT - [nb17 s 7nbu] = [nl,bu s 7n1,bv][n2,b17 s 7n2,bu]7

f(ny) - f(ne) = f(nia) - f(nae) - f(naa) -+ fnge).

Since each edge numbering n, splits into two edge numberings n; , and ng,,

we have
my = N1,1 e 'NLva mg = N2,1 e 'N2,v-

Thus

gra(mima) = gra(m)

= Z fnag) - f(nue) - f(non) -+ f(nae)

Ni,1---N1,v-N2,1---N2 y=mima

— Z f(nia) - f(nie) Z f(na1) - f(nae)

Nij1--N1py=m1 N2 1---N2 y=m2

= grc(mi)gs.c(ma),
which completes the proof. O
We now draw the link between f& (p*) and Qf ().



Lemma 3. For any graph G and prime p the value fZ(p*) is equal to the
coefficient of z* in QfL(x). In the same way the value of fa(p*) is equal to
the coefficient of x* in Qg (x).

Proof. First we consider the case of fg(p*). Recall that

Qola) =Y (=)= fo@) = Yy ulm)---pulne),

FcrE Np---Ny=pk

where the last sum is on the set of edge numberings of G. In the second sum
we shall only consider edge numberings of G giving a non null term. This
means that we only consider edge numberings with n, squarefree numbers.
Notice also that if N;--- N, = p*, then each n, | p*. So the second sum
extends to all edge numbering with n, € {1,p} for each edge a € E and
satisfying Ny --- N, = p".

We need to prove the equality

> (= = N () - palne). (1)

FCE, v(F)=k Ni-+-Ny=pF

To this end we shall define for each F© C E with v(F) = k a squarefree
edge numbering o(F) = (n,) with Ny --- N, = p*, n, € {1, p} and such that
(—1)edE) = p(ng)--- p(n.). We will show that o is a bijective mapping
between the set of ' C E with v(F) = k and the set of edge numberings
(ng) with Ny - -+ N, = p¥. Thus equality (II) will be established and the proof
finished.

Assume that F' C E with v(F) = k. We define o(F) as the edge num-
bering (n,) defined by

ng,=pforanya e F, n,=1forae E\F.

In this way it is clear that u(n;)---u(n.) = (=14 Also N, = p or
N, = 1. We will have N, = p if and only if there is some a = {r,s} € F.
So that N --- N, = p*¥) because by definition v(F) is the cardinality of the
union Uy, gepir s}

The map o is invertible. For let (n,) be an edge numbering of squarefree
numbers with Nj --- N, = p* and n, € {1,p}. If o(F) = (n,) necessarily we
will have F' = {a € E : n, = p}. It is clear that defining F in this way we
will have v(F') = k and o(F') = (n,).

Therefore the coefficient of ¥ in Q¢(x) coincide with the value of fg(p*).

The proof for f is the same observing that for o(F') = (n,) we will have
1= [(=1)= O] = |u(na) - p(ne)]. 0



3 Proof of Theorem [l

We prove the theorem in the following steps:

1. We show that

2. We show that

[e.e] (e} v

9(z) :xvz Z )HNLﬂLR—l—O(x”_llogdx),
n1=1 ne=1 r=1 r
where
B<YY Y T Y ...Zﬂ(nl)...u<ne)HNi,
J=1nm=1 nj—1=1ln;>rn;1=1 ne=1 =17

3. We show that |R| = O(z*'log® z).

We start with the following sieve result which generalises the sieve of Eratos-
thenes.

Lemma 4. Let X be a finite set, and let Ay, Ay, ..., A, C X. Then
k
card <X\UAj> = > (=)™ card(A),
J=1 Jc{1,2,...k}

where Ag = X, and for J C {1,2,...,k} nonempty

A; =) A

jed
To prove Theorem [l let X be the set
X ={(a1,...,a,) eN":q, <z, 1<r <o}

Our set G(z), associated to the graph G, is a subset of X. Now for each
prime p < z and each edge a = {r, s} € G define the following subset of X.

Ap,a = {(ab cee aa'v) e X :p|a'7“>p|a'8}‘
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Therefore the tuples in A, , are not in G(z). In fact it is clear that

G(x) = X\ | Apas

acl

p<z
where E denotes the set of edges in our graph GG. We note that we have an
A, . for each prime number less than or equal to z and each edge a € E.
Denoting P, as the set of prime numbers less than or equal to x we can
represent each A,, as A; with j € P, x E. We now apply Lemma [4] and
obtain

glx)= D (=)™ card(4,). (2)

JCPyxXE

We compute card(A;) and then card(.J). For card(A;) we have

J = {(p1761)7"'a(pm76m)}a AJ: ﬂApj76j'
j=1
Therefore (ay, ..., a,) € Ay is equivalent to saying that pj|a,,,p;|as, for all

1 < j < m, where e; = {r;,s;}. We note that if p; ,...,p;, are the primes
associated in J with a given edge a = {r, s}, then the product of p;, ---p;,
must also divide the values a, and a, associated to the vertices of a. Let
T, C P, consist of the primes p such that (p,a) € J. In addition we define

Ng = Hp>

p€T,

observing that when 7, = () we have n, = 1. Then (ay,...,a,) € Ay is
equivalent to saying that for each a = {r, s} appearing in J we have n, | a,
and n, | as. In this way we can define J by giving a number n, for each edge
a. We note that n, will always be squarefree, and all its prime factors will
be less than or equal to . We also note that (aq,...,a,) € A, is equivalent
to saying that n,|a, for each edge a that joins vertex r with another vertex.

Then for each vertex r, consider all the edges a joining r to other vertices,
and denote the least common multiple of the corresponding n,’s by N,. So
(a1,...,a,) € Ay is equivalent to saying that N,|a,. The number of multiples
of N, that are less than or equal to x is |z/N,.|, so we can express the number



of elements of A; as

card(A;) = H L%J (3)

r=1
We now compute card(J). This is the total number of prime factors
across all the n;. As mentioned before n; is squarefree, so

(—1) D = (—1)25=1°0) = p(ny) - p(ne), (4)

where the summations are over all squarefree n; with P*(n;) < x. Substi-
tuting ([B) and () into (2) yields

gle) = iimn) e IT| 5]

r=1

At first the sum extends to the (nq,...,n.) that are squarefree and have
all prime factors less than or equal to x. But we may extend the sum to
all (n1,...,n.), because if these conditions are not satisfied then the corre-
sponding term is automatically 0. In fact we may restrict the summation to
the n, < x, because otherwise for a = {r, s} we have n, | N, and |z/N, | = 0.
Therefore

)= 3 5wt -u<n6>£11 Eal

We now seek to express g(x) as a multiple of z¥ plus a suitable error term.
Observe that for all real zq, 2o, 23 > 0,

|21 [22] | 23] = 212023 — 2120023} — 21{20} (23] — {2z} [22]) [ 23],

where {y} denotes the fractional part of a number y.



Applying a similar procedure, with v factors instead of 3, we get

glr)= > -

1<ni<x

1<ni1 <z

Z p(ny) -

1<n.<zx

1<ne<zx

Z p(na) -

1<ne<zx

--u(ne)gﬁ
Z p(ng) - -
{5

>

1<ni1 <z

- Z Z N(”l)"'“(ne)HNir+ZRk’

1<n1<z 1<ne<z

> ) plne)

1<ne<zx

where for 1 < k <,

I Y [ B Y|

1<ni <z 1<ne<z

with the obvious modifications for 7 = 1 and j = v. We then have

xr X xXr x
R < cop(ng)|— e
RS 3 e 3 Iuln) | pe g
SN1sST SNeST
_ Ca r(m)
< v 1 )
<oty Coxlm)
Pt+(m)<z
where
Cax(m) = > [(na) - pu(ne)-

mznlgr-gu,r;ék Nr
By similar reasoning to that of Proposition 2] the function Cg x(m) can be
shown to be multiplicative. The numbers Cg ;(p®) do not depend on p, and
Cer(p*) =0 for o > v. So we have

Z CG7k(m) < H <1 + CGJf(p) + CG7k(p2)

_|_ e e — VT 7
2
Pt+(m)<z p p

p’l)

CG,k(p”))
p<x

_ O(lOgCG,k(p) ),



where Cg ;(m) is the number of solutions (ny, ..., n.), with n; squarefree, to

I »=m (6)

1<r<v,r#k

Let hj denote the degree of vertex k. It is easy to see that for a prime p
we have Cgi(p) = hg. The solutions are precisely those with all n; = 1,
except one ny, = p, where £ should be one of the edges meeting at vertex
k. Therefore the maximum number of solutions occurs when k is one of the
vertices of maximum degree. So if we let d be this maximum degree, then
the maximum value of Cg x(p) is d. Therefore

|Ri| = Oz~ log” ). (7)

Substituting (7)) into (5]) we obtain

v

oa) =2 3 o 3 ) uln) [] 5+ OG hogta). ()

1<ni<z 1<ne<z r=1
We require the following lemma.

Lemma 5.

v

1<ni1 <z 1<ne<zx r=1

Proof. We have

N0 DI SRR IIRT) § (ES o R L0 )

1<ni <z 1<n.<z r=1 m=1

where

fEm)y=">" |ulna)---plne)l.

m=[[7_; N»

We note that f3(m) is multiplicative by Proposition It is clear that
f&(1) = 1. Also, each edge joins two vertices r and s and thus n;|E, and
n;j|Es. This means that
2
n; ‘ H N,.
r=1

10



It follows that )
H NT ;é p7
r=1

for any prime p and so fZ (p) = 0. We also note that a multiple (ny,...,n.)
only counts in fg (m) if |u(ny) - - - p(ne)| = 1. Therefore each n; is squarefree.
So each factor in

I8 (10)

brings at most a p. So the greatest power of p that can divide (I0) is p”. So
f&(p™) =0 for @ > v. Recall that fZ(p®) is equal to the coefficient of 2 in
Q4&(x). So, by Lemma 3, we note that fZ (p®) depends on « but not on p.
Putting all this together we have

p? pY

iiféém): I1 (1+f5(p2>+...+@)<+oo~ (11)

p prime

Substituting (L)) into (@) completes the proof. O

Returning to (8) it is now clear from Lemma [f] that

v

po=1lm Y - Y u(nl)~-~u(ne)l_[i

1<n <z 1<n.<z r=1""T"

is absolutely convergent. In fact,

g(z) = 2°pe + R+ O(x" log® 2), (12)
where . - )
po= 33 ulm) - utn) [T 5
ni=1 Ne=1 r=1 r
and
LETED S5 DI SID DD DI DI D RRACRI) |
j=1n1=1 nj_1=1n;>rn;j1=1 ne=1 r=1 r

11



Now

c= L ) = 30 LA

m=1

We note that fg(m) is multiplicative by Proposition 2l In a similar way to
Lemma [l we have f(1) =1, fa(p) = 0 and fe(p*) =0, for all @ > v. Thus,
by the multiplicativity,

ﬂGIZ_IlfG;m) =11 <1+ng§§2) +...+fG1§vpv)),

p prime

Therefore, by Lemma 3] we have

- 1T @ ( ) (13)

p prime

Substituting (I3) into (IZ), it only remains to show that |R| = O(z"*log® z).
We have

LEFED 35 DI DI DI SIS DI IO RRTCRl) § =
j=1n1=1 nj_1=1ln;>xn;y1=1 ne=1 r=1""

All terms in the sum on j are analogous; so assuming that the first is the
largest, we have

EYEED S DD DI SINUHENUAL) | (=5
n1>xne=1n;1=1 ne=1 r=1 r

where (] is a function of e and not z. So it will suffice to show that

Rii= 3033 ) - plne) |H Oflog'z).  (14)

ni>x na=1 ne=1

We will treat an edge e; = {r, s} differently to the other edges. For a given
(nq,...,ne) of squarefree numbers we have two special N,,

N, =[n1,nay, .- -Na,|, Ns=[n1,ns,...n5]

We also remark that we may have N, = [n4] or N, = [n4].

12



For any edge e; with 2 < j < e we define d; = ged(nq,n;). Since the n;
are squarefree, we have

n; = d;ny, djlny, ged(ng,nj) = 1.
Then it is clear that
N, = [ny,dayn, s oo dong, | =malng,, .. ong, ], Ne=mning, ..., ng].
For any other vertex with ¢ # r and t # s, we have

Nt = [ntn s ?ntm] = [dhn;l? s adtmn;m] = [dtw s adtm][n;p cot ?n;mL

where m will vary with ¢. Substituting the equations for N,, Ny and N, into
the definition of R; in (I4]) we obtain

=PI SR SICRRIICATESc gy |

n1>x no=1 ne=1 ;Stg;ﬁv
t#r, t#s
|p(ny)]| Z Z Z Z |M ng) - - p(ne)]
- Z /
ni>x nl da|n1 de|n n2_1 T O‘k] [nﬁl ’ nﬁl]
1
X
1<H< tl,...,dtm][nél,...,nan]
t#r, t#s
-y Iy T
n1> dolni  delny 1<t<v iy m]
| | t#r, t;és
o0 o
[u(dany) - - - p(deny)| 1
X -
nzjl nzjl LRI nak”nﬁl""’nlﬁl] 1<];£v [nll‘/l"'wnftm]
t#r, t#£s
n 1
ED LD SIS SV ATTATIS | E—_—
nl [dt17 ceey dtm]
ni>x da|n1 de|n t;ﬁgt%;
r, s
o0 o0
[u(nf) - - - plng)| 1
X ce ——
7; T; P A L Y 1<11v g, ..., ng ]
t#r, t#£s

13



The product

o o

3 |(ny) - - - p(ne)| 11 1
= s /P A L PR Y \2ree ng,,...,ng |
t#r, t#s

is finite by Lemma 5] (but this time considering the graph G without the edge
{r, s}). Thus, for some constant C}, we have

R1<Cz|ﬂn1|z Z|/~Ld2 (d,)] H %clt]

ni>x daln1  delni 1<t<v (s
t#r, t#s
e Z'“ o), (15)
ni>x

where the arithmetic function fg . is defined as follows.

1
faem) = > ) o)) TT gy

doln  deln 1<t<y CTCT
t#r, t#s
We note that there is a factor [dy,,...,d;, ] for each vertex other than r or

s. The function fg . is a multiplicative function. We have fq .(p*) = fg.(p)
for any power of a prime p with k > 2, because in the definition of fg .(p")
only the divisors 1 and p of p* give non null terms. When n = p we have

where A; is the number of ways that

I 1k(do) - p(do)llde, - - i, ] =1,

1<t<v
t#r, t#£s

where every divisor in the product dj, | n = p can only be 1 or p. Clearly
A; < 2¢71 do not depend on p, and so there must be a number w, independent
of p, such that

fa.e@") = faelp) < (1 + %)w .

14



Since fg . is multiplicative we have, for any squarefree n,

mwsﬂﬁﬁfz@?f,wwﬂ. (16)

Substituting (I6) into (I5)) yields

el (a(n)\" 1 (o))"
msG) S5 ) serm(5r
n>r n>x
It is well known that o(n) = O(nloglogn) (see, for example, [3]), and thus
logl v
r - o (LEeetl) (17)

Comparing (I7) with (I4)) completes the proof of Theorem [II
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