
ar
X

iv
:1

40
3.

31
77

v4
  [

m
at

h.
D

G
] 

 1
3 

M
ay

 2
01

5

COMPLETE λ-HYPERSURFACES OF WEIGHTED

VOLUME-PRESERVING MEAN CURVATURE FLOW

QING-MING CHENG AND GUOXIN WEI

Abstract. In this paper, we introduce a definition of λ-hypersurfaces of weighted
volume-preserving mean curvature flow in Euclidean space. We prove that λ-
hypersurfaces are critical points of the weighted area functional for the weighted
volume-preserving variations. Furthermore, we classify complete λ-hypersurfaces
with polynomial area growth andH−λ ≥ 0, which are generalizations of the results
due to Huisken [19], Colding-Minicozzi [11]. We also define a F -functional and
study F -stability of λ-hypersurfaces, which extend a result of Colding-Minicozzi
[11]. Lower bound growth and upper bound growth of the area for complete and
non-compact λ-hypersurfaces are also studied.

1. Introduction

LetX :M → Rn+1 be a smooth n-dimensional immersed hypersurface in the (n+1)-
dimensional Euclidean space Rn+1. A family X(·, t) of smooth immersions:

X(·, t) :M → R
n+1

with X(·, 0) = X(·) is called a mean curvature flow if they satisfy

∂X(p, t)

∂t
= H(p, t),

where H(t) = H(p, t) denotes the mean curvature vector of hypersurface Mt =
X(Mn, t) at point X(p, t). Huisken [17] proved that the mean curvature flow Mt

remains smooth and convex until it becomes extinct at a point in the finite time.
If we rescale the flow about the point, the rescaling converges to the round sphere.
An immersed hypersurface X :M → Rn+1 is called a self-shrinker if

H + 〈X,N〉 = 0,

where H and N denote the mean curvature and the unit normal vector of X :
M → Rn+1, respectively. 〈·, ·〉 denotes the standard inner product in Rn+1. It is
known that self-shrinkers play an important role in the study of the mean curvature
flow because they describe all possible blow ups at a given singularity of the mean
curvature flow.
For n = 1, Abresch and Langer [1] classified all smooth closed self-shrinker curves
in R2 and showed that the round circle is the only embedded self-shrinker. For
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n ≥ 2, Huisken [19] studied compact self-shrinkers. He proved that if M is an n-
dimensional compact self-shrinker with non-negative mean curvature in Rn+1, then
X(M) = Sn(

√
n). In the remarkable paper [11], Colding and Minicozzi have classi-

fied complete self-shrinkers with non-negative mean curvature and polynomial area
growth (which is called polynomial volume growth in [11] and [20]) in Rn+1. We
should remark that Huisken [20] proved the same results if the squared norm of the
second fundamental form is bounded. Colding and Minicozzi [11] have introduced a
notation of F -functional and computed the first and the second variation formulas of
the F -functional. They have proved that an immersed hypersurface X :M → Rn+1

is a self-shrinker if and only if it is a critical point of the F -functional. Furthermore,
they have given a complete classification of the F -stable complete self-shrinkers with
polynomial area growth.
On the other hand, Huisken [18] studied the volume-preserving mean curvature flow

∂X(t)

∂t
= −h(t)N(t) +H(t),

where X(t) = X(·, t), h(t) =
∫
M

H(t)dµt∫
M

dµt
and N(t) is the unit normal vector of X(t) :

M → Rn+1. He proved that if the initial hypersurface is uniformly convex, then the
above volume-preserving mean curvature flow has a smooth solution and it converges
to a round sphere. Furthermore, by making use of the Minkowski formulas, Guan
and Li [16] have studied the following type of mean curvature flow

∂X(t)

∂t
= −nN(t) +H(t),

which is also a volume-preserving mean curvature flow. They have gotten that the
flow converges to a solution of the isoperimetric problem if the initial hypersurface
is a smooth compact, star-shaped hypersurface.
In this paper, we consider a new type of mean curvature flow:

(1.1)
∂X(t)

∂t
= −α(t)N(t) +H(t),

with

α(t) =

∫

M
H(t)〈N(t), N〉e− |X|2

2 dµ
∫

M
〈N(t), N〉e− |X|2

2 dµ
,

where N is the unit normal vector of X :M → Rn+1. We define a weighted volume
of Mt (see, section 2) by

V (t) =

∫

M

〈X(t), N〉e−
|X|2

2 dµ.

We can prove that the flow (1.1) preserves the weighted volume V (t). Hence, we
call the flow (1.1) a weighted volume-preserving mean curvature flow.
The properties of solutions of the weighted volume-preserving mean curvature flow
(1.1) will be studied in Cheng and Wei [9].
This paper is organized as follows. In section 2, we give a definition of the weighted
volume and the first variation formula of the weighted area functional for all weighted
volume-preserving variations is given. As critical points of it, λ-hypersurface is
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defined. Self-similar solutions of the weighted volume-preserving mean curvature
flow is considered. In section 3, the basic properties of λ-hypersurfaces are studied.
In section 4, we give a classification for compact λ-hypersurfaces with H − λ ≥
0. In sections 5 and 6, we define F -functional. The first and second variation
formulas of F -functional are proved. Notation of F -stability and F -unstability of
λ-hypersurfaces are introduced. We prove that spheres Sn(r) with r ≤ √

n or
r >

√
n+ 1 are F -stable and spheres Sn(r) with

√
n < r ≤

√
n+ 1 are F -unstable.

In section 7, we study the weak stability of the weighted area functional for the
weighted volume-preserving variations. In section 8, a classification for complete
and non-compact λ-hypersurfaces with polynomial area growth and H − λ ≥ 0
is given. In sections 9 and 10, the area growth of complete and non-compact λ-
hypersurfaces are studied.

Acknowledgement. A part of this work was finished when the first author visited
to Beijing Normal University. We would like to express our gratitude to Professor
Tang Zizhou and Dr. Yan Wenjiao for warm hospitality.

2. The first variation formula and λ-hypersurfaces

Let X : Mn → Rn+1 be an n-dimensional connected hypersurface of the (n +
1)-dimensional Euclidean space Rn+1. We choose a local orthonormal frame field
{eA}n+1

A=1 in Rn+1 with dual coframe field {ωA}n+1
A=1, such that, restricted to Mn,

e1, · · · , en are tangent to Mn. Then we have

dX =
∑

i

ωiei, dei =
∑

j

ωijej + ωin+1en+1

and

den+1 =
∑

i

ωn+1iei.

We restrict these forms to Mn, then

ωn+1 = 0, ωn+1i = −
n

∑

j=1

hijωj, hij = hji,

where hij denotes the component of the second fundamental form of X : Mn →
Rn+1. H =

∑n

j=1 hjjen+1 is the mean curvature vector field, H = |H| =
∑n

j=1 hjj is

the mean curvature and II =
∑

i,j hijωi⊗ωjen+1 is the second fundamental form of

X :Mn → Rn+1. Let

f,i = ∇if, f,ij = ∇j∇if, hijk = ∇khij and hijkl = ∇l∇khij ,

where ∇j is the covariant differentiation operator.The Gauss equations and Codazzi
equations are given by

(2.1) Rijkl = hikhjl − hilhjk,

(2.2) hijk = hikj,
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where Rijkl and hijk denote components of curvature tensor and components of the
covariant derivative of hij , respectively. Furthermore, we have the Ricci formula:

(2.3) hijkl − hijlk =

n
∑

m=1

himRmjkl +

n
∑

m=1

hmjRmikl.

For a constant vector a ∈ Rn+1, one has

〈X, a〉,i = 〈ei, a〉, 〈N, a〉,i = −
∑

j

hij〈ej , a〉,

〈X, a〉,ij = hij〈N, a〉,

〈N, a〉,ij = −
∑

k

hijk〈ek, a〉 −
∑

k

hikhjk〈N, a〉.

We call X(t) is a variation of X if X(t) : M → Rn+1, t ∈ (−ε, ε) is a family of
immersions with X(0) = X . For X0 ∈ Rn+1 and a real number t0, we define a
weighted area function A : (−ε, ε) → R by

A(t) =

∫

M

e
− |X(t)−X0|

2

2t0 dµt,

where dµt is the area element of M in the metric induced by X(t). The weighted
volume function V : (−ε, ε) → R is defined by

V (t) =

∫

M

〈X(t)−X0, N〉e−
|X−X0|

2

2t0 dµ.

In this paper, we only consider compactly supported variations. By a direct calcu-
lations, we have the following first variation formulas of A(t) and V (t):

Lemma 2.1.

(2.4)
dA(t)

dt
=

∫

M

(

−〈X(t)−X0,
∂X(t)
∂t

〉
t0

−H(t)〈∂X(t)

∂t
, N(t)〉

)

e
− |X(t)−X0|

2

2t0 dµt,

(2.5)
dV (t)

dt
=

∫

M

〈∂X(t)

∂t
, N〉e−

|X−X0|
2

2t0 dµ.

Let ∂X(t)
∂t

= W (t). Then the vector field ∂X(t)
∂t

|t=0 =W (0) = W is called a variation
vector field. Set f(t) = 〈W (t), N(t)〉, where N(t) is the normal vector ofMt, N(0) =
N . In this paper, we only consider the normal variation vector field, which can be

expressed as ∂X(t)
∂t

|t=0 = fN . We say a variation ofX is a weighted volume-preserving
variation if V (t) = V (0) for all t, that is

(2.6)

0 =
dV (t)

dt
=

∫

M

〈∂X(t)

∂t
, N〉e−

|X−X0|
2

2t0 dµ

=

∫

M

f(t)〈N(t), N〉e−
|X−X0|

2

2t0 dµ.

We can prove the following lemma using the same method as that of the lemma 2.4
of [3].
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Lemma 2.2. Given a smooth function f :M → R with
∫

M
fe

− |X−X0|
2

2t0 dµ = 0, there
exists a weighted volume-preserving normal variation such that its variation vector
field is fN .

Let

λ =
1

A

∫

M

(〈X −X0

t0
, N〉+H)e

− |X−X0|
2

2t0 dµ,

with

A =

∫

M

e
− |X−X0|

2

2t0 dµ

and define J : (−ε, ε) → R by

J(t) = A(t) + λV (t),

for constant λ. Then, one has

Proposition 2.1. Let X : M → Rn+1 be an immersion. The following statements
are equivalent with each other:

(1) 〈X−X0

t0
, N〉+H = λ.

(2) For all weighted volume-preserving variations, A
′
(0) = 0.

(3) For all arbitrary variations, J
′
(0) = 0.

Proof. From Lemma 2.1, we have (1)⇒ (3) and (3)⇒ (2). We next prove (2)⇒ (1).
Assume that at a point p ∈M , we have (〈X−X0

t0
, N〉+H−λ)(p) 6= 0. We can assume

that (〈X−X0

t0
, N〉+H − λ)(p) > 0. Let

M+ = {q ∈M : (〈X −X0

t0
, N〉+H − λ)(p) > 0},

M− = {q ∈M : (〈X −X0

t0
, N〉+H − λ)(p) < 0}.

Let ϕ and ψ be non-negative real smooth functions on M such that

p ∈ suppϕ ⊂M+, suppψ ⊂M−,

and
∫

M

(ϕ+ ψ)(〈X −X0

t0
, N〉+H − λ)e

− |X−X0|
2

2t0 dµ = 0.

Since
∫

M
(〈X−X0

t0
, N〉+H−λ)e−

|X−X0|
2

2t0 dµ = 0, we know that such a choice is possible.

Let f = (ϕ + ψ)(〈X−X0

t0
, N〉 + H − λ), then

∫

M
fe

− |X−X0|
2

2t0 dµ = 0. By Lemma 2.2,
we get a weighted volume-preserving variation such that its variation vector field is
fN . From our assumption,

A
′

(0) =

∫

M

(−〈X −X0, N〉
t0

−H)fe
− |X−X0|

2

2t0 dµ = 0.
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Hence, we have

(2.7)

0 =

∫

M

f(〈X −X0

t0
, N〉+H − λ)e

− |X−X0|
2

2t0 dµ

=

∫

M

(ϕ+ ψ)(〈X −X0

t0
, N〉+H − λ)2e

− |X−X0|
2

2t0 dµ

> 0.

It is a contradiction. It follows that 〈X−X0

t0
, N〉+H = λ. �

Definition 2.1. Let X :M → Rn+1 be an n-dimensional immersed hypersurface in
the Euclidean space Rn+1. If 〈X−X0

t0
, N〉 + H = λ holds, we call X : M → Rn+1 a

λ-hypersurface of the weighted volume-preserving mean curvature flow.

Remark 2.1. If λ = 0, then the λ-hypersurface is a self-shrinker of the mean curva-
ture flow. Hence, we know that the notation of the λ-hypersurface is a generalization
of the self-shrinker.

Theorem 2.1. Let X : M → Rn+1 be an immersed hypersurface. The following
statements are equivalent with each other:

(1) X :M → Rn+1 is a λ-hypersurface.
(2) X :M → Rn+1 is a critical point of the weighted area functional A(t) for all

weighted volume-preserving variations.
(3) X : M → Rn+1 is a hypersurface with constant weighted mean curvature

Hw = λ in Rn+1 with respect to the metric gAB = e
− |X−X0|

2

nt0 δAB, where the
weighted mean curvature and the mean curvature H are related by Hw =

e
− |X−X0|

2

2nt0 H.

Example 2.1. The n-dimensional sphere Sn(r) with radius r > 0 is a compact λ-
hypersurface in Rn+1 with λ = n

r
− r. It should be remarked that the sphere Sn(

√
n)

is the only self-shrinker sphere in R
n+1.

Example 2.2. For 1 ≤ k ≤ n − 1, the n-dimensional cylinder Sk(r) × R
n−k with

radius r > 0 is a complete and non-compact λ-hypersurface in Rn+1 with λ = k
r
− r.

We should notice that the cylinder Sk(
√
k)×Rn−k is the only self-shrinker cylinder

in Rn+1.

From [7], Chang has proved there exist a lot of complete embedded λ-curves Γ in
R2. Hence we have

Example 2.3. The n-dimensional hypersurfaces Γ × Rn−1 are complete embedded
λ-hypersurfaces, which are not self-shrinkers, in R

n+1.

Remark 2.2. For 1-dimensional self-shrinker in R2, Abresch and Langer [1] proved
the circle is the only compact embedded self-shrinker. But for λ-curve in R2, Chang
[7] has proved, for λ < 0, there are many compact embedded λ-curves other than
the circle. From the above examples, we know that there are a lot of examples of
complete embedded λ-hypersurfaces, which are not self-shrinkers, in Rn+1.
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Proposition 2.2. Let X : M → Rn+1 be a λ-hypersurface in the Euclidean space
Rn+1. If the mean curvature H is constant, then X : M → Rn+1 is isometric to
Sk(r)× R

n−k, 0 ≤ k ≤ n, locally.

Proof. Since X : M → R
n+1 is a λ-hypersurface, we have 〈X,N〉 +H = λ. If H is

constant, we get, for any 1 ≤ i ≤ n,

∇i〈X,N〉 = −λi〈X, ei〉 = 0,

where λi is the principal curvature of the λ-hypersurface. If λi0 6= 0 at a point p for
some i0, there exists a neighborhood U of p such that λi0 6= 0 in U . Hence, we know
〈X, ei0〉 = 0 in U . Thus,

X =
∑

j 6=i0

〈X, ej〉ej + 〈X,N〉N.

We obtain
ei0 = ∇i0X = −〈X,N〉λi0ei0 ,

that is, λi0(H − λ) = 1 is constant. Thus, on U , λi0 is constant. Therefore, the
λ-hypersurface is isoparametric. We obtain that X : M → Rn+1 is isometric to
Sk(r)× Rn−k, 0 ≤ k ≤ n, locally. �

Definition 2.2. A family of n-dimensional immersed hypersurfaces X(t) : M →
Rn+1 in the Euclidean space Rn+1 is called a self-similar solution of the weighted
volume-preserving mean curvature flow if X(t) = β(t)X holds, where β(t) > 0.

Proposition 2.3. A family of n-dimensional immersed hypersurfaces X(t) : M →
Rn+1 in the Euclidean space Rn+1 is a self-similar solution of the weighted volume-
preserving mean curvature flow if and only if X(t) =

√
1 + β0tX, where β0 is a

constant.

Proof. If X(t) : M → R
n+1 is a self-similar solution of the weighted volume-

preserving mean curvature flow, we have X(t) = β(t)X . Hence, the mean curvature
H(t) of X(t) satisfies

H(t) =
H

β(t)
.

Thus,

α(t) =

∫

M
H(t)〈N(t), N〉e− |X|2

2 dµ
∫

M
〈N(t), N〉e− |X|2

2 dµ
=

∫

M
He−

|X|2

2 dµ

β(t)
∫

M
e−

|X|2

2 dµ
.

From the equation of the weighted volume-preserving mean curvature flow, we have

(2.8)
∂β(t)

∂t
X⊥ =

1

β(t)

(

−α(0)N +H
)

.

We obtain
∂β(t)2

∂t
= β0 = constant. Since β(0) = 1, we have β(t) =

√
1 + β0t.

The inverse is obvious. �

Proposition 2.4. Let X : M → Rn+1 be a λ-hypersurface in the Euclidean space
R

n+1. If X(t) =
√
1 + β0tX is a self-similar solution of the weighted volume-

preserving mean curvature flow, then X : M → Rn+1 is isometric to Sk(r)× Rn−k,
0 ≤ k ≤ n, locally or V (0) = 0 and β0 = −2.



8 QING-MING CHENG AND GUOXIN WEI

Proof. Since X :M → Rn+1 is a λ-hypersurface, we have 〈X,N〉 +H = λ and

V (t) =

∫

M

〈X(t), N〉e− |X|2

2 dµ =
√

1 + β0tV (0).

Since X(t) =
√
1 + β0tX is a self-similar solution of the weighted volume-preserving

mean curvature flow, then β0 = 0 or V (0) = 0. If β0 = 0, then H is constant from
(2.8). According to the proposition 2.2, we know that X : M → R

n+1 is isometric
to Sk(r) × Rn−k, 0 ≤ k ≤ n, locally. If β0 6= 0, we have V (0) = 0 since V (t) is
constant. The (2.8) gives β0 = −2.

�

Definition 2.3. If X : M → Rn+1 is an n-dimensional hypersurface in Rn+1, we
say that M has polynomial area growth if there exist constant C and d such that for
all r ≥ 1,

(2.9) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)

dµ ≤ Crd,

where Br(0) is a standard ball in Rn+1 with radius r and centered at the origin.

3. Properties of λ-hypersurfaces

In this section, we give several properties of λ-hypersurfaces. We define an elliptic
operator L by

(3.1) Lf = ∆f − 〈X,∇f〉,
where ∆ and∇ denote the Laplacian and the gradient operator of the λ-hypersurface,
respectively. We should notice that the L operator was introduced by Colding and
Minicozzi in [11] for self-shrinkers.
By a direct calculation, for a constant vector a ∈ Rn+1, we have

L〈X, a〉 = ∆〈X, a〉 − 〈X,∇〈X, a〉〉
=

∑

i

〈X, a〉,ii −
∑

i

〈X, a〉,i〈X, ei〉

= 〈HN, a〉 −
∑

i

〈ei, a〉〈X, ei〉

= 〈HN, a〉 − 〈X, a〉+ 〈X,N〉〈N, a〉
= λ〈N, a〉 − 〈X, a〉,

L〈N, a〉 =
∑

i

〈N, a〉,ii −
∑

i

〈N, a〉,i〈X, ei〉

= 〈−H,iei − SN, a〉+
∑

i

〈X, ei〉〈
∑

j

hijej, a〉

= 〈X,N〉,i〈ei, a〉 − 〈SN, a〉+
∑

i

〈X, ei〉〈
∑

j

hijej, a〉

= −S〈N, a〉,
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where S =
∑

i,j h
2
ij is the squared norm of the second fundamental form.

1

2
L(|X|2) = 〈∆X,X〉+

∑

i

〈X,i, X,i〉 −
∑

i

〈X, ei〉〈X, ei〉

= n− |X|2 + λ〈X,N〉.
Hence, we have the following

Lemma 3.1. If X :M → Rn+1 is a λ-hypersurface, then we have

(3.2) L〈X, a〉 = λ〈N, a〉 − 〈X, a〉,

(3.3) L〈N, a〉 = −S〈N, a〉,

(3.4)
1

2
L(|X|2) = n− |X|2 + λ〈X,N〉.

The following lemma due to Colding and Minicozzi [11] is needed in order to prove
our results.

Lemma 3.2. If X :M → Rn+1 is a hypersurface, u is a C1-function with compact
support and v is a C2-function, then

(3.5)

∫

M

u(Lv)e−
|X|2

2 dµ = −
∫

M

〈∇u,∇v〉e−
|X|2

2 dµ.

Corollary 3.1. Let X : M → Rn+1 be a complete hypersurface. If u, v are C2

functions satisfying

(3.6)

∫

M

(|u∇v|+ |∇u||∇v|+ |uLv|)e−
|X|2

2 dµ < +∞,

then we have

(3.7)

∫

M

u(Lv)e−
|X|2

2 dµ = −
∫

M

〈∇u,∇v〉e−
|X|2

2 dµ.

Lemma 3.3. Let X :M → Rn+1 be an n-dimensional complete λ-hypersurface with
polynomial area growth, then

(3.8)

∫

M

(〈X, a〉 − λ〈N, a〉)e−
|X|2

2 dµ = 0,

(3.9)

∫

M

(

n− |X|2 + λ〈X,N〉
)

e−
|X|2

2 dµ = 0,

(3.10)

∫

M

〈X, a〉|X|2e−
|X|2

2 dµ

=

∫

M

(

2nλ〈N, a〉+ 2λ〈X, a〉(λ−H)− λ〈N, a〉|X|2
)

e−
|X|2

2 dµ,

(3.11)

∫

M

〈X, a〉2e−
|X|2

2 dµ =

∫

M

(

|aT |2 + λ〈N, a〉〈X, a〉
)

e−
|X|2

2 dµ,
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where aT =
∑

i < a, ei > ei.

(3.12)

∫

M

(

|X|2 − n− λ(λ−H)

2

)2

e−
|X|2

2 dµ

=

∫

M

{

(
λ2

4
− 1)(λ−H)2 + 2n−H2 + λ2

}

e−
|X|2

2 dµ.

Proof. Equations (3.8) and (3.9) just follow from the corollary 3.1 and equations
(3.2), and (3.4). Since X :M → Rn+1 is an n-dimensional complete λ-hypersurface
with polynomial area growth, by making use of u = |X|2, v = 〈X, a〉 in the lemma
3.2, we have

∫

M

〈X, a〉|X|2e−
|X|2

2 dµ

= −
∫

M

L〈X, a〉|X|2e−
|X|2

2 dµ+

∫

M

λ〈N, a〉|X|2e−
|X|2

2 dµ

= −
∫

M

〈X, a〉L|X|2e−
|X|2

2 dµ+

∫

M

λ〈N, a〉|X|2e−
|X|2

2 dµ

= −
∫

M

2〈X, a〉
[

n+ λ〈X,N〉 − |X|2
]

e−
|X|2

2 dµ+

∫

M

λ〈N, a〉|X|2e−
|X|2

2 dµ

= 2

∫

M

〈X, a〉|X|2e−
|X|2

2 dµ− 2n

∫

M

〈X, a〉 − 2λ〈X, a〉(λ−H)e−
|X|2

2 dµ

+

∫

M

λ〈N, a〉|X|2e−
|X|2

2 dµ.

Hence, it follows that
∫

M

〈X, a〉|X|2e−
|X|2

2 dµ

=

∫

M

(

2nλ〈N, a〉+ 2λ〈X, a〉(λ−H)− λ〈N, a〉|X|2
)

e−
|X|2

2 dµ.

Taking u = v = 〈X, a〉 in the lemma 3.2, we can get (3.11). Putting u = v = |X|2
in the lemma 3.2, we can have

∫

M

λ(λ−H)|X|2e−
|X|2

2 dµ

=

∫

M

(|X|4 − n|X|2 + 1

2
|X|2L|X|2)e− |X|2

2 dµ

=

∫

M

(|X|4 − n|X|2)e− |X|2

2 dµ−
∫

M

1

2
〈∇|x|2,∇|x|2〉e− |X|2

2 dµ

=

∫

M

(

|X|4 − (n+ 2)|X|2 + 2(λ−H)2
)

e−
|X|2

2 dµ,
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that is,
∫

M

{

|X|4 − [n + λ(λ−H)]|X|2 − 2|X|2 + 2(λ−H)2
}

e−
|X|2

2 dµ = 0.

Thus, we have

0 =

∫

M

{

|X|4 − 2[n+
(λ−H)λ

2
]|X|2 + n2 + nλ(λ−H)

− 2n− 2λ(λ−H) + 2(λ−H)2
}

e−
|X|2

2 dµ

=

∫

M

{

[

|X|2 − (n +
λ(λ−H)

2
)
]2−λ

2(λ−H)2

4
+ 2(λ−H)2

− 2n− 2λ(λ−H)

}

e−
|X|2

2 dµ

=

∫

M

{

(

|X|2 − n− λ(λ−H)

2

)2−(
λ2

4
− 1)(λ−H)2 − 2n+H2 − λ2

}

e−
|X|2

2 dµ,

namely,
∫

M

(

|X|2 − n− λ(λ−H)

2

)2

e−
|X|2

2 dµ

=

∫

M

{

(
λ2

4
− 1)(λ−H)2 + 2n−H2 + λ2

}

e−
|X|2

2 dµ.

�

4. A classification of compact λ-hypersurfaces

In this section, we will give a classification of compact λ-hypersurfaces. First of all,
we give some lemmas.

Lemma 4.1. Let X : M → Rn+1 be an n-dimensional λ-hypersurface. Then, the
following holds.

(4.1) LH = H + S(λ−H),

(4.2)
1

2
LS =

∑

i,j,k

h2ijk + (1− S)S + λf3,

(4.3) L
√
S =

1√
S

(

∑

i,j,k

h2ijk − |∇
√
S|2

)

+
√
S(1− S) +

1√
S
λf3,

(4.4) L log(H − λ) = 1− S +
λ

H − λ
− |∇ log(H − λ)|2, if H − λ > 0,

where f3 =
∑

i,j,k hijhjkhki.
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Proof. Since 〈X,N〉+H = λ, one has

(4.5) H,i =
∑

j

hij〈X, ej〉,

H,ik =
∑

j

hijk〈X, ej〉+ hik +
∑

j

hijhjk(λ−H).

Hence,

(4.6) ∆H =
∑

i

H,ii =
∑

i

H,i〈X, ei〉+H + S(λ−H)

and

LH = ∆H −
∑

i

〈X, ei〉H,i = H + S(λ−H).

By a direct calculation, we have from (2.3)

Lhij = ∆hij −
∑

k

〈X, ek〉hijk

= (1− S)hij + λ
∑

k

hikhkj.

Then it follows that

1

2
LS =

1

2

(

∆
∑

i,j

h2ij −
∑

k

〈X, ek〉
(

∑

i,j

h2ij
)

,k

)

=
∑

i,j,k

h2ijk + (1− S)S + λf3.

Since

(4.7) LS = 2|∇
√
S|2 + 2

√
SL

√
S,

we have

L
√
S =

1

2
√
S
LS − |∇

√
S|2√
S

=
1√
S

(

∑

i,j,k

h2ijk − |∇
√
S|2

)

+
√
S(1− S) +

1√
S
λf3.

L log(H − λ) = ∆ log(H − λ)−
∑

i

〈X, ei〉(log(H − λ)),i

=
1

H − λ
LH − |∇ log(H − λ)|2

= 1− S +
λ

H − λ
− |∇ log(H − λ)|2.

We complete the proof of the lemma.

✷
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Theorem 4.1. Let X :M → Rn+1 be an n-dimensional compact λ-hypersurface in
Rn+1. If H − λ ≥ 0 and λ(f3(H − λ)− S) ≥ 0, then X :M → Rn+1 is isometric to
a round sphere Sn(r) with λ = n

r
− r.

Proof. Since

LH = H + S(λ−H)

and

H − λ ≥ 0,

we have

LH −H ≤ 0.

If λ ≤ 0, we conclude from the maximum principle that either H ≡ λ or H −λ > 0.
If H ≡ λ, (4.6) gives that H = λ = 0 and M is a self-shrinker, it is impossible since
M is compact; If λ > 0, we have f3(H − λ) − S ≥ 0. In this case, if H − λ = 0
at some point p ∈ M , then S = 0 and H = λ = 0 at p, that is λ ≡ 0 and M is
self-shrinker, it is also impossible since M is compact. Hence for any λ, we have
H − λ > 0.
From the lemma 4.1, we can get

L 1

(H − λ)2
= ∆

1

(H − λ)2
−

∑

i

〈X, ei〉
( 1

(H − λ)2
)

,i

=
6

(H − λ)4
|∇(H − λ)|2 − 2

(H − λ)3
[H − S(H − λ)]

and

L S

(H − λ)2
= ∆

S

(H − λ)2
−
∑

i

〈X, ei〉
( S

(H − λ)2
)

,i

=
1

(H − λ)2
LS + 2〈∇S,∇(

1

(H − λ)2
)〉+ SL( 1

(H − λ)2
)

=
2

(H − λ)2

(

∑

i,j,k

h2ijk + (1− S)S + λf3

)

+2〈∇S,∇(
1

(H − λ)2
)〉

+ S

(

6

(H − λ)4
|∇(H − λ)|2 − 2

(H − λ)3
[H − S(H − λ)]

)

.

By multiplying Se−
|X|2

2 in the above equation and using

∫

M

SL S

(H − λ)2
e−

|X|2

2 dµ = −
∫

M

〈∇S,∇(
S

(H − λ)2
)〉e− |X|2

2 dµ,

one has



14 QING-MING CHENG AND GUOXIN WEI

(4.8)

2

∫

M

S

(H − λ)4

∑

i,j,k

|hijk(H − λ)− hijH,k|2e−
|X|2

2 dµ

+

∫

M

|∇(
S

(H − λ)2
)|2(H − λ)2e−

|X|2

2 dµ

+ 2

∫

M

S

(H − λ)2
λ

(

f3 −
S

H − λ

)

e−
|X|2

2 dµ = 0.

Then it follows from λ(f3(H − λ)− S) ≥ 0 that

(4.9) λ(f3 −
S

H − λ
) = 0,

S

(H − λ)2
= constant, hijk(H − λ) = hijH,k.

We next consider two cases.
Case 1: λ = 0

In this case, we know M is isometric to Sn(
√
n) from Huisken’s result [19].

Case 2: λ 6= 0
In this case, one gets

f3 −
S

H − λ
= 0, hijk(H − λ) = hijH,k.

If H is constant, then hijk = 0, thus M is Sn(r) by the result of Lawson [22].
If H is not constant, then there exists a neighborhood U such that |∇H| 6= 0 on
U . We can choose e1, · · · , en such that e1 = ∇H

|∇H| . It follows from hijk = hikj that

hijH,k = hikH,j and

0 =
∑

i,j,k

|hijH,k − hikH,j|2

= 2S|∇H|2 − 2
∑

i

h21i|∇H|2

= 2|∇H|2(S −
∑

i

h21i),

that is,
n

∑

i=1

h21i = S = h211 + 2

n
∑

j 6=1

h21j +
∑

k,l≥2

h2kl.

Therefore, S = h211 = H2 on U . On the other hand, we see from S
(H−λ)2

= constant

that H is constant on U . It is a contradiction. The proof of the theorem 4.1 is
completed.

✷

Remark 4.1. The assumption λ(f3(H − λ)− S) ≥ 0 in the theorem 4.1 is satisfied
for self-shrinkers of the mean curvature flow, automatically. When λ > 0, this
condition is needed in order to prove H > λ since the maximum principle does not
work for this case. We think that the assumption is essential. In particular, for case
of complete and non-compact λ-hypersurfaces, this condition is essential in section
8. In fact, Γ × Rn−1 are counterexamples since H − λ > 0, where Γ are compact
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embedded λ-curves other than the circle (see Remark 2.2). It is a very interesting
problem to construct counterexamples for compact case.

5. The first variation of F-functional

In this section, we will give another variational characterization of λ-hypersurfaces.
Let X(s) : M → Rn+1 be immersions with X(0) = X . The variation vector field
∂
∂s
X(s)|s=0 is the normal variation vector field fN .

For X0 ∈ R
n+1 and a real number t0, the F -functional is defined by

FXs,ts(s) = FXs,ts(X(s))

= (4πts)
−n

2

∫

M

e−
|X(s)−Xs|

2

2ts dµs + λ(4πt0)
−n

2 (
t0

ts
)
1
2

∫

M

〈X(s)−Xs, N〉e−
|X−X0|

2

2t0 dµ,

where Xs and ts denote the variations of X0 and t0. Let

∂ts

∂s
= h(s),

∂Xs

∂s
= y(s),

∂X(s)

∂s
= f(s)N(s),

one calls that X : M → Rn+1 is a critical point of FXs,ts(s) if it is critical with
respect to all normal variations and all variations in X0 and t0.

Lemma 5.1. Let X(s) be a variation of X with normal variation vector field
∂X(s)
∂s

|s=0 = fN . If Xs and ts are variations of X0 and t0 with ∂Xs

∂s
|s=0 = y and

∂ts
∂s
|s=0 = h, then the first variation formula of FXs,ts(s) is given by

(5.1)

F ′

X0,t0
(0)

= (4πt0)
−n

2

∫

M

(

λ− (H + 〈X −X0

t0
, N〉)

)

fe−
|X−X0|

2

2 dµ

+ (4πt0)
−n

2

∫

M

(

〈X −X0

t0
, y〉 − λ〈N, y〉

)

e−
|X−X0|

2

2 dµ

+ (4πt0)
−n

2

∫

M

( |X −X0|2
t0

− n− λ〈X −X0, N〉
)

h

2t0
e−

|X−X0|
2

2 dµ.

Proof. Defining

(5.2) A(s) =

∫

M

e−
|X(s)−Xs|

2

2ts dµs, V(s) =

∫

M

〈X(s)−Xs, N〉e−
|X−X0|

2

2t0 dµ,

then

F ′

Xs,ts
(s) = (4πts)

−n

2A
′

(s) + λ(4πt0)
−n

2 (
t0

ts
)
1
2V

′

(s)

− (4πts)
−n

2
n

2ts
hA(s)− λ(4πt0)

−n

2 (
t0

ts
)
1
2
h

2ts
V(s).

Since

A
′

(s) =

∫

M

{

−〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉+ |X(s)−Xs|2

2t2s
h

−Hs〈
∂X(s)

∂s
,N(s)〉

}

e−
|X(s)−Xs|

2

2ts dµs,
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V
′

(s) =

∫

M

〈∂X(s)

∂s
− ∂Xs

∂s
,N〉e−

|X−X0|
2

2t0 dµ,

we have

F ′

Xs,ts
(s)

= (4πts)
−n

2

∫

M

−(Hs + 〈X(s)−Xs

ts
, N(s)〉)fe−

|X(s)−Xs|
2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf〈N(s), N〉e−
|X−X0|

2

2t0 dµ

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y〉e−

|X(s)−Xs|
2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λ〈−y,N〉e−
|X−X0|

2

2t0 dµ

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

−hλ
2ts

〈X(s)−Xs, N〉e−
|X−X0|

2

2t0 dµ.

If s = 0, then X(0) = X , Xs = X0, ts = t0 and

F ′

X0,t0
(0)

= (4πt0)
−n

2

∫

M

(

λ− (H + 〈X −X0

t0
, N〉)

)

fe−
|X−X0|

2

2 dµ

+ (4πt0)
−n

2

∫

M

(

〈X −X0

t0
, y〉 − λ〈N, y〉

)

e−
|X−X0|

2

2 dµ

+ (4πt0)
−n

2

∫

M

( |X −X0|2
t0

− n− λ〈X −X0, N〉
)

h

2t0
e−

|X−X0|
2

2 dµ.

✷

From the lemma 5.1, we know that if X : M → Rn+1 is a critical point of F -
functional FXs,ts(s), then

H + 〈X −X0

t0
, N〉 = λ.

We next prove that if H + 〈X−X0

t0
, N〉 = λ, then X : M → Rn+1 must be a critical

point of F -functional FXs,ts(s). For simplicity, we only consider the case of X0 = 0
and t0 = 1. In this case, H + 〈X−X0

t0
, N〉 = λ becomes

(5.3) H + 〈X,N〉 = λ.

Furthermore, we know that (M,X0, t0) is the critical point of the F -functional if
and only if M is the critical point of F -functional with respect to fixed X0 and t0.

Theorem 5.1. X :M → Rn+1 is a critical point of FXs,ts(s) if and only if

H + 〈X −X0

t0
, N〉 = λ.
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Proof. We only prove the result for X0 = 0 and t0 = 1. In this case, the first
variation formula (5.1) becomes

(5.4)

F ′

0,1(0) = (4π)−
n

2

∫

M

(

λ− (H + 〈X,N〉)
)

fe−
|X|2

2 dµ

+ (4π)−
n

2

∫

M

(

〈X, y〉 − λ〈N, y〉
)

e−
|X|2

2 dµ

+ (4π)−
n

2

∫

M

(

|X|2 − n− λ〈X,N〉
)

h

2
e−

|X|2

2 dµ.

If X : M → Rn+1 is a critical point of F0,1, then X : M → Rn+1 should satisfy
H + 〈X,N〉 = λ. Conversely, if H + 〈X,N〉 = λ is satisfied, then we know that
X :M → Rn+1 is a λ-hypersurface. Therefore, the last two terms in (5.4) vanish for
any h and any y from (3.8) and (3.9) of the lemma 3.3. Therefore X : M → R

n+1

is a critical point of F0,1. �

Corollary 5.1. X : M → Rn+1 is a critical point of FXs,ts(s) if and only if M is
the critical point of F-functional with respect to fixed X0 and t0.

6. The second variation of F-functional

In this section, we shall give the second variation formula of F -functional.

Theorem 6.1. Let X : M → Rn+1 be a critical point of the functional F(s) =
FXs,ts(s). The second variation formula of F(s) for X0 = 0 and t0 = 1 is given by

(4π)
n

2F ′′

(0)

= −
∫

M

fLfe−
|X|2

2 dµ+

∫

M

(

−|y|2 + 〈X, y〉2
)

e−
|X|2

2 dµ

+

∫

M

{

2〈N, y〉+ (n + 1− |X|2)λh− 2hH − 2λ〈X, y〉
}

fe−
|X|2

2 dµ

+

∫

M

{

λ〈N, y〉 − (n+ 2)〈X, y〉+ 〈X, y〉|X|2
}

he−
|X|2

2 dµ

+

∫

M

{

n2 + 2n

4
− n+ 2

2
|X|2 + |X|4

4
+

3λ

4
(λ−H)

}

h2e−
|X|2

2 dµ,

where the operator L is defined by

L = L+ S + 1− λ2.
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Proof.

F ′′

(s)

= (4πts)
−n

2

∫

M

−(Hs + 〈X(s)−Xs

ts
, N(s)〉)f ′

e−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf
′〈N(s), N〉e−

|X−X0|
2

2t0 dµ

+ (4πts)
−n

2

∫

M

nh

2ts
(Hs + 〈X(s)−Xs

ts
, N(s)〉fe−

|X(s)−Xs|
2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

− h

2ts
λ〈N(s), N〉fe−

|X−X0|
2

2t0 dµ

+ (4πts)
−n

2

∫

M

(Hs + 〈X(s)−Xs

ts
, N(s)〉)×

(〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉+Hsf)fe

− |X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

−
(

dHs

ds
+ 〈

∂X(s)
∂s

− ∂Xs

∂s

ts
, N(s)〉 − 〈X(s)−Xs

t2s
, N(s)〉h

+ 〈X(s)−Xs

ts
,
dN(s)

ds
〉
)

fe−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

λf〈dN(s)

ds
,N〉e−

|X−X0|
2

2t0 dµ

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y

′〉e−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

−λ〈N, y′〉e−
|X−X0|

2

2t0 dµ

+ (4πts)
−n

2 (−nh
2ts

)

∫

M

〈X(s)−Xs

ts
, y〉e−

|X(s)−Xs|
2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts
(− h

2ts
)

∫

M

−λ〈N, y〉e−
|X−X0|

2

2t0 dµ

+ (4πts)
−n

2

∫

M

(〈
∂X(s)
∂s

− ∂Xs

∂s

ts
, y〉 − 〈X(s)−Xs

t2s
, y〉h)e−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y〉

(

−〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉 −Hsf

)

e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h
′

e−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

−h
′
λ

2ts
〈X(s)−Xs, N〉e−

|X−X0|
2

2t0 dµ
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+ (4πts)
−n

2 (−nh
2ts

)

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts
(− h

2ts
)

∫

M

− h

2ts
λ〈X(s)−Xs, N〉e−

|X−X0|
2

2t0 dµ

+ (4πts)
−n

2

∫

M

(
nh

2t2s
− |X(s)−Xs|2

t3s
h +

〈X(s)−Xs,
∂X(s)
∂s

− ∂Xs

∂s
〉

t2s
)×

he−
|X(s)−Xs|

2

2ts dµs

+ (4πt0)
−n

2

√

t0

ts

∫

M

(
h

2t2s
〈X(s)−Xs, N〉λh

− 1

2ts
〈∂X(s)

∂s
− ∂Xs

∂s
,N〉λh)e−

|X−X0|
2

2t0 dµ

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h(−Hsf

− 〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉)e−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

−(Hs + 〈X(s)−Xs

ts
, N(s)〉)f |X(s)−Xs|2

2t2s
h

× e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y〉 |X(s)−Xs|2

2t2s
he−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h
|X(s)−Xs|2

2t2s
he−

|X(s)−Xs|
2

2ts dµs.

Since X :M → Rn+1 is a critical point, we get

H + 〈X −X0

t0
, N〉 = λ,

∫

M

(n + λ〈X −X0, N〉 − |X −X0|2
t0

)e
− |X−X0|

2

2t0 dµ = 0,

∫

M

(λ〈N, a〉 − 〈X −X0

t0
, a〉)e−

|X−X0|
2

2t0 dµ = 0.

On the other hand,

H
′

= ∆f + Sf, N
′

= −∇f.
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Using of the above equations and letting s = 0, we obtain

(4πt0)
n

2F ′′

(0)

=

∫

M

−fLfe−
|X−X0|

2

2t0 dµ

+

∫

M

(
2

t0
〈N, y〉+ 2h

t0
〈X −X0

t0
, N〉+ n− 1

t0
λh

− |X −X0|2
t20

λh− 2λ〈X −X0

t0
, y〉)fe−

|X−X0|
2

2t0 dµ

+

∫

M

(−n + 2

t0
〈X −X0

t0
, y〉+ λ

t0
〈N, y〉

+ 〈X −X0

t0
, y〉 |X −X0|2

t20
)he

− |X−X0|
2

2t0 dµ

+

∫

M

(
n2

4t20
+

n

2t20
− n + 2

2t30
|X −X0|2 +

|X −X0|4
4t40

+
3λ

4t0
〈X −X0

t0
, N〉)h2e−

|X−X0|
2

2t0 dµ

+

∫

M

(− 1

t0
〈y, y〉+ 〈X −X0

t0
, y〉2)e−

|X−X0|
2

2t0 dµ,

where the operator L is defined by L = ∆+ S + 1
t0
− 〈X−X0

t0
,∇〉− λ2. When t0 = 1,

X0 = 0, then L = L+ S + 1− λ2.

(4π)
n

2F ′′

(0)

=

∫

M

−fLfe−
|X−|2

2 dµ

+

∫

M

(2〈N, y〉+ 2λh+ (n− 1)λh− 2hH

− |X|2λh− 2λ〈X, y〉)fe−
|X|2

2 dµ

+

∫

M

(λ〈N, y〉 − (n + 2)〈X, y〉+ 〈X, y〉|X|2)he−
|X|2

2 dµ

+

∫

M

(
n2 + 2n

4
− n+ 2

2
|X|2 + |X|4

4
+

3λ

4
〈X,N〉)h2e− |X|2

2 dµ

+

∫

M

−(|y|2 − 〈X, y〉2)e− |X|2

2 dµ
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=

∫

M

−fLfe−
|X|2

2 dµ

+

∫

M

[2〈N, y〉+ (n+ 1− |X|2)λh− 2hH − 2λ〈X, y〉]fe−
|X−|2

2 dµ

+

∫

M

(λ〈N, y〉 − (n+ 2)〈X, y〉+ 〈X, y〉|X|2)he− |X|2

2 dµ

+

∫

M

(
n2 + 2n

4
− n+ 2

2
|X|2 + |X|4

4
+

3λ

4
(λ−H))h2e−

|X|2

2 dµ

+

∫

M

(−|y|2 + 〈X, y〉2)e−
|X|2

2 dµ.

�

Definition 6.1. One calls that a critical point X : M → Rn+1 of the F-functional
FXs,ts(s) is F-stable if, for every normal variation fN , there exist variations of X0

and t0 such that F ′′
X0,t0(0) ≥ 0;

One calls that a critical point X : M → Rn+1 of the F-functional FXs,ts(s) is F-
unstable if there exist a normal variation fN such that for all variations of X0 and
t0, F ′′

X0,t0(0) < 0.

Theorem 6.2. If r ≤ √
n or r >

√
n+ 1, the n-dimensional round sphere X :

Sn(r) → Rn+1 is F-stable; If
√
n < r ≤

√
n + 1, the n-dimensional round sphere

X : Sn(r) → Rn+1 is F-unstable.

Proof. For the sphere Sn(r), we have

X = −rN, H =
n

r
, S =

H2

n
=

n

r2
, λ = H − r =

n

r
− r

and

(6.1) Lf = Lf + (S + 1− λ2)f = ∆f + (
n

r2
+ 1− λ2)f.

Since we know that eigenvalues µk of ∆ on the sphere Sn(r) are given by

(6.2) µk =
k2 + (n− 1)k

r2
,

and constant functions are eigenfunctions corresponding to eigenvalue µ0 = 0. For
any constant vector z ∈ Rn+1, we get

(6.3) −∆〈z,N〉 = ∆〈z, X
r
〉 = 〈z, 1

r
HN〉 = n

r2
〈z,N〉,

that is, 〈z,N〉 is an eigenfunction of ∆ corresponding to the first eigenvalue µ1 =
n
r2
.

Hence, for any normal variation with the variation vector field fN , we can choose
a real number a ∈ R and a constant vector z ∈ Rn+1 such that

(6.4) f = f0 + a + 〈z,N〉,
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and f0 is in the space spanned by all eigenfunctions corresponding to eigenvalues µk

(k ≥ 2) of ∆ on Sn(r). Using the lemma 3.3, we get

(6.5)

(4π)
n

2 e
r
2

2 F ′′

(0)

=

∫

Sn(r)

−(f0 + a + 〈z,N〉)L(f0 + a+ 〈z,N〉)dµ

+

∫

Sn(r)

[2〈N, y〉+ (n+ 1− r2)λh− 2
n

r
h+ 2λ〈rN, y〉](f0 + a+ 〈z,N〉)dµ

+

∫

Sn(r)

(−r)〈N, y〉(r2 − n− 1)hdµ

+

∫

Sn(r)

(
n2 + 2n

4
− n + 2

2
r2 +

r4

4
+

3

4
r2 − 3

4
n)h2dµ

+

∫

Sn(r)

(−|y|2 + 〈X, y〉2)dµ

≥
∫

Sn(r)

{

(
n+ 2

r2
− 1 + λ2)f 2

0 − (
n

r2
+ 1− λ2)a2 + (λ2 − 1)〈z,N〉2

}

dµ

+

∫

Sn(r)

{

2(1 + λr)〈N, y〉〈N, z〉+ [(n+ 1− r2)λ− 2
n

r
]ah

}

dµ

+

∫

Sn(r)

1

4
[r4 − (2n+ 1)r2 + n(n− 1)]h2dµ

+

∫

Sn(r)

(−|y|2 + 〈X, y〉2)dµ.

From the lemma 3.3, we have

(6.6)

∫

Sn(r)

(−|y|2 + 〈X, y〉2)dµ = −
∫

Sn(r)

(1 + λr)〈N, y〉2dµ.

Putting (6.6) and λ = n
r
− r into (6.5), we obtain

(6.7)

(4π)
n

2 e
r
2

2 F ′′

(0)

≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f 2
0dµ

+

∫

Sn(r)

[r4 − (2n+ 1)r2 + n(n− 1)](
a

r
+
h

2
)2dµ

+

∫

Sn(r)

1

r2
[r4 − (2n+ 1)r2 + n2]〈z,N〉2dµ

+

∫

Sn(r)

2(1 + n− r2)〈N, y〉〈N, z〉dµ

+

∫

Sn(r)

−(1 + n− r2)〈N, y〉2dµ.
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If we choose h = −2a
r
, then we have

(6.8)

(4π)
n

2 e
r
2

2 F ′′

(0)

≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f 2
0dµ

+

∫

Sn(r)

(λ2 − 1)〈z,N〉2dµ

+

∫

Sn(r)

2(1 + λr)〈N, y〉〈N, z〉dµ

+

∫

Sn(r)

−(1 + λr)〈N, y〉2dµ.

Let y = kz, then we have

(6.9)

(4π)
n

2 e
r
2

2 F ′′

(0)

≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f 2
0dµ

+

∫

Sn(r)

{

λ2 − 1 + 2(1 + λr)k − (1 + λr)k2
}

〈z,N〉2dµ

=

∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f 2
0dµ

+

∫

Sn(r)

{

λ2 + λr − (1 + λr)(1− k)2
}

〈z,N〉2dµ.

We next consider three cases:

Case 1: r ≤ √
n

In this case, λ ≥ 0. Taking k = 1, then we get

F ′′

(0) ≥ 0.

Case 2: r ≥ 1+
√
1+4n
2

.

In this case, λ ≤ −1. Taking k = 2, we can get

F ′′

(0) ≥ 0.

Case 3:
√
n+ 1 < r < 1+

√
1+4n
2

.

In this case, −1 < λ < 0, 1 + λr < 0, we can take k such that (1 − k)2 ≥ λ(λ+r)
1+λr

,
then we have

F ′′

(0) ≥ 0.
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Thus, if r ≤ √
n or r >

√
n + 1, the n-dimensional round sphere X : Sn(r) → Rn+1

is F -stable;

If
√
n < r ≤

√
n + 1, the n-dimensional round sphere X : Sn(r) → Rn+1 is F -

unstable. In fact, in this case, −1 < λ < 0, 1 + λr ≥ 0. We can choose f such that
f0 = 0, then we have

(6.10)

(4π)
n

2 e
r
2

2 F ′′

(0) =

∫

Sn(r)

(λ2 − 1)〈z,N〉2dµ

+

∫

Sn(r)

2(1 + λr)〈N, y〉〈N, z〉dµ

+

∫

Sn(r)

−(1 + λr)〈N, y〉2dµ

= (λ2 + λr)

∫

Sn(r)

〈z,N〉2dµ

− (1 + λr)

∫

Sn(r)

(〈z,N〉 − 〈y,N〉)2dµ

< 0.

This completes the proof of the theorem 6.2. �

According to our theorem 6.2, we would like to propose the following:

Problem 6.1. Is it possible to prove that spheres Sn(r) with r ≤ √
n or r >

√
n+ 1

are the only F -stable compact λ-hypersurfaces?

Remark 6.1. Colding and Minicozzi [10] have proved that the sphere Sn(
√
n) is the

only F-stable compact self-shrinkers. In order to prove this result, the property that
the mean curvature H is an eigenfunction of L-operator plays a very important role.
But for λ-hypersurfaces, the mean curvature H is not an eigenfunction of L-operator
in general.

7. The weak stability of the weighted area functional for

weighted volume-preserving variations

Define

(7.1) T (s) = (4πts)
−n

2

∫

M

e−
|X(s)−Xs|

2

2ts dµs.
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We compute the first and the second variation formulas of the general T -functional
for weighted volume-preserving variations. By a direct calculation, we have

T ′

(s)

= (4πts)
−n

2

∫

M

−(Hs + 〈X(s)−Xs

ts
, N(s)〉)fe−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y〉e−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|

2

2ts dµs.

T ′′

(s)

= (4πts)
−n

2

∫

M

−(Hs + 〈X(s)−Xs

ts
, N(s)〉)f ′

e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2

∫

M

nh

2ts
(Hs + 〈X(s)−Xs

ts
, N(s)〉fe−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

(Hs + 〈X(s)−Xs

ts
, N(s)〉)×

(〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉+Hsf)fe

− |X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

−
(

dHs

ds
+ 〈

∂X(s)
∂s

− ∂Xs

∂s

ts
, N(s)〉 − 〈X(s)−Xs

t2s
, N(s)〉h

+ 〈X(s)−Xs

ts
,
dN(s)

ds
〉
)

fe−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y

′〉e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2 (−nh
2ts

)

∫

M

〈X(s)−Xs

ts
, y〉e−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

(〈
∂X(s)
∂s

− ∂Xs

∂s

ts
, y〉 − 〈X(s)−Xs

t2s
, y〉h)e−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y〉

(

−〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉

−Hsf

)

e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h
′

e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2 (−nh
2ts

)

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)he−
|X(s)−Xs|

2

2ts dµs
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+ (4πts)
−n

2

∫

M

(
nh

2t2s
− |X(s)−Xs|2

t3s
h+

〈X(s)−Xs,
∂X(s)
∂s

− ∂Xs

∂s
〉

t2s
)×

he−
|X(s)−Xs|

2

2ts dµs

− 1

2ts
〈∂X(s)

∂s
− ∂Xs

∂s
,N〉λh)e−

|X−X0|
2

2t0 dµ

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h(−Hsf

− 〈X(s)−Xs

ts
,
∂X(s)

∂s
− ∂Xs

∂s
〉)e−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

−(Hs + 〈X(s)−Xs

ts
, N(s)〉)f |X(s)−Xs|2

2t2s
h

× e−
|X(s)−Xs|

2

2ts dµs

+ (4πts)
−n

2

∫

M

〈X(s)−Xs

ts
, y〉 |X(s)−Xs|2

2t2s
he−

|X(s)−Xs|
2

2ts dµs

+ (4πts)
−n

2

∫

M

(− n

2ts
+

|X(s)−Xs|2
2t2s

)h
|X(s)−Xs|2

2t2s
he−

|X(s)−Xs|
2

2ts dµs.

Lemma 7.1.
∫

M

f
′

(0)e
− |X−X0|

2

2t0 dµ = 0.

Proof. Since V (t) =
∫

M
〈X(t)−X0, N〉e−

|X−X0|
2

2t0 dµ = V (0) for any t, we have
∫

M

f(t)〈N(t), N〉e−
|X−X0|

2

2t0 dµ = 0.

Hence, we get

0 =
d

dt
|t=0

∫

M

f(t)〈N(t), N〉e−
|X−X0|

2

2t0 dµ

=

∫

M

f
′

(0)e
− |X−X0|

2

2t0 dµ.

�

Since M is a critical point of T (s), we have

H + 〈X −X0

t0
, N〉 = λ.

On the other hand, we have

(7.2) H
′

= ∆f + Sf, N
′

= −∇f.
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Then for t0 = 1 and X0 = 0, the second variation formula becomes

(4π)
n

2 T ′′

(0)

=

∫

M

〈X, y′〉e−
|X−|2

2 dµ+

∫

M

(
|X|2
2

− n

2
)h

′

e−
|X|2

2 dµ

+

∫

M

−f
(

Lf + (S + 1− λ2)f
)

e−
|X|2

2 dµ

+

∫

M

(

2〈N, y〉+ (n− |X|2)λh+ 2〈X,N〉h

+ 2〈N, y〉 − 2λ〈X, y〉
)

fe−
|X|2

2 dµ

+

∫

M

(−(n + 2)〈X, y〉+ 〈X, y〉|X|2)he−
|X−|2

2 dµ

+

∫

M

(
n2 + 2n

4
− n + 2

2
|X|2 + |X|4

4
)h2e−

|X|2

2 dµ

+

∫

M

(−|y|2 + 〈X, y〉2)e−
|X|2

2 dµ.

Theorem 7.1. Let X : M → Rn+1 be a critical point of the functional T (s) for
the weighted volume-preserving variations with fixed X0 = 0 and t0 = 1. The second
variation formula of T (s) is given by

(7.3) (4π)
n

2 T ′′

(0) =

∫

M

−f
(

Lf + (S + 1− λ2)f
)

e−
|X|2

2 dµ.

Definition 7.1. A critical point X : M → Rn+1 of the functional T (s) is called
weakly stable if, for any weighted volume-preserving normal variation, T ′′(0) ≥ 0;
A critical point X : M → R

n+1 of the functional T (s) is called weakly unstable if
there exists a weighted volume-preserving normal variation, such that T ′′(0) < 0.

Theorem 7.2. If r ≤ −1+
√
1+4n

2
or r ≥ 1+

√
1+4n
2

, the n-dimensional round sphere

X : Sn(r) → Rn+1 is weakly stable; If −1+
√
1+4n

2
< r < 1+

√
1+4n
2

, the n-dimensional
round sphere X : Sn(r) → Rn+1 is weakly unstable.

Proof. For the sphere Sn(r), we have

X = −rN, H =
n

r
, S =

n

r2
, λ = H − r =

n

r
− r

and

(7.4) Lf = Lf + (S + 1− λ2)f = ∆f + (
n

r2
+ 1− λ2)f.

Since we know that eigenvalues µk of ∆ on the sphere Sn(r) are given by

(7.5) µk =
k2 + (n− 1)k

r2
,



28 QING-MING CHENG AND GUOXIN WEI

and constant functions are eigenfunctions corresponding to eigenvalue µ0 = 0. For
any constant vector z ∈ Rn+1, we get

(7.6) −∆〈z,N〉 = n

r2
〈z,N〉,

that is, 〈z,N〉 is an eigenfunction of ∆ corresponding to the first eigenvalue µ1 =
n
r2
. Hence, for any weighted volume-preserving normal variation with the variation

vector field fN satisfying
∫

Sn(r)

fe−
r
2

2 dµ = 0,

we can choose a constant vector z ∈ R
n+1 such that

(7.7) f = f0 + 〈z,N〉,
and f0 is in the space spanned by all eigenfunctions corresponding to eigenvalues µk

(k ≥ 2) of ∆ on Sn(r). By making use of the theorem 7.1, we have

(7.8)

(4π)
n

2 e
r
2

2 T ′′

(0)

=

∫

Sn(r)

−(f0 + 〈z,N〉)L(f0 + 〈z,N〉)dµ

≥
∫

Sn(r)

{

(
n+ 2

r2
− 1 + λ2)f 2

0 + (λ2 − 1)〈z,N〉2
}

dµ.

According to λ = n
r
− r, we obtain

(4π)
n

2 e
r
2

2 T ′′

(0)

≥
∫

Sn(r)

1

r2

{

(r2 − n− 1

2
)2 +

7

4

}

f 2
0dµ+

∫

Sn(r)

(
n

r
− r − 1)(

n

r
− r + 1)〈z,N〉2dµ ≥ 0

if

r ≤ −1 +
√
4n+ 1

2
or r ≥ 1 +

√
4n+ 1

2
.

Thus, the n-dimensional round sphere X : Sn(r) → Rn+1 is weakly stable.
If

−1 +
√
4n+ 1

2
< r <

1 +
√
4n+ 1

2
,

choosing f =< z,N >, we have
∫

Sn(r)

fe−
r
2

2 dµ = 0.

Hence, there exists a weighted volume-preserving normal variation with the variation
vector filed fN such that

(4π)
n

2 e
r
2

2 T ′′

(0) =

∫

Sn(r)

(
n

r
− r − 1)(

n

r
− r + 1)〈z,N〉2dµ < 0.

Thus, the n-dimensional round sphere X : Sn(r) → Rn+1 is weakly unstable. It
finishes the proof. �
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Remark 7.1. From the theorem 6.2 and theorem 7.2, we know the F-stability and
the weak stability are different. The F-stability is a weaker notation than the weak
stability.

Remark 7.2. Is it possible to prove that spheres Sn(r) with r ≤ −1+
√
1+4n

2
or r ≥

1+
√
1+4n
2

are the only weak stable compact λ-hypersurfaces?

8. Complete and non-compact λ-hypersurfaces

In this section, we will give a classification of complete and non-compact λ-hypersurfaces.

Theorem 8.1. Sk(r) × Rn−k, 0 ≤ k ≤ n, are the only complete embedded λ-
hypersurfaces with polynomial area growth in Rn+1 if H − λ ≥ 0 and λ(f3(H − λ)−
S) ≥ 0.

Remark 8.1. The assumption λ(f3(H − λ)− S) ≥ 0 in the theorem 8.1 is satisfied
for self-shrinkers of the mean curvature flow, automatically and the assumption is
essential. In fact, Γ×R

n−1 are counterexamples, which satisfy H − λ > 0, where Γ
are compact embedded λ-curves other than the circle (see Remark 2.2).

At first, we prepare the following lemmas and propositions.

Lemma 8.1. Let X : M → Rn+1 be an n-dimensional immersed hypersurface in
the (n+ 1)-dimensional Euclidean space Rn+1. At any point p ∈M , we have

(8.1) |∇
√
S|2 ≤

∑

i,k

h2iik ≤
∑

i,j,k

h2ijk,

(8.2)
n+ 3

n+ 1
|∇

√
S|2 ≤

∑

i,j,k

h2ijk +
2n

n + 1
|∇H|2.

Its proof is standard. See Schoen, Simon and Yau [28] and Colding and Minicozzi
[11].

Proposition 8.1. Let X :M → Rn+1 be an n-dimensional complete λ-hypersurface
with H − λ > 0 and λ(f3 − S

H−λ
) ≥ 0. If η is a function with compact support, then

(8.3)

∫

M

η2(S + |∇ log(H − λ)|2)e−
|X|2

2 dµ ≤ c(n, λ)

∫

M

(|∇η|2 + η2)e−
|X|2

2 dµ,

where c(n, λ) is constant depending on n and λ.

Proof. Since H − λ > 0, log(H − λ) is well-defined. Suppose η is a function with
compact support, the lemma 4.1 and the corollary 3.1 give

(8.4)

∫

M

〈∇η2,∇ log(H − λ)〉e−
|X|2

2 dµ

= −
∫

M

η2(L log(H − λ))e−
|X|2

2 dµ

=

∫

M

η2
(

S − 1− λ

H − λ
+ |∇ log(H − λ)|2

)

e−
|X|2

2 dµ.
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Combining this with inequality:

(8.5) 〈∇η2,∇ log(H − λ)〉 ≤ ε|∇η|2 + 1

ε
η2|∇ log(H − λ)|2

gives that

(8.6)

∫

M

(η2S + η2(1− 1

ε
)|∇ log(H − λ)|2)e− |X|2

2 dµ

≤
∫

M

(ε|∇η|2 + η2 +
λ

H − λ
η2)e−

|X|2

2 dµ,

for ε > 0. Since

(8.7)
λ

H − λ
≤ λf3

S
≤ |λ|

√
S ≤ |λ|( S

2δ
+
δ

2
)

for δ > 0, we have from (8.6) and (8.7)

(8.8)

∫

M

{

(1− |λ|
2δ

)η2S + η2(1− 1

ε
)|∇ log(H − λ)|2

}

e−
|X|2

2 dµ

≤
∫

M

(

ε|∇η|2 +
(

1 +
|λ|
2
δ
)

η2
)

e−
|X|2

2 dµ.

By choosing ε, δ and constant c(n, λ), we get

(8.9)

∫

M

η2(S + |∇ log(H − λ)|2)e−
|X|2

2 dµ ≤ c(n, λ)

∫

M

(|∇η|2 + η2)e−
|X|2

2 dµ.

�

Proposition 8.2. Let X :M → Rn+1 be an n-dimensional complete λ-hypersurface
with H − λ > 0 and λ(f3 − S

H−λ
) ≥ 0. If M has polynomial area growth, then

(8.10)

∫

M

〈∇S,∇ log(H − λ)〉e−
|X|2

2 dµ

= −
∫

M

SL log(H − λ)e−
|X|2

2 dµ

=

∫

M

S

(

S − 1− λ

H − λ
+ |∇ log(H − λ)|2

)

e−
|X|2

2 dµ,

and

(8.11)

∫

M

|∇
√
S|2e− |X|2

2 dµ

= −
∫

M

√
SL

√
Se−

|X|2

2 dµ

≤
∫

M

(S2 − S − λf3)e
− |X|2

2 dµ.
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Proof. Taking η = φ in (8.4), we have

(8.12)

∫

M

〈∇φ2,∇ log(H − λ)〉e−
|X|2

2 dµ

= −
∫

M

φ2(L log(H − λ))e−
|X|2

2 dµ

=

∫

M

φ2

(

S − 1− λ

H − λ
+ |∇ log(H − λ)|2

)

e−
|X|2

2 dµ.

Since

(8.13) 〈∇φ2,∇ log(H − λ)〉 ≤ |∇φ|2 + φ2|∇ log(H − λ)|2,
we derive

(8.14)

∫

M

φ2Se−
|X|2

2 dµ ≤
∫

M

(|∇φ|2 + φ2 +
λ

H − λ
φ2)e−

|X|2

2 dµ.

Let φ = η
√
S, where η ≥ 0 has a compact support, for α > 0, we have

(8.15)

∫

M

η2S2e−
|X|2

2 dµ

≤
∫

M

{

η2|∇
√
S|2 + 2η

√
S|∇η||∇

√
S|

+ S|∇η|2 + (1 +
λ

H − λ
)η2S

}

e−
|X|2

2 dµ

≤
∫

M

(1 + α)η2|∇
√
S|2e−

|X|2

2 dµ

+

∫

M

S
{

(1 +
1

α
)|∇η|2 + (1 +

λ

H − λ
)η2

}

e−
|X|2

2 dµ.

The lemma 4.1 and lemma 8.1 give the following inequality

(8.16)

LS = 2
∑

i,j,k

h2ijk + 2(1− S)S + 2λf3

≥ 2(n+ 3)

n+ 1
|∇

√
S|2 − 4n

n + 1
|∇H|2 + 2S − 2S2 + 2λf3,

Integrating this with 1
2
η2 and using the lemma 3.2, we obtain

− 2

∫

M

η
√
S〈∇η,∇

√
S〉e−

|X|2

2 dµ

≥
∫

M

{

η2
(n+ 3)

n+ 1
|∇

√
S|2 − 2n

n + 1
η2|∇H|2 + Sη2 − S2η2 + λf3η

2

)

e−
|X|2

2 dµ.

Since 2ab ≤ ǫa2 + b2

ǫ
for ǫ > 0, we infer

(8.17)

∫

M

{

η2S2 +
2n

n + 1
η2|∇H|2 + 1

ǫ
S|∇η|2

}

e−
|X|2

2 dµ

≥
∫

M

{

(
n+ 3

n+ 1
− ǫ)η2|∇

√
S|2 + Sη2 + λf3η

2

}

e−
|X|2

2 dµ.
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From (8.15), (8.17) and λ S
H−λ

≤ λf3, by taking α and ǫ such that 1+α
n+3
n+1

−ǫ
> 0, we

have

∫

M

η2S2e−
|X|2

2 dµ

≤ 1 + α
n+3
n+1

− ǫ

∫

M

η2S2e−
|X|2

2 dµ+
2n

n+ 1
· 1 + α

n+3
n+1

− ǫ

∫

M

η2|∇H|2e−
|X|2

2 dµ

+

∫

M

[

1 + α
n+3
n+1

− ǫ

(1

ǫ
|∇η|2 − η2

)

+(1 +
1

α
)|∇η|2 + (1 +

λ

H − λ
)η2

]

Se−
|X|2

2 dµ

+
1 + α
n+3
n+1

− ǫ

∫

M

(−λf3η2)e−
|X|2

2 dµ

≤ 1 + α
n+3
n+1

− ǫ

∫

M

η2S2e−
|X|2

2 dµ+
2n

n+ 1
· 1 + α

n+3
n+1

− ǫ

∫

M

η2|∇H|2e− |X|2

2 dµ

+

∫

M

{

[ 1 + α
n+3
n+1

− ǫ
× 1

ǫ
+ 1 +

1

α

]

|∇η|2 + (1− 1 + α
n+3
n+1

− ǫ
)η2

+
λ

H − λ
(1− 1 + α

n+3
n+1

− ǫ
)η2

}

Se−
|X|2

2 dµ.

Using

λ
S

H − λ
≤ λf3 ≤ |λ|S

√
S ≤ 1

2δ
|λ|S2 +

δ

2
|λ|S,

for δ > 0, we obtain, by taking α and ǫ such that 1− 1+α
n+3
n+1

−ǫ
> 0

(8.18)

(

1− 1 + α
n+3
n+1

− ǫ

)(

1− |λ|
2δ

)
∫

M

η2S2e−
|X|2

2 dµ

≤ 2n

n+ 1

1 + α
n+3
n+1

− ǫ

∫

M

η2|∇H|2e−
|X|2

2 dµ

+

∫

M

{(

1 + α
n+3
n+1

− ǫ

1

ǫ
+ 1 +

1

α

)

|∇η|2 +
(

1− 1 + α
n+3
n+1

− ǫ

)

η2

+

(

1− 1 + α
n+3
n+1

− ǫ

)

η2
δ

2
|λ|

}

Se−
|X|2

2 dµ.

Assuming |η| ≤ 1 and |∇η| ≤ 1, choosing δ such that |λ|
2δ
< 1, we have

(8.19)

∫

M

η2S2e−
|X|2

2 dµ ≤ C(n, λ)

∫

M

(|∇H|2 + S)e−
|X|2

2 dµ

for some constant C(n, λ) depending on n and λ. Since |∇H| ≤
√
S|X| holds from

(4.5), one has from (8.19)

(8.20)

∫

M

η2S2e−
|X|2

2 dµ ≤ C(n, λ)

∫

M

S(1 + |X|2)e− |X|2

2 dµ.
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Since H − λ > 0 and λf3 ≥ λ S
H−λ

, let ηj be one on Bj and cut off linearly to zero
from ∂Bj to ∂Bj+1, where Bj = X(M) ∩ Bj(0) with Bj(0) is the Euclidean ball of
radius j centered at the origin. Applying the proposition 8.1 with η = ηj|X|, letting
j → ∞, the dominated convergence theorem and the polynomial area growth give

that
∫

M
S(1 + |X|2)e− |X|2

2 dµ < +∞. Thus (8.20) and the dominated convergence
theorem give that

∫

M

S2e−
|X|2

2 dµ < +∞.

Hence, from (8.17), we also have
∫

M

|∇
√
S|2e−

|X|2

2 dµ < +∞.

We next prove
∫

M

∑

i,j,k

h2ijke
− |X|2

2 dµ < +∞. From (4.2), one has

(8.21)

∫

M

η2
∑

i,j,k

h2ijke
− |X|2

2 dµ

=

∫

M

η2(S2 − S)e−
|X|2

2 dµ−
∫

M

λf3η
2e−

|X|2

2 dµ

−
∫

M

2η
√
S〈∇η,∇

√
S〉e−

|X|2

2 dµ

≤ C0(n, λ)

∫

M

(η2S2 + η2S + |∇η|2|∇
√
S|2)e−

|X|2

2 dµ

< +∞,

where C0(n, λ) is constant depending on n and λ. The dominated convergence
theorem gives that

(8.22)

∫

M

∑

i,j,k

h2ijke
− |X|2

2 dµ < +∞.

This shows that

(8.23)

∫

M

(S + S2 + |∇
√
S|2 +

∑

i,j,k

h2ijk)e
− |X|2

2 dµ < +∞.

From (8.23), we have
∫

M

(S2 + |∇
√
S|2)e−

|X|2

2 dµ < +∞,

that is,
√
S is in the weighted W 1,2 space. Applying the proposition 8.1 with η =

ηj
√
S, letting j → ∞, using the dominated convergence theorem, one has

(8.24)

∫

M

S|∇ log(H − λ)|2e− |X|2

2 dµ < +∞.
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It follows that

(8.25)

∫

M

|∇S||∇ log(H − λ)|e−
|X|2

2 dµ

≤
∫

M

(|∇
√
S|2 + S|∇ log(H − λ)|2)e−

|X|2

2 dµ < +∞.

(4.4) gives that

(8.26)

∫

M

S|L log(H − λ)|e− |X|2

2 dµ

=

∫

M

S

∣

∣

∣

∣

1− S +
λ

H − λ
− |∇ log(H − λ)|2

∣

∣

∣

∣

e−
|X|2

2 dµ

≤ C1(n, λ)

∫

M

{

S2 + S + S|∇ log(H − λ)|2
}

e−
|X|2

2 dµ

< +∞,

where C1(n, λ) is constant. Thus, we obtain

(8.27)

∫

M

{

S|∇ log(H−λ)|+|∇S||∇ log(H−λ)|+SL log(H−λ)|
}

e−
|X|2

2 dµ < +∞.

By applying the corollary 3.1 to S and log(H − λ), we get

(8.28)

∫

M

〈∇S,∇ log(H − λ)〉e− |X|2

2 dµ

= −
∫

M

SL log(H − λ)e−
|X|2

2 dµ

=

∫

M

S

(

S − 1− λ

H − λ
+ |∇ log(H − λ)|2

)

e−
|X|2

2 dµ.

On one hand, (4.3) gives

(8.29)

∫

M

√
S|L

√
S|e−

|X|2

2 dµ

=

∫

M

∣

∣

∣

∣

∑

i,j,k

h2ijk − |∇
√
S|2 + S(1− S) + λf3

∣

∣

∣

∣

e−
|X|2

2 dµ

≤ C2(n, λ)

∫

M

(

∑

i,j,k

h2ijk + |∇
√
S|2 + S + S2

)

e−
|X|2

2 dµ

< +∞.

Hence

(8.30)

∫

M

(√
S|∇

√
S|+ |∇

√
S|2 +

√
S|L

√
S|
)

e−
|X|2

2 dµ < +∞.

On the other hand, we have from (4.3) and the lemma 8.1

(8.31) L
√
S ≥

√
S −

√
SS +

λf3√
S
.
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Then we can apply the corollary 3.1 to
√
S and

√
S and obtain

(8.32)

∫

M

|∇
√
S|2e−

|X|2

2 dµ

= −
∫

M

√
SL

√
Se−

|X|2

2 dµ

≤
∫

M

(S2 − S − λf3)e
− |X|2

2 dµ.

�

Proof of Theorem 8.1. Since H − λ ≥ 0 and LH −H ≤ 0, if λ ≤ 0, we have from
the maximum principle that either H − λ ≡ 0 or H − λ > 0, if H − λ ≡ 0, (4.5)
and (4.6) give that λ = 0 = H , then M is a self-shrinker of the mean curvature
flow. According to the results of Colding and Minicozzi [11], M is Rn. If λ > 0 and
H −λ = 0 at some point p ∈ M , then we see from λ(f3(H −λ)−S) ≥ 0 that S = 0
and H = 0 at p, then λ ≡ 0, according to the results of Colding and Minicozzi [11],
we know that M is Rn. Hence, for any λ, we have either M is Rn or H − λ > 0.
Next, we assume that H − λ > 0. From the proposition 8.2, we have

(8.33)

∫

M

〈∇S,∇ log(H − λ)〉e−
|X|2

2 dµ

= −
∫

M

SL log(H − λ)e−
|X|2

2 dµ

=

∫

M

S

(

S − 1− λ

H − λ
+ |∇ log(H − λ)|2

)

e−
|X|2

2 dµ,

and

(8.34)

∫

M

|∇
√
S|2e− |X|2

2 dµ

= −
∫

M

√
SL

√
Se−

|X|2

2 dµ

≤
∫

M

(S2 − S − λf3)e
− |X|2

2 dµ.

Substituting (8.34) into (8.33) and using λf3 ≥ λ S
H−λ

, one has

(8.35)

0 ≥
∫

M

{

|∇
√
S|2 − 2

√
S〈∇

√
S,∇ log(H − λ)〉+ S|∇ log(H − λ)|2

+ λf3 − λ
S

H − λ

}

e−
|X|2

2 dµ

≥
∫

M

∣

∣∇
√
S −

√
S∇ log(H − λ)

∣

∣

2
e−

|X|2

2 dµ.

Hence we conclude that ∇
√
S =

√
S∇ log(H − λ). Thus, we obtain

(8.36)
√
S = β(H − λ)
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for a constant β > 0. Since all inequalities in above equations become equalities, we
obtain

(8.37)
∑

i,j,k

h2ijk = |∇
√
S|2, λf3 = λ

S

H − λ
.

From the lemma 8.1 and (8.37), we know

(1) There is a constant Ck such that hiik = Ckλi for every i and k.

(2) If i 6= j, then hijk = 0, that is, hijk = 0 unless i = j = k since hijk = hikj.

If λi 6= 0 and j 6= i, then 0 = hiij = Cjλi. It follows that Cj = 0. If the rank of
matrix (hij) is at least two at p, then Cj = 0 for j ∈ {1, 2, · · · , n}. Hence, we have
hijk(p) = 0.
We next consider two cases.

Case 1: The rank of matrix (hij) is greater than one at p.

In this case, we will prove that the rank of (hij) is at least two everywhere. In fact,
for q ∈ M , let λ1(q) and λ2(q) be the two eigenvalues of (hij)(q) that are largest in
absolute value and define the set

(8.38) Ω = {q ∈M |λ1(q) = λ1(p), λ2(q) = λ2(p)}.
Then p ∈ Ω, since λi’s are continuous, so Ω is closed. Given any point q ∈ Ω, it
follows that the rank of (hij) is at least two at q. Hence there is an open set U , q ∈ U ,
where the rank of (hij) is at least two. On U , we have hijk = 0 and the eigenvalues
of (hij) are constant on U . Thus, U ⊂ Ω, Ω is open. Since M is connected, we have
Ω =M and hijk ≡ 0 on M . We know that M = Sk(r)× R

n−k, where k > 1.

Case 2: The rank of matrix (hij) is one.

From Case 1, we know that the rank of (hij) is one everywhere. Hence S = H2. On
the other hand, S = β2(H − λ)2, hence H2 = β2(H − λ)2. If λ = 0, then M is a
self-shrinker of the mean curvatue flow. If λ 6= 0, then we have H is constant. M is
S1(r)× R

n−1 from the proposition 2.2. This completes the proof of Theorem 8.1.

✷

9. Properness and polynomial area growth for λ-hypersurfaces

For n-dimensional complete and non-compact Riemannian manifolds with nonneg-
ative Ricci curvature, the well-known theorem of Bishop and Gromov says that
geodesic balls have at most polynomial area growth:

Area(Br(x0)) ≤ Crn.

For n-dimensional complete and non-compact gradient shrinking Ricci soliton, Cao
and Zhou [5] have proved geodesic balls have at most polynomial area growth. For
self-shrinkers, Ding and Xin [12] proved that any complete non-compact properly
immersed self-shrinker in the Euclidean space has polynomial area growth. X. Cheng
and Zhou [10] showed that any complete immersed self-shrinker with polynomial area
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growth in the Euclidean space is proper. Hence any complete immersed self-shrinker
is proper if and only if it has polynomial area growth.
It is our purposes in this section to study the area growth for λ-hypersurfaces. First
of all, we study the equivalence of properness and polynomial area growth for λ-
hypersurfaces. If X : M → Rn+1 is an n-dimensional hypersurface in Rn+1, we say
M has polynomial area growth if there exist constant C and d such that for all
r ≥ 1,

(9.1) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)

dµ ≤ Crd,

where Br(0) is a round ball in R
n+1 with radius r and centered at the origin.

Theorem 9.1. Let X : M → Rn+1 be a complete and non-compact properly im-
mersed λ-hypersurface in the Euclidean space R

n+1. Then, there is a positive con-
stant C such that for r ≥ 1,

(9.2) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)

dµ ≤ Crn+
λ
2

2
−2β− inf H2

2 ,

where β = 1
4
inf(λ−H)2.

Proof. Since X : M → Rn+1 is a complete and non-compact properly immersed
λ-hypersurface in the Euclidean space Rn+1, we have

〈X,N〉+H = λ.

Defining f = |X|2
4
, we have

(9.3) f − |∇f |2 = |X|2
4

− |XT |2
4

=
|X⊥|2
4

=
1

4
(λ−H)2,

(9.4)

∆f =
1

2
(n+H〈N,X〉)

=
1

2
(n+ λ〈N,X〉 − 〈N,X〉2)

=
1

2
n+

λ2

4
− H2

4
− f + |∇f |2.

Hence, we obtain

(9.5) |∇(f − β)|2 ≤ (f − β),

(9.6) ∆(f − β)− |∇(f − β)|2 + (f − β) ≤ (
n

2
+
λ2

4
− β − infH2

4
).

Since the immersion X is proper, we know that f = f − β is proper. Applying the
theorem 2.1 of X. Cheng and Zhou [10] to f = f − β with k = (n

2
+ λ2

4
− β − infH2

4
),

we obtain

(9.7) Area(Br(0) ∩X(M)) =

∫

Br(0)∩X(M)

dµ ≤ Crn+
λ
2

2
−2β− inf H2

2 ,

where β = 1
4
inf(λ−H)2 and C is a constant. �
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Remark 9.1. The estimate in our theorem 9.1 is the best possible because the cylin-
ders Sk(r0)× Rn−k satisfy the equality.

Remark 9.2. By making use of the same assertions as in X. Cheng and Zhou [10]
for self-shrinkers, we can prove the weighted area of a complete and non-compact
properly immersed λ-hypersurface in the Euclidean space Rn+1 is bounded.

By making use of to the same assertions as in X. Cheng and Zhou [10] for self-
shrinkers, we can prove the following theorem. We will leave it for readers.

Theorem 9.2. If X : M → Rn+1 is an n-dimensional complete immersed λ-
hypersurface with polynomial area growth, then X :M → R

n+1 is proper.

10. A lower bound growth of the area for λ-hypersurfaces

For n-dimensional complete and non-compact Riemannian manifolds with nonneg-
ative Ricci curvature, the well-known theorem of Calabi and Yau says that geodesic
balls have at least linear area growth:

Area(Br(x0)) ≥ Cr.

Cao and Zhu [6] have proved that n-dimensional complete and non-compact gradient
shrinking Ricci soliton must have infinite volume. Furthermore, Munteanu and
Wang [26] have proved that areas of geodesic balls for n-dimensional complete and
non-compact gradient shrinking Ricci soliton has at least linear growth. For self-
shrinkers, Li and Wei [24] proved that any complete and non-compact proper self-
shrinker has at least linear area growth.
In this section, we study the lower bound growth of the area for λ-hypersurfaces.
The following lemmas play a very important role in order to prove our results.

Lemma 10.1. Let X :M → Rn+1 be an n-dimensional complete noncompact proper
λ-hypersurface, then there exist constants C1(n, λ) and c(n, λ) such that for all t ≥
C1(n, λ),

(10.1) Area(Bt+1(0)∩X(M))−Area(Bt(0)∩X(M)) ≤ c(n, λ)
Area(Bt(0) ∩X(M))

t

and

(10.2) Area(Bt+1(0) ∩X(M)) ≤ 2Area(Bt(0) ∩X(M)).

Proof. Since X :M → R
n+1 is a complete λ-hypersurface, one has

(10.3)
1

2
∆|X|2 = n+H〈N,X〉 = n +Hλ−H2.
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Integrating (10.3) over Br(0) ∩X(M), we obtain

(10.4)

nArea(Br(0) ∩X(M)) +

∫

Br(0)∩X(M)

Hλdµ−
∫

Br(0)∩X(M)

H2dµ

=
1

2

∫

Br(0)∩X(M)

△|X|2dµ

=
1

2

∫

∂(Br(0)∩X(M))

∇|X|2 · ∇ρ
|∇ρ|dσ

=

∫

∂(Br(0)∩X(M))

|XT |dσ

=

∫

∂(Br(0)∩X(M))

|X|2 − (λ−H)2

|XT | dσ

= r(Area(Br(0) ∩X(M)))
′ −

∫

∂(Br(0)∩X(M))

(λ−H)2

|XT | dσ,

where ρ(x) := |X(x)|, ∇ρ = XT

|X| . Here we used, from the co-area formula,

(10.5)
(

Area(Br(0) ∩X(M))
)′

= r

∫

∂(Br(0)∩X(M))

1

|XT |dσ.

Hence, we obtain

(10.6)

(n+
λ2

4
)Area(Br(0) ∩X(M))− r(Area(Br(0) ∩X(M)))

′

=

∫

Br(0)∩X(M)

(H − λ

2
)2dµ−

∫

∂(Br(0)∩X(M))

(λ−H)2

|XT | dσ,

From (10.5), (H − λ)2 = 〈N,X〉2 ≤ |X|2 = r2 on ∂(Br(0) ∩X(M)) and (10.6), we
conclude

(10.7)

∫

Br(0)∩X(M)

(H − λ

2
)2dµ ≤ (n+

λ2

4
)Area(Br(0) ∩X(M)).

Furthermore, we have

(10.8)

∫

Br(0)∩X(M)

(H − λ)2dµ ≤
∫

Br(0)∩X(M)

2
[

(H − λ

2
)2 +

λ2

4

]

dµ

≤ (2n+ λ2)Area(Br(0) ∩X(M)).

(10.6) implies that

(10.9)

(

r−n−λ
2

4 Area(Br(0) ∩X(M))
)′

= r−n−1−λ
2

4

(

r
(

Area(Br(0) ∩X(M))
)′

−(n +
λ2

4
)Area(Br(0) ∩X(M))

)

= r−n−1−λ
2

4

∫

∂(Br(0)∩X(M))

(H − λ)2

|XT | dσ − r−n−1−λ
2

4

∫

Br(0)∩X(M)

(H − λ

2
)2dµ.
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Integrating (10.9) from r2 to r1 (r1 > r2), one has

(10.10)

r
−n−λ

2

4
1 Area(Br1(0) ∩X(M))− r

−n−λ
2

4
2 Area(Br2(0) ∩X(M))

= r
−n−2−λ

2

4
1

∫

Br1(0)∩X(M)

(H − λ)2dµ− r
−n−2−λ

2

4
2

∫

Br2 (0)∩X(M)

(H − λ)2dµ

+ (n+ 2 +
λ2

4
)

∫ r1

r2

s−n−3−λ
2

4 (

∫

Bs(0)∩X(M)

(H − λ)2dµ)ds

−
∫ r1

r2

s−n−1−λ
2

4 (

∫

Bs(0)∩X(M)

(H − λ

2
)2dµ)ds

≤
(

r
−n−2−λ

2

4
1 + r

−n−2−λ
2

4
2

)

∫

Br1 (0)∩X(M)

(H − λ)2dµ.

Here we used
(
∫

Br(0)∩X(M)

(H − λ)2dµ

)′

= r

∫

∂(Br(0)∩X(M))

(H − λ)2

|XT | dσ

and Area(Br(0) ∩ X(M)) is non-decreasing in r from (10.5). Combining (10.10)
with (10.8), we have

(10.11)

Area(Br1(0) ∩X(M))

r
n+λ2

4
1

− Area(Br2(0) ∩X(M))

r
n+λ2

4
2

≤ (2n+ λ2)
( 1

r
n+2+λ2

4
1

+
1

r
n+2+λ2

4
2

)

Area(Br1(0) ∩X(M)).

Putting r1 = t+ 1, r2 = t > 0, we get

(10.12)

(

1− 2(2n+ λ2)(t+ 1)n+
λ
2

4

tn+2+λ2

4

)

Area(Bt+1(0) ∩X(M))

≤ Area(Bt(0) ∩X(M))(
t+ 1

t
)n+

λ
2

4 .

For t sufficiently large, one has, from (10.12),

(10.13)

Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M))

≤ Area(Bt(0) ∩X(M))

(

(1 +
1

t
)n − 1 +

C(t+ 1)2n+λ2
4

t2n+2+λ2

)

,

where C is constant only depended on n, λ. Therefore, there exists some constant
C1(n, λ) such that for all t ≥ C1(n, λ),

(10.14)

Area(Bt+1(0) ∩X(M))− Area(Bt(0) ∩X(M))

≤ c(n, λ)
Area(Bt(0) ∩X(M))

t
,

(10.15) Area(Bt+1(0) ∩X(M)) ≤ 2Area(Bt(0) ∩X(M)),

where c(n, λ) depends only on n and λ. This completes the proof of the lemma 10.1.
�
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Using Logarithmic Sobolev inequality for hypersurfaces in Euclidean space due to
Ecker [14] and conformal theory, we can show

Lemma 10.2. Let X : M → Rn+1 be an n-dimensional hypersurface with measure
dµ. Then the following inequality

(10.16)

∫

M

f 2(ln f 2)e−
|X|2

2 dµ−
∫

M

f 2e−
|X|2

2 dµ ln(

∫

M

f 2e−
|X|2

2 2
n

2 dµ)

≤
∫

M

|∇f |2e−
|X|2

2 dµ+
1

4

∫

M

|H + 〈X,N〉|2f 2e−
|X|2

2 dµ

+ C(n)

∫

M

f 2e−
|X|2

2 dµ

holds for any nonnegative function f for which all integrals are well-defined and
finite, where C(n) is a positive constant depending on n.

Corollary 10.1. For an n-dimensional λ-hypersurface X :M → Rn+1, we have the
following inequality

(10.17)

∫

M

f 2(ln f)e−
|X|2

2 dµ ≤ 1

2

∫

M

|∇f |2e− |X|2

2 dµ+ (
1

2
C(n) +

1

8
λ2)2−

n

2

for any nonnegative function f which satisfies

(10.18)

∫

M

f 2e−
|X|2

2 2
n

2 dµ = 1.

Corollary 10.2. If X : M → R
n+1 is an n-dimensional λ-hypersurface, then the

following inequality

(10.19)

∫

M

u2(ln u2)dµ−
∫

M

u2dµ ln(

∫

M

u2dµ)

≤ 2

∫

M

|∇u|2dµ+ (
1

4
λ2 +

n

2
ln 2 + C(n))

∫

M

u2dµ

holds for any nonnegative function f which satisfies

(10.20) f = ue
|X|2

4 .

Lemma 10.3. ([24]) Let X :M → R
n+1 be a complete properly immersed hypersur-

face. For any x0 ∈ M , r ≤ 1, if |H| ≤ C
r
in Br(X(x0)) ∩X(M) for some constant

C > 0. Then

(10.21) Area(Br(X(x0)) ∩X(M)) ≥ κrn,

where κ = ωne
−C.

Lemma 10.4. If X : M → R
n+1 is an n-dimensional complete and non-compact

proper λ-hypersurface. then it has infinite area.

Proof. Let

Ω(k1, k2) = {x ∈ M : 2k1−
1
2 ≤ ρ(x) ≤ 2k2−

1
2},

A(k1, k2) = Area(X(Ω(k1, k2))),
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where ρ(x) = |X(x)|. Since X : M → Rn+1 is a complete and non-compact proper
immersion, X(M) can not be contained in a compact Euclidean ball. Then, for k
large enough, Ω(k, k + 1) contains at least 22k−1 disjoint balls

Br(xi) = {x ∈M : ρxi
(x) < 2−

1
2 r}, xi ∈M, r = 2−k

where ρxi
(x) = |X(x)−X(xi)|. Since, in Ω(k, k + 1),

(10.22) |H| ≤ |H − λ|+ |λ| = |〈X,N〉|+ |λ| ≤ |X|+ |λ| ≤ 2k
√
2+ |λ| ≤

√
2 + |λ|
r

,

by using of the lemma 10.3, we get

(10.23) A(k, k + 1) ≥ κ12
2k−1−kn,

with κ1 = ωne
−(

√
2+|λ|)2−

1
2 2−

n

2 .
Claim: If Area(X(M)) <∞, then, for every ε > 0, there exists a large constant

k0 > 0 such that,

(10.24) A(k1, k2) ≤ ε and A(k1, k2) ≤ 24nA(k1 + 2, k2 − 2), if k2 > k1 > k0.

In fact, we may choose K > 0 sufficiently large such that k1 ≈ K
2
, k2 ≈ 3K

2
. Assume

(10.24) does not hold, that is,

A(k1, k2) ≥ 24nA(k1 + 2, k2 − 2).

If

A(k1 + 2, k2 − 2) ≤ 24nA(k1 + 4, k2 − 4),

then we complete the proof of the claim. Otherwise, we can repeat the procedure
for j times, we have

A(k1, k2) ≥ 24njA(k1 + 2j, k2 − 2j).

When j ≈ K
4
, we have from (10.23)

Area(X(M)) ≥ A(k1, k2) ≥ 2nKA(K,K + 1) ≥ κ12
2K−1.

Thus, (10.24) must hold for some k2 > k1 because Area(M) < ∞. Hence for any
ε > 0, we can choose k1 and k2 ≈ 3k1 such that (10.24) holds.
We define a smooth cut-off function ψ(t) by

(10.25) ψ(t) =

{

1, 2k1+
3
2 ≤ t ≤ 2k2−

5
2 ,

0, outside [2k1−
1
2 , 2k2−

1
2 ].

0 ≤ ψ(t) ≤ 1, |ψ′

(t)| ≤ 1.

Letting

(10.26) f(x) = eL+
|X|2

4 ψ(ρ(x)),

we choose L satisfying

(10.27) 1 =

∫

M

f 2e−
|X|2

2 2
n

2 dµ = e2L
∫

Ω(k1,k2)

ψ2(ρ(x))2
n

2 dµ.
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We obtain from the corollary 10.1 and t ln t ≥ −1
e
for 0 ≤ t ≤ 1

(10.28)

(
1

2
C(n) +

1

8
λ2)2−

n

2 ≥
∫

Ω(k1,k2)

e2Lψ2(L+
|X|2
4

+ lnψ)dµ

− 1

2

∫

Ω(k1,k2)

e2L|ψ′∇ρ+ ψ
XT

2
|2dµ

≥
∫

Ω(k1,k2)

e2Lψ2(L+
|X|2
4

+ lnψ)dµ

−
∫

Ω(k1,k2)

e2L|ψ′|2dµ− 1

4

∫

Ω(k1,k2)

e2Lψ2|X|2dµ

= 2−
n

2L+

∫

Ω(k1,k2)

e2Lψ2 lnψdµ−
∫

Ω(k1,k2)

e2L|ψ′|2dµ

≥ 2−
n

2L− (
1

2e
+ 1)e2LA(k1, k2).

Therefore, it follows from (10.24) that

(10.29)

(
1

2
C(n) +

1

8
λ2)2−

n

2 ≥ 2−
n

2L− (
1

2e
+ 1)e2L24nA(k1 + 2, k2 − 2)

≥ 2−
n

2L− (
1

2e
+ 1)e2L24n

∫

Ω(k1,k2)

ψ2(ρ(x))dµ

= 2−
n

2L− (
1

2e
+ 1)24n2−

n

2 .

On the other hand, we have, from (10.24) and definition of f(x),

(10.30) 1 ≤ e2Lε2
n

2 .

Letting ε > 0 sufficiently small, then L can be arbitrary large, which contradicts
(10.29). Hence, M has infinite area. �

Theorem 10.1. Let X : M → Rn+1 be an n-dimensional complete proper λ-
hypersurface. Then, for any p ∈M , there exists a constant C > 0 such that

Area(Br(X(x0)) ∩X(M)) ≥ Cr,

for all r > 1.

Proof. We can choose r0 > 0 such that Area(Br(0) ∩ X(M)) > 0 for r ≥ r0. It is
sufficient to prove there exists a constant C > 0 such that

(10.31) Area(Br(0) ∩X(M)) ≥ Cr

holds for all r ≥ r0. In fact, if (10.31) holds, then for any x0 ∈M and r > |X(x0)|,
(10.32) Br(X(x0)) ⊃ Br−|X(x0)|(0),

and

(10.33) Area(Br(X(x0)) ∩X(M)) ≥ Area(Br−|X(x0)|(0) ∩X(M)) ≥ C

2
r,

for r ≥ 2|X(x0)|.
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We next prove (10.31) by contradiction. Assume for any ε > 0, there exists r ≥ r0
such that

(10.34) Area(Br(0) ∩X(M)) ≤ εr.

Without loss of generality, we assume r ∈ N and consider a set:

D := {k ∈ N : Area(Bt(0) ∩X(M)) ≤ 2εt for any integer t satisfying r ≤ t ≤ k}.
Next, we will show that k ∈ D for any integer k satisfying k ≥ r. For t ≥ r0, we
define a function u by

(10.35) u(x) =



















t + 2− ρ(x), in Bt+2(0) ∩X(M) \Bt+1(0) ∩X(M),

1, in Bt+1(0) ∩X(M) \Bt(0) ∩X(M),

ρ(x)− (t− 1), in Bt(0) ∩X(M) \Bt−1(0) ∩X(M),

0, otherwise.

Using the corollary 10.2, |∇ρ| ≤ 1 and t ln t ≥ −1
e
for 0 ≤ t ≤ 1, we have

(10.36)

−
(

∫

M

u2dµ
)

ln
{(

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))
)

2
n

2

}

≤ C0

(

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))

)

,

where C0 = 2 + 1
e
+ λ2

4
+ n

2
ln 2 + C(n), C(n) is the constant of the corollary 10.2.

For all t ≥ C1(n, λ) + 1, we have from the lemma 10.1

(10.37)

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))

≤ c(n, λ)

(

Area(Bt+1(0) ∩X(M))

t + 1

+
Area(Bt(0) ∩X(M))

t
+

Area(Bt−1(0) ∩X(M))

t− 1

)

≤ c(n, λ)

(

2

t+ 1
+

1

t
+

1

t
(1 +

1

C1(n, λ)
)

)

Area(Bt(0) ∩X(M))

≤ C2(n, λ)
Area(Bt(0) ∩X(M))

t
,

where C2(n, λ) is constant depended only on n and λ. Note that we can assume
r ≥ C1(n, λ) + 1 for the r satisfying (10.34). In fact, if for any given ε > 0, all the r
which satisfies (10.34) is bounded above by C1(n, λ)+1, then Area(Br(0)∩X(M)) ≥
Cr holds for any r > C1(n, λ) + 1. Thus, we know that M has at least linear area
growth. Hence, for any k ∈ D and any t satisfying r ≤ t ≤ k, we have

(10.38) Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M)) ≤ 2C2(n, λ)ε.

Since

(10.39)

∫

M

u2dµ ≥ Area(Bt+1(0) ∩X(M))−Area(Bt(0) ∩X(M)),
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holds, if we choose ε such that 2C2(n, λ)ε2
n

2 < 1, from (10.36), we obtain

(10.40)

(Area(Bt+1(0) ∩X(M))− Area(Bt(0) ∩X(M))) ln(2
n

2
+1C2(n, λ)ε)

−1

≤ C0

(

Area(Bt+2(0) ∩X(M))−Area(Bt−1(0) ∩X(M))

)

.

Iterating from t = r to t = k and taking summation on t, we infer, from the lemma
10.1

(10.41)
(Area(Bk+1(0) ∩X(M))−Area(Br(0) ∩X(M))) ln(2

n

2
+1C2(n, λ)ε)

−1

≤ 3C0Area(Bk+2(0) ∩X(M)) ≤ 6C0Area(Bk+1(0) ∩X(M)).

Hence, we get

(10.42)

Area(Bk+1(0) ∩X(M))

≤ ln(2
n

2
+1C2(n, λ)ε)

−1

ln(2
n

2
+1C2(n, λ)ε)−1 − 6C0

Area(Br(0) ∩X(M))

≤ ln(2
n

2
+1C2(n, λ)ε)

−1

ln(2
n

2
+1C2(n, λ)ε)−1 − 6C0

εr.

We can choose ε small enough such that

(10.43)
ln(2

n

2
+1C2(n, λ)ε)

−1

ln(2
n

2
+1C2(n, λ)ε)−1 − 6C0

≤ 2.

Therefore, it follows from (10.42) that

(10.44) Area(Bk+1(0) ∩X(M)) ≤ 2εr,

for any k ∈ D. Since k + 1 ≥ r, we have, from (10.44) and the definition of D, that
k + 1 ∈ D. Thus, by induction, we know that D contains all of integers k ≥ r and

(10.45) Area(Bk(0) ∩X(M)) ≤ 2εr,

for any integer k ≥ r. This implies that M has finite volume, which contradicts
with the lemma 10.4. Hence, there exist constants C and r0 such that Area(Br(0)∩
X(M)) ≥ Cr for r > r0. It completes the proof of the theorem 10.1.

�

Remark 10.1. The estimate in our theorem is the best possible because the cylinders
Sn−1(r0)× R satisfy the equality.
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