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Abstract

In [14] we defined and described thgular infinite or bounded p-gonal

prism tilings in SLoR space. We proved that there exist infinitely many
regular infinitep-gonal face-to-face prism tiIinggj(q) and infinitely many
regular boundeg-gonal non-face-to-face prism tilings,(q) for integer pa-
rameter, ¢; 3 < p, I% < q. Moreover, in[[5] and 7] we have determined
the symmetry group of,(¢) via its index 2 rotational subgroup, denoted by
P92 and investigated the corresponding geodesic and tramsladill pack-
ings.

In this paper we study the structure of the regular infinitdboounded
p-gonal prism tilings, prove that the side curves of theirebfagurs are arcs
of Euclidean circles for each parameter. Moreover, we exartiie non-
periodic geodesic ball packings of congruent regular nemegic prism
tilings derived from the regular infinite-gonal face-to-face prism tilings
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7Z(q) in S/L\Q_f{ geometry. We develop a procedure to determine the den-
sities of the above non-periodic optimal geodesic ball paykand apply
this algorithm to them. We look for those parameteendq above, where
the packing density large enough as possible. Now, we olaajer density
~ 0.626606 for (p, q) = (29, 3) then the maximal density of the correspond-
ing periodical geodesic ball packings under the gropig2; .

In our work we will use the projective model STL\Qf{ introduced by E.
Molnar in [2].

1 Basic notions

The real x 2 matrices Ccl 2 with unit determinantd — bc = 1 constitute a Lie

transformation group by the usual product operation, ta@ect on row matrices
as on point coordinates on the right as follows

(2%, 2" (CCZ Z) = (2%d+ 2'c, 2% + 2'a) = (w°, w")
(1.1)

) w' b+Za b+ za
withw = — = 2 = ,
w d+ e d+ zc

as action on the complex projective lilig™ (see [2], [3]). This group is &-
dimensional manifold, because of #sndependent real coordinates and with its
usual neighbourhood topology ([9], [16], [8]). In order twdel the above struc-
ture in the projective spherBS? and in the projective space?® (see [2]), we
introduce the new projective coordinates$, z!, 22, z3) wherea := 2+ 23, b :=
o'+ 2%, ci= —a! + 22, d:= 2" — 2 with the positive, then the non-zero multi-
plicative equivalence as projective freedonf? and inP?, respectively. Then

it follows that0 > bc—ad = —2%2° — 2tz + 2%2% + 2323 describes the interior of
the above one-sheeted hyperboloid s@fith the usual Euclidean coordinate sim-
plex with the originE,(1;0;0;0) and the ideal points of the axég*(0; 1; 0;0),
E3°(0;0;1;0), £5°(0; 0;0; 1). We consider the collineation growp. that acts on
the projective spher§P? and preserves a polarity i.e. a scalar product of signa-
ture (— — ++), this group leaves the one sheeted hyperboloid gdlidvariant.
We have to choose an appropriate subgr@upf G, as isometry group, then
the universal covering group and spa¢ef H will be the hyperboloid model of

SL,R [2].
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The specific isometrieS(¢) (¢ € R) constitute a one parameter group given
by the matrices:

cos¢ sing 0 0
S(¢) : (s/(¢)) = _Séw COS¢ Cog¢ _S?w (1.2)
0 0 sing cos¢

The elements d8(¢) are the so-calleflbre translations. \We obtain a unique fibre
line to eachX (z°; 2'; 22; 2%) € H as the orbit by right action & (¢) on X. The
coordinates of points lying on the fibre line throughcan be expressed as the
images ofX by S(¢):

S . .
(2% 2t 2% 2°) 5@ (2° cos ¢ — z' sin ¢; 2% sin ¢ + 2! cos ¢;

(1.3)
2% cos ¢ + 2° sin ¢; —x? sin ¢ + 2° cos @).

The points of a flbre line through’ by usual inhomogeneous Euclidean coordi-
natest = &,y = &, » = 4, 2 # 0 are given by

(1234 2) M (1_ r+tang y+ ztang z—ytangb) (1.4)

"l—ztan¢’ 1 —ztang’ 1 — ztang

for the projective spac®?, where ideal points (at infinity) conventionally occur.
In (1.3) and (1.4) we can see the periodicity of ¢, moreover the (Ioglcal)

extension tap € R, as real parameter, to have the universal COYI'Bm'IdSLQ
respectively, through the projective sphé?&2. The elements of the |sometry

group of SLyR (and so by the above extension the isometrieSIofR) can be
described by the matrif:]) (see [2] and[[3]) Moreover, we have the projective
proportionality, of course. We define themnslation group G, as a subgroup of
the isometry group oL, R, the isometries acting transitively on the pointgbf

and by the above extension on the pointssmfgf\f/{ and?. Gr maps the origin
FE(1;0;0;0) onto X (2%; z'; 22; 23). These isometries and their inverses (up to a
positive determinant factor) can be given by the followingtrites:

29 xt x? x3
1 0 3 2
; -z T T -z
T: (ti) = 22 23 20 2! . (1.5)
3 2 1 0
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The rotation about the fibre line through the oridin(1; 0; 0; 0) by anglew (—7 <
w < 7) can be expressed by the following matrix (see [2])

0 0 0
1 0 0
0 cosw sinw
0 —sinw cosw

Rio(w) : (r](EBo,w)) = ) (1.6)

o O O

and the rotatioR x (w) about the fibre line through (z°; x!; 22; 23) by anglew
can be derived by formulas (1.5) and (1.6):

Ryx(w) =T 'Rg, (w)T: (r/(X,w)). (1.7)

Horizontal intersection of the hyperboloid softiwith the planeE, E3° E° pro-

vides thehyperbolic H? base plane of the mode{ = SL,R. The fibre through
X intersects the base plané= z = 0 in the foot point

Z(2" = 2% + 2tz 2t = 0; 2% = 2% — 22?2 = 2% 4 2'2?). (L.8)

We introduce a so-called hyperboloid parametrizatior hagfollows

2" = coshrcosp, x' = coshrsin ¢,

19
2 = sinhrcos (§ — ¢), 2° = sinhrsin (6 — ¢), 19

where (r, §) are the polar coordinates of the base plane @nsl just the fibre
coordinate. We note that

—292% — 't + 2222 + 2323 = — cosh?r +sinh?r = —1 < 0.

The inhomogeneous coordinates corresponding to (1.9),pthg an important
role in the later visualization of prism tilings iB*, are given by

1 2 _
=% —tang, y=" = tannr 09
29 a0 cos ¢
, , (1.10)
P ()]
20 cosgp

1.1 Geodesic balls in §—L\2].:/{,

Definition 1.1 The distancel(P;, P») between the points P, and P, is defined by
the arc length of the geodesic curve from P, to P,.
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Definition 1.2 The geodesic sphei& radius p (denoted by Sp,(p)) with the cen-
ter in point Py is defined as the set of all points P, with the condition d(Py, Py) =
p. Moreover, we require that the geodesic sphere is a simply connected surface
without selfintersection.

Definition 1.3 The body of the geodesic sphere of centre P, and with radius p is
called geodesic balldenoted by Bp, (p), i.e., Q) € Bp,(p) iff 0 < d(P, Q) < p.

From [5] it follows thatS(p) is a simply connected surface ¥ and SL;R,
respectively, ifo € [0, 7). If p > 7 then the universal cover should be discussed.
Therefore, we consider geodesic spheres and balls only with radii p € [0,7) in
the following.

1.2 The volume of a geodesic ball

The volume formula of the geodesic bal(p) follows from the metric tensay;;
(see[5]). We obtain the connection between the hyperbaioidinatesr, 0, ¢)
and the geographical coordinates\, «) in a standard way. Therefore, the vol-
ume of the geodesic ball of radipscan be computed by the following

Theorem 1.1 .
Vol(B(p)) = / 3 sinh(2r) dr df d¢ =

B
T .
:47r/ / 5 sinh(2r(s, )| 4] doc ds (1.11)
0 0

Pl 1 .
+47r/ / 3 sinh(2r(s, a))|J2| da ds
0 /g

Q
3

and similarly |.J»| (by Table 1 and % = 1) are the

&2

ar
53
ds O«

corresponding Jacobians.

where | J;| = ‘

The complicated formulas above need numerical approxanatby computer.

1.3 Regular bounded periodic prism tilings and their space
groups pq2;

In [14] we have defined and described the regular prisms aachgilings with a

space group clads = pq2; of SLyR. These will be summarized in this section.
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Definition 1.4 Let P! be an infinite solid that is bounded by certain surfaces that
can be determined (in [14]) by ,,side fibre lines” passing through the vertices of

—_—

a regular p-gon PP lying in the base plane. The images of solids P' by SLoR
isometries are called infinite regularp-sided prismsHere regular means that the
side surfaces are congruent to each other under rotations about a fiber line (e.g.
through the origin).

The common part gP? with the base plane is theise figure of P* that is denoted
by P and its vertices coincide with the vertices®f, but 7P is not assumed to
be a polygon.

Definition 1.5 A bounded regulay-sided prismis analogously defined if the face
of the base figure P and its translated copy P', under a fibre translation by (1.2)
and so (1.3), are also introduced. The faces P and P! are called cover faces

We consider regular prism tilingg,(¢) by prismsP,(q) whereq pieces regularly
meet at each side edge byotation.
The following theorem has been proved|in/[14]:

Theorem 1.2 There exist regular bounded not face-to-face prism tilings T,(q) in
SLoR for each 3 < p € N where z% <qgeN

We assume that the pris®),(q) is atopological polyhedron having at each vertex
onep-gonal cover face (it is not a polygon at all) and twew quadrangles which
lie on certain side surfaces in the model. I&fq) be one of the tiles of,(¢),
PP is centered in the origin with vertice$; A, A; . .. A, in the base plane (Fig. 1
and 2). Itis clear that the side curves 4, , (i = 1...p, A1 = A;) of the
base figure are derived from each otherzpéyotation about the vertical axis, so

there are congruent iL,R sense. The corresponding vertidesB,B; ... B,
are generated by a fibre translatiogiven by (1.3) with parametédr < & € R.
The fibre lines through the verticels B; are denoted by;, (i = 1,...,p) and the
fibre line through the "midpoint’ of the curvec,, 4, is denoted byf;. This f,
will be a half-screw axis as follows below.

The tiling 7,(¢) is generated by a discrete isometry grdidq) = pq2:
C Isom(ﬁ;f{) which is given by its fundamental domaify 4,0 A A50° a
topological polyhedron and the group presentation (see Fig. 1 and 4 fsr3 and
[14] for details):

pq2; = {a,b,s:a’ =b?=asa 's' =babs ' =1} =

1.12
={a,b:a” =b? =ababa 'b'a’'b™' =1}. ( )
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Figure 1: The regular prisrR,(¢) and the fundamental domain of the space group
P92

Herea is a p-rotation about the fibre line through the origin &xis), b is a ¢-
rotation about the fibre line troughy ands = bab is a screw motiors : OA;A; —
O®B,B;. All these can be obtained by formulas (1.5) and (1.6). Themet that
abab = baba =: 7 is a fibre translation. Theab is a2; half-screw motion
aboutf, = HHT (look at Fig. 1) that also determines the fibre tarnslation
above. This group in (3.1) surprisingly occurrediré of our paper![6] at double
links K, ,. The coordinates of the verticels A, A; ... A, of the base figure and
the corresponding verticds, B, Bs . . . B, of the cover face can be computed for
all given parameterg, ¢ by

T

l1—tanZtanZ
P 4 (1.13)
1+ tan % tan%

tanh(OA;) =b:= \/

1.4 The volume of the bounded regular prisms

The volume formula of aector-like 3-dimensional domaiiol(D(¥)) can stan-
dardly be computed by the metric tenggr(see [5]). in hyperboloid coordinates.
This defined by the base figure lying in the base plane and by fibre translation
T given by (1.3) with the height parametér
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Theorem 1.3 Suppose we are given a sector-like region D, so a continuous func-
tion r = r(6) where the radius v depends upon the polar angle 0. The volume of
domain D(WV)) is derived by the following integral:

1
Vol(D(V)) = / 5 sinh(2r(6))dr d6 dy =
D
v 02 r(0) 1 253 1
= / / / —sinh(2r(0)) dr d6 dy = ‘If/ —(cosh(2r(0)) — 1) d6.
o Jo, Jo 2 o, 4
(1.14)
P,(q) be an arbitrary bounded regular prism. We get the following
Theorem 1.4 The volume of the bounded regular prism P,(q) <3 <pé€eN,
z% <q¢€ N) can be computed by the following simple formula:
Vol(P,(q)) = Vol(D(p, q,¥)) - p, (1.15)

where Vol(D(p, q, V)) is the volume of the sector-like 3-dimensional domain that

e~

is given by the sector region OA1 Ay C P (see Fig. I and 3) and by V the SLyR
height of the prism, depending on p, q.

Figure 2: Regular infinite 4-gonal pris®; (6) of the infinite regular prism tiling
7.(6)
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2 Regular infinite prism tilings and non-periodic ball
packings

2.1 Infinite regular prism tilings

In this subsection we study the regular infinite prism tiing (¢). Let 7,(q)
be a regular prism tiling and €®,(¢) be one of its tiles which is given by its
base figureP that is centered at the origii’ with verticesG,G2G3...G), in
the base plane of the model and the corresponding verticds A; ... A, and
B,ByDB; ... B, are generated by fibre translations andr given by (1.3) with
parametet = 7 — = — 7. The images of the topological polyhedréy(q) by
the translationgr) form an infinite prismP;(¢) (see Definitions 1. 4-5). By the

A 4,
b —
66,6
01—
— opt
E p(K) 11 |7 IIGU 1111 Ll 11 1 Il
T TR G
01 —ap 01 02 03 01
01—
5
— G3
G3 A3

Figure 3: The maximal radiusp®”(K) and the optimal half prism
A1 Ay A3G1 G2 G5 with optimal half sphere for parameteps= 3, ¢ = 7 with
the maximal radius

constuction of the bounded prism tilings follows that rmtas throughw = 27“
about the fibre lineg; maps the corresponding side face onto the neighbouring
one. Therefore, we have got the following (se€ [14]):

Theorem 2.1 There exist regular infinite face-to-face prism tilings 7;i(q) for in-

teger parameters p, q where 3 < p, % < q.

For example, we have describ@{(6) with its base polygon in Fig. 2, where the
parameteb = Y0_v2,
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2.2 Non-periodic geodesic ball packings

We consider a infinite regular prism tiling; (¢) and letP;(q) one of its tiles
with base figureP centered at the origin with vertic&s, G, ... G, in the base
plane of the model. LeB}’ft be the geodesic ball with center at the originthat
touches the side surfaces of the infinite regular pﬁ%ﬁq). The radius of the
ball B is denoted by*”(K). Moreover, we define the regular prisR§*(¢) =
A1Ay ... A,B1 B, ... B, with base figurP and with cover facesl; A, ... A, and
B1B, ... B, touchingBy". Itis clear, that the heighti?*!(¢) of P (q) is 2p7" (K).

The images ofP*(q) by the fibre traslationgr) whereh(¢q) = 1| =
2p°""(K) cover the infinite regular prism®’ (¢) and by the structure of the infinte
prism tilings follows that rotations through = 2= about the fibre lineg; maps
the corresponﬂrlg/side face onto the neighbouring one amslttie images of

PP (q) fill the SLyR space without overlap. These tilings are denotedpyy).

The height hi*(q) of the prism PP (q) is not equal to m — 2—” - 2—” so the
corresponding regular prism tiling is non-periodic. \Ne note here that there are
infinitely many non-periodic prism tilings derived frofiy*(¢)

For the density of the packing it is sufficient to relate thiee of the optimal
ball to that of the solidP*(¢). The densitiy of the optimal ball packing of the

prism tiling 7,7 (¢q) (3 < p, 2p < ¢, integer parameters) can be computed by the
following formula:

Vol(BY"
Vol(P (q))

57 (q) =

In order to determine the optimal radip®*(K) we will use the following Lem-
mas. The equation of the side cumg ¢, is derived as the foot points (see (1.3)
and (1.8)) of the corresponding fibre lings € p, % < ¢, wherep andq are
integer parameters):

Lemma 2.2 The parametric equation of the side curve cg, ¢, of the base figur P



Non-periodic geodesic ball packings... 11

Figure 4: The optimal prisr, A, A3 B, B, Bs with optimal sphere for parameters
p = 3, ¢ = 7 with the maximal radiug?' ( K)

is
07 (o o (42 (on (5o (5+3) - () (£ 5)
nt (24 T) 0o (T4 T)n (2-7) )
(e ) () o (;+2))
o ) () (52 e () (2 2
(50 3) Con (5 )on (o5 eon (50 3) o)
([ () om ) o (5 5) o (2))): et

The side curvesg,q,., (i = 1...p, Gp11 = Gy) of the base figure are derived
from each other bfpﬂ rotation about the verticat axis, so there are congruent

.1)

[\V)
N— — N
Sl
+
SRR
~—
+
o~
[V
Q
(e}
12}

and their curvatures are equal$iL,R sense. Moreover, the above side curves
are congruent also in Euclidean sense, therefore theiatunes are equal in Eu-
clidean sense, as well. We obtain by the usual machineryedlitferential geom-
etry the next
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Lemma 2.3 The curvature Cy,(q) of the side curves cg,c,,, (1 =1...p, Gpy1 =
G1) in the Euclidean sense is

6. (0) = cos (% + %) <sin <2?“> + sin <%’T)) 22

in(5+5) (1-eon(3))

(t=1...p, Goy1 = G1) are Euclidean circular

therefore, the side curves cg,q
. q_ 1
arcs of radius r} ROk

i+1

Remark 2.1
following: lim, _,..(C,(q)) = cot <g> , limy, 0 (Cp(q)) = 0.

1. It is easy to see, that the asymptotic behaviour of C,(q) is the

2. Given a point off of a line, if we drop a perpendicular to the above line from
the given point, then x is the distance along this perpendicular segment, and
let ¢ = 11(x) is the least angle such that the line drawn through the point
at that angle does not intersect the given line. The angle ¢ is the angle of
parallelism. By the famous formel of J. Bolyai follows, that log(cot(¢)) =
x. Therefore, if we denote the distance of parallelism of the angle ¢ by A(¢)

then log <limq _m(Cp(q))) = log (cot (%) ) = A(%).

In the Table 1 we have collected some values of the radii ofaturer? of the
side curverg, g, of the base figuP.

| Table 1 |
(p.q) (3,7) (3,8) (3,10) (3,1000)
Cp(q 0.286926 0.371579 0.453885 0.577339
Tg 3.485219 2.691215 2.203203 1.732085

The maximal radiug®'(K) of the balls B3?* can be determined using the
above Lemmas for all possible parameters as the distaneedethe origin and
ccia,- The volumesVol(B') can be computed by the Theorem 1.3 and the
volumes of the prism®**(¢) can be determined by the Theorem 1.4.

The above locally densest geodesic ball packings can bentaetd for all
regular prism tilings7,*(¢) (p, ¢ as above). We have summarized in the following
Tables some results to tilingg"(q).



Non-periodic geodesic ball packings... 13
| Table 2 |
(p,q) pP(E) | Vol(BY') | Vol(P(q)) a7 (q)

(3,7) 0.141564 0.011963 0.031767 0.376592
(3,8) 0.181760 0.025431 0.071377 0.356287
(3,10) 0.219795 0.045198 0.138101 0.327281
(3,1000) 0.274648 0.088981 0.428828 0.207499
(4,5) 0.265319 0.080085 0.166705 0.480397
(4,6) 0.329239 0.154965 0.344779 0.449464
(4,10) 0.404230 0.292043 0.761956 0.383280
(4,1000) 0.440683 0.382228 1.378910 0.277196
(5,4) 0.313435 0.133256 0.246171 0.541312
(5,5) 0.421241 0.332010 0.661684 0.501765
(5,10) 0.530638 0.686600 1.667047 0.411866
(5,1000) 0.562086 0.825191 2.639937 0.312580
(6,4) 0.440687 0.382237 0.692229 0.552183
(6,5) 0.530638 0.686600 1.333638 0.514833
(6,10) 0.629251 1.188024 2.767592 0.429263
(6,1000) 0.658476 1.377893 4.124915 0.334042
(7,3) 0.272637 0.087010 0.142753 0.609513
(7,4) 0.535202 0.705586 1.261041 0.559527
(7,5) 0.617496 1.117400 2.133913 0.523639
(7,10) 0.710652 1.772033 4.018646 0.440953
(7,1000) 0.738668 2.015812 5.785244 0.348440
(8,3) 0.382143 0.245334 0.400179 0.613062
(8,4) 0.612113 1.086117 1.923010 0.564800
(8,5) 0.690221 1.608804 3.035751 0.529953
(8,10) 0.780165 2.422804 5.392115 0.449324
(8,1000) 0.807443 2.722797 7.589676 0.358750
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Table 3 |
(p,q) P (K) Vol(BY") Vol(P(q)) 57 (q)
(10,3) 0.530633 0.636600 1111365 0.617799
(20, 3) 0.91484% 1105479 6.706186 0.625613
(20, 4) 1.094612 8.023014 13.755300 0.533332
(20, 5) 1.163424 10.092704 18.275027 0.552268
(20, 10) 1.24565 13.132701 27.302724 0.479423
(20, 1000) 1.271043 14.216772 35.858024 0.396474
(28,3) 1.083308 7 855361 12.537440 0.626502
(29, 3) 1106311 | 8.348310 13.323054 0.626606
(30,3) 1.123593 8847312 14.119487 0.626605
(35,3) 1.201914 11.432334 18.250297 0.626419
(40, 3) 1.269482 14143035 22.500777 0.626028
(52.3) 1.401728 21.080811 33761338 0.624673
(72.3) 1565173 33.642710 54.088487 0.621994

Remark 2.2 1. The best density that we found ~ 0.626606 for parameters
p = 29,q = 3 that is larger then the maximal density of the corresponding
periodical geodesic ball packings under the groups pq2;.

2. The problems of finding the densest geodesic and translation ball packings
in the Thurston gemetries are timely (see e.g. [4], [10], [11], [12], [13]).
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