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Abstract

In [14] we defined and described theregular infinite or bounded p-gonal

prism tilings in S̃L2R space. We proved that there exist infinitely many
regular infinitep-gonal face-to-face prism tilingsT i

p (q) and infinitely many
regular boundedp-gonal non-face-to-face prism tilingsTp(q) for integer pa-
rametersp, q; 3 ≤ p, 2p

p−2 < q. Moreover, in [5] and [7] we have determined
the symmetry group ofTp(q) via its index 2 rotational subgroup, denoted by
pq21 and investigated the corresponding geodesic and translation ball pack-
ings.

In this paper we study the structure of the regular infinite orbounded
p-gonal prism tilings, prove that the side curves of their base figurs are arcs
of Euclidean circles for each parameter. Moreover, we examine the non-
periodic geodesic ball packings of congruent regular non-periodic prism
tilings derived from the regular infinitep-gonal face-to-face prism tilings

∗Mathematics Subject Classification 2010: 52C17, 52C22, 52B15, 53A35, 51M20.
Key words and phrases: Thurston geometries,̃SL2R geometry, density of ball packing, regular
prism tiling, non-periodic geodesic ball packing.
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2 Jenő Szirmai

T i
p (q) in S̃L2R geometry. We develop a procedure to determine the den-

sities of the above non-periodic optimal geodesic ball packings and apply
this algorithm to them. We look for those parametersp andq above, where
the packing density large enough as possible. Now, we obtainlarger density
≈ 0.626606 for (p, q) = (29, 3) then the maximal density of the correspond-
ing periodical geodesic ball packings under the groupspq21.

In our work we will use the projective model of̃SL2R introduced by E.
Molnár in [2].

1 Basic notions

The real2×2 matrices

(
d b

c a

)
with unit determinantad−bc = 1 constitute a Lie

transformation group by the usual product operation, takento act on row matrices
as on point coordinates on the right as follows

(z0, z1)

(
d b

c a

)
= (z0d+ z1c, z0b+ z1a) = (w0, w1)

with w =
w1

w0
=
b+ z1

z0
a

d+ z1

z0
c
=
b+ za

d+ zc
,

(1.1)

as action on the complex projective lineC∞ (see [2], [3]). This group is a3-
dimensional manifold, because of its3 independent real coordinates and with its
usual neighbourhood topology ([9], [16], [8]). In order to model the above struc-
ture in the projective spherePS3 and in the projective spaceP3 (see [2]), we
introduce the new projective coordinates(x0, x1, x2, x3) wherea := x0+x3, b :=
x1 + x2, c := −x1 + x2, d := x0 − x3 with the positive, then the non-zero multi-
plicative equivalence as projective freedom inPS3 and inP3, respectively. Then
it follows that0 > bc−ad = −x0x0−x1x1+x2x2+x3x3 describes the interior of
the above one-sheeted hyperboloid solidH in the usual Euclidean coordinate sim-
plex with the originE0(1; 0; 0; 0) and the ideal points of the axesE∞

1 (0; 1; 0; 0),
E∞

2 (0; 0; 1; 0),E∞
3 (0; 0; 0; 1). We consider the collineation groupG∗ that acts on

the projective sphereSP3 and preserves a polarity i.e. a scalar product of signa-
ture(− − ++), this group leaves the one sheeted hyperboloid solidH invariant.
We have to choose an appropriate subgroupG of G∗ as isometry group, then
the universal covering group and spaceH̃ of H will be the hyperboloid model of

S̃L2R [2].
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The specific isometriesS(φ) (φ ∈ R) constitute a one parameter group given
by the matrices:

S(φ) : (sji (φ)) =




cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 cosφ − sin φ
0 0 sin φ cosφ


 (1.2)

The elements ofS(φ) are the so-calledfibre translations. We obtain a unique fibre
line to eachX(x0; x1; x2; x3) ∈ H̃ as the orbit by right action ofS(φ) onX. The
coordinates of points lying on the fibre line throughX can be expressed as the
images ofX byS(φ):

(x0; x1; x2; x3)
S(φ)
−→ (x0 cosφ− x1 sinφ; x0 sinφ+ x1 cosφ;

x2 cosφ+ x3 sin φ;−x2 sinφ+ x3 cosφ).
(1.3)

The points of a fibre line throughX by usual inhomogeneous Euclidean coordi-
natesx = x1

x0 , y = x2

x0 , z = x3

x0 , x0 6= 0 are given by

(1; x; y; z)
S(φ)
−→

(
1;

x+ tanφ

1− x tanφ
;
y + z tanφ

1− x tanφ
;
z − y tanφ

1− x tanφ

)
(1.4)

for the projective spaceP3, where ideal points (at infinity) conventionally occur.
In (1.3) and (1.4) we can see the2π periodicity ofφ, moreover the (logical)

extension toφ ∈ R, as real parameter, to have the universal coversH̃ andS̃L2R,
respectively, through the projective spherePS3. The elements of the isometry

group ofSL2R (and so by the above extension the isometries of̃SL2R) can be
described by the matrix(aji ) (see [2] and [3]) Moreover, we have the projective
proportionality, of course. We define thetranslation group GT , as a subgroup of
the isometry group ofSL2R, the isometries acting transitively on the points ofH

and by the above extension on the points of̃SL2R andH̃. GT maps the origin
E0(1; 0; 0; 0) ontoX(x0; x1; x2; x3). These isometries and their inverses (up to a
positive determinant factor) can be given by the following matrices:

T : (tji ) =




x0 x1 x2 x3

−x1 x0 x3 −x2

x2 x3 x0 x1

x3 −x2 −x1 x0


 . (1.5)
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The rotation about the fibre line through the originE0(1; 0; 0; 0) by angleω (−π <
ω ≤ π) can be expressed by the following matrix (see [2])

REO
(ω) : (rji (E0, ω)) =




1 0 0 0
0 1 0 0
0 0 cosω sinω
0 0 − sinω cosω


 , (1.6)

and the rotationRX(ω) about the fibre line throughX(x0; x1; x2; x3) by angleω
can be derived by formulas (1.5) and (1.6):

RX(ω) = T−1REO
(ω)T : (rji (X,ω)). (1.7)

Horizontal intersection of the hyperboloid solidH with the planeE0E
∞
2 E

∞
3 pro-

vides thehyperbolic H2 base plane of the modelH̃ = S̃L2R. The fibre through
X intersects the base planez1 = x = 0 in the foot point

Z(z0 = x0x0 + x1x1; z1 = 0; z2 = x0x2 − x1x3; z3 = x0x3 + x1x2). (1.8)

We introduce a so-called hyperboloid parametrization by [2] as follows

x0 = cosh r cosφ, x1 = cosh r sin φ,

x2 = sinh r cos (θ − φ), x3 = sinh r sin (θ − φ),
(1.9)

where(r, θ) are the polar coordinates of the base plane andφ is just the fibre
coordinate. We note that

−x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1 < 0.

The inhomogeneous coordinates corresponding to (1.9), that play an important
role in the later visualization of prism tilings inE3, are given by

x =
x1

x0
= tanφ, y =

x2

x0
= tanh r

cos (θ − φ)

cosφ
,

z =
x3

x0
= tanh r

sin (θ − φ)

cosφ
.

(1.10)

1.1 Geodesic balls in S̃L2R

Definition 1.1 The distanced(P1, P2) between the points P1 and P2 is defined by

the arc length of the geodesic curve from P1 to P2.
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Definition 1.2 The geodesic sphereof radius ρ (denoted by SP1
(ρ)) with the cen-

ter in point P1 is defined as the set of all points P2 with the condition d(P1, P2) =
ρ. Moreover, we require that the geodesic sphere is a simply connected surface

without selfintersection.

Definition 1.3 The body of the geodesic sphere of centre P1 and with radius ρ is

called geodesic ball, denoted by BP1
(ρ), i.e., Q ∈ BP1

(ρ) iff 0 ≤ d(P1, Q) ≤ ρ.

From [5] it follows thatS(ρ) is a simply connected surface inE3 and S̃L2R,
respectively, ifρ ∈ [0, π

2
). If ρ ≥ π

2
then the universal cover should be discussed.

Therefore, we consider geodesic spheres and balls only with radii ρ ∈ [0, π
2
) in

the following.

1.2 The volume of a geodesic ball

The volume formula of the geodesic ballB(ρ) follows from the metric tensorgij
(see [5]). We obtain the connection between the hyperboloidcoordinates(r, θ, φ)
and the geographical coordinates(s, λ, α) in a standard way. Therefore, the vol-
ume of the geodesic ball of radiusρ can be computed by the following

Theorem 1.1

V ol(B(ρ)) =

∫

B

1

2
sinh(2r) dr dθ dφ =

= 4π

∫ ρ

0

∫ π
4

0

1

2
sinh(2r(s, α))|̇J1| dα ds

+4π

∫ ρ

0

∫ π
2

π
4

1

2
sinh(2r(s, α))|̇J2| dα ds

(1.11)

where |J1| =

∣∣∣∣
∂r
∂s

∂r
∂α

∂φ

∂s

∂φ

∂α

∣∣∣∣ and similarly |J2| (by Table 1 and ∂θ
∂λ

= 1) are the

corresponding Jacobians.

The complicated formulas above need numerical approximations by computer.

1.3 Regular bounded periodic prism tilings and their space

groups pq21

In [14] we have defined and described the regular prisms and prism tilings with a

space group classΓ = pq21 of S̃L2R. These will be summarized in this section.
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Definition 1.4 Let P i be an infinite solid that is bounded by certain surfaces that

can be determined (in [14]) by ,,side fibre lines” passing through the vertices of

a regular p-gon Pb lying in the base plane. The images of solids P i by S̃L2R

isometries are called infinite regularp-sided prisms. Here regular means that the

side surfaces are congruent to each other under rotations about a fiber line (e.g.

through the origin).

The common part ofP i with the base plane is thebase figure of P i that is denoted
by P and its vertices coincide with the vertices ofPb, but P is not assumed to

be a polygon.

Definition 1.5 A bounded regularp-sided prismis analogously defined if the face

of the base figure P and its translated copy P t, under a fibre translation by (1.2)

and so (1.3), are also introduced. The faces P and P t are called cover faces.

We consider regular prism tilingsTp(q) by prismsPp(q) whereq pieces regularly
meet at each side edge byq-rotation.

The following theorem has been proved in [14]:

Theorem 1.2 There exist regular bounded not face-to-face prism tilings Tp(q) in

S̃L2R for each 3 ≤ p ∈ N where 2p
p−2

< q ∈ N.

We assume that the prismPp(q) is atopological polyhedron having at each vertex
onep-gonal cover face (it is not a polygon at all) and twoskew quadrangles which
lie on certain side surfaces in the model. LetPp(q) be one of the tiles ofTp(q),
Pb is centered in the origin with verticesA1A2A3 . . . Ap in the base plane (Fig. 1
and 2). It is clear that the side curvescAiAi+1

(i = 1 . . . p, Ap+1 ≡ A1) of the
base figure are derived from each other by2π

p
rotation about the verticalx axis, so

there are congruent iñSL2R sense. The corresponding verticesB1B2B3 . . . Bp

are generated by a fibre translationτ given by (1.3) with parameter0 < Φ ∈ R.
The fibre lines through the verticesAiBi are denoted byfi, (i = 1, . . . , p) and the
fibre line through the ”midpoint”H of the curvecA1Ap

is denoted byf0. Thisf0
will be a half-screw axis as follows below.

The tiling Tp(q) is generated by a discrete isometry groupΓp(q) = pq21

⊂ Isom(S̃L2R) which is given by its fundamental domainA1A2OA
s

1A
s

2O
s a

topological polyhedron and the group presentation (see Fig. 1 and 4 forp = 3 and
[14] for details):

pq21 = {a,b, s : ap = bq = asa−1s−1 = babs−1 = 1} =

= {a,b : ap = bq = ababa−1b−1a−1b−1 = 1}.
(1.12)
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p=3;q=7
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Figure 1: The regular prismPp(q) and the fundamental domain of the space group
pq21

Herea is a p-rotation about the fibre line through the origin (x axis),b is a q-
rotation about the fibre line troughA1 ands = bab is a screw motions : OA1A2 →
OsBpB1. All these can be obtained by formulas (1.5) and (1.6). Then we get that
abab = baba =: τ is a fibre translation. Thenab is a 21 half-screw motion
aboutf0 = HHτ (look at Fig. 1) that also determines the fibre tarnslationτ

above. This group in (3.1) surprisingly occurred in§ 6 of our paper [6] at double
linksKp,q. The coordinates of the verticesA1A2A3 . . . Ap of the base figure and
the corresponding verticesB1B2B3 . . . Bp of the cover face can be computed for
all given parametersp, q by

tanh(OA1) = b :=

√
1− tan π

p
tan π

q

1 + tan π
q
tan π

q

. (1.13)

1.4 The volume of the bounded regular prisms

The volume formula of asector-like 3-dimensional domainV ol(D(Ψ)) can stan-
dardly be computed by the metric tensorgij (see [5]). in hyperboloid coordinates.
This defined by the base figureD lying in the base plane and by fibre translation
τ given by (1.3) with the height parameterΨ.
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Theorem 1.3 Suppose we are given a sector-like region D, so a continuous func-

tion r = r(θ) where the radius r depends upon the polar angle θ. The volume of

domain D(Ψ)) is derived by the following integral:

V ol(D(Ψ)) =

∫

D

1

2
sinh(2r(θ))dr dθ dψ =

=

∫ Ψ

0

∫ θ2

θ1

∫ r(θ)

0

1

2
sinh(2r(θ)) dr dθ dψ = Ψ

∫ θ2

θ1

1

4
(cosh(2r(θ))− 1) dθ.

(1.14)

Pp(q) be an arbitrary bounded regular prism. We get the following

Theorem 1.4 The volume of the bounded regular prism Pp(q)
(
3 ≤ p ∈ N,

2p
p−2

< q ∈ N
)

can be computed by the following simple formula:

V ol(Pp(q)) = V ol(D(p, q,Ψ)) · p, (1.15)

where V ol(D(p, q,Ψ)) is the volume of the sector-like 3-dimensional domain that

is given by the sector region OA1A2 ⊂ P (see Fig. 1 and 3) and by Ψ the S̃L2R

height of the prism, depending on p, q.

−0.5

−0.25
−0.5

−0.4

−0.25

−0.2

0.00.0

0.0

0.2

0.25

0.4

0.5 0.25

0.5

Figure 2: Regular infinite 4-gonal prismP i
4(6) of the infinite regular prism tiling

T i
4 (6)
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2 Regular infinite prism tilings and non-periodic ball

packings

2.1 Infinite regular prism tilings

In this subsection we study the regular infinite prism tilings T i
p (q). Let Tp(q)

be a regular prism tiling and letPp(q) be one of its tiles which is given by its
base figureP that is centered at the originK with verticesG1G2G3 . . . Gp in
the base plane of the model and the corresponding verticesA1A2 A3 . . . Ap and
B1B2B3 . . . Bp are generated by fibre translations−τ andτ given by (1.3) with
parameterΨ = π

2
− π

p
− π

q
. The images of the topological polyhedronPp(q) by

the translations〈τ〉 form an infinite prismP i
p(q) (see Definitions 1. 4-5). By the

r (   )K

G G1 2
c

G1

G
2G2

G

3
G3

G

1

A

A

A

3

1

2

opt

Figure 3: The maximal radiusρopt(K) and the optimal half prism
A1A2A3G1G2G3 with optimal half sphere for parametersp = 3, q = 7 with
the maximal radius

constuction of the bounded prism tilings follows that rotations throughω = 2π
q

about the fibre linesfi maps the corresponding side face onto the neighbouring
one. Therefore, we have got the following (see [14]):

Theorem 2.1 There exist regular infinite face-to-face prism tilings T i
p (q) for in-

teger parameters p, q where 3 ≤ p, 2p
p−2

< q.

For example, we have describedP i
4(6) with its base polygon in Fig. 2, where the

parameterb =
√
6−

√
2

2
.
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2.2 Non-periodic geodesic ball packings

We consider a infinite regular prism tilingT i
p (q) and letP i

p(q) one of its tiles
with base figureP centered at the origin with verticesG1G2 . . . Gp in the base
plane of the model. LetBopt

K be the geodesic ball with center at the originK that
touches the side surfaces of the infinite regular prismP i

p(q). The radius of the
ballBopt

K is denoted byρopt(K). Moreover, we define the regular prismPopt
p (q) =

A1A2 . . . ApB1B2 . . . Bp with base figurP and with cover facesA1A2 . . . Ap and
B1B2 . . . Bp touchingBopt

K . It is clear, that the heighthoptp (q) ofPopt
p (q) is2ρopt(K).

The images ofPopt
p (q) by the fibre traslations〈τ〉 wherehoptp (q) = |τ | =

2ρopt(K) cover the infinite regular prismP i
p(q) and by the structure of the infinte

prism tilings follows that rotations throughω = 2π
q

about the fibre linesfi maps
the corresponding side face onto the neighbouring one and thus the images of

Popt
p (q) fill the S̃L2R space without overlap. These tilings are denoted byT n

p (q).

The height hoptp (q) of the prism Popt
p (q) is not equal to π − 2π

p
− 2π

q
so the

corresponding regular prism tiling is non-periodic. We note here, that there are
infinitely many non-periodic prism tilings derived fromT n

p (q).

For the density of the packing it is sufficient to relate the volume of the optimal
ball to that of the solidPopt

p (q). The densitiy of the optimal ball packing of the
prism tilingT n

p (q) (3 ≤ p, 2p
p−2

< q, integer parameters) can be computed by the
following formula:

δoptp (q) :=
V ol(Bopt

K )

V ol(Popt
p (q))

.

In order to determine the optimal radiusρopt(K) we will use the following Lem-
mas. The equation of the side curvecG1G2

is derived as the foot points (see (1.3)
and (1.8)) of the corresponding fibre lines (3 ≤ p, 2p

p−2
< q, wherep andq are

integer parameters):

Lemma 2.2 The parametric equation of the side curve cG1G2
of the base figur P
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Figure 4: The optimal prismA1A2A3B1B2B3 with optimal sphere for parameters
p = 3, q = 7 with the maximal radiusρopt(K)

is

cqp(t) =

(

0,

√

sin

(

2π

p
+

2π

q

)

(

t cos

(

2π

p

)

sin2
(

π

p
+

π

q

)

−
t

2
sin

(

2π

p

)

sin

(

2π

p
+

2π

q

)

+

sin2
(

π

p
+

π

q

)

(1− t) + t2 cos

(

π

p
+

π

q

)

cos

(

π

p
−

π

q

)

)

/

(
√

(

sin

(

2π

p

)

+ sin

(

2π

q

))

(

sin2
(

π

p
+

π

q

)

+ t2 cos2
(

π

p
+

π

q

)

)

)

,

t

√

sin

(

2π

p
+

2π

q

)

(

sin

(

2π

p

)

sin2
(

π

p
+

π

q

)

+
1

2
cos

(

2π

p

)

sin

(

2π

p
+

2π

q

)

(1 − t)+

cos

(

π

p
+

π

q

)

(

t sin

(

2π

p

)

cos

(

π

p
+

π

q

)

+ sin

(

π

p
+

π

q

)

(t − 1)
)

)

/

(
√

(

sin

(

2π

p

)

+ sin

(

2π

q

))

(

sin2
(

π

p
+

π

q

)

+ t2 cos2
(

π

p
+

π

q

)

)

)

, t ∈ [0, 1].

(2.1)

The side curvescGiGi+1
(i = 1 . . . p, Gp+1 ≡ G1) of the base figure are derived

from each other by2π
p

rotation about the verticalx axis, so there are congruent

and their curvatures are equal iñSL2R sense. Moreover, the above side curves
are congruent also in Euclidean sense, therefore their curvatures are equal in Eu-
clidean sense, as well. We obtain by the usual machinery of the differential geom-
etry the next
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Lemma 2.3 The curvature Cp(q) of the side curves cGiGi+1
(i = 1 . . . p, Gp+1 ≡

G1) in the Euclidean sense is

Cp(q) =

√√√√√
cos

(
π
p
+ π

q

)(
sin

(
2π
p

)
+ sin

(
2π
q

))

sin
(

π
p
+ π

q

)(
1− cos

(
2π
p

)) (2.2)

therefore, the side curves cGiGi+1
(i = 1 . . . p, Gp+1 ≡ G1) are Euclidean circular

arcs of radius rqp =
1

Cp(q)
.

Remark 2.1 1. It is easy to see, that the asymptotic behaviour of Cp(q) is the

following: limq →∞(Cp(q)) = cot
(

π
p

)
, limp →∞(Cp(q)) = ∞.

2. Given a point off of a line, if we drop a perpendicular to the above line from

the given point, then x is the distance along this perpendicular segment, and

let φ = Π(x) is the least angle such that the line drawn through the point

at that angle does not intersect the given line. The angle φ is the angle of

parallelism. By the famous formel of J. Bolyai follows, that log(cot(φ)) =
x. Therefore, if we denote the distance of parallelism of the angle φ by Λ(φ)

then log
(
limq →∞(Cp(q))

)
= log

(
cot

(
π
p

))
= Λ

(
π
p

)
.

In the Table 1 we have collected some values of the radii of curvaturerq3 of the
side curvecG1G2

of the base figurP.

Table 1

(p, q) (3, 7) (3, 8) (3, 10) (3, 1000)
Cp(q) 0.286926 0.371579 0.453885 0.577339
rqp 3.485219 2.691215 2.203203 1.732085

The maximal radiusρopt(K) of the ballsBopt
K can be determined using the

above Lemmas for all possible parameters as the distance between the origin and
cG1G2

. The volumesV ol(Bopt
K ) can be computed by the Theorem 1.3 and the

volumes of the prismsPopt
p (q) can be determined by the Theorem 1.4.

The above locally densest geodesic ball packings can be determined for all
regular prism tilingsT n

p (q) (p, q as above). We have summarized in the following
Tables some results to tilingsT n

p (q).
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Table 2

(p, q) ρopt(K) V ol(Bopt
K ) V ol(Popt

p (q)) δoptp (q)

(3, 7) 0.141564 0.011963 0.031767 0.376592
(3, 8) 0.181760 0.025431 0.071377 0.356287
(3, 10) 0.219795 0.045198 0.138101 0.327281
(3, 1000) 0.274648 0.088981 0.428828 0.207499

...
...

...
...

...
(4, 5) 0.265319 0.080085 0.166705 0.480397
(4, 6) 0.329239 0.154965 0.344779 0.449464
(4, 10) 0.404230 0.292043 0.761956 0.383280
(4, 1000) 0.440683 0.382228 1.378910 0.277196

...
...

...
...

...
(5, 4) 0.313435 0.133256 0.246171 0.541312
(5, 5) 0.421241 0.332010 0.661684 0.501765
(5, 10) 0.530638 0.686600 1.667047 0.411866
(5, 1000) 0.562086 0.825191 2.639937 0.312580

...
...

...
...

...
(6, 4) 0.440687 0.382237 0.692229 0.552183
(6, 5) 0.530638 0.686600 1.333638 0.514833
(6, 10) 0.629251 1.188024 2.767592 0.429263
(6, 1000) 0.658476 1.377893 4.124915 0.334042

...
...

...
...

...
(7, 3) 0.272637 0.087010 0.142753 0.609513
(7, 4) 0.535202 0.705586 1.261041 0.559527
(7, 5) 0.617496 1.117400 2.133913 0.523639
(7, 10) 0.710652 1.772033 4.018646 0.440953
(7, 1000) 0.738668 2.015812 5.785244 0.348440

...
...

...
...

...
(8, 3) 0.382143 0.245334 0.400179 0.613062
(8, 4) 0.612113 1.086117 1.923010 0.564800
(8, 5) 0.690221 1.608804 3.035751 0.529953
(8, 10) 0.780165 2.422804 5.392115 0.449324
(8, 1000) 0.807443 2.722797 7.589676 0.358750

...
...

...
...

...
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Table 3

(p, q) ρopt(K) V ol(Bopt
K ) V ol(Popt

p (q)) δoptp (q)

(10, 3) 0.530638 0.686600 1.111365 0.617799
...

...
...

...
...

(20, 3) 0.914848 4.195479 6.706186 0.625613
(20, 4) 1.094612 8.023914 13.755306 0.583332
(20, 5) 1.163424 10.092704 18.275027 0.552268
(20, 10) 1.245625 13.132701 27.392724 0.479423
(20, 1000) 1.271043 14.216772 35.858024 0.396474

...
...

...
...

...
(28, 3) 1.088398 7.855861 12.537440 0.626592
(29, 3) 1.106311 8.348310 13.323054 0.626606

(30, 3) 1.123593 8.847342 14.119487 0.626605
...

...
...

...
...

(35, 3) 1.201914 11.432334 18.250297 0.626419
...

...
...

...
...

(40, 3) 1.269482 14.148085 22.599777 0.626028
...

...
...

...
...

(52, 3) 1.401728 21.089811 33.761388 0.624673
...

...
...

...
...

(72, 3) 1.565173 33.642710 54.088487 0.621994

Remark 2.2 1. The best density that we found ≈ 0.626606 for parameters

p = 29, q = 3 that is larger then the maximal density of the corresponding

periodical geodesic ball packings under the groups pq21.

2. The problems of finding the densest geodesic and translation ball packings

in the Thurston gemetries are timely (see e.g. [4], [10], [11], [12], [13]).
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