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A STATIONARY PROCESS ASSOCIATED WITH THE DIRICHLET DISTRIBUTION

ARISING FROM THE COMPLEX PROJECTIVE SPACE

N. DEMNI

Abstract. Let (Ut)t≥0 be a Brownian motion valued in the complex projective space CPN−1. Using uni-

tary spherical harmonics of homogeneous degree zero, we derive the densities of |U1

t
|2 and of (|U1

t
|2, |U2

t
|2),

and express them through Jacobi polynomials in the simplices of R and R2 respectively. More generally,
the distribution of (|U1

t
|2, . . . , |Uk

t
|2), 2 ≤ k ≤ N − 1 may be derived using the decomposition of the unitary

spherical harmonics under the action of the unitary group U(N − k + 1) yet computations become tedious.
We also revisit the approach initiated in [11] and based on a partial differential equation (hereafter pde)
satisfied by the Laplace transform of the density. When k = 1, we invert the Laplace transform and retrieve
the expression derived using spherical harmonics. For general 1 ≤ k ≤ N − 2, the integrations by parts
performed on the pde lead to a heat equation in the simplex of Rk.

1. Motivation

The complex unit sphere

S2N−1 := {(z1, . . . , zN), |z1|2 + · · ·+ |zN |2 = 1}, N ≥ 1,

is a compact manifold without boundary therefore carries a Brownian motion (Ut)t≥0 defined by means of
its Laplace-Beltrami operator. This process is stationary and the random variable Ut converges weakly as
t→ ∞ to a uniformly-distributed random vector U∞. For the latter, it is already known that

(|U1
∞|2, . . . , |Uk

∞|2), 1 ≤ k ≤ N − 1,

follows the Dirichlet distribution ([7])

(1) sk(u)

k
∏

i=1

dui , (1− u1 − u2 − · · · − uk)
N−k−11Σk

(u)

k
∏

i=1

dui

where Σk = {ui > 0, 1 ≤ i ≤ k, u1+· · ·+uk < 1} is the standard simplex. Motivated by quantum information
theory, the investigations of the distribution of

U
(k)
t , (|U1

t |2, . . . , |Uk
t |2), 1 ≤ k ≤ N

started in [11] yet have not been completed. There, a linear pde for the Laplace transform of this distribution
was obtained and partially solved only when k = 1. Recall that for the Brownian motion on the Euclidian
sphere SN−1, the density of a single coordinate is given by a series involving products of ultraspherical
polynomials of index (N − 2)/2 ([8]). The main ingredients leading to this series are the expansion of the
heat kernel on SN−1 in the basis of O(N)-spherical harmonics and on Gegenbauer addition Theorem ([12],
p.369). In the complex setting, it is very likely known that (|U1

t |2)t≥0 is a real Jacobi process (see [3] and
references therein). Nonetheless, one wonders how does the proof written in [8] carry to the Brownian motion

on S2N−1 and how does it extend in order to derive the density of U
(k)
t . In the first part of this paper, we

answer these questions by considering the heat kernel on the complex projective space CPN−1 = S1/S2N−1

rather than S2N−1. This is by no means a loss of generality since we are interested in the joint distribution
of the moduli of k coordinates of Ut. Besides, the space of continuous functions on CPN−1 decomposes as
the direct sum of subspaces of U(N)-spherical harmonics that are homogeneous of degree zero, while the
decomposition of continuous functions on S2N−1 involves all spherical harmonics ([6]). Accordingly, the heat
kernel on CPN−1 is expressed as a series of normalized Jacobi polynomials (PN−2,0

n /PN−2,0
n (1))n≥0 which

Key words and phrases. Brownian motion; complex projective space; Dirichlet distribution; Jacobi polynomials in the
simplex.
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for each n, gives the n-th reproducing kernel on CPN−1 ([9]). Hence, the integration over the sphere S2N−3

together with an application of Koornwinder’s addition Theorem ([9]) lead to the density of |U1
t |2:

ft(c, u) ,

[

∞
∑

n=0

e−n(n+N−1)tP
N−2,0
n (2c− 1)PN−2,0

n (2u− 1)

||PN−2,0
n ||22

]

s1(u)(2)

where we set c , |U1
0 |2 ∈ [0, 1] and ||Pn||22 is the squared L2-norm of u 7→ PN−2,0

n (2u − 1) with respect to
s1(u)du.

Up to an additional ingredient, the derivation of the density of U
(2)
t is quite similar. Loosely speaking, we

would like to integrate the heat kernel over the sphere S2N−5 (we assume N large enough) and as such, we
need to decompose degree zero homogenous spherical harmonics in S2N−1 under the action of the unitary
group U(N − 1). This decomposition is stated in [10], Theorem 5.1, and the n-th reproducing kernel in
turn decomposes as a wighted sum of reproducing kernels on S2N−3. Consequently, Koornwinder’s addition
Theorem again leads to the sought density which may be expressed through Jacobi polynomials in the simplex

Σ2 ([4], Proposition 2.3.8 p.47). More precisely, if we denote these polynomials by (Q
(N)
j,n−j)n≥0,0≤j≤n then

the density reads

(3)





∞
∑

n=0

e−n(n+N−1)t
n
∑

j=0

Q
(N)
n−j,j(c1, c2)Q

(N)
n−j,j(u1, u2)

||Q(N)
n−j,j||22



 s2(u),

where we set (c1, c2) , (|U1
0 |2, |U2

0 |2) ∈ Σ2 and ||Q(N)
n−j,j||22 is the squared L2-norm of Q

(N)
n−j,j with respect to

s2(u)du1du2.

More generally, the derivation of the density of U
(k)
t , 2 ≤ k ≤ N − 1 relies on the decomposition of

the spherical harmonics under the action of U(N − k + 1) and is expressed through orthonormal Jacobi
polynomials in Σk as

∑

n≥0

e−n(n+N−1)t
∑

τ∈Nk,|τ |=n

Q(N)
τ (c1, c2, . . . , ck)Q

(N)
τ (u)sk(u)

where (c1, . . . , ck) , (|U1
0 |2, . . . , |Uk

0 |2). Yet computations become tedious and we are not willing to exhibit
them here. Rather, we shall revisit and complete the investigations started in [11]. Actually, an expression
for the Laplace transform of the density of |U1

t |2 was obtained there and involves the following sequence
(an = an(c,N))n≥0 of real numbers determined recursively by ([11], eq. 4.23)

(4)

p
∑

n=0

an

(

p

n

)

1

(N + 2n)p−n
=
cp

p!
, p ≥ 0, a0 = 1.

In particular, the following was proved ([11] eq. 4.24. and eq. 4.25):

an(0, N) =
(−1)n

(N + n− 1)n
, an(1, N) =

(N − 1)n
n!(N + n− 1)n

,

which we can rewrite as

1

(N + n− 1)n
PN−2,0
n (−1),

1

(N + n− 1)n
PN−2,0
n (1)

respectively. Using a Neumann series for Bessel functions ([12]), we shall prove that for all c ∈ [0, 1]

(5) an = an(c,N) =
1

(N + n− 1)n
PN−2,0
n (2c− 1).

Having these coefficients in hands, we can then invert the Laplace transform and retrieve (2). At this level,
we point out that the pde satisfied by the Laplace transform of the density of |U1

t |2 leads after integrations
by parts to the heat equation associated with the Jacobi operator

(6) u(1− u)∂2u + [1−Nu]∂u.
2



More generally, the pde satisfied by the Laplace transform of the joint distribution of U
(k)
t , 1 ≤ k ≤ N − 2

gives rise to the heat equation on the standard simplex associated with the generalized Jacobi operator ([1],
see also [4] p.46 but consult the list of errata available on the webpage of Y. Xu):

(7)
k
∑

i=1

[1−Nui]∂i +
k
∑

i=1

(ui − u2i )∂ii −
∑

i6=j

uiuj∂ij .

This is an elliptic operator admitting different orthogonal basis of eigen-polynomials corresponding to the
sequence of eigenvalues {−n(N + n− 1), n ≥ 0}. Among them figure the Jacobi polynomials in the simplex
which agrees with our previous computations.

The paper is organized as follows. The two following sections are concerned with the derivations of the

densities of U
(k)
t , k ∈ {1, 2}. In section 4, we solve the system (4) and invert the Laplace transform of the

density of |U1
t |2. In section 5, we perform integrations by parts on the pde satisfied by the Laplace transform

of the density of U
(k)
t , omitting for a while the boundary terms. In the last section, we write down the latters

and show that all of them vanish unless k = N − 1.

2. The distribution of |U1
t |2

Let m,n be non negative integers and recall from [9] that (m,n)-complex spherical harmonics are the
restriction S2N−1 of harmonic polynomials in the variables

(z1, z2, . . . , zN , z1, z2, . . . , zN)

which are m-homogenous in the variables (zi)
N
i=1 and n-homogeneous in the variables (zi)

N
i=1. Taking m = n,

we obtain the (n, n)-complex spherical harmonics that are homogenous of degree zero with respect to the
action of S1. Their restrictions to CPN−1 form a dense algebra in the space of continuous functions on
CPN−1 endowed with to the uniform norm (see [6], p.189). Moreover, the spectrum of the Laplace-Beltrami
operator on CPN−1 is given by the sequence {−n(n + N − 1), n ≥ 0}1. Hence, the corresponding heat
kernel is expanded in any orthonormal (with respect to the volume measure volCPN−1) basis of homogenous
of degree zero spherical harmonics (Yj)j≥1 as:

Rt(w, z) ,

∞
∑

n=0

e−n(n+N−1)t

d(n,N)
∑

j=1

Yj(w)Yj(z), w, z ∈ CPN−1.

Here d(n,N) is the dimension of the eigenspace of (n, n)-complex spherical harmonics given by (Theorem
3.6 in [9])

d(n,N) =
2n+N − 1

N − 1

(

(N − 1)n
n!

)2

.

Besides, the reproducing kernel formula (Theorem 3.8 in [9]2) shows that the kernel Rt is real and does not
depend on the choice of the basis (this is the analogue of (22) in [8]):

(8) Rt(w, z) = 2π

∞
∑

n=0

e−n(n+N−1)t d(n,N)

vol(S2N−1)

PN−2,0
n (2|〈w, z〉|2 − 1)

PN−2,0
n (1)

,

where ([2], p.295)

〈w, z〉 ,
N
∑

i=1

wizi, PN−2,0
n (1) =

(N − 1)n
n!

,

and

vol(S2N−1) =
2πN

(N − 1)!
.

1We normalize the Laplacian on CPN−1 by a factor 1/4.
2The additional factor 2π comes from the fact that vol(S2N−1) = 2πvol(CPN−1).
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is the volume of S2N−1. Note that

Rt(w, z) =
(N − 2)!

πN−1

∞
∑

n=0

e−n(n+N−1)tP
N−2,0
n (1)PN−2,0

n (2|〈w, z〉|2 − 1)

||PN−2,0
n ||22

where

||PN−2,0
n ||22 =

1

2n+N − 1

is the squared L2-norm of u 7→ PN−2,0
n (2u− 1) with respect to s1(u)du ([2], p.99). Thus Gasper’s Theorem

entails the positivity of Rt ([5]). Now, we proceed to the derivation of the density of |U1
t |2 and start with

the decompositions

w = cos θ1e1 + sin θ1ξ1,

z = cos θ2e1 + sin θ2ξ2

where e1 is the first vector of the canonical basis of CN , θ1, θ2 ∈ (0, π/2), φ1, φ2 ∈ (0, 2π), ξ1, ξ2 ∈ S2N−3.
The volume measure of CPN−1 in turn splits as (see [9], eq.2.18)

volCPN−1(dz) = cos θ2(sin θ2)
2N−3dθ2volS2N−3(dξ2).

and the next step is to integrate (8) over ξ2. But U(N − 1) acts transitively on S2N−3 therefore we can take
ξ1 = e2 to be the second vector of the canonical basis. As such, we are left with the volume of S2N−5 (if N
is large enough) and with the integration over the distribution of the first coordinate of ξ2. If this coordinate
is parametrized by (r, ψ) then its distribution reads

r(1 − r2)N−31[0,1](r)1[0,2π](ψ)dr dψ.

Consequently, the density of |U1
t |2 displayed in (2) follows from the product formula (4.12) in [9] together

with the variables change u = cos2 θ2 (c = cos2 θ1).

Remark 1. The eigenvalue of a (n, n)-spherical harmonic equals the eigenvalue of a O(2N)-spherical har-
monic of degree 2n in S2N−1 viewed as a real Euclidian sphere. This coincidence is due to the fact that both

polynomials are homogenous with the same total degree 2n and since the correspond eigenvalue comes from

the action of the Euler operator

N
∑

i=1

zi∂zi +

N
∑

i=1

zi∂zi =
∑

i=1

xi∂xi
+

N
∑

i=1

yi∂yi
,

where zi ∈ C is identified with (xi, yi) ∈ R2.

3. The distribution of (|U1
t |2, |U2

t |2)

Up to an additional ingredient, the lines of the previous proof enable to derive the density of U
(2)
t . More

precisely, we start with the decompositions

w = cos θ1e1 + sin θ1ξ1

= cos θ1e1 + sin θ1 cosβ1e
iφ1e2 + sin θ1 sinβ1η1,

z = cos θ2e1 + sin θ2ξ2

= cos θ2e1 + sin θ2 cosβ2e
iφ2e2 + sin θ2 sinβ1η2,

where β1, β2 ∈ (0, π/2), φ1, φ2 ∈ (0, 2π), η1, η2 ∈ S2N−3 and e2 is the second vector of the canonical basis of
CN . We also split the volume measure on CPN−1 as

volCPN−1(dz) =
(

cos θ2 sin
2N−3 θ2 cosβ2 sin

2N−5 β2dθ2dβ2dφ2
)

volS2N−5(dη2).

Now comes the needed additional ingredient, which is the special instance m = n, φ1 = φ2 = 0 in the formula
stated in the bottom of p.5 in [10]. In order to recall it, let

pa,bj (x) ,
P a,b
j (x)

P a,b
j (1)

, a, b > −1

4



be the j-th normalized Jacobi polynomial and define the complex-valued polynomial ([9] eq.3.15)

Rα
j,q(y) , |y||j−q|ei(j−q) arg(y)p

α,|j−q|
j∧q (2|y|2 − 1), y ∈ C, α > −1.

as well as ([10] p.6)

cj,q(n,N) ,
N − 2

N − 2 + q + j

(

n

q

)(

n

j

)

(N + n− 1)q(N + n− 1)j
(N − 2 + j)q(N − 2 + q)j

.

Then the n-th reproducing kernel on CPN−1 admits the following expansion

PN−2,0
n (2|〈w, z〉|2 − 1)

PN−2,0
n (1)

=

n
∑

j,q=0

cj,q(n,N)[sin(θ1) sin θ2]
j+q [cos θ1 cos θ2]

|j−q|p
N−2+j+q,|j−q|
n−j∧n−q (cos 2θ1)

p
N−2+j+q,|j−q|
n−j∧n−q (cos 2θ1)R

N−3
j,q (〈ξ1, ξ2〉) .

Substituting in (8), we see that the next step towards the joint distribution of (U1
t , U

2
t ) consists in integrating

RN−3
j,q (〈ξ1, ξ2〉) = RN−3

j,q (cosβ1 cosβ2 + sinβ1 sinβ2〈η1, η2〉)

over η2 ∈ S2N−3. To this end, we can assume without loss of generality that η1 = e3 (the third vector of the
canonical basis) and use formula (4.11) in [9]. Altogether, we get

2π2vol(S2N−5)

(N − 3)vol(S2N−1)

∞
∑

n=0

e−n(n+N−1)td(n,N)

n
∑

j,q=0

cj,q(n,N)[sin(θ1) sin θ2]
j+q[cos θ1 cos θ2]

|j−q|

p
N−2+j+q,|j−q|
n−j∧n−q (cos 2θ1)p

N−2+j+q,|j−q|
n−j∧n−q (cos 2θ2)R

N−3
j,q (cosβ1e

iφ1)RN−3
j,q (cosβ2e

iφ2)

=
2(N − 2)

π

∞
∑

n=0

e−n(n+N−1)t(2n+N − 1)[PN−2,0
n (1)]2

n
∑

j,q=0

cj,q(n,N)[sin(θ1) sin θ2]
j+q [cos θ1 cos θ2]

|j−q|

p
N−2+j+q,|j−q|
n−j∧n−q (cos 2θ1)p

N−2+j+q,|j−q|
n−j∧n−q (cos 2θ2)p

N−3,|j−q|
j∧q (cos 2β1)p

N−3,|j−q|
j∧q (cos 2β2)e

i(j−q)(φ1+φ2).

with respect to

cos θ2 sin
2N−3 θ2 cosβ2 sin

2N−5 β2dθ2dβ2dφ2.

Integrating over φ2 ∈ (0, 2π), then the sum over (j, q) reduces to a sum over q = j. Thus, the density of
(θ2, β2) given (θ1, β1) reads

4(N − 2)
∞
∑

n=0

e−n(n+N−1)t(2n+N − 1)[PN−2,0
n (1)]2

n
∑

j=0

cj,j(n,N)[sin(θ1) sin θ2]
2jpN−2+2j,0

n−j (cos 2θ1)

pN−2+2j,0
n−j (cos 2θ2)p

N−3,0
j (cos 2β1)p

N−3,0
j (cos 2β2)

with respect to

cos θ2 sin
2N−3 θ2 cosβ2 sin

2N−5 β2dθ2dβ2.

Performing the variables change

u = cos θ2, v = sin θ2 cosβ2,

we deduce that the density of (|U1
t |, |U2

t |) given (|U1
0 |, |U2

0 |) is:

4(N − 2)

∞
∑

n=0

e−n(n+N−1)t(2n+N − 1)[PN−2,0
n (1)]2

n
∑

j=0

cj,j(n,N)[(1 − |U1
0 |2)(1 − u2)]j

pN−2+2j,0
n−j (2|U1

0 |2 − 1)pN−2+2j,0
n−j (2u2 − 1)pN−3,0

j

(

2|U2
0 |2

1− |U1
0 |2

− 1

)

pN−3,0
j

(

2v2

1− u2
− 1

)

with respect to

uv(1− u2 − v2)N−31{u>0,v>0,u2+v2<1}du dv.
5



Finally, if (|U1
0 |2, |U2

0 |2) , (c1, c2) ∈ Σ2 then the density of (|U1
t |2, |U2

t |2) reads

(N − 2)

∞
∑

n=0

e−n(n+N−1)t(2n+N − 1)[PN−2,0
n (1)]2

n
∑

j=0

cj,j(n,N)[(1− c1)(1− u1)]
j

pN−2+2j,0
n−j (2c1 − 1)pN−2+2j,0

n−j (2u1 − 1)pN−3,0
j

(

2c2
1− 2c1

− 1

)

pN−3,0
j

(

2u2
1− u1

− 1

)

with respect to s2(u1, u2)du1du2. The last expression may be put in a compact form as follows. For n ≥ 0,
set

Q
(N)
n−j,j(u, v) = (1− u1)

jPN−2+2j,0
n−j (2u1 − 1)PN−3,0

j

(

2u2
1− u1

− 1

)

, j = 0, 1, . . . , n.

These are Jacobi polynomials in the simplex Σ2 and are orthogonal with respect to the Dirichlet distribution
whose density is s2(u1, u2) (specialize Proposition 2.3.8 in [4] to α = (n − j, j), κ = (1/2, 1/2, N − 5/2)3).

After some computations, the density of U
(2)
t may be written as

∞
∑

n=0

e−n(n+N−1)t
n
∑

j=0

Q
(N)
n−j,j(c1, c2)Q

(N)
n−j,j(u, v)

||Q(N)
n−j,j||22

where

||Q(N)
n−j,j ||22 =

1

(2n+N − 1)(2j +N − 2)
=

[PN−2+2j,0
n−j (1)PN−3,0

j (1)]2

(N − 2)(2n+N − 1)[PN−2,0
n (1)]2cj,j(n,N)

is the squared L2-norm of Q
(N)
n−j,j with respect to s2(u1, u2)du1du2.

Remark 2. For general k ≥ 3, the density of U
(k)
t may be derived in a similar way by decomposing the

variable z ∈ CPN−1 and the spherical harmonics on S2N−1 over the sphere S2N−2k+1. From the point of

view of representation theory, this is equivalent to the decompositions of the representation of U(N) in the

space of U(N)-spherical harmonics under the action of the subgroup U(N − k + 1).

4. The distribution of |U1
t |2: another proof

In this section, we shall solve the system (4) and prove (5). To this end, we rewrite (4) as,

(9)

p
∑

n=0

an
1

n!(p− n)!

1

(N + 2n)p−n
=

cp

(p!)2

multiply both sides of (9) by (−1)p(x/2)2p+N−1 for x lying in some neighborhood of zero then sum over
p ≥ 0. Interchanging the order of summation, the system (4) is equivalent to

∑

n≥0

an
n!

Γ(N + 2n)(−1)nJ2n+N−1(x) = J0(
√
cx)
(x

2

)N−1

where Jα is the Bessel function of index α ∈ R defined by ([12]):

Jα(x) ,
∑

p≥0

(−1)p

p! Γ(p+ α+ 1)

(x

2

)2p+α

.

Note in passing that the estimate ([12])

|Γ(N + 2n)J2n+N−1(x)| ≤
( |x|

2

)2n+N−1

shows that (9) converges provided

(10)
∑

n≥0

|an|
n!

( |x|
2

)2n

3Beware of the different normalization of the Jacobi polynomials used in Proposition 2.3.8. The reader is also invited to
consult the list errata of available on the webpage of Y. Xu.
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does. Now recall the Neumann series ([12], p.138)
(x

2

)ν

=
∑

n≥0

(ν + 2n)Γ(ν + n)

n!
Jν+2n(x), ν ∈ N.

Specializing it to ν = N − 2, we get

(x/2)N−1J0(
√
cx) =

∑

p≥0

(−1)pcp

(p!)2

∑

n≥0

(2p+ 2n+N − 1)Γ(2p+ n+N − 1)

n!
J2p+2n+N−1(x)

=
∑

p≥0

(−1)pcp

(p!)2

∑

n≥p

(2n+N − 1)Γ(p+ n+N − 1)

(n− p)!
J2n+N−1(x)

=
∑

n≥0

(2n+N − 1)

n
∑

p=0

(−1)pcp

(p!)2
Γ(p+ n+N − 1)

(n− p)!
J2n+N−1(x).

Substituting in (9), then the uniqueness of the solution of (4) yields

an
n!

Γ(N + 2n)(−1)n = (2n+N − 1)

n
∑

p=0

cp

(p!)2
Γ(p+ n+N − 1)

(n− p)!

or equivalently

an =
(−1)nn!

Γ(N + 2n− 1)

n
∑

p=0

(−1)pcp

(p!)2
Γ(p+ n+N − 1)

(n− p)!

=
(−1)n

(N + n− 1)n

n
∑

p=0

(−1)pn!

(n− p)!

(n+N − 1)p
(p!)2

cp

=
(−1)n

(N + n− 1)n
2F1(−n, n+N − 1, 1, c)

where 2F1 is the Gauss hypergeometric function ([2], p.). But from the very definition of Jacobi polynomials
([2], p.99)

Pα,β
n (x) =

(α+ 1)n
n!

2F1(−n, n+ α+ β + 1, α+ 1, (1− x)/2), α, β > −1,

and the relation Pα,β
n (x) = (−1)nP β,α

n (−u) ([2], p.305), we obtain (5) as required.

Remark 3. The estimate

|P 0,N−2
n (1− 2c)| ≤ P 0,N−2

n (1)

which follows for instance from the integral representation of the Gauss hypergeometric function shows that

the series (10) indeed converges absolutely everywhere.

With (5) in hands, we can invert the Laplace transform ([11], eq.4.11):

ϕt/N (c, λ) ,

∫ 1

0

eλuft/N (c, u)du =

∞
∑

n=0

ane
−Λntλn1F1(n+ 1, N + 2n, λ), λ ∈ R,

where 1F1 is the confluent hypergeometric function ([2], [12]) and Λn = n(n+N − 1)/N . To proceed, recall
the integral representation ([2])

1F1(a, b, λ) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

eλuua−1(1− u)b−a−1du, b > a > 0.

It follows that

λn1F1(n+ 1, N + 2n, λ) =
Γ(N + 2n)

Γ(N + n− 1)n!

∫ 1

0

λneλuun(1− u)N+n−2du

=
(−1)nΓ(N + 2n)

Γ(N + n− 1)n!

∫ 1

0

eλu
(

d

du

)n

[un(1− u)N+n−2]du

7



after n integration by parts. But Rodriguez formula ([2], p.99)

(1− x)α(1 + x)βPα,β
n (x) =

(−1)n

2nn!

(

d

du

)n

[(1 − x)n+α(1 + x)n+β ], x ∈ (−1, 1)

together with the variable change x = 1− 2u yields
(

d

du

)n

[un(1− u)N+n−2] = n!(1− u)N−2P 0,N−2
n (1− 2u).

As a result

anλ
n
1F1(n+ 1, N + 2n, λ) = P 0,N−2

n (1 − 2c)

∫ 1

0

eλuP 0,N−2
n (1 − 2u) (1− u)N−2du

and Tonelli-Fubini Theorem yields (2) at time t/N .

5. From the Laplace transform to the generalized Jacobi operator

Another way to come from ϕt(c, λ) to ft(c, λ) is as follows. For sake of simplicity, we shall drop the
dependence on the parameter c. So, recall from [11] Proposition 4.2 that ϕ satisfies

∂tϕ = λϕ+
(

λ2 −Nλ
)

∂λϕ− λ2∂2λϕ

with the initial conditions ϕ0(c, λ) = eλc, ϕt(c, 0) = 1. Assume the density f is unknown and is smooth in
both variables (t, u), then integration by parts yield

∫ 1

0

eλu∂tft(u)du = [eλu(1−Nu)ft(u)]
1
0 +

∫ 1

0

eλu∂u[(Nu− 1)ft(u)]du

+ [λeλuu(1− u)ft(u)]
1
0 − [eλu∂u(u(1− u)ft(u))]

1
0

+

∫ 1

0

eλu∂2u[u(1− u)ft(u)]du

= eλ(2 −N)ft(1) +

∫ 1

0

eλuL (ft)(u)du

where

Lu , u(1− u)∂2u + [1 + (N − 4)u]∂u + (N − 2).

If N = 2 then

L = u(1− u)∂2u + [1− 2u]∂u

is nothing else but (6) with N = 2. Otherwise, write ft(u) , gt(u)s1(u) for a smooth function g and note
that L (s1) = 0. As a result,

L (ft)(u) = s1(u)
{

u(1− u)∂2u + [1−Nu]∂u
}

(gt)(u)

where the RHS is the operator displayed in (6). Since ft(1) = 0 when N ≥ 3 then we always have
∫ 1

0

eλu∂tgt(u)s1(u)du =

∫ 1

0

eλu
{

u(1− u)∂2u + [1−Nu]∂u
}

(gt)(u)s1(u)du.

But the set of monomials (un)n≥0 is total in L2([0, 1], (1− u)N−2du) ([4], Theorem 3.17) then g solves the
heat equation

∂tgt(u) =
{

u(1− u)∂2u + [1−Nu]∂u
}

(gt)(u).

More generally, the Laplace transform of the density of U
(k)
t , 1 ≤ k ≤ N − 1 satisfies the linear pde

∂tϕ =

k
∑

j=1

λjϕ+

k
∑

j=1

(λ2j −Nλj)∂jϕ−
k
∑

j,i=1

λiλj∂ijϕ.(11)

Hoping there will be no confusion, set again

ϕt(c, λ) ,

∫

Σ

e〈λ,u〉ft(c, u)du

8



where du is the Lebesgue measure in the simplex Σ. Then, Integration by parts

k
∑

i=1

λiϕt(λ) → −
∫

Σ

e〈λ,u〉

(

k
∑

i=1

∂ift(u)

)

du

(λ2i −Nλi)∂iϕt(λ) →
∫

Σ

e〈λ,u〉[∂ii +N∂i](uift(u))du, i ∈ {1, . . . , k},

λ2i ∂iiϕt(λ) →
∫

Σ

e〈λ,u〉∂ii(u
2
i ft(u))du, i ∈ {1, . . . , k},

λiλj∂ijϕt(λ) →
∫

Σ

e〈λ,u〉∂ij(uiujft(u))du, 1 ≤ i 6= j ≤ k,

transform the pde (11) into
∫

Σ

e〈λ,u〉∂tft(u)du = boundary terms +

∫

Σ

e〈λ,u〉L (ft)(u)du,

where this time L denotes the operator

k(N − k − 1) +

k
∑

i=1

[1 + [N − 4− 2(k − 1)]ui
]

∂i +

k
∑

i=1

(ui − u2i )∂ii −
∑

i6=j

uiuj∂ij .

If k = N − 1 then L reduces to the operator displayed in (7). Otherwise, set

ft(u) , gt(u)sk(u)

where this time g is a smooth function in both variables (t, u), u ∈ Σk and note that the relations ∂isk =
∂1sk, 1 ≤ i ≤ k together with the identity

k
∑

i=1

ui(1− ui)−
∑

i6=j

uiuj =

k
∑

i=1

ui

(

1−
k
∑

i=1

ui

)

=

(

1−
k
∑

i=1

ui

)

−
(

1−
k
∑

i=1

ui

)2

imply that Lu(sk) = 0. Hence L (ft)(u) gives rise to

k
∑

i=1

[1 + [N − 4− 2(k − 1)]ui
]

∂i +

k
∑

i=1

(ui − u2i )∂ii −
∑

i6=j

uiuj∂ij + 2
∂1s

s
(u)







k
∑

i=1

ui(1 − ui)∂i −
∑

i6=j

ujui∂i







=

k
∑

i=1

[1 + [N − 4− 2(k − 1)]ui
]

∂i +

k
∑

i=1

(ui − u2i )∂ii −
∑

i6=j

uiuj∂ij + 2
∂1s

s
(u)







k
∑

i=1

ui∂i



1− ui −
∑

j 6=i

uj











=

k
∑

i=1

[1−Nui]∂i +

k
∑

i=1

(ui − u2i )∂ii −
∑

i6=j

uiuj∂ij

acting on gt. Consequently, if the boundary terms vanish then Theorem 3.17 in [4] implies that gt solves the
heat equation





k
∑

i=1

[1−Nui]∂i +

k
∑

i=1

(ui − u2i )∂ii −
∑

i6=j

uiuj∂ij



 gt = ∂tgt.

We shall see below that this is the case provided that 1 ≤ k ≤ N − 2.

6. Analysis of the boundary terms

Recall from the previous section that the integration by parts performed in the one-variable setting gave
rise to the boundary term

eλu [(1−Nu)ft(u)− ∂u(u(1− u)ft(u))]
9



which vanish at u = 1 since ft(1) = 0 when N ≥ 3 (note that there is no such condition when N = 2). For
higher values k ≥ 2, the situation is similar provided that 1 ≤ k ≤ N − 2 and is different when k = N − 1
due to the interactions between ui and uj for i 6= j. Indeed, the boundary terms are given by

k
∑

i=1

∫

[eλiui(1 −Nui)ft(u)]
1−

∑
j 6=i

uj

0





∏

j 6=i

eλjuj1[0,1](uj)duj



+

k
∑

i=1

∫

[λie
λiuiui(1− ui)ft(u)]

1−
∑

j 6=i
uj

0





∏

j 6=i

eλjuj1[0,1](uj)duj



−

k
∑

i=1

∫

[eλiui∂i {ui(1− ui)ft(u)}]
1−

∑
j 6=i uj

0





∏

j 6=i

eλjuj1[0,1](uj)duj



−

∑

1≤j 6=i≤k

∫

(λjuj)[e
λiuiuift(u)]

1−
∑

m 6=i um

0





∏

m 6=i

eλmum1[0,1](um)dum



+

∑

1≤j 6=i≤k

∫

[eλjujuj∂i{uift(u)}]
1−

∑
m 6=j um

0





∏

m 6=j

eλmum1[0,1](um)dum



 .

By Leibniz rule, the third and the last terms split into

k
∑

i=1

∫

[eλiuiui(1− ui)∂ift(u)]
1−

∑
j 6=i

uj

0





∏

j 6=i

eλjuj1[0,1](uj)duj



+

k
∑

i=1

∫

[eλiui(1− 2ui)ft(u)]
1−

∑
j 6=i

uj

0





∏

j 6=i

eλjuj1[0,1](uj)duj





and

∑

1≤j 6=i≤k

∫

ui[e
λjujuj∂ift(u)]

1−
∑

m 6=j
um

0





∏

m 6=j

eλmum1[0,1](um)dum



+

(k − 1)

k
∑

j=1

∫

[eλjujujft(u)]
1−

∑
m 6=j

um

0





∏

m 6=j

eλmum1[0,1](um)dum





respectively. Thus there are no boundary terms at ui = 0, 1 ≤ i ≤ l, while the remaining ones are given by

k
∑

i=1

∫

[eλiui(k + 1−N)uift(u)]
ui=1−

∑
j 6=i uj





∏

j 6=i

eλjuj1[0,1](uj)duj



+

k
∑

i=1

∫



eλiuiui







λi(1− ui)−
∑

j 6=i

λjuj







ft(u)





ui=1−
∑

j 6=i
uj




∏

j 6=i

eλjuj1[0,1](uj)duj



−

k
∑

i=1

∫



eλiuiui







(1− ui)∂ift(u)−
∑

j 6=i

uj∂jft(u)











ui=1−
∑

j 6=i
uj




∏

j 6=i

eλjuj1[0,1](uj)duj



 .
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If N ≥ k + 2 and ft = gtsk vanishes on the hyperplane {u1 + · · ·+ uk = 1} and the boundary terms reduce
to

k
∑

i=1

∫

eλi(1−
∑

j 6=i
uj)



1−
∑

j 6=i

uj











∑

j 6=i

uj [∂ift(u)− ∂jft(u)]







ui=1−
∑

j 6=i
uj




∏

j 6=i

eλjuj1[0,1](uj)duj



 .

But since ∂isk = ∂jsk and since sk vanishes on {u1 + · · ·+ uk = 1}, then for any 1 ≤ i 6= j ≤ k

∂ift(u) = ∂jft(u), u1 + · · ·+ uk = 1

so that all boundary terms vanish. When k = N − 1 the boundary terms read

k
∑

i=1

∫

eλi(1−
∑

j 6=i uj)



1−
∑

j 6=i

uj











∑

j 6=i

(λi − λj)uj







[ft(u)]
ui=1−

∑
j 6=i

uj





∏

j 6=i

eλjuj1[0,1](uj)duj



−

k
∑

i=1

∫

eλi(1−
∑

j 6=i
uj)



1−
∑

j 6=i

uj











∑

j 6=i

uj [∂ift(u)− ∂jft(u)]







ui=1−
∑

j 6=i
uj




∏

j 6=i

eλjuj1[0,1](uj)duj



 .
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