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Abstract

A universal decoding procedure is proposed for the intebgyimterference (ISI) Gaussian channels.
The universality of the proposed decoder is in the sense ioighiadependent of the various channel
parameters, and at the same time, attaining the same randdimgcerror exponent as the optimal
maximume-likelihood (ML) decoder, which utilizes full kndedge of these unknown parameters. The
proposed decoding rule can be regarded as a frequency desraion of the universal maximum mutual
information (MMI) decoder. Contrary to previously suggesuniversal decoders for ISI channels, our

proposed decoding metric can easily be evaluated.
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. INTRODUCTION

In many practical situations encountered in coded comnatioic systems, the specific channel over
which transmission is to be carried out is unknown to the iveceThe receiver only knows that the
channel belongs to a given family of channels. In such a ctéeejmplementation of the optimum

maximum likelihood (ML) decoder is precluded, and thus,varsal decoders, independent of the
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unknown channel, are sought. In designing such a decodgg Hre two desirable properties that should
be taken into account: The first is that the universal decpdeiorms asymptotically as well as the ML
decoder had the channel law been known, and secondly, thatahstructed decoding metric will be
reasonably easy to calculate. This paper addresses th&empralf universal decoding for intersymbol
interference (ISI) Gaussian channels.

The topic of universal coding and decoding under channeditainty has received very much attention
in the last four decades, see, for example, [1-15]. In thénreat memoryless channels, Goppa [2]
explored the maximum mutual information (MMI) decoder, @hichooses the codeword having the
maximum empirical mutual information (MMI) with the chadrmitput sequence. It was shown that this
decoder achieves the capacity in the case of discrete méasrghannels (DMC). In [3], the problem
of universal decoding for DMC'’s with finite input and outpuplaabets was studied. It was shown that
the MMI decoder universally achieves the optimal randomirggderror exponent under the uniform
random coding distribution over a certain type class. In ] analogous result was derived for a certain
parametric class of memoryless Gaussian channels with lamowum deterministic interference signal. In
the same paper, a conjecture was proposed concerning asaiidgecoder for ISI channels.

For channels with memory, there are several quite genesaltse each proposing a different universal
decoder. In [5], the case of unknown finite-state channeth Wfnite input and output alphabets for
which the next channel state is a deterministic unknowntfan®f the channel current state and current
inputs and outputs, was considered. For uniform randomscoder a given set, a universal decoder (that
achieves the optimal random coding error exponent) whidbaised on the Lempel-Ziv algorithm was
proposed. Later, in [6], it was shown that this decoder cas to be universally asymptotically optimum
also for the class of finite-state channels with stochasdither than deterministic, next-state functions.
In [7], sufficient conditions and a universal decoder (@hlthe merging decoder) were proposed, for
families of channels with memory. The idea was to employ mdegoding lists in parallel, each one
corresponding to one point in a dense grid (whose size groivsthe input block length) in the index
set. Accordingly, with regard to our work, it was shown tha pproposed decoder universally achieves
the optimal error exponent under the ISI channel. Unforielgaas was mentioned before, this deocder
is very hard to implement in practice due to its implicit stuwre and the fact that it requires to form
a dense grid in the parameter space. In [8], a competitivénmaix criterion was proposed. According
to this approach, an optimum decoder is sought in the queshiimimizing (over all decision rules) the
maximum (over all channels in the family) ratio between thereprobability associated with a given

channel and a given decision rule, and the error probakifithe ML decoder for that channel, possibly
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raised some power less than unity. This decoder is, agaig, hexrd to implement for the ISI channel
due its complicated decoding metric.

In this paper, we propose a universal decoder that asyrogligtiachieves the optimal error exponent,
and contrary to previous proposed decoders, our proposaatiohg metric can easily be calculated. The
technigue used in this paper is in line with the techniqueglvtvere established in [1, 16]. Specifically,
similarly to [1], the main idea is to define an auxiliary “bagkd channel”, which is a mathematical tool
for assessing log-volumes of conditional typical sets @fusmces with continuous-valued components.
These log-volume terms play a pivotal role in the universdadling metric. The backward channel is
defined in a way that guarantees two properties: first, a nnea@smcentration property, that is, assignment
of high probability to a given conditional type by an appiapr choice of certain parameters, and
secondly, the conditional density of the input given thepotit associated with this backward channel
should depend on the input and the output only via the sufficgtatistics that define the conditional type
class. Contrary to the problem considered in [1], the difficun the ISI channel, stems from the fact
that the choice of the backward channel is a non-trivialéss$uturns out that in this case, the passage to
the frequency domain resolves this difficulty. The propodecoding rule can be regarded as a frequency
domain version of the universal maximum mutual informat{tiMI) decoder.

The remaining part of this paper is organized as follows. dot®n II, we first present the model and
formulate the problem. Then, the main results are provideti discussed. In Section lll, we provide a
proof outline where we discuss the techniques and methgksldhat are utilized in order to prove the

main result. Finally, in Section IV, the main results arevem.

[I. MODEL FORMULATION AND MAIN RESULT

Consider a discrete time, Gaussian channel characterized b

k
ytzzhixt—i+wt> t=0,1,2,...,n (1)
=0

where{x;} are the channel input$hi}f:0 is the unknown channel impulse responge;} is zero-mean

Gaussian white noise with an unknown variarce> 0, and {y;} are the channel outputs. It will be
assumed that the noidev;} is statistically independent of the inp{it;}. We allow & to grow withn in
the order oft = o (n'/2). In such a case, we further assume that the impulse respeqaersce(h;}2°,,

is absolutely summable

1This assumption can be relaxed to square summabilityhof.
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The input is a codeword that is randomly and uniformly drawerca codebook = {a:l, . ,a:M}
of M = 2" messages’ = (z%,...,2%) € R", i = 1,2,..., M, whereR is the coding rate in bits
per channel use. In the following, the probability of erresaciated with the ML decoder, that knows
the unknown parametefg?, ho, . .., hy), will be denoted byP. , (C, R,n). We shall adopt the random
coding approach, where each codeword is randomly chosérregpect to a probability measure denoted
by n (x). For a given power constraint, a reasonable choicg @f is the truncated Gaussian density

restricted to the shell of an-dimensional hypersphere whose radius is abotft. To wit,
n—1 $2
(@) = v @) [ e {—@} @
whereya () is the indicator function of the set

A 1n—1
DA =<z: —E z? — o2
n

t=0

whereA < 1, andv normalizes the above measure such that it would integrateitg. Note thatu (x)

< Aai} (3)

is invariant to unitary transformations af. It is well-known [17, Chap. 7] that: (-) attains a higher
error exponent than that of the respective Gaussian dewditythe same variance, at least for small
rates, where the non-typical events (or, the large deviat®vents) are the domindnfThe analysis in
this paper can also be carried for the case where the codswoeddrawn independently and uniformly
over a setZ,, C R" that is endowed with a-algebra (e.g., am-dimensional hypercube), and satisfy
an average power constraint, as was considered in [7, Timed}eLet P, , (R, n) 2 E{P.o(C,R,n)},
where the expectation is taken over the ensemble of randeetgcted codebooks under(-). Finally,

2 _lim SUp, oo log P. , (R, ).

we define the random coding error exponentFagk)
As was mentioned previously, we wish to find a decoding promedvhich is universal in the sense
of being independent of the unknown parameters, and at the sisne attaining (R). Specifically, let
P. . (C, R,n) designate the error probability associated with the usaderule for a given codeboak,
and letP. , (R,n) 2 E{P..(C,R,n)}. Then, we would likeP, ,, (R,n) to decay exponentially with
rate £ (R).
We now turn to present the proposed decoding rule. To thislehd andy denote the discrete Fourier

transforms (DFT) of the sequencés;} and{y.}, respectively, i.e., then-th component of is given

by
1 n—1
5 —j2mmt/n 4
T = ;ZO zee (4)

2Intuitively speaking, this is true because of the fact thatdes not allow low energy codewords
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wherej = v/—1 and similarly forg. Then, define an auxiliary “backward channel” by the coodil

measure
ot 1/2 1 i 2mjl ?
V(z|y,0,k) = H (27708) eXpq ~5 3 T —gmzale n (5)
m=0 90 =0
A : . :
where 6 = (ag,ao,...,ak) is the parameters vector of the backward channel, in wl{lmlr}fzo are

complex-valued. It should be emphasized that the aboveiti@firof the auxiliary backward channel is

completely unrelated to the underlying probabilistic motteparticular, it is not argued thaft (z|y, 6, k)

is obtained fromu (x) and the forward channel (1) by the Bayes rule, or any othetiogiship. For

example, our backward channel allows vectorthat are outside the regiaba. Our decoding rule will

select a messageé’ that maximizes the metric

maxg V (:Ici|:l}, 0, k:)
cy

among allM codewords. The backward channel is a mathematical tool §eessing log-volumes of

(6)

u(z',g) =

typical sets [1, 16, 18], and it should be defined in a way thetrgntees two general properties: first,
a measure concentration property, that is, assignmentgdf piiobability to a given conditional type by
an appropriate choice of the parameters of this backwardreliaand secondly, the conditional density
of & giveny, associated with the backward channel should depeng@t andy only via the sufficient
statistics that define the conditional type class. Conttarthe problem considered in [1], the difficulty
in the ISI channel stems from the fact that the choice of thekWard channel is a non-trivial issue.
Specifically, as will be seen in the sequel, an “appropriateididate backward channel must depend on
a sufficient statistics vector (associated withwith dimension that equals to the number of degrees of
freedom, which in turn adjust their conditional expectasiolt turns out that in this case, the passage to
the frequency domain is more “natural” and mathematicadiyvenient due to the well-known asymptotic
spectral properties of Toeplitz matrices (see, for exampi@]). To wit, it can be seen that the model
in (1) can be written in a vector forrg = Az + w where A = {q; ;} = {h;—;} is a Toeplitz matrix.
Now, by the spectral decomposition theorem [20], we know thare exists an orthonormal basis that
diagonalizes the matrix. Projecting the observations onto this basis will simplgatepose the original
channel into a set of independent channels, which are sirtgplnalyze. While this is true for any matrix
A, for Toeplitz matrices we can asymptotically charactetizsir eigenvalues and eigenvectors in terms
of the generating sequen@&i}fzo, which is a fundamental part in our analysis. We next giverttagn

result of this paper.
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Theorem 1 Let the codewords af be chosen randomly and independently with respect to theitgen(-)
given in (2). Assume that the channel impulse response cigefts are absolutely summalle };°, € ¢;,
and thatk = o (n'/2). Then,

lim sup ! [log Py (R,n) — Peg (R,n)] <£(A) (7)

n—oo M

where¢ (A) — 0 asA — 0, and ., (R,n) is the average probability of error associated with the

universal decoder given in (6).

The intuitive interpretation of (6) is that~!logu (,y) = n~!logmaxy V (2|9, 0,k) /u (%) is an
empirical version of the per-letter mutual informationweénx andy in the frequency domain. Thus, we
select the input that seems empirically “most dependent” upon the givenututpctory in the frequency
domain, which corresponds to the MMI principle. The pasdagie frequency domain asymptotically
eliminates the strong interactions between the variouspoomnts of the input vector, and transforms the
original model into a set ofi separable channels which are controlled(by- 2) degrees of freedom.
Note that on the support qf (-), the termn~!log i1 (i’) is nearly a constant independentofThus,
the proposed decoding rule is essentially equivalent totbaemaximizeanaxg V' (Z|g, 0, k), namely,

maximum a posteriori (MAP) decoding.

Remark 1 In [1], a universal decoding procedure for memoryless Gansshannels with a deterministic
interference was proposed. Accordingly, we remark thatofém® 1 can be fairly easily extended to the

channel model
k

ye=_ hiwii+ 2z +w 8
i=0

where {z;} is an unknown deterministic interference that can be decsex as a series expansion of

orthonormal bounded functions with an absolutely summabkdficient sequence, namely,
o
2t = Zbi¢i7t7 t= 172a"' (9)
i=1

where{b;} € ¢, and|¢; ;| < L < oo for all i andt. The coefficientsb;} are assumed deterministic and

unknown. In this case, an appropriate definition of the &aryilbackward channel is
2

n k q
r [~ |~ —-1/2 1 - - 2mjlm ~
V(z|y,0,k,q) = H (27108) / eXp | 557 |Tm ~ Ym Z ae o — Z/Bi(bi,m (10)
m=1 0 1=0 i=1
where nowe = (62, c0,...,ak, B1,...,B,) is the parameter vector of the backward chanr{el;,m}

is the frequency transformed representation{¢f;}, and¢ = ¢, is assumed to be a monotonically
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non-decreasing integer-valued sequence suchythat co andg,, = o (n!/?). Accordingly, the decoding
rule will select a message’ that maximizes the metric (6) (wheké in (6) is replaced withi’), among
all M codewords. For simplicity of the exposition and to facitahe reading of the proof of Theorem

1, we will assume the original model (1).

I1l. PROOFOUTLINE

In this section, before getting deep into the proof of Theork we discuss the techniques and the
main steps which will be used in Section IV. In order to faatle the explanations, we will need the

following definitions: Letx andy be arbitrary vectors ifR™ and define

Sy (@, y) = {2+ W (ylz') > W (ylx)}, (11)
Sulw,y) = {2’ u (2 y) > ul(z,y)}, (12)
and
5 yAN ’ 1 ’ 1
S) (xz,y) = {a: : ElogW(y[w) > ElogW(y]a:)—é}, (13)

whereWV (y|x) is the conditional pdf associated with the channel. In woiz,y) andS, (x,y) are
simply the sets of prospective incorrect codewords comedimg to the ML decoder, and the proposed
universal decoder, respectively, assuming thas the transmitted codewords and thats the received
vector. The sef] (z, y) is just aj-perturbed version af (z, y) which will be used for technical reasons.
Finally, we letP. , (R,n), P.. (R,n), andP?,, (R, n) be the average error probabilities associated with
the ML decoder, the proposed decoder, anddperturbed decoder (see, (18)-(21)).

Generally speaking, the root of our analysis is Lemma 1, winas asserted and proved in [1, Lemma
1], and can be thought as a continuous extension of [5, Goyoll]. This result relates betweé?jo (R,n)
and P, ,, (R,n) as follows

/

fsu(m’y)p(a:’) dx

_ _ 3
Pe,u (Rv ’I’L) < 2P850 (Rv ’I’L) 5T Sup (14)
’ 2 (z,y)eH, fsg(a},y) H (ZB/) da’
where{H,},, is a sequence of sets of paits, y) such that
1
limsup —logP{H,,} < —E(R). (15)

n—oo M

Whence, we see that in order to show tifat, (R,n) and P. , (R,n) are exponentially the same, we
just need to define a sequentH,, }, -, such that the ratio in (14)

fSu(w,y) p(x') de’
Jsi(@.y) (@) da’

(16)
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is uniformly overbounded by a subexponential functionmofi.e., e"» wheree, — 0 asn — oo
uniformly for all (x,y) € H,,. Once this accomplished, the proof of the theorem will be glete. The
main question is now how to define the sequef€g,}, ., properly? To answer this question, let us
interpret its role. The sel,, simply divides the space of pai(z,y) into two parts, where in the first
part, the supremum in (14) is uniformly bounded by a subegptal function ofn, and the second part
possesses a probability smaller than the desired expahémictione="£(%) and hence negligible (see,
(15)). Obviously, given these requirements one can propesgeral candidates fdf,,, namely, the choice
is not unique. However, another important property #¥t, },,-., should account for is that the function
n~tlogV (Z|y, 6, k) will be uniformly continuous w.r.t. small perturbations tife sufficient statistics
(this idea will be emphasized in the analysis). To summatize first part in the forthcoming analysis
is to define the sequendéd, }, ., such that (15) holds true, and that hopefully (14) will hatd t The
proposed{Hn}n21 is given in Lemma 2, and the main tool that is used in the predéige deviations
theory.

Following the first part, in the second part, we will evenlpahow that the chosei/,, fulfills the
desired subexponential behavior of (16). Accordingly, wi# ewverbound (16) within H,, as follows:
we will derive an upper bound on the numerator of (16) and aetolound on its denominator, and
show that these are exponentially equivalent. To this eredwill need to define a conditional typical
set of our continuous-valued input-output sequencesblksttasome of its properties, and particularly
to calculate its volume (Lebesgue measure). This typicabsome sequencé given ¢ will contain
all the vectors which, withire > 0, have the same sufficient statistics asnduced by our backward
channel (see (61) for a precise definition of this set). Them,will provide upper and lower bounds
(which are exponentially of the same order) on the volumehd typical set. To accomplish this, we
will use methods that were previously used in [1, 16, 18],clhére based on large deviations theory
and methods that are customary to statistical physicsr Alfist, we will show that for any two vectors
u and v that belong to this typical set, the conditional pdfs (y|u) and W (y|v) are exponentially

equivalent, that is, for sufficiently large,
1 1
—log W (Ylu) — —logW (ylv)| < (¢ 17)

for any( > 0. Thus, given this property, we can easily provide a lowermabon the denominator of (16).
Indeed, sincer € SJ (z,y), then in view of the last result, there exists a sufficientlyaf ¢ > 0 such
that the predefined typical set is essentially a subs&’df:,y). Therefore, the integral oves? (z, y),

in the denominator, can be underestimated as an integraltbgetypical set, and since we know its
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volume (or, more precisely, a lower bound on it which is exgrally tight), it is not difficult to provide

a lower bound on this integral (see (105) for more detailg)viding an upper bound on the numerator is
a little more involved. The underlying idea is to partitidretsetS, (=, y) into a subexponential number
of conditional types, where for each conditional type, thiegral over the respective conditional type is
overestimated using the upper bound on the volume. Finiaillyill be shown that these two bounds are

exponentially equivalent, which implies that (16) is subexential function of, as required.

IV. PROOF OFTHEOREM1

For completeness, in this section, we will provide again satefinitions that were already presented
in short in the previous section. Letandy be arbitrary vectors ifR"™ and defineS, (x,y) andS, (x,y)
as in egs. (11) and (12), respectively. The average errdyghitities associated with the ML decoder

and the proposed decoder are given by (see, for example, [1])

2nh—1
P.o(Ron)=1—-E{ [1- / p () da’ (18)
S.(X,Y)

and

R _1
P.,(Rn)=1-E [1 — / 1 (a:/) da:/] , (19)
S.(X,Y)

respectively, where the expectations are taken with regpdu.r.t.) the joint distributiorn. (x) W (y|x),

and we use the usual conventions where random vectors aotedey capital letters in bold face font,
and their sample values are denoted by the respective |loager letters. Similar convention will apply
to scalar random variables (RVs), which will be denoted vsiime symbols without the bold face font.

Finally, for § > 0 we define the set

A 1 1
Sg (z,y) = {a:’ P log W (y]a:') > ElogW(y]a:) — (5} , (20)

and accordingly
2nR—1
156570 (Ron)=1—-E<¢ |1— / p(z') dm/] . (21)
S(X,Y)

Finally, with a slight abuse of notation, we also use the tmtas, (&,y) which is defined as

follows: Let £ and ¢y be the Fourier transforms ok and y, respectively. ThensS, (z,9) 2

{# = F"2': o' € Sy (z, F*y)} whereF is the DFT matrix, namelyF’ = {eﬂ”ml/"/\/ﬁ};j:o.
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As was discussed earlier, our goal is to compare the expiahdr@havior of 7. , (R, n) to that of
P.,(R,n). To this end, we will instead compare the exponential behasf P, , (R,n) to that of
Pgo (R,n) for small§ > 0. In the final step of the proof, this will be justified by shogithat

lim sup logP (R,n) —log P., (R, n)] <d (22)
n—oo
whered’” — 0 asé — 0 and A — 0. In the analysis, we will use the following lemma [1, Lemmaf p

1263].

Lemma 1 Let {H,},-, be a sequence of sets of pajts, y) of n-dimensional vectors such that

lim sup — logIP’{HC} < —FE(R) (23)

n—o0

Then, for all largen,

_ _ - (') da’
P.,(R,n) < 2P§0 (R,n) 3 + sup fS - AR
7 (&)€H,, fsa(az ) (33 ) da

(24)
Thus, by using Lemma 1, we see that in order to showhat(R,n) andP. , (R,n) are exponentially
the same, we just need to find a sequeft },,., such that the ratio
fsu(:;:,y) p (') da’
Jss@ 1 (=) da’

is uniformly overbounded by a subexponential functiompi.e.,e™" wheree,, — 0 asn — oo uniformly

(25)

for all (z,2) € H,. For a given pai&, ), let us defined = (43, 4o, ..., a;) to be

A

[wa )Y

argmgme(:ﬂ@,O,k‘). (26)

The setH,, will be parametrized by a paramet8r> 0 and defined as follows

I

< Ac?, — 2]%|<Bﬁ2%}. (27)

3 IP*

Hn(B)é{M

We have the following result.

Lemma 2 There exists a sufficiently largg such that{H,, (B)},, satisfies (23).

Proof of Lemma 2: By the union bound we have that

n—1

P{mxBﬂgp{ }:n:>B}+P@b<Bl} (28)

t=0
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Thus, it should be shown that B is sufficiently large, both probabilities on the right-haside of (28)

decays faster thaa "), Regarding the first term, note that
2

n—1

%nyﬁ \/—HH || + Zwt] (29)
n—1

,/%Hmuz,/HHTmer %ng (30)
t=0

: :
n—1

< | VoA =], + ;zwz] (31)
t=0

where||-||, denotes the spectral norm, and in the second inequality we iised the fact thatr AB| <

IN

| BJ|, tr (A) for any B and nonnegative definite matriA. Due to the fact tha{h,,} € ¢; (essentially,
{hm} € {5 is suffice here) it can be shown that [19] the spectral n(yHh|, is uniformly bounded, that

is for all matrix dimensiom we have that| H||, < M whereM > 0. Therefore, we obtain that
n—1 n—1
1 1 2
IP{EZ}Q2>B}§IP{EZWE>(\/B—M\/a%(l%—A)) } (32)
t=0 t=0

which can be made less thanZ(%) by selecting a sufficiently larg®, as can be shown by a simple
application of the Chernoff bound. As for the remaining terry taking the gradient of (z|y, 0, k)

w.r.t. 6, we obtain that the components @fare given by the solutions of the following set of equations

n—1 k
S Emgne =D (gl e Y Jde T, forq =0, k, (33)
m= =0
and
1 n—1 k S 2
— T — U aje n 34
nm:O m ymlz:; l ( )
Note that

n—1
1 _ 2 ~2
P{52< B~} gIP’{&S <B. —Z‘Ym‘ < VB, _min 1(Ym( 27’}
n m<n—
t=0 - -
n—1 9 9
P EZ‘Ym‘ >VB —I—P{ max ‘Ym‘ §T}
n —o 0<m<n—1
1n—1 9 )
<Pyog<B7, ﬁz‘ym‘ §@’0<gl<i%—1‘ym‘ =
t=0 - -

{ z::( m( >\/—}+P{%§‘ym‘2§7} (35)
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wherer > 0. As before, the exponential decay rate of the last two termshe right-hand side of (35)
can be made arbitrarily large by selecting a sufficientlgdéaB and sufficiently small-. As for the first

term, we first note that by using (33), we have

n—1 k ’_ n—1 k z
33 g b = Red 33 ag il e zaze : (0
m=0 ¢=0 m=0 ¢=0
n—1 2
= [im|” Zaze Z (37)
m=0
Thus, using the last result we obtain
1 n—1 k . 2
63 == D |Tm—Gm ) e (38)
m=0 =0
1 n—1 n—1 k l 1 n—1 k l 2
- 2 ~ ey % _2miml ~ 12 . 2mjml
= |Zm| —2Re{ZZwmymale n }—FEZ]ym] n (39)
m=0 m=0 =0 m=0 1=0
1 n—1 1 n—1 k o 2
= E |fi'm|2 - E Z |gm|2 Zdle ™ > (40)
m=0 m=0 1=0
which in turn must be nonnegative, and hence
1 n—1 k 2 1 n—1
- 2 ~ 2mjml - 2 2
52|ym| > e §E2|xm| <a2(1+A). (41)
m=0 =0 m=0
Thus, given that mm |ym| > 7, by using (40) we obtain that
1 n—1 k z 2 1 n—11| k z 2
~ 2 ~ 2mjm R 2mjim
EZ|ym| > de 2752 > e (42)
m=0 =0 m=0 | =0
k k 1 n—1 i)
=Ty D @ e (43)
=0 r=0 m=0
k
=3 @l (44)
1=0
Therefore, invoking (41), we finally obtain that
(I+A) A
Zr NP AtR DR Yo RUNY (45)

Now, recall that{&;} minimizes the quadratic norm
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over all vectorsa = (ag,...,a) in CF1. Also, due to (45), the minimizing vector must lie
in the (k+ 1)-dimensional hypersphere’a < C(1,A). Now, fix § > 0 and define the grid
GE(5-i:i=—[C(r,A)/8],...,~1,0,1,...,[C(r,A) /5]}, and letGk*+! designate thék + 1)th
Cartesian power of;. From the uniform continuity of the above quadratic formhiit the set of all
energy limited vectorg, one can find a sufficiently small value 6f(depending or”') such that there
exists a vectotae = ap + jo; where ag,a; € GFtL, ie., the nearest neighbor of the minimizer,

satisfying (given of course the event thg < B~1)

2
< £ /
<5 +0 (46)

whered’ is a sufficiently small value (depending o For brevity, in the following, we will omit this

negligible additive term. Whence

ln—l 9 9
IP{&O<B‘ —Z(Ym( < VB, min (Ym( 27}
nt:O

0<m<n—1
1 n—1 ~ ~ k 2 1 1 n—1 9 9
— il — e —_. = Y | < Yy, | >
F n Z X szale <B nZ‘Ym‘ <VB, 0<rrr?£ 1‘Ym‘ =7 (47)
m=0 =0 t=0
1 n—1 k ‘ 2 9 1 n—1 9
<p LNz, o el 2 S
< - Z m mZale < 5 Y,,| <vVB (48)
aR,ajegk+1 m=0 =0 t=0
1 n—1 k z 2 9 1 n—1 9
< PUES T e <2 LS5 [ <
< Z - Z m mZale < 5 Y| <vVB (49)
aR,ajegk+1 m=0 =0 t=0
2
C( A) b2 1 ity I L& 2mjml 2 1 nd 2
) P{=S" X, - 22 ‘Y‘<B
h <{ 0 D s €GHH1 an::O " mz—o e B ntg(:] "

Let us show that the term on the right-most side of can be magenentially less than—"Z(%), Define

the set
2

9 1ot
2 N P < VB, 51
<Bnmz::y\_ (51)

k
2miml
ITm ym ae n
=0

Accordingly, define an auxiliary joint density

2

e {-=limP}. 62

2mjml

k
T — Um ae -
=0

g(fi,@)=<ﬂ2/\/_) Hep -
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Thus,

12/ g (dz, dy)
F

a

n—1 k 2
> Lfa}n inf H exp — Zm — Um ozle%im exp{
(2772 /\/§> (@y)eFa | 1o 2 —
Vol { F,. } exp{—2n)
(2772 /@)
2,2\ N
— Vol {F.} (23/5 > ,

and therefore Vo[ F,} < (2w2e2/\/§>n. Thus, we now obtain that

P{Fa} = p(x) W (ylx) dedy
(x,y)eFa

< Vol {F¢} (27702)_n/2 v

n B
< (27702) /2 v~ texp {—glog <

2m2e?

)}

which, again, can be made less thartZ(® by selectingB sufficiently large.
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(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

To overbound (25) withinH,, (B), we derive an upper bound on its numerator and a lower bound
on its denominator, and show that these are exponentialljvagnt. To this end, we first need to
define a conditional typical set of our continuous-valugguiroutput sequences and establish some of

its properties. For a given pair of vectar®, y) ande > 0, define thekth order conditionakt-type of &

giveny as
A 1 n—1 1 n—1 )
. - =2
T. <m|y>={m’e@": DI D DY AN B
m=0 m=0
1 n—1 N 1 n—1 N
= Re {xmg;*ne‘ "im} =3 Re {az;ng:ne——"im} <e 1=0,... k
" m=0 " m=0
132 L, _2mim 1= ) e _2milm
EZIm{xmyme n }_E Im{m;nyme n } <e l=0,...,k;. (61)
m=0 m=0

This set is regarded as a conditional typeaofjiven g as it contains all vectors which, within have
the same sufficient statistics asinduced by our backward channel. In the following, we wilbshthat

for every conditional typg* (&|), and for any two vectors andw in 7* (z|g), the conditional pdf's
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W (ylu) and W (y|v) are exponentially equivalent. This property will be usedaon. To show that

this is indeed the case, we will need the following lemma.

Lemma 3 Let L and n, be natural numbers such tRaf, = n/n,. Define the setsgy =

{e-i:i=0,1,...,[LP,/e]}. Also, let

L

~ AN . -~

T* (2ly) = {U X %, (Pl)} (7 (@l9) (62)
P 1=1

where X designates a Cartesian product, and

1 n—1 1 n—1

~ oy 2milm ~) o~y 2milm
- E Re {wmyfne n }_E g Re {x;ny;kne n }
n—

1
1 ~ o~ _27jlm 1 . -~ _ 27jlm
- Z:(]Im{xmyfne n } - mX_:OIm {:L"'my;le n }

T* (z2]g) £ {5:’ eC":

<e, l:O,...,k}, (63)

and
#;(P) = {& ecm [|@]* - mp|<e}
where
A 1 L 1 n—1
) L - . ~ |2 <
P {PEQLE L;P’ nmzzjoyxmy _e} (64)
Wheregfe is the Lth Cartesian power of; .. Then,
T (2§) C T (29) . (65)
Proof: See Appendix A. |

Intuitively speaking, the difference betwe@H (z|g) and 7 (&|g) is that in the former we split each
sequence into L bins, where in each bin we fix the energy. Indeedqigé € 7* (z|§). Due to Lemma
3, we also have thai, v € T7* (Z|g). Then,

1 1 n—1 k 2 1 n—1 k 2
= %2 |n Z (yt - Z hlut—l> T Z (yt - Z hl”t—l) .
1=0 =0

1 1
ElogW(y\U) - ElogW(y\v) -
t=0 t=0

(66)
Recall that the model in (1) can be represented in the foligwiector formy = Ax + w where A
is a Toeplitz matrix formed by the generating sequefieg, that is A = {a;;}, ; = {hi—;}, ;- Now,

by using the spectral decomposition theorem [20], we knost there exists a unitary matrik that

without loss of generality, it is assumed that (bin size) is a divisor ofr, and that allL bins have the same size.
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diagonalizesA. Accordingly, let{);},", denote the singular values associated with this transfitoma

Thus, we obtain that

n—1 n—1
s W)~ L1og W ()| = 575 & 3 i w3l il (6
wherey = Ry and similarly for{,,} and{¢,,}. Continuing, we see that
1 1 1= 14
W @l — g W ()] <5 1 3 Re i) 1, 3 Re 3w
ST
* 508 o 2 o (Il = 0P |- (68)

Now, we note that by Szego’'s theorem [19-22], the Fourieishasymptotically diagonalizes Toeplitz
matrices. Accordingly, the asymptotic eigenvalues aremivy the DFT of the generating sequerbg},

that is, for sufficiently large enough and any= > 0, we have that [20]

k
)\m—Zhle_%jml/" <eg m=0,...,n—1, (69)
=0

and by the same tokénsince the Fourier basis asymptotically diagonalizesthe eigenvectors matrix

R asymptotically equal to the Fourier badis Thus, using (61) and (69), we see that

n—1 n—1

1 1
- 0y, AWIAWI - T Anl%n
S Relibuand - L S e

k n—1 n—1
1 ~x ~ _—2mjml/n | _ 1 ~x ~ _—2mjml/n
< |l |e + - Z Re {ymume } - Z Re {ymvme } (70)
=0 m=0 m=0
k
<(e+e) S Il < (e+e) Oy (71)

1=0
where in the last inequality we have used the fact #1at} is absolutely summable. Now, regarding

the second term on the right hand side (r.h.s.) of (68), wetlhisdfollowing approximation argument
(which is asymptotically tight), that was used in [16, Sed]. Recall that due to Szegd's theorem, we
know that the Fourier basis asymptotically diagonalizgsand that there exists a frequency response
H (w) that corresponds to the linear system induced4yyand is given by the Fourier transform of the
sequencdh; }. Then, we use the fact that every continuous function carppeoaimated arbitrarily well

by a sequence of staircase functions with sufficiently sspéicing between jumps. In other words, we

4Another approach is to first assume thats a circulant matrix, and then the Fourier basis exactlgali@lizesA for any
n, that is, the eigenvectors are given by the DFT matrix, aedeigenvalues are given by the DFT {df;}. Then, when taking

the limit n — oo, using Szeg®’s theorem, this assumption can be dropped.
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approximate the continuous frequency respalisey) by a staircase function and then we take the width
of each stair to zero. This approximation in turn corresgotadassuming that the eigenvalugs,,, },

are piecewise constant over the varidudins (see Lemma 3). At the final stage of the analysis (after
taking the limitn — oc), we will take the limit, — oo so that this approximation becomes superfluous.

Thus, under this approximation, we obtain that

1 n—1
= Pwl’ (I%I2 - Iﬁmlz)
m=0

(72)

niz Al ([~ 9m?)
mel;
N 3 (1l - on?) (73)

=

Sl
FM“ EM“ IIMh IIMh

mGIz
1 2| 1 ~ 2 ~ 2
< = _ _
SN (12l = fol?) (74)
< )\l\ Z[Z\h \] <e C2 (75)
=1 Lv=0
Thus, we have shown that
1 1 €e+e
IR (vl — log W (ulo)| < 57 i1+ 0. (76)

Clearly, the right-most side of (76) can be made arbitrasifyall by choosing sufficiently small and
n, L sufficiently large. Similarly,. (v) and p (v) are also exponentially equivalent, provided that they

both belong to the support @f(-), namely,

1 1
‘;logu(u)—ﬁlogu(’v) <e Cy (77)

for some constant’,. Next, we provide upper and lower bounds on the volum&®tz|y), where the
volume of a setd C R" is defined as Vo{A} = [y de.

Lemma 4 Let (x,y) € H, (B) for someB > 0. Then, for every sufficiently small > 0, the volume of
T (&|y) is bounded as follows

€xp {—TLEf (B7 Aa k)}
maxy V (2|9, 0, k)

2

B s X ef (B,Ak
[1 (2K + 12)@] < Vol {7 @) } < emzij‘f(;mg’;)}, (78)

in which £ (B, A, k) £ B[1+VE+1-C (B1,A)] whereC (-,) is defined in (45).

Proof of Lemma 4: Fix a pair(:i: Q) € H, (B) and let
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n—1

o Bl ZRe{fmg;e‘@}, 1=0,... k (80)
m=0
and
n—1 )
o nt Zlm{fmg;;e—@}, 1=0,... k (81)
m=0
Also, let 6 designate the vector of paramete{rs%,ao, e ,ak) that corresponds to the solution of the

following set of equations

Ev {f (Xm(z} = pu ®2)

and

EV{ZRe{ i e 2"2“”}}:%52, 1=0,... k (83)

and

n—1
Ey {Zlm {Xmgjne—z”ilm}} =nph, 1=0,...,k (84)

where the expectatioRy is taken w.r.t. the backward chanriél(-|y, 8, k). This parameter vector can
be found by solving the set of equations (33)-(34), namelgttains the maximum oV (z|y, 0, k) as

can be easily seen. Then,

1=V ({75 @l9)} 19.6.k) (85)
= /Tf(m V(z|y,0,k)dz (86)
> Vol { T (&l9) } pth  V(@]5.0.8) (87)
> Vol {Tk (5c|g)} exp {— <1 42 Z |al|> } (%9,0,k) (88)
> Vol {Tk (5[;;@)} exp {—neB [1 +VE+1-C (B, A)} } V(%|9,0.k) (89)

where the second last inequality readily follows from a ion similar to (76) and the fact that
(z,y) € H,(B), and the last inequality follows from (45) along with the tfabat for any sequence

z = (z1,...,2n), We havelz|; < /n|z],. Thus, we obtain
o B,Ak)}
\kﬂ k < exp{nff( )y 2y
{7; (a:]y)} ~ max, V (Z|y,0,k)
For a lower bound on the volume, we first note that

~v ({7 @mu{tt @} } o) (91)

= exp {nef (B, A, k)} exp {nlog (re55) } (90)
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(92)

where the last inequality follows by the same consideration(89). Using Boole’s inequality

— Pz > €

@,é,k>

1 ~ ~x __2mjlm
- Re{meme n }

Now, due to (82)-(84), the events in (93) are large deviatiewents. For example, for the second term

on the right hand side of (93), let us define the following Cmn;density

70 m=0
Whence, by Chebychev’s inequality we obtain, for @any [ < k,

da(z) =

@,é,k> (93)

(94)

n—1
1 ~ g 2milm I N . _ 2mjlm
V<Emz_:0Re{meme n }—pxy >ey,0,k‘>—5(;{ ZRG{ mUme " } >e}
2
< 2Es ( z Re { 2,75, }) (95)
< LIS me|e{i T mel oo
> 2 Ym 19 n m
m=0 m=0
Bé3 _ B?
< 3 < . 97
~ ne2 T ne? ©7)
For the third term on the right hand side of (93), we again theg
1 n—1 2
L Sk _27r;1'lzm 1 oA 27r;1'lzm
V<nn§1m{xmyme b= by >ey,o,k> < ( Zlm{ e }) (98)
BZ
<= (99)
ne
Finally, exactly in the same way, one obtains that
2 27r]l7n ~ 1232
( ZRe{‘Xm‘ }—pfm >e@,0,kz> <= (100)
ne
Therefore, using (92), (97), (99), and (100), we finally dade that
o — B,Ak)} 12B2 B?
vol { 7 s epine/ (BAK) |, 2k 101
° {7; (a:]y)} ~ maxe V (2|9, 0,k) ne ne (101)
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exp{—nef (B,Ak)} B?
1-(2k+12)— | . 102
max, V (Z|y, 0, k) (2% + )TL€2 (102)

[ |
We are now ready to derive a lower bound on the denominata2®)t Sincex € S (&,¥), then, in
view of (76), there exist a sufficiently small> 0 and a sulfficiently large: (both depending o@) such

that 7% (2|§) C SS (&, 9). Thus, using Lemma 4, we get

/ 1 (a:/) da’ > / 1 (a:') dx’ (203)
S (,9)

TE(@|Y)
> Vol 7K (zZ|g) - inf ! 104
> Vol { T (&l9) } el n () (104)
exp{—nef (B,Ak)} B%] _.cue -
> _ 2 )
Z s V (2]5.0.5) 1—(2k+ 12)n62 e w(x) (105)

We next overbound the numerator of (25). The basic idea herto idecomposes, (z,¥y) into

subexponential number of conditional types, where for eashditional type,fT,c( )M(w’) dz’ is

.
overestimated using Lemma 4. Yet, this cannot be done giresaiply because not evgﬁy €S, (Z,9)

is such thatz’, §) € H,, (B) and hence we cannot apply Lemma 47f6(&'|9). Thus, in order to alleviate
this difficulty, let us divideS,, (&, y) into two subsetss$,, (z,y) N H,, (Boly) andS, (&, y) N H (Bo|y),
where H,, (By|y) 2 {z': («,y) € H,(By)}, By > B, being a constant to be chosen later. Now, in
the first set we can apply Lemma 4 while the second has a veryplowability provided thatB, is
sufficiently large. LetB be large enough so that (23) holds and(fixy) € H,, (B). Similarly to Lemma

2, one can choosB, so large such that for eveny € H,, (B|z), we have

/ p () da! < e, (106)
He(Boly)
for all largen, where@ (By) > 0 can be made arbitrarily large. Thus, we have
/ () da’ < / p () da’ + e "R(Bo) (107)
Su(®,y) Su(@,y)NHn(Boly)

Let us now subdivide the domain of the first term on the r.hfghe above inequality into conditional
e-types, whose volumes can be overestimated by Lemma 4. $oettd, we will need the number
of such sets required to cover the whole domain of integmatibat is S, (x,y) N H, (Boly) C

H, (Boly). We note that within this sety™! S 7 [#,]> < Bo, n ' 3" |Gim|* < Bo, and hence
also n~! ‘qu_:lo Re {i],j5,e*™m/m} | < By and n~! ‘qu_:lo Im {&], g5, e2mm/n}

l = 0,....k Thus, the number of conditional typds* (z'|y)} needed to covef,, (Bo|y) is not

< By for all

larger than(2B,/¢)***3. Therefore,

1 (a:') da’ < Z / 1 (a:") dx” (108)
TE(®'|Y)

/"”“(5“‘47)”1{"(30'@) TH (@' §) CS.(@5)NH, (Bo|§)
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s(Q—BO)M sup ){Vol{z’“(fc’@)}- sup )Mm”)}

€ Z'eS.(2,Y xeTH(@'|Y
2B0>2k+3 o M (i,)
< | = exp {nef (B,A,k)}e™?¢  su =
N ( € p{ f( )} i'GSug},g) maX9V($,|y,0,]€)
2B0 2k+3 o M (i)
< | — B, A ntae . 109
() v oAt ey 0
Therefore, combining (105), (107), and (109), we get forsalficiently largen,
o / / 21-1 2k+3
wp R = (2k+ 12)3_ 2By 2ne[Cart F(B.ARK)]
(&,9)€H,, (B) ng(ﬁj,g) Ju! (a:’) da’ — ne2 €
1+ e—NQ(BO) sup maxXe Vv (wjy7 97 k) ) (110)
(@,9)eH, (B) ()

We next provide the conditions under which the last bounchteeed a subexponential function of
To this end, let us first handle the squared brackets in (I, show it tends to unity as — oo by

choosing@ (By) to be sufficiently large. Note that the supremum can be badibge

o~ A9\ —n/2
sup maxg V (ai\y, 0,k) _ sup (71600)~ (111)
(&,9)€H, (B) 1 (@) @g)cH,(B) H(Z)
(reB~1) "2
= T (A2 (112)
and that the normalization constantan also be upper bounded as follows
n—1
1 2 —1(1-A)n/2 2 n/2
y:/a:exp dmexp{—@ Zajt} < e A=A/ [2meoy (14 A)]77. (113)
a T =0
Whence, using the last results and (110), we see that by tlgpds so large so that
1
Q(Bo) > 5 [log B +log o2 +log (1 + A) + 2A], (114)

the last term in the squared brackets in (110) tends to usity & oo, as required. Thus, in order that

(110) will be a subexponential function af we lete = ¢, tend to zero and = k,, such that

21—1 2kn+3
lim l log { [1 — (2k, + 12)3_2} <@> e2nen [C2+f(B,A7kn)]} =0, (115)

n—0o0 N ne;, €n
or, equivalently, that the following hold simultaneously

ky, log ei =o(n), (116)

lim +/kpe, =0, (117)

n—o0
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and

2
ne;,

lim — = Oy, (118)

n—oo ky,

whereC5 is some sufficiently large constant, and (116), (117), ai@) follow from the midterm, right,
and left terms on the left hand side of (115). This happens i o (n~1/*) and hencés, = o (n'/?).

Whence, we obtain that (110) is subexponential functiom,0fnd thus

1, - 1. -
lim —log Pey (R,n) < —log Py (R,n), (119)

n—oo n

as required. Finally, to complete the proof of the theorémgrnains to show (22). Note that bafg (x, y)
andSJ (x,y) correspond to a known channel. This is, actually, a siméad(simpler) problem to that
we considered above, and is very related to the problem dered in [1, Egs. (33)-(39)], where (22)
has been proven. In the sequel, we briefly describe how tdrof2&). Similarly to the above analysis,
using Lemma 1, we would like to show that the ratio
Jss@g) 1 (@) da’
fSo(:E,g) w (') da’

(120)

is uniformly overbounded by a subexponential functionnofover (z,y) € H, where H,, is defined
exactly as in (27). For a given pair of vectqB, y) ande > 0, define thekth order conditionak-type

T (z|y) exactly as in (61). Accordingly, we know that for afy® < 7 (Z|g) the conditional pdf's
W (ylu) andW (y|v) are exponentially equivalent, that is, (76) holds. Thenjiéw of the last fact, there
exists a sufficiently smakt; > 0 and a sufficiently large: such that7* (z|g) C S, (z,%), and another

€2 > 0 and a sufficiently large: (both depending o#) such thatS? (z,3) c 7.* (z|§). Then, using the
same techniques as previously described, it is possible#g¢dound the numerator and underbound the
denominator of the r.h.s. of (120) in terms of the volumeshef tonditional type§* (z|y), and show

that (120) is overbounded by a subexponential function.of

APPENDIXA

PROOF OFLEMMA 3

We need to show the inclusion
TE (#y) € TF (2]g), (A1)

namely, for anyz € T* (z|g) alsoZ € T (z|y). Using the definitions of these sets we see that in order

to show the above inclusion we only need to show that for esesy 7 (&|y), there exist a sequence
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{Pn}E_ € P¢ such that for anyl <1< L,

— B

‘H plm <e (A.2)

L(1—1)n, +1H2

>

wherex]” = (2,141, .- - wm) for m > [. To this end, for each < [ < L, P, is chosen to be the
nearest point t(H (1= 1)n +1H in the setglLE, namelypP, = M T, +1H /(nbe)J -€. Under this choice,

obviously, (A.2) holds, ane{Pl}l:1 € P, since

2
k L ~ilny
1 1 Hw(l—l)anH
SO ESARIEDY e | (A.3)
=1 =1
1 L —lnb 2
<=3 el | o P =0 (A4)
=1

where the last equality follows from the fact thatc 7* (z|9) and thatn = n, L.
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