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ON SMALL MIXED PATTERN RAMSEY NUMBERS

M. BARTLETT, E. KROP, T. NGUYEN, M. NGO, AND P. PRESIDENT

Abstract. We call the minimum order of any complete graph so that
for any coloring of the edges by k colors it is impossible to avoid a
monochromatic or rainbow triangle, a Mixed Ramsey number. For any
graph H with edges colored from the above set of k colors, if we consider
the condition of excluding H in the above definition, we produce a Mixed

Pattern Ramsey number, denoted Mk(H). We determine this function
in terms of k for all colored 4-cycles and all colored 4-cliques. We also
find bounds for Mk(H) when H is a monochromatic odd cycles, or a
star for sufficiently large k. We state several open questions.
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1. Introduction

1.1. Colorful Patterns. We study edge-colorings of complete graphs that
avoid certain color patterns. In general, we consider colorings that avoid
fixed monochromatic cliques, fixed rainbow cliques, and a multicolor pattern
or family of multicolor patterns. For a given family of edge-colored graphs
F and integers n, p, q, and k, define a (Kp,F ,Kq; k)-coloring of Kn to be an
edge-coloring with k colors, avoiding monochromatic Kp, rainbow Kq, and
every member of F . If the number of colors used is not specified and the
family of colored graphs F is restricted to lexical graphs–the set of complete
graphs of fixed order and ranked vertices, where two edges have the same
color if and only if they have the same higher endpoint–then such colorings
are the subject of the Erdős-Rado Canonical Ramsey Theorem [6]. The best
current bounds on er(p), the least order of complete graphs that must exhibit
a monochromatic, rainbow, or lexical Kp, are due to Leffmann and Rödl [16],
who showed that there exist constants c, c′ such that for any positive integer
p,

2cp
2

≤ er(p) ≤ 2c
′p2 log p.

An edge-coloring of Kn is called Gallai if no triangle is colored with three
distinct colors. Let f(s, t; k) be the largest n so that there exists a k-coloring
of the edges of Kn where every Ks ⊆ Kn has exactly t different colors. For
Gallai colorings avoiding monochromatic triangles, which we call the pure
mixed case, Chung and Graham [4] showed

f(3, 2; k) =

{

5k/2 if k is even

2× 5(k−1)/2 if k is odd
(1.1)
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Such investigations have been generalized in various directions. For exam-
ple, mixed Ramsey numbers were studied by Axenovich and Iverson [1] and
V. Jungić, T. Kaiser, D. Kral [15]. In this case the problem is to determine
the maximum or minimum number of colors in an edge-coloring of Kn, for
a fixed n and number of colors k, such that no monochromatic subgraph
appears isomorphic to some graph G and no rainbow subgraph appears iso-
morphic to some graph H.

Various authors, [7], [8], studied Gallai colorings excluding monochromatic
cycles and paths, with the most recent paper by Hall, Magnant, Ozeki, and
Tsugaki [14].

In the above Ramsey problems, other than in the mixed case of monochro-
matic and rainbow triangles, gaps persist between upper and lower bounds.
Restricting the situation to monochromatic and rainbow triangles, as well
as to some predetermined pattern, we call the resulting Ramsey numbers
mixed pattern Ramsey numbers. We attempt to take the recent results of
[13] and [14] on Gallai colorings, and apply them to the more understood
small mixed cases, which were studied more generally in [2] and [1], to which
we add particular pattern exclusions. In this limited context we are able to
find many sharp bounds. However, new questions arise as to the order of
the Ramsey function when forbidding various color patterns which were not
previously considered, either because they could always be avoided, as in the
pure Gallai case, or because questions of lexical colorings dominated.

For more on rainbow generalizations of Ramsey theory, see [9] and the
updated version [10].

In this paper, we consider the problem of (K3, F,K3; k)-colorings, where F
is a colored cycle. In section two, we determine this function for monochro-
matic and bichromatic colorings of four-cycles. This problem was solved for
k = 2 by Chartrand, Kolasinski, Fujie-Okamoto, and Zhang [3]. In section
three, we consider the case of colorings of four-cycles by at least three col-
ors. We rely on local arguments and elementary techniques in the previous
two sections and apply the Gallai structure theorem in those that follow.
In section four, we find exact bounds on mixed pattern Ramsey numbers
of monochromatic odd cycles, as well as the value of the function excluding
monochromatic stars, when the number of colors used is large enough. In
section five we find the mixed pattern Ramsey numbers for all colorings of
K4. In section six, we state several open questions.

1.2. Definitions and Notation. For basic graph theoretic notation and
definition see Diestel [5]. All graphs G are undirected with the vertex set V
and edge set E. Kn denotes the complete graph on n vertices. For any edge
(u, v), let C(u, v) be the color on that edge, for any vertex v, let C(v) be the
set of colors on the edges incident to v, and for any edge-colored graph H,
let C(H) be the set of colors on the edges of H. We write c(v) = |C(v)|.

For any color i and vertex v, we let Ni(v) denote the set of vertices adjacent
to v by edges colored i.

For any subset of vertices S ⊆ V , in a colored graph G, we denote [S] to
mean the induced subgraph on S with the coloring from G.
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For any two graphs A and B, the join of A and B, written A ∨ B, is the
graph formed by A, B, and edges between every pair of vertices u, v so that
u ∈ A and v ∈ B.

We define Cn to be the monochromatic n-cycle for any integer n > 2. In
keeping with notation from [3], we define π1, π2, and π3 as the two-colored
four-cycles in the figures below.

v1

v2 v3

v4
π1

v1

v2 v3

v4
π2

v1

v2 v3

v4
π3

We define the rest of the multicolored four-cycles as π4, π5, and π6 below.

v1

v2 v3

v4

1

1

2

3

π4

v1

v2 v3

v4

1

2

1

3

π5

v1

v2 v3

v4

1

2

3

4

π6

For any k ≥ j and j-colored graph H of order at most n, we say that
an edge-coloring of Kn is (K3,H, ϕ3; k) if there are k colors on the edges
of Kn and Kn does not contain a monochromatic K3, H, or rainbow K3,
which we denote by ϕ3. For any positive integer n, an edge-coloring of Kn is
(K3,H, ϕ3) if it is as above without the specification of the number of colors
used. For any positive integers n, k we say that Kn is (K3,H, ϕ3; k)-colorable
if there exists an edge coloring of Kn that is (K3,H, ϕ3; k).

We say an edge-coloring of Kn is (K3, ϕ3), or mixed, if Kn does not contain
a monochromatic or rainbow triangle. For a specified number of colors, k,
we extend the previous definition as before. Furthermore, R(K3, ϕ3; k) is the
minimum n so that every k-coloring of Kn produces either a monochromatic
or rainbow triangle as a subgraph and there exists a (K3, ϕ3; k) coloring of
Kn−1. We define Mk(H) = R(K3,H, ϕ3; k) to be the minimum order of a
complete graph such that every k-coloring produces either K3, H, or ϕ3 as
a subgraph and there exists a (K3,H, ϕ3; k) coloring of Kn−1. The Gallai-
Ramsey number, GRk(H), is the minimum order of a complete graph so that
every edge coloring with k colors and no rainbow triangles produces H as a
subgraph.

Let Я(K3, ϕ3; k) be the maximum order of a complete graph such that
every k-coloring produces either K3 or ϕ3 as a subgraph and there exists a
(K3, ϕ3; k) coloring of Kn+1. This function has been studied in a slightly
different formulation in [1] and [15], and many asymptotic bounds are known.

For a fixed number of colors k, it may help to keep in mind the heuristic
illustration of the relationship between values of n and mixed colorings.

n
][ ][

forced K3 or ϕ3 can avoid K3 or ϕ3 forced K3 or ϕ3

Я(K3, ϕ3; k) R(K3, ϕ3; k)
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For certain colored patterns H and number of colors k, Kn does not admit
a (K3,H, ϕ3; k) edge-coloring. In this case, it is convenient to define the min-
imum order complete graph with at least k edges, MIN(k). In particular,

define |MIN(k)| = min(k) =
⌈
√

2k + 1
4 + 1

2

⌉

.

1.3. Some Useful Known Results. With the above notation, we can re-
state (1.1) as

Theorem 1.1.

R(K3, ϕ3; k) =

{

5k/2 + 1, if k is even

2× 5(k−1)/2 + 1, if k is odd
(1.2)

Lemma 1.2. [2] Let c be a coloring of E(Kn) with no rainbow triangle.

Then there is a vertex with at least (n+1)
3 edges incident to it of the same

color.

Theorem 1.3. [7] GRk(C4) = k + 4

We now state the fundamental structure theorem for Gallai colorings,
originally found by T. Gallai in [11] and further explored in [13] and by
various authors.

Theorem 1.4. [11] Any Gallai-colored complete graph can be partitioned
into more than one set of vertices, so that there is only one color on the
edges between any pair of parts, and at most two colors on edges between
parts.

Theorem 1.5. [12] Let H be a fixed monochromatic graph without isolated
vertices.Then GRk(H) is exponential in k if H is not bipartite and linear in
k if H is bipartite and not a star.

2. Forcing Bichromatic Cycles

Theorem 2.1. Mk(π1) > 2k

Proof. For k = 2, we produce a (K3, π1, ϕ3; 2) coloring of K4. Construct a
monochromatic cycle C4 and color the remaining edges by the other color.
Call this colored graph G4. To produce G8, a (K3, π1, ϕ3; 3)-colored K8, we
connect two copies of G4 by edges colored by a third color. Proceeding this
way, we produce a (K3, π1, ϕ3; k)-colored K2k by connecting two copies of
G2k−1 by edges colored by a kth color. If G2k−1 is (K3, π1, ϕ3; k− 1)-colored,
then we only need check that a monochromatic K3, π1, or ϕ3 does not occur
between the two copies of G2k−1 , which is an easy verification. �

Theorem 2.2. For any positive integers l, k, n so that l ≥ k, if 2k + 1 ≤
n ≤ 2k+1, then any (K3, π1, ϕ3; l) coloring of Kn produces a vertex v so that
c(v) > k.

Proof. We proceed by induction on n. By [3], M2(π1) = 5. We check the
statement for n = 3 and 4. In either case, if c(v) = 1 for every vertex v, then
Kn is monochromatic, which is not allowed in a (K3, π1, ϕ3; l) coloring.

Next, for some n > 4, suppose the statement true for at most n−1 vertices
and consider G, a (K3, π1, ϕ3; l) colored Kn.
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If n > 2k + 1, then choose a vertex v and remove it from G. Notice that
the remaining graph is (K3, π1, ϕ3) free, and since n− 1 ≥ 2k + 1, there are
at least k + 1 colors. Thus, G− {v} contains a vertex u so that c(u) > k.

If n = 2k+1, we consider any vertex v incident to edges of the same color,
say 1. If |N1(v)| ≥ 2k−1+1, then by induction, we can find a vertex u ∈ N1(v)
so that c(u) ≥ k in the induced subgraph H = [N1(v)]. Restricting out
attention to H, if 1 ∈ C(u) in H, then that edge together with incident edges
from v would form a monochromatic triangle, which is impossible by the
definition of the coloring. Thus, c(u) ≥ k+1 in G. This observation leaves us
to consider the case that for any vertex v ∈ G and color i, |Ni(v)| ≤ 2k−1, and
thus, v is adjacent to at least 2k−1 vertices by edges not colored 1. Let I =
C(v)∩C(H) and call H ′ the induced subgraph on the neighbors of v incident
to edges of these colors, that is [NI(v)] = H ′. Let J = (C(v) − ({1} ∪ I))
and call H ′′ the induced subgraph on the neighbors of v incident to edges of
these colors, that is [NJ(v)] = H ′′.

Lemma 1.2 guarantees the existence of v so that |Ni(v)| ≥
n+1
3 for some

color i. Without loss of generality, say 1 = i and notice that by induc-
tion, H = [N1(v)] must contain a vertex u so that c(u) >

⌊

log2(
n+1
3 )

⌋

=
⌊

log2(
2
3) + log2(2

k−1 + 1)
⌋

≥ ⌊ k − 1.585⌋ = k − 2.
Next, consider any vertex w ∈ H ′. Notice c(vw) = i and c(uw) = i

produces a π1 subgraph. Assigning c(uw) = j for some color j /∈ {1, i},
produces ϕ3. Thus, we are forced to conclude that c(uw) = 1.

For any x ∈ H ′′ so that c(vx) = j for some color j, if c(ux) = j, then
together with the color 1 on the edge vu, c(u) ≥ k + 1. To avoid a rainbow
triangle, c(ux) ∈ {1, j}. Thus, we are left with the case where c(ux) = 1.

v

H

1

i

i

u

w H ′H ′′

x

j

Since c(uv) = 1 and c(uw) = 1 for any w /∈ H, |N1(u)| ≥ 2k−1 + 1 and
by induction, we can find a vertex x ∈ [N1(u)] which is incident to at least
k edges of different colors in [N1(u)], none of which are 1. Since c(ux) = 1,
c(x) ≥ k + 1 in G. �

Corollary 2.3. Mk(π1) = 2k + 1

Theorem 2.4.

Mk(π2) =







6, when k = 2
5, when k = 3
min(k), when k ≥ 4

Proof. We produce a (K3, π2, ϕ3; 2)-colored K5 and a (K3, π2, ϕ3; 3)-colored
K4 below.
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v1

v2

v3v4

v5

v1 v2

v3v4

It is shown in [3] that M2(π2) = 6.
If the order of the graph is at least six, Lemma 1.2 guarantees a vertex

v so that |Ni(v)| ≥
n+1
3 for some color i. Therefore, if n > 5, |Ni(v)| ≥ 3,

which produces π2 as illustrated below.

v1

v2

v3

v4

If n = k = 4 and for some vertex v, c(v) = 3, then color 4 cannot be
placed on any remaining edge without creating ϕ3, and c(v) = 2 for all v.
Suppose the edges incident to vertices v1 and v2 do not share a color pair,
and say c(v1v2) = 1, c(v1v4) = 2, c(v2v3) = 3. Notice that color 4 cannot be
placed on any remaining edge without creating ϕ3. Thus, we are left with
pairs of vertices that share a color pair on incident edges, illustrated in the
figure below.

v1 v2

v3v4

v1 v2

v3v4

Notice that the color of the edge v3v4 in the second figure cannot be a color
different from the colors present on the edges between v1, v2, v3, v4, without
producing ϕ3. Thus, in either figure, at most three colors are used, which
contradicts that k = 4.

Observe that if k > 4 and n ≤ 4, then ϕ3 cannot be avoided.
For the remaining cases of any (K3, π2, ϕ3)-colored K5 by at least three

colors, notice by the figure above, that for any vertex v, c(v) ∈ {2, 3, 4}.
We label the remaining vertices v1, v2, v3, v4. If c(v) > 2, say C(vv1) =
1, C(vv2) = 2, C(vv3) = 3 and without loss of generality let C(v1v2) = 1. No-
tice that C(v2v3) ∈ {2, 3} and the argument is identical for either color. Thus,
let C(v2v3) = 2 and notice that we are forced to conclude that C(v1v3) = 1.
However, this produces π2 on the vertices v, v1, v3, v2.

For the last case, notice that for every vertex v, c(v) = 2, otherwise we

refer to a previous case. If k = 3, then there are exactly
(3
2

)

= 3 ways to pick
two color classes of edges at any vertex. However, there are five vertices, so
by the pigeonhole principle at least two vertices share a pair of color classes.
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Call two such vertices v1 and v2 and let c(v1v2) = 1. We illustrate the
coloring in the following figure:

v4

v5

v1v2

v3

1

2

Notice that edges between the vertices v3, v4, v5 can only be colored by 1
or 2 to avoid rainbow triangles. However, this means that k = 2, which is a
contradiction.

If k > 3, and no two vertices have the same pair of color classes, then the
coloring forces a rainbow triangle as shown below:

v4

v5

v1v2

v3

1

3 2

Thus, some pair of vertices must have the same pair of color classes, which
returns us to the case when k = 2.

�

Theorem 2.5. Mk(π3) = k + 2

Proof. To show the lower bound, we color Kk+1 by a lexical “greedy coloring".
Label the vertices of Kk+1 by {v1, . . . , vk+1} and color the edges incident to
v1 by color 1. Next, color the edges incident to v2 which have not been
previously colored, by color 2. Continue this way, until all edges are colored.

To show the upper bound, let G be a (K3, π3, ϕ3)-colored Kk+2. Choose
a vertex v1 and for any color i, let Si = Ni(v1). We argue that for any
two colors i, j, no color of an edge in [Si] can be repeated on edges in [Sj].
Consider the figure below where {v2, v3} ⊆ S1 and {v4, v5} ⊆ S2, and colors
1, 2, and 3 are as labeled.
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v1

v2

v3v4

v5

12

3

Without loss of generality, suppose c(v2v5) = 1. To avoid a rainbow trian-
gle on v1, v2, v4 and on v2, v4, v5, notice that c(v2v4) = 1. To avoid rainbow
triangles on v2, v3, v5 and v1, v3, v5, we have c(v3v5) = 1. To avoid rainbow
triangles in induced subgraphs on v1, v3, v4 and v3, v4, v5, c(v3v4) = 1. How-
ever, notice that this produces π3 in the induced subgraph on v2, v5, v4, v3.

Next, we show that no color of C(v1) can be repeated in [Si] for any
i ∈ {1, . . . , c(v)}. Suppose in the above figure, C(v2v3) = 2. If c(v2v5) = 1
or c(v3v5) = 1, then we produce π3 in the induced subgraph with vertices
v1, v2, v3, v5. However, the only color available for those edges is 2, which
produces a monochromatic triangle.

With these properties we have

c(G) ≥ c(v) +

c(v)
∑

i=1

c([Si]) (2.1)

For the case of two colors, [3] showed that GR(K3, π3, ϕ3; 2) = 4. By in-
duction on the order of the graph, we assume that for some integer N > 4,
complete graphs of order n < N can be colored by n − 1 colors avoiding
monochromatic triangles, rainbow triangles, and π3, but not by n−2 colors.
Absorbing the count of the colors at v into the sum in (2.1), we have

c(G) ≥

c(v)
∑

i=1

|Si| = N − 1.

Setting N = k + 2 shows that GR(K3, π3, ϕ3; k) ≤ k + 2. �

3. Forcing Multi-chromatic Four-Cycles

Theorem 3.1.

Mk(π4) =

{

5, when k = 3
min(k), when k ≥ 4

Proof. If k = 3, we produce a (K3, π4, ϕ3) coloring of K4 by the figure below.

v1

v2 v3

v4

2

1

3

1

1 1

For n ≥ 6, we apply Lemma 1.2 and find a vertex v such that |Ni(v)| ≥
n+1
3 ≥ 3 for some color i. Without loss of generality, suppose i = 1 and let

u1, u2, u3 ∈ N1(v). Notice that the triangle on these vertices is in two colors.
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Say c(u1u2) = c(u1u3) = 2 and c(u2u3) = 3. However, the cycle vu1u2u3
forms π4.

If k > 3, we show that Mk(π4) ≤ 4 by the next observations about possible
(K3, π4, ϕ3; k) colorings of K4.

(1) No vertex can be incident to all edges of the same color by the initial
argument using Lemma 1.2.

(2) No vertex can be incident to three edges of different colors as no
remaining edge could be colored by a fourth color without forming
ϕ3.

(3) Every vertex must be incident to three edges of two colors.

Consider the following coloring

v1

v2 v3

v4

1 2

2

The edges on the vertices v2, v3, v4 must be colored

by two new colors (say 3 and 4) since k > 3.

However, this would mean that the triangle on

v1, v2, v4, is ϕ3.

Thus, we are left to consider colorings of K5. From the above condition, (1)
holds. Furthermore, if c(v) > 2, say c(vv1) = 1, c(vv2) = 2, and c(vv3) = 3,
then without loss of generality, let c(v2v3) = 2. Notice that c(v1v2) ∈ {1, 2}
and either choice would produce π4. Thus, c(v) = 2 for all v ∈ V . The rest
of the argument is identical to the proof for Mk(π2). �

Theorem 3.2. Mk(π5) = k + 4

Proof. The lower bound for k = 2 is attained by coloring a 5-cycle in K5 by
one color and the remaining edges by another color. For every additional
color, introduce a new vertex u and color all edges from u to the rest of the
graph by a new color. Since such a coloring of Kn contains no independent
monochromatic pair of edges, π5 never appears and it is easy to verify the
same for K3 and ϕ3.

The argument for the upper bound is similar to that for π3. Let G be
a (K3, π5, ϕ3) colored Kk+4. Choose a vertex v1 and for any color i, let
Si = Ni(v1). We argue that for any color i, the colors of edge in [Si] must
be the colors of C(v1). Consider the figure below where {v2, v3} ⊆ S1 and
{v4, v5} ⊆ S2, and colors 1, 2, x, and y are as labeled.

v1

v2

v3v4

v5

12

x y

Notice that c(v3v4) ∈ {1, 2} and either choice produces π5 when x, y /∈
{1, 2}. If x = 1 and y 6= 2, then c(v3v4) = 1 produces π5 on the edges of
v1v2v3v4, so c(v3v4) = 2. If c(v2v5) = 2, then we have π5 on the edges of
v2v3v4v5, which forces c(v2v5) = 1. However, this leaves us with no choice
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for a color on v3v5 because c(v3v5) = 2 produces ϕ3 on the edges of v2v3v5
and c(v3v5) = 1 produces π5 on the edges of v1v2v3v5.

Thus, we conclude that the colors of edge in [Si] must be the colors of
C(v1). Moreover, for any colors i, j ∈ C(v1) so that i and j occur at least twice
on edges incident to v1, C([Si]) = {j}. We call this the copycat condition.

Since there are k colors on the edges of G, all of which are represented on
the edges incident to v1, there are three edges incident to v1 left to consider.

If the colors on those three edges are all different, say {1, 2, 3}, then the
copycat condition cannot hold.

If the colors contain one repetition, say {1, 1, 2}, then [N1(v1)] contains a
triangle in two colors, one of which is not 2, breaking the copycat condition.

If the colors on those three edges are all the same, say {1, 1, 1}, [N1(v1)]
contains a triangle in two colors, say 2 and 3 where 3 appears once. Call
v2 the vertex where c(v1v2) = 2, and for i = 3, 4, 5, call vi be such that
c(v1vi) = 1. Notice c(v2v3) = 2 to avoid π5 on the edges of v1, v2, v3, v4,
c(v2v4) = 2 to avoid π5 on the edges of v1v2v4v5 and to avoid ϕ3 on the
edges of v2v3v4. However, this leaves no color available for v2v5. �

Corollary 3.3. Mk(C4) = k + 4.

Proof. We apply the lower bound construction from Theorem 3.2 and the
upper bound from Theorem 1.3. �

Observation 3.4. For any k ≥ 2, Mk(π6) = R(K3, ϕ3; k).

Proof. Notice that in the figure of π6 defined above, any coloring of v1v3
produces a rainbow triangle. Thus, any coloring avoiding rainbow triangles
avoids π6, which shows Mk(π6) ≥ R(K3, ϕ3; k). The upper bound follows
from the fact that any (K3, π6, ϕ3)-coloring is a (K3, ϕ3)-coloring. �

4. Monochromatic Cycles and Stars

4.1. Monochromatic Cycles. In [8] and [14], the authors produce the cur-
rent best bounds for minimum order Gallai colorings forcing monochromatic
cycles. In particular, they state that for all integers k and n with k ≥ 1 and
n ≥ 2,

(n− 1)k + n+ 1 ≤ GRk(C2n) ≤ (n− 1)k + 3n (4.1)

n2k + 1 ≤ GRk(C2n+1) ≤ (2k+3 − 3)n log n (4.2)

We solve the problem for odd monochromatic cycles in the mixed case.
By Theorem 1.4, any colored complete graph avoiding rainbow triangles

can be partitioned into blocks of vertices where edges between two blocks
are all the same color and the number of colors on edges between all blocks
is two. Let the reduced graph be the induced two-colored graph produced by
taking a vertex from each block of such a Gallai partition.

Proposition 4.1. For integers k and n with k ≥ 2 and n ≥ 1,

(1) If n > 5
k−1

2 −1
2 , for odd k, then Mk(C2n+1) = R(K3, ϕ3; k)

(2) If n > 5
k
2 −1
2 , for even k, then Mk(C2n+1) = R(K3, ϕ3; k)
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Proof. We apply (1.1) and the proof of that result given in [12]. Notice
that every Gallai partition of Kn can have no more than five blocks since
the reduced graph is two colored and R(3, 3) = 6. Besides this, every color
on edges in a reduced graph on a partition with more than three blocks
must be distinct from the colors on edges in the blocks of that graph, to
avoid a monochromatic triangle. Thus, every monochromatic cycle can be
found on the edges between blocks in a fixed Gallai partition. If 2n + 1 >
R(K3,ϕ3;k)−1

2 , for odd k, or 2n + 1 > R(K3, ϕ3; k) − 1, for even k, then
we seek a monochromatic cycle of order greater than that of the blocks in
any Gallai partition whose reduced graph contains a monochromatic odd
cycle. Such an odd monochromatic cycle does not exist, and hence we are
constrained only by the conditions of monochromatic or rainbow triangles.
Hence, Mk(C2n+1) = R(K3, ϕ3; k). �

Next we determine the function in the remaining cases for n and k. Define

m1 = 7

ml = 7 +

l−1
∑

i=1

(5i × 6), for l > 1

I1 = {3, . . . , 3 +m1}

Il = {3 +

l
∑

i=2

(5i−2 × 10), . . . , 3 +

l
∑

i=2

(5i−2 × 10) +ml}, for l > 1

i1 = 3 +m1

il = 3 +

l
∑

i=2

(5i−2 × 10) +ml, for l > 1

Theorem 4.2. For all integers k and n with k ≥ 2 and n ≥ 3,

Mk(C2n+1) =























2k + 1, when k ≥ 2, and n = 2
5l2k−2l + 1, when k ≥ 2l + 2,

and n ∈ Il for l ≥ 1

5l2k−2l + 2j + 1, when k ≥ 2l + 2, 1 ≤ j ≤ 5l−1
2 ,

and n = il + j, for l ≥ 1

Proof. The lower bound is obtained by maximizing the number of vertices in
each Gallai partition of KN subject to the constraints of avoiding monochro-
matic triangles and odd monochromatic cycles of size 2n+1. Let the Gallai
partition of KN be the level 1 Gallai partition. Gallai partitions of the blocks
of a level i Gallai partition are defined to be the level i+ 1 Gallai partition,
for i ≥ 1. Note that, as in the proof of the previous proposition, the number
of blocks in any Gallai partition is no greater than five. Furthermore, colors
of edges in blocks must be distinct from the colors of edges between blocks,
other than in the case of three blocks, in order to avoid monochromatic tri-
angles. Thus, the number of levels of Gallai partitions can be no more than
⌈

k
2

⌉

and all monochromatic odd cycles can be found on edges between blocks
in fixed levels of Gallai partitions.

We begin by describing the operations of a maximal construction. Fix a
level l so that 0 < l ≤

⌊

k
2

⌋

and suppose that the Gallai partitions at all
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levels at most l are “full", that is, that the order of the graph is N = 5l. The
maximum size of any monochromatic odd cycle is 5l, which can be found
by traversing the edges between blocks of the level 1 Gallai partition. Next,
notice that further expanding the graph by substituting it into vertices of
a colored K4 or K3 without monochromatic or rainbow triangles, requires
two new colors for each such substitution, and increases the order of the
graph by a factor of four. Similarly, substituting the vertices into a K2

requires one new color and increases the order of the graph by a factor
of two. Furthermore, a substitution into K4,K3, or K2 does not produce
monochromatic odd cycles of size greater than 5l. Perform a substitution into
K4, l

′ times, and depending on the parity of k either perform a substitution
into K2 one time or not at all, so that

l + l′ =
k

2
when k is even and l + l′ + 1 =

k + 1

2
when k is odd. (4.3)

Further define the levels of the graph as −1 for the first substitution
into K4, incrementing by −1 for every successive substitution, for levels
−1, . . . ,−l′. If k is odd, add an additional level −l′ − 1 by substituting into
K2.

Next, introduce 2j +1 new vertices for 0 ≤ j ≤ 5l−1
2 adjacent to all other

vertices, and color the edges incident to the new vertices with existing colors
without creating K3 or ϕ3. Any new vertex v must belong to a block at
some level, say m. Since levels 1, . . . , l all have five blocks, v cannot belong
to a new block on any of these levels. However, if v is in an existing block at
each such level, then v is in a block at level l, where all blocks are composed
of single vertices. This means that, with the inclusion of v, the number of
blocks on this level is 6, which is impossible. Since the number of blocks on
the negative levels is either four or two, v is in a block of one of the negative
levels, which did not exist before the inclusion of v.

We perform the above partitioning while keeping track of the maximum
length of any monochromatic odd cycle. Let KN be partitioned into four
blocks at every level. Notice that N = 2k and there are no monochromatic
odd cycles of any length. Let KN be partitioned into five blocks at level
1, four blocks at level 2, and further as described in (4.3). Notice that
N = 5× 2k−2 +1 and there are no odd monochromatic cycles of size greater
than 5. Introducing one new vertex produces monochromatic cycles of sizes
7, 9, . . . , 21. Introducing two additional vertices produces a monochromatic
cycles of size 23 and two more vertices produce a cycle of size 25.

We repeat this procedure, successively increasing the number of levels
where we partition with five blocks, and then filling in the rest with four
block substitutions followed by a two block substitution as necessitated in

(4.3). Next we introduce 2j+1 vertices for 0 ≤ j ≤ 5l−1
2 as described above.

If we partition into five blocks up to level l, for some positive integer l,
and substitute into four blocks and two blocks as in (4.3), and introduce one
additional vertex, then we produce monochromatic cycles of sizes 2n+1 for
n ∈ Il.

If we introduce a total of 2j +1 additional vertices for 1 ≤ j ≤ 5l−1
2 , then

we produce monochromatic cycles of sizes 2n+ 1 for n = il + j.
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The vertex maximality of this construction is implied by Theorem 1.4
and the fact that the maximum number of blocks in any Gallai partition is
five. �

The mixed Ramsey numbers for even monochromatic cycles seems more
difficult, though it is easy to see that the correct order is linear in k. Indeed,
lexical colorings of complete graphs contain no monochromatic cycles and
Mk(C2n) ≤ GRk(C2n). Finding the exact value may depend on the answer
to the following

Question 1. For 1 ≤ i ≤ 5, let Bi be a simple graph of bi independent
vertices. What is the maximum order of an even cycle on

(

∨5
i=1Bi

)

∨B1?

4.2. Monochromatic Stars. The question of the minumum order or a
complete Gallai-colored graph forcing a fixed monochromatic star was solved
in [12] as Theorem 5. Moreover, due to the simplicity of that argument, the
difficulties encountered in the mixed case are surprising.

Question 2. For integers p, k > 2 and H a monochromatic star K1,p, de-
termine Mk(H).

Although we cannot answer this question for all k, the situation is clear
when the number of colors is large enough.

Define

g(p) =

{

5p
2 − 3, if p is even

5p−3
2 , if p is odd

Remark 4.3. It has been shown (Theorem 5 of [12]) that any Gallai-colored
complete graph of order at least g(p) must contain a monochromatic K1,p.

Proposition 4.4. For any integer p > 2 there exists K > 0 so that for all
k ≥ K, Mk(K1,p) = min{R(K3, ϕ3; k), g(p)}

Proof. The proof is a mixture of the arguments from Theorem 5 of [12],
forcing monochromatic stars, and the proof of (1.1) from the same paper.

The upper bound follows from the definition of Mk(K1,p). Thus, it is
enough to construct a coloring on complete graphs of order one less than the
upper bound, which avoid monochromatic and rainbow triangles, as well as
monochromatic K1,p.

We consider the reduced graph of a (K3,K1,p, ϕ3; k)-colored Kn as K5

with two monochromatic cycles of different colors. For odd p, let each block
of this graph be of order p−1

2 and for even p, let one block be of order p
2 and

the other four blocks of order p
2 −1. If k is large enough to allow for a mixed

coloring in each block, and the sum of block sizes does not exceed the pure
mixed coloring bounds, we obtain the required coloring.

�

For smaller values of k, we believe the bound is related to the function
Я(K3, ϕ3; k).
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5. Colored Four-Cliques

Mixed Ramsey numbers of colored K4 can be obtained without further
work from mixed Ramsey numbers on colored four-cycles in all but a few
cases. Indeed, it is easy to see that if we color K4 by first coloring a four-
cycle by one of the patterns π1, π2, π4, π5, or π6, either the colors of the
remaining edges are forced, or it is impossible to avoid monochromatic or
rainbow triangles. In either case, the resulting mixed Ramsey number is
identical to that for the inital colored cycle.

The above observation leaves us to consider two cases of K4 with a cycle
colored as π3. We show these remaining colorings below.

v1

v2 v3

v4

1

2

1

2

1 1

A

v1

v2 v3

v4

1

2

1

2

1 2

B

Theorem 5.1. For all integers k ≥ 2,

Mk(A) =











5
3k + 2, if k ≡ 0 (mod 3)

5
3(k − 1) + 3, if k ≡ 1 (mod 3)

5
3(k + 1) + 1, if k ≡ 2 (mod 3)

Proof. For the lower bound we maximize the number of vertices in each
Gallai partition while avoiding the pattern A. We describe the first two
levels of the Gallai partitions and generalize the construction. For k = 2,
color K5 with two monochromatic five-cycles for a level 1 Gallai partition
and call the colored graph B1. For k = 3, let B2 be the graph consisting
of one vertex. Consider two blocks, B1 and B2, with edges between them
colored by the third color not previously used. For k = 4, let B′

2 be the
graph consisting of two vertices adjacent by an edge colored by a third color
not used in B1 and the edges between B1 and B′

2 be colored by a fourth color
not previously used. For k = 5, let B′′

2 be a K5 with two monochromatic
five-cycles colored by a third and fourth color not previously used. Color the
edges between B1 and B′′

2 by a fifth new color. Continue the construction in
this way, for B3, B

′

3, and B′′

3 , so that the reduced graph on three blocks is
a two-colored triangle. Further, the reduced graph on four blocks is B and
the reduced graph on five blocks is K5 with two monochromatic five-cycles.

This defines two levels of a Gallai partition. For every next level, we repeat
the previous constructions.

To show the upper bound, observe that if two blocks in a Gallai partition
have edges of the same color, then A must exist between them. Thus, every
block must have edges of distinct colors in order to avoid A. Therefore, the
above construction provides the maximum number of vertices for any given
k.

�

Proposition 5.2. For all integers k ≥ 2, Mk(B) = Mk(π1) = 2k + 1

Proof. It is easy to see that given a π1-colored cycle, to avoid K3 and ϕ3,
the remaining edges must be colored by the minority color of the cycle. The
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resulting graph is isomorphic to B. Thus, any mixed coloring avoiding B
must also avoid π1, and the reverse statement holds as well. �

6. Questions About General Bounds

Based on some general arguments using Gallai’s theorem and empirical
evidence from our results, we state a few open questions.

(1) Determine colorings f of Cn so that Mk(f(Cn)) is a decreasing piece-
wise constant function, linear, or exponential in k.

(2) Show that for any coloring f of Cn, Mk(f(Cn)) can only be a de-
creasing piecewise constant function, linear, or exponential in k.

(3) If a coloring of a graph H does not contain a "large" monochromatic
star, show that Mk(H) is either linear or exponential in k for large
enough k.
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