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Symplectic isotopies in dimension greater than four

R. Hind

October 9, 2018

Abstract

In any dimension 2n ≥ 6 we show that certain spaces of symplectic
embeddings of a polydisk into a product B4 × R

2(n−2) of a 4-ball and
Euclidean space, are not path connected. We also show that any pair
of such nonisotopic embeddings can never be extended to the same
ellipsoid.

1 Introduction

We study symplectic embeddings into Euclidean space R
2n, with coordi-

nates xj, yj , 1 ≤ j ≤ n, equipped with its standard symplectic form ω =
∑n

j=1 dxj ∧ dyj. Often it is convenient to identify R
2n with C

n by setting
zj = xj + iyj. The basic domains for symplectic embedding problems are
ellipsoids E and polydisks P which we define as follows.

E(a1, . . . , an) = {
∑

j

π|zj |
2

aj
≤ 1};

P (a1, . . . , an) = {π|zj |
2 ≤ aj for all j}.

These are subsets of Cn and so inherit the symplectic structure. A ball
of capacity R is simply an ellipsoid B2n(R) = E(R, . . . , R).

In this paper we will study isotopy classes of symplectic embeddings.
We focus on the case when the dimension 2n ≥ 6 because this is much less
understood than when our domains are 4-dimensional.

We start by recalling that in dimension 4 there are results showing that
spaces of embeddings of polydisks are not path connected. The first was
due to Floer, Hofer and Wysocki, showing that spaces of embeddings of a
polydisk into a polydisk may be disconnected.

Theorem 1.1. (Floer-Hofer-Wysocki [7] Theorem 4) Let max(a, b) < R <
a + b. Then g0 : (z1, z2) 7→ (z1, z2) and g1 : (z1, z2) 7→ (z2, z1) give noniso-
topic embeddings P (a, b) → P (R,R).
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Note that if R > a + b then the embeddings are isotopic in P (R,R)
through unitary maps. The condition max(a, b) < R ensures that the gi
have images in P (R,R).

The starting point for us is the following theorem about polydisks em-
bedded in a ball.

Theorem 1.2. (Hind, [9] Theorem 1.1) There does not exist a Hamiltonian
diffeomorphism φ with support contained in B4(2a+b) such that φ(P (a, b)) ⊂
B̊4(a+ b).

This leads immediately to examples of nonisotopic polydisks symplec-
tomorphic to P (a, b) with b > 2a. Indeed, by a symplectic fold, for any
ǫ > 0 there exists a symplectic embedding P (a, b) → B4(2a + b

2 + ǫ), see
[22], Proposition 4.3.9.

It turns out that Theorem 1.2 does have a generalization to higher di-
mensions, not only for polydisks but also for polylike domains (products of
a disk and an ellipsoid) Q which we define as follows.

Q(b, a2, a3, . . . , an) = {π|z1|
2 ≤ b,

n
∑

j=2

π|zj |
2

aj
≤ 1}.

Then a generalization of Theorem 1.2 is as follows. Note that by inclusion
the polylike domain Q(b, a2, . . . , an) sits inside B

4(a2 + b)× R
2(n−2).

Theorem 1.3. Suppose that a2 < b and aj > 2a2 for all j ≥ 3. There
does not exist a Hamiltonian diffeomorphism φ with support contained in
B̊4(2a2 + b)×R

2(n−2) such that φ(Q(b, a2, . . . , an)) ⊂ B̊4(a2 + b)×R
2(n−2).

Theorem 1.3 can be easily applied to give examples of nonisotopic poly-
like domains inside products B4(R)×R

2(n−2). The folding mentioned above
applied to the first two complex coordinates gives a symplectic embedding
Q(b, a2, . . . , an) → B4(2a2 +

b
2 + ǫ) × R

2(n−2) for any ǫ > 0, and if 2a2 < b

then ǫ can be chosen such that 2a2+
b
2 + ǫ < a2+ b. Hence Theorem 1.3 im-

plies that this embedding cannot be symplectically isotopic to the inclusion.
Similarly, if a3 < a2 + b then by switching the z1 and z3 coordinates we get
another embedding Q(b, a2, . . . , an) → B̊4(a2 + b) × R

2(n−2). Therefore we
have the following corollary about embeddings of polylike domains.

Corollary 1.4. Let a3, . . . , an > 2a2 and choose R with a2+b < R < 2a2+b.
Suppose either 2a2 < b or a3 < a2 + b. Then there exists a symplectic
embedding Q(b, a2, . . . , an) → B4(R) × R

2(n−2) which is not symplectically
isotopic to the inclusion inside B4(R)× R

2(n−2).

We note that our bound on R is sharp in the sense that if R > 2a2 + b
then the folding operation in the (z1, z2) plane can be carried out in B4(R),
see [9], section 3. Similarly if R > a3 + b then a rotation between the z1
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and z3 coordinates can be carried out in B4(R)×R
2(n−2). We can also pro-

duce examples of nonisotopic polydisks from Theorem 1.3 by observing that
Q(b, a2, . . . , an) ⊂ P (b, a2, . . . , an), and so embeddings P (b, a2, . . . , an) →
B̊4(a2 + b) × R

2(n−2) are also not isotopic to the inclusion. However it is
also possible to work directly with higher dimensional polydisks and obtain
a similar result.

Theorem 1.5. Let a1 ≤ · · · ≤ an with a3 > max(2a1, a2) and a1+a3 < R <
2a1+a3. Then the the space of embeddings P (a1, . . . , an) → B4(R)×R

2(n−2)

is not path connected.
More precisely, the embedding f : (z1, z2, z3, . . . , zn) 7→ (z1, z3, z2, z4, . . . , zn)

is not isotopic to any map with image contained in B̊4(a1 + a3) × R
2(n−2).

In particular, the inclusion is not isotopic to f .

We remark that Theorem 1.5 generalizes Theorem 1.1 in the case when
b > 2a as follows.

Corollary 1.6. Let 2a < b < R < a + b. Then the two embeddings g0 :
(z1, z2) 7→ (z1, z2) and g1 : (z1, z2) 7→ (z2, z1) from P (a, b) into B2(R) × R

2

are not symplectically isotopic.

Proof. Suppose to the contrary that such an isotopy exists. That is, for 0 ≤
t ≤ 1 there exist symplectic embeddings gt(z1, z2) = (g1t (z1, z2), g

2
t (z1, z2))

defined by maps g1t , g
2
t : C

2 → C with g10(z1, z2) = z1, g
2
0(z1, z2) = z2,

g11(z1, z2) = z2 and g21(z1, z2) = z1. Moreover we have π|g1t (z1, z2)|
2 < a+ b

for all t and all (z1, z2) ∈ P (a, b).
Then we consider the isotopy of the polydisk P = P (a, a, b) defined by

ft(z1, z2, z3) = (z1, g
1
t (z2, z3), g

2
t (z2, z3)).

Our bound on |g1t | implies that ft(P ) ⊂ B̊4(2a + b) for all t. However f0 is
the inclusion and f1(z1, z2, z3) = (z1, z3, z2), contradicting Theorem 1.5.

In dimension 4, that is, when n = 2, a theorem of McDuff says that the
space of symplectic embeddings of one ellipsoid into another is always path
connected.

Theorem 1.7. (McDuff [18] Corollary 1.6, see also [19]) For any a, b, a′, b′,
the space of symplectic embeddings E(a, b) → E̊(a′, b′) is path connected
whenever it is nonempty.

This has the following corollary.

Corollary 1.8. If f0, f1 : P (a, b) → B̊4(R) are nonisotopic polydisks, then
there does not exist an ellipsoid E = E(a′, b′) such that P (a, b) ⊂ E and
both of the maps f0 and f1 extend to embeddings E → B̊4(R).
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We do not know if McDuff’s Theorem 1.7 remains true in dimension
greater than four. However Corollary 1.8 does generalize, at least to the
nonisotopic polydisk and polylike domains we consider in this paper.

Theorem 1.9. i. Let Q = Q(b, a2, . . . , an) be a polylike domain with a2 <
b and aj > 2a2 for all j ≥ 3, and let E = E(c1, . . . , cn) be an ellipsoid
with Q ⊂ E. Let R < 2a2 + b. There do not exist embeddings f0, f1 :
E → B4(R) × R

2(n−2) such that f0 restricts to the identity on Q and
f1(Q) ⊂ B̊4(a2 + b)× R

2(n−2).

ii. Let P = P (a1, . . . , an) be a polydisk with a1 · · · ≤ an and a3 > max(2a1, a2),
and let R satisfy a1 + a3 < R < 2a1 + a3. Let E = E(c1, . . . , cn)
be an ellipsoid with P ⊂ E. There do not exist embeddings f0, f1 :
E → B4(R) × R

2(n−2) such that f0|P is given by (z1, z2, z3, . . . , zn) 7→
(z1, z3, z2, z4, . . . , zn) and f1(P ) ⊂ B̊4(a1 + a3)× R

2(n−2).

Applying Theorem 1.9 to specific examples of ellipsoids E, say such that
a given map f0 does extend to E, we can obtain various non-extension results
for symplectic embeddings f1.

Here is an example in dimension 4.

Proposition 1.10. i. E(2, 4) → B̊4(R) if and only if R ≥ 4;

ii. E(2, 4) ∩ {π|z2|
2 ≥ 2} → B̊4(3.5);

iii. the inclusion map E(2, 4) ∩ {π|z2|
2 = 2} → B̊4(3.5) does not extend to

an embedding of E(2, 4) ∩ {π|z2|
2 ≥ 2}.

The first two statements here follow for example fromMcDuff and Schlenk’s
classification [17] of 4-dimensional ellipsoid embeddings into balls, see Lemma
4.6. The final statement is a consequence of our study of higher dimensional
isotopy restrictions.

Outline of the paper.

The proof of Theorem 1.3 is contained in section 2. The techniques bor-
row heavily from the proof of Theorem 1.2, but with additional technicalities
due to working in higher dimension. For these we rely on analysis from [10].
The rough outline is as follows.

In section 2.1 we describe the basic arrangement. The product B4(R)×
R
2(n−2) for some R < 2a2 + b is partially compactified to CP 2 × R

2(n−2)

and the polylike domain Q is approximated by a smooth domain W . We
argue by contradiction and assume that there exists a symplectic isotopy
Wt, 0 ≤ t ≤ 1, with W0 =W and W1 ⊂ B̊4(a2 + b)× R

2(n−2).
Next, in section 2.2 the symplectic manifolds Xt = (CP 2×R

2(n−2))\Wt

are given almost-complex structures with cylindrical ends and we compute
index and area formulas for finite energy holomorphic curves. We refer to
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the series of papers of Hofer, Wysocki and Zehnder, [11], [12], [13], [14], for
the definitions and theory of finite energy curves.

In section 2.3 we study moduli spaces Mt of holomorphic curves cor-
responding to the Wt. The constituent curves have area bounded above
by R − (a2 + b) and a monotonicity theorem as in [9] implies that M1 is
empty. On the other hand we show that M0 has a single element. To com-
plete the proof of Theorem 1.3 we prove a compactness theorem, following
[3], showing that M0 and M1 must be cobordant. This gives the required
contradiction.

The proof of Theorem 1.5 is very similar to that of Theorem 1.3, although
there are more closed orbits to analyze on the boundary of a polydisk it-
self. For simplicity, in this paper we focus on the case of polylike domains,
although we outline the notational changes necessary to establish Theorem
1.5 in section 3.

We prove Theorem 1.9 in section 4.1. Although the conclusion is harder
to state rigorously, the method is actually fairly general and applies not just
to the nonisotopic embeddings described in this paper but to any nonisotopic
domains distinguished by a Symplectic Field Theory style invariant, see
[6]. That is, suppose that a well defined 0 dimensional moduli space of
holomorphic curves can be associated to embeddings of a domain Q. Here
the holomorphic curves map to some (CP 2 × R

2(n−2)) \W as above, where
W is a smoothing of our embedded Q. Also suppose that isotopic domains
are associated to cobordant moduli spaces. Let M0 and M1 be the moduli
spaces associated to embeddings f0 and f1. Then if f0 and f1 both extend
to an ellipsoid E, the moduli spaces M0 and M1 will automatically be
cobordant.

In section 4.2 we give some examples of nonextension results, including
Proposition 1.10 (iii).

2 Finite energy curves.

This section gives a proof by contradiction of Theorem 1.3. Some prelimi-
nary analysis is carried out in subsections 2.1 and 2.2, then we complete the
proof in subsection 2.3.

2.1 Approximation of Q.

Here we describe our smooth approximation W of Q = Q(b, a2, . . . , an),
together with the closed characteristics on the boundary ∂W . The analysis
is similar to that in [9], section 2.1.

We start by fixing δ and ǫ with 0 < δ << ǫ. Recall that our argument will
be by contradiction and so we are assuming that there exists a symplectic
isotopy Qt ⊂ B4(R) × R

2(n−2) with Q0 = Q and Q1 ⊂ B4(S) × R
2(n−2),

where R < 2a2 + b and S < a2 + b. We will need to assume that ǫ is small
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relative to both a2 + b − S and 2a2 + b − R. Also, by perturbing the aj if
necessary, we may assume that ǫ, 1/ǫ and the 1/aj are linearly independent
over the rationals.

Now we choose a function f : [0, b] → [0, 1] with f(0) = 0, f(b) = 1,
f ′(x), f ′′(x) ≥ 0 and with the property that there exists an x0 such that
f ′(x) = ǫ for x < x0 − δ and f ′(x) = 1

ǫ
for x > x0 + δ.

Given this, we defineW as follows. It will be convenient to use symplectic
polar coordinates on R

2n = C
n, so we set Rj = π|zj |

2 and θj = arg zj ∈ S1.

W = {f(R1) +

n
∑

j=2

Rj

aj
≤ 1}.

The boundary ∂W is foliated by the Lagrangian tori Lc = {Rj = cj}
which degenerate precisely when some of the Rj = 0. However, using the
coordinates θj we can identify the nondegenerate Lc with a fixed torus T n

and the integer homology with H1(T
n,Z) = Z

n.
The characteristic foliation kerω|∂W is generated by the (Reeb) vector-

field

RW = f ′(R1)
∂

∂θ1
+

n
∑

j=2

1

aj

∂

∂θj
.

In particular the Reeb vectorfield is tangent to the Lagrangian toric fibers
Lc.

The Reeb vectorfield has two kinds of periodic orbits. The first are the
elliptic orbits γk = {zj = 0, j 6= k}∩ ∂W , k = 1, . . . , n. We use the notation
rγk to denote the r-fold cover of γk.

Since the 1/aj are linearly independent all other periodic orbits lie in
one of the complex 2-planes Pk = {zj = 0, j 6= 1, k} for 2 ≤ k ≤ n. As ǫ, 1

ǫ

and 1
ak

are linearly independent orbits in these planes are either elliptic or
are called hyperbolic and lie in the region where x0 − δ < R1 < x0 + δ.

Suppose there exists such an R1 and a rational number written in lowest
terms as m

n
such that f ′(R1) =

m
nak

. Then the corresponding torus fiber over
c = (R1, 0 . . . , 0, ak(1−f(R1)), 0, . . . , 0) (the nonzero entries are in positions
1 and k) is foliated by a 1-parameter family of periodic Reeb orbits in the
homology class (m, 0 . . . , 0, n, 0, . . . , 0). We denote these orbits by γkm,n. The

r-fold cover of γkm,n is written as γkrm,rn.
Now, if we fix a symplectic trivialization of TR2n|γ , the tangent bundle

of R2n restricted to a closed orbit γ of R of period T , then the derivative
of the Reeb flow (extended to act trivially normal to ∂W ) gives a map ψ :
[0, T ] → Symp(2n,R), where Symp(2n,R) is the group of 2n×2n symplectic
matrices. Associated to such a path is a Conley-Zehnder index µ(γ) defined
in this case by Robbin and Salamon in [21]. The analogue of Lemma 2.2 in
[9] is the following.
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Lemma 2.1. With respect to the standard basis of R2n the Conley-Zehnder
indices are as follows.

µ(rγk) = 2r + n− 1 + 2⌊ǫrak⌋+ 2
∑

j 6=k

⌊
rak
aj

⌋, ifk 6= 1

µ(rγ1) = 2r + n− 1 + 2
∑

j

⌊
ǫr

aj
⌋

µ(γkm,n) = 2(m+ n) +
1

2
+ (n− 2) + 2

∑

j 6=k

⌊
nak
aj

⌋.

(1)

2.2 Index and area formulas.

We compactify the open ball B̊4(R) by identifying it with the affine part of
CP 2(R), the complex projective plane with its Fubini-Study form scaled so
that lines have area R. We are considering a symplectic isotopy

Qt ⊂ B̊4(R)× R
2(n−2) ⊂ CP 2(R)× R

2(n−2)

which restricts to an isotopy Wt ⊂ CP 2(R)× R
2(n−2) of W .

Let Xt = CP 2(R)×R
2(n−2) \Wt equipped with the restricted symplectic

form. We can choose tame almost-complex structures with cylindrical ends
Jt on Xt as in [6] and then study finite energy curves asymptotic to closed
Reeb orbits as in [11], [12], [13], [14]. It is convenient to define the degree d
of a finite energy curve to be its intersection number with CP 1(∞)×R

2(n−2),
where CP 1(∞) is the line at infinity in CP 2(R). The basic arrangement has
been described in [9], section 2.2.1, but here we work in CP 2(R) × R

2(n−2)

rather than CP 2.
In this subsection we give an approximate formula for the area and the

virtual index formula for finite energy curves, the analogues of Lemmas 2.3
and 2.7 in [9].

Let C be a genus 0 finite energy plane with ek punctures asymptotic to
multiples of γk, 1 ≤ k ≤ n, the ith one asymptotic to rki γ

k, 1 ≤ i ≤ ek.
(Here rki is a natural number depending upon i and k, hopefully this is not
too confusing.) Also, let C have hk punctures asymptotic to hyperbolic
orbits in Pk, 2 ≤ k ≤ n, with the ith one asymptotic to γk

mk

i
,nk

i

, 1 ≤ i ≤ hk.

Proposition 2.2. Up to an error of order ǫ, the symplectic area of C is
given by

area(C) =

∫

C

ω = dR−

e1
∑

i=1

r1i b−

n
∑

k=2

ek
∑

i=1

rki ak −

n
∑

k=2

hk

∑

i=1

(mk
i b+ nki ak).

Note that the formula immediately implies that any nonconstant curves
(which have positive area) must have degree d ≥ 1.
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Proof. To see this we can glue a disk in ∂Wt to each asymptotic end to
produce a closed cycle of degree d in CP 2, which has area dR. The areas
of these disks are roughly the negative terms in our formula (the error term
comes because our hyperbolic orbits lie on ∂Wt rather than the singular part
of ∂Qt).

Proposition 2.3. The virtual index of C in the space of curves with asymp-
totic limits allowed to vary is given by

index(C) = (n− 3)(2 −
n
∑

k=1

ek −
n
∑

k=2

hk) + 6d

−

e1
∑

i=1

(2r1i + n− 1 + 2
∑

j

⌊
ǫr1i
aj

⌋)

−

n
∑

k=2

ek
∑

i=1

(2rki + n− 1 + 2⌊ǫrki ak⌋+ 2
∑

j 6=k

⌊
rki ak
aj

⌋)

−
n
∑

k=2

hk

∑

i=1

(2(mk
i + nki ) + (n− 2) + 2

∑

j 6=k

⌊
nki ak
aj

⌋).

(2)

Note here that each elliptic limit not a cover of γ1 contributes a negative
term on the third line of the index formula, the limits asymptotic to γ1

contribute negative terms on the second line, and the hyperbolic limits each
contribute a negative term on the last line.

Proof. The general index formula for genus 0 curves with s negative ends is

index(C) = (n− 3)(2− s) + 2c1(C)−

s
∑

i=1

(µ(γi)−
1

2
dimVi).

For this formula, see [2]. Here c1(C) is the Chern class which we have
normalized to be 3d, where d is the degree, µ(γi) is the Conley-Zehnder index
of the limiting Reeb orbit γi corresponding to the ith end, and dimVi is the
dimension of the family of orbits containing γi. In our case this dimension is
0 for an elliptic orbit and 1 for a hyperbolic orbit. Substituting the Conley-
Zehnder indices from Lemma 2.1 we get the formula as required.

In the remainder of this subsection we record a few algebraic conse-
quences of the area and index formulas.

Lemma 2.4. Suppose that a finite energy curve C has degree 1 and area(C) ≤
a2 (up to an error of order ǫ). Then C either has a single hyperbolic asymp-
totic limit γ21,1, or all asymptotic limits are elliptic and satisfy

b <

e1
∑

i=1

r1i b+

n
∑

k=2

ek
∑

i=1

rki ak < 2a2 + b.

8



Proof. As nonconstant curves must have positive area, the area inequality
is equivalent to

R− a2 ≤
e1
∑

i=1

r1i b+
n
∑

k=2

ek
∑

i=1

rki ak +
n
∑

k=2

hk

∑

i=1

(mk
i ak + nki b) ≤ R.

As a2+ b < R < 2a2+ b (and ǫ is small relative to the differences) this gives

b <

e1
∑

i=1

r1i b+
∑

k

ek
∑

i=1

rki ak +

n
∑

k=2

hk

∑

i=1

(mk
i ak + nki b) < 2a2 + b.

Since ak > 2a2 for all k ≥ 3 we see that if there exists a hyperbolic orbit it
must be of type γ21,1 and be the only asymptotic limit. On the other hand,
if all limits are elliptic then they satisfy the inequality of the lemma.

Lemma 2.5. Suppose that a finite energy curve C has degree 1, virtual
index at least −1, and only elliptic asymptotic limits. Then it has only a
single asymptotic limit, that is, C is a finite energy plane.

Proof. Let E be the total number of elliptic asymptotic limits. Since all
terms in the sums on the second and third lines of the index formula of
Proposition 2.3 are at least n+ 1, we have the formula

−1 ≤ index(C) ≤ (n− 3)(2 − E) + 6− (n+ 1)E = 2(n− (n− 1)E).

Hence (n− 1)E ≤ n and so as n ≥ 3 we have E ≤ 1 as required.

Putting the previous two lemmas together we have the following, which
describes the curves we will be interested in.

Lemma 2.6. Suppose that a finite energy curve C has degree 1 and area(C) ≤
a2 and index(C) ≥ −1. Then C is a finite energy plane asymptotic to either
γ21,1, 2γ

1 or 2γ2.

Proof. By Lemmas 2.4 and 2.5, if the curve C is not asymptotic to γ21,1
then it is a finite energy plane asymptotic to a cover of one of the γk, say
asymptotic to rγk.

Suppose first that k = 1. Then by Lemma 2.4 we have b < rb < 2a2 + b
and Proposition 2.3 again implies that r ≤ 2. Putting the two together we
have r = 2.

Next suppose that k = 2. Again by Lemma 2.4 we have b < ra2 < 2a2+b
and by Proposition 2.3 we have

index(C) ≤ (n− 3) + 6− (2r + (n− 1)).

As index(C) ≥ −1 this implies that r ≤ 2. By our original hypothesis in
Theorem 1.3 we have a2 < b, and combining the two inequalities gives r = 2.

9



Finally suppose that k ≥ 3. By hypothesis ak > 2a2 and so the term
2⌊ rak

a2
⌋ in the index formula contributes at least 4. Hence

index(C) ≤ (n − 3) + 6− (2r + (n − 1) + 4) ≤ −2r

a contradiction as required.

2.3 Moduli spaces of finite energy planes.

Let us fix an orbit ηt of type γ
2
1,1 in each ∂Wt. Consider the corresponding

moduli space

Mt = {u : C → Xt|degree(u) = 1, ∂Jtu = 0, u ∼ ηt}/G

where u ∼ η means that u is asymptotic at infinity to η, and G is the
reparameterization group of C. The area formula of Proposition 2.2 says
that curves in Mt have area roughly R− (a2 + b).

We will need to choose the almost-complex structure J0 such that the
line at infinity CP 1(∞) × R

2(n−2) is complex and such that it is invariant
with respect to the T n−2 action rotating the (z3, . . . , zn) planes. This is
possible since W = W0 is invariant under the same action. A genericity
assumption will also be made as explained in Lemma 2.8. The almost-
complex structure J1 can be assumed to be the standard product integrable
structure on (CP 2(R) \ B4(S)) × R

2(n−2) for some S < a2 + b, as W1 ⊂
B̊4(a2 + b)× R

2(n−2).

Lemma 2.7. The virtual dimension of Mt is 0.

Proof. Proposition 2.3 gives virtual dimension 1 for finite energy planes of
degree 1 asymptotic to an orbit of type γ21,1. However a curve lies in Mt only
if it is asymptotic to the specific orbit ηt, and this imposes a 1-dimensional
constraint.

The moduli spaces when t = 0, 1 are easily described.

Lemma 2.8. There exists an almost-complex structure J0 such that the
moduli space M0 consists of a single, regular curve.

As this is a direct generalization of Lemma 2.8 in [9], utilizing the analysis
in [10] to extend the results to higher dimension, we restrict here to an
outline.

Outline of proof. As J0 is invariant under rotations of the (z3, . . . , zn)
planes, the (z1, z2)-plane P1 = {z3 = · · · = zn = 0} is J0-invariant. Hence
J0 can be restricted to Y = X0 ∩ P1 to give an almost-complex manifold
with a cylindrical end over ∂Y := ∂W0 ∩ P1. The almost-complex manifold
Y is exactly the one studied in [9], and elements of M0 lying in Y form
a moduli space M̃0 in their own right. In particular Lemma 2.8 from [9]
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implies that M̃0 is nonempty, that is, there exists an element of M0 lying
in Y . To complete the proof we will show first that there can be no more
than one element of M̃0 and second that, for a generic choice of invariant
J0, all elements of M0 must lie in Y . Lemma 3.17 in [10] shows that, for
invariant almost-complex structures, curves in M̃0 are regular in M0.

For the first part, we argue by contradiction and suppose that two dis-
tinct curves u0 and u1 represent equivalence classes in M̃0. Automatic reg-
ularity in dimension 4 (see [24], Theorem 1, or the discussion after Theorem
2.9 in [9]) implies that u0, say, can be included in a local 1-parameter family
of curves ut, −ǫ < t < ǫ, with a single curve in the family asymptotic to each
γ21,1 orbit close to η0. Meanwhile, as u0 and u1 are both asymptotic to η0, on
a suitable subset of the cylindrical end (−∞, S0]× ∂Y we can represent u1
as a section ξ of the normal bundle to the image of u0. Furthermore, if S0
is sufficiently negative, the section ξ has no zeros and so defines a winding
of u1 about u0. For this see [13]. This winding is the same as the winding
of an eigenvector of an asymptotic operator associated to the orbit η0, and
as we are dealing with a negative puncture the associated eigenvalue must
be positive.

Now, the asymptotic operator acts on sections of the normal bundle to
η0 in ∂Y , which has an induced complex structure still called J0. With
respect to a basis of the normal bundle extending a tangent vector to the
space of γ21,1 orbits, the asymptotic operator takes the form

−J0
d

dt
− T

(

0 0
0 1

)

,

where T is the period of η0. We see that the only eigenvectors with winding
number 0 have eigenvalues 0 or −T and so can conclude that in this basis u1
must wind around u0. Hence u1 must intersect the ut, which have winding
0 because they are asymptotic to different orbits. However, by gluing planes
inside W0 the images of u1 and the ut can be included in cycles of degree 1
in CP 2, which therefore have intersection number 1. The added planes can
be assumed to have a unique (positive) intersection point at the origin and
so the intersections of u1 and ut contribute 0. This contradicts positivity of
intersection.

For the second part of the proof we must exclude curves in M0 not
lying in Y . As J0 is T n−2 invariant, any such curves appear in (n − 2)-
dimensional families and so are certainly not regular. Hence if we are able
to assume that J0 is regular for M0 and at the same time T n−2 invariant
then no such curves exist. The proof of the existence of regular invariant
almost-complex structures follows the usual regularity argument working
with invariant rather than general almost-complex structures. For this to
work, instead of assuming that our holomorphic curves are somewhere in-
jective we need the stronger assumption that corresponding to each curve

11



in M0 there exists an orbit of the T n−2 action which intersects the curve in
a single point, see the proof of Proposition 3.16 in [10]. This is automatic in
our case since by positivity of intersection a degree 1 curve must intersect
CP 1(∞) × R

2(n−2) exactly once transversally, and hence intersect exactly
one T n−2 orbit in CP 1(∞)× R

2(n−2), in a single point.

Lemma 2.9. For J1 chosen as above, the moduli space M1 is empty.

Proof. This is identical to the proof of Lemma 2.11 in [9]. Indeed, the image
of any curve inM1 can be restricted to a curve in (CP 2(R)\B(S))×R

2(n−2).
As the complex structure is assumed to be a product the curve projects to a
holomorphic curve in CP 2(R) \B(S), and then by a monotonicity theorem,
see [9], Lemma 2.12, we see that it has area at least R − S. This is a
contradiction as curves in any Mt have area R− (a2 + b).

Next we consider the universal moduli space

M = {(u, t)|u : C → Xt,degree(u) = 1, ∂Jtu = 0, u ∼ ηt, t ∈ [0, 1]}/G.

This has virtual dimension 1, but to show that it is a compact 1-dimensional
manifold (the source of our contradiction) we will need some assumptions
on the family of almost-complex structures Jt.

First of all, since the curves in M have degree 1 they are not multiply
covered and so we may choose a family Jt so that M is a 1-dimensional
manifold giving a cobordism between M0 and M1. The Jt can be chosen
to coincide with those we already have when t = 0, 1. Indeed, J0 is regular
by Lemma 2.8, and since no curves in M lie entirely in (CP 2(R) \B(S))×
R
2(n−2) we are free to take J1 standard here and perturb elsewhere to obtain

regularity if necessary.
Second, a collection of families {Jt} of the second category is regular in

the sense that any somewhere injective Jt0 -holomorphic finite energy curve,
for t0 ∈ [0, 1], has deformation index at least −1 (amongst Jt0 curves). We
will also assume then that our Jt are regular in this sense.

Finally, the cylindrical ends of the Xt are all symplectomorphic, and
after identifying them by a symplectomorphism we may assume that all Jt
are identical outside of a compact set. This implies that they induce identi-
cal translation invariant almost-complex structures on the symplectization
S(∂W ) = R× ∂W . Holomorphic curves in S(∂W ) are either translation in-
variant, which means they are covers of cylinders over Reeb orbits, or come
in families of dimension at least 1. Therefore, if an almost-complex structure
is regular, somewhere injective finite energy curves are either trivial cylin-
ders or have deformation index at least 1. As above such almost-complex
structures form a subset of the second category and we will assume our Jt
induce a structure in this class.

The final lemma is the following, which contradicts Lemmas 2.8 and 2.9.
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Lemma 2.10. The universal moduli space M is sequentially compact.

Proof. The general compactness theorem for finite energy curves can be
found in [3]. In our situation, it implies that a sequence of finite energy
curves ui representing classes in Mti with ti → t∞, after taking a subse-
quence, converge in the sense of [3] to a holomorphic building in Xt∞ . For
components in Xt∞ to be nonconstant they must have positive degree (see
the comment after Proposition 2.2), and so since degree is preserved in the
limit and the ui have degree 1 our limit must consist of a single curve u
in Xt∞ of degree 1. Therefore the curve is also somewhere injective. By
regularity of the family of Jt we have index(u) ≥ −1, and as the ui have
area roughly R − (a2 + b) the area of u is bounded above by R − (a2 + b).
As a2 < b by assumption, this excludes planes asymptotic to 2γ2 and hence
by Lemma 2.6, the curve u is a finite energy plane asymptotic to either an
orbit γ21,1 or to 2γ1. In the first case, as the limit preserves area, it must be
asymptotic to ηt∞ itself (as otherwise we would see symplectization compo-
nents of positive area). Hence (u, t∞) represents a class in M and we have
compactness as required.

It remains to exclude limiting planes asymptotic to 2γ1, which have
index 0 by Proposition 2.3. If a curve with such a limit exists then we have
R− 2b > 0 and so 2b < R < 2a2 + b and b < 2a2 < aj for j ≥ 3.

We look at components of the limit mapping to the symplectization
layers S(∂W ). There is a single curve in the highest level with positive end
asymptotic to 2γ1. If this curve is a cylinder then the negative end is an
asymptotic orbit with action between a2 + b and 2b. Given the inequalities
above, the only possibilities are negative ends on orbits of type γ21,1 or 3γ2

or γj for some j ≥ 3. In all three cases the greatest common divisor of the
covering degrees of the positive and negative ends is 1 and so the cylinder is
somewhere injective. A variation of Proposition 2.3 (or simply using the fact
that the total index is preserved in a limit) shows that cylinders asymptotic
to 3γ2 or γj for j ≥ 3 have deformation index at most −2 and so we do
not expect such cylinders to exist for regular almost-complex structures.
Cylinders asymptotic to γ21,1 have deformation index 1, but by translation
invariance we do not expect such a cylinder to have negative end on ηt∞ . By
area reasons, such a cylinder cannot be connected to any lower level curves,
and so this possibility can also be excluded.

Finally, suppose the highest level curve in S(∂W ) has several ends. As
we take a limit of curves of genus 0 exactly one of these ends is connected in
our limiting building to ηt∞ and it has action at least a2+ b. The remaining
ends have action less than 2b − (a2 + b) = b − a2 < a2 by the inequality
above. Since no such periodic orbits exist we have a contradiction.
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3 Isotopies of polydisks.

Here we outline how the proof of Theorem 1.3 can be adapted to prove
Theorem 1.5.

We argue by contradiction and suppose that there exists an isotopy
ft : P (a1, . . . , an) → B4(R) × R

2(n−2) with f0 = f as in Theorem 1.3
and f1(P (a1, . . . , an)) ⊂ B̊4(a1 + a3) × R

2(n−2). Let a = a′1 = a1 and
b = a′3 = a3 > 2a and a′2 = a′4 = . . . a′n = a − ǫ, where 2ǫ < 2a + b − R.
Then our isotopy restricts a polydisk P = P (a′1, . . . a

′
n). We will show that

no such isotopy of P can exist.
The proof begins by smoothing P to a domain W in the same way as we

perturbed a polylike domain in section 2.1. However ∂W will now contain
more families of closed Reeb orbits. These can be described as follows. Let
m1, . . . ,mk be positive integers and I a subset of k distinct integers from
{1, . . . , n}. Then γIm1,...,mk

denotes a (k − 1)-dimensional family of Reeb
orbits approximating curves [0, 2π] → ∂P given by

t 7→ (δI1a
′
1e

i(φ1+t), . . . , δIka
′
ke

i(φk+t)).

Here δIi = 1 if i ∈ I and 0 otherwise.
We may assume that our family of embeddings ft extend to W and

set Wt = ft(W ). As in section 2.3 we fix an orbit ηt of type γ1,31,1 in each

∂Wt. Then compactifying B̊4(R) to CP 2(R) as in section 2.2, we define
Xt = CP 2(R)×R

2(n−2) \Wt, choose compatible almost-complex structures
Jt, and study the corresponding moduli spaces

Mt = {u : C → Xt|degree(u) = 1, ∂Jtu = 0, u ∼ ηt}/G.

Lemma 2.7, saying that Mt has dimension 0, remains true in this setting,
and Lemma 2.8, saying that M0 has a single element, also holds, with the
same proof. As curves in M1 have area R− (a′1 + a′3) = R− (a1 + a3), the
monotonicity Lemma 2.9 also holds here to say that M1 is empty. Hence
our proof again boils down to showing that the universal moduli space

M = {(u, t)|u : C → Xt,degree(u) = 1, ∂Jtu = 0, u ∼ ηt, t ∈ [0, 1]}/G.

is compact.
Limiting buildings whose components in Xt have multiple ends can be

excluded using area inequalities as in section 2. Therefore, following Lemma
2.10, we need to study Jt-holomorphic degree 1 components u : C → Xt of
a holomorphic building in the boundary of M. Suppose u is asymptotic to
an orbit of type γIm1,...,mk

. As area is preserved in limits and a′1+ a′3 = a+ b
we have

a+ b ≤
∑

i

mia
′
i = am1 + bm3 + (a− ǫ)

∑

i 6=1,3

mi ≤ R.

14



As u has degree 1 it is somewhere injective and genericity assumptions here
imply that

∑

imi ≤ 3. Then as a+ b > 3a and 2(a− ǫ)+ b > R this implies
that in fact m1 = m3 = 1 and all other mi = 0. As in Lemma 2.10 this
implies that u ∈ M as required.

4 Extension to ellipsoids.

4.1 The proof of Theorem 1.9.

In this section we prove Theorem 1.9. For clarity we will restrict to part
(i), although as mentioned in the introduction the method is actually quite
general.

Suppose then that f0, f1 : E → B4(R) × R
2(n−2) are symplectic em-

beddings which restrict to embeddings of a polylike domain Q. Here E =
E(c1, . . . , cn) is an ellipsoid, say with c1 ≤ · · · ≤ cn, and Q = Q(b, a2, . . . , an)
is a polylike domain for which b, a2, . . . , an, R satisfy the hypotheses of The-
orem 1.9 (i).

We will use the following.

Lemma 4.1. If there exists a symplectic embedding E → B4(R) × R
2(n−2)

then min(2c1, c2) ≤ R.

Proof. This is an application of the Ekeland-Hofer capacities, see [4]. Indeed,
the second Ekeland-Hofer capacity of E is min(2c1, c2), while the second
Ekeland-Hofer capacity of B4(R) × R

2(n−2) is R. As these capacities are
monotonic under embeddings the proof follows.

Corresponding to the embeddings f0|Q and f1|Q, together with various
choices including a smoothing of the image, a choice of asymptotic Reeb
orbit η, and a compatible almost-complex structure, we can define moduli
spaces M0 and M1 as in section 2.3. Our goal is to show that M0 and M1

are cobordant.
We first observe that without the constraint of the image lying inB4(R)×

R
2(n−2), it is easy to construct a symplectic isotopy between f0 and f1. That

is, there exists an S ≥ R and a family of symplectic embeddings ft : E →
B4(S)×R

2(n−2) interpolating between f0 and f1. These embeddings restrict
to give an isotopy of Q.

As in section 2.2, let Wt be a smoothing of ft(Q) and {Jt} be a family
of compatible almost-complex structures on Xt = CP 2(S) × R

2(n−2) \Wt.
Recall that CP 2(S) denotes the compactification of the ball B̊4(S). Given
this, following section 2.3, we have a universal moduli space

M = {(u, t)|u : C → Xt,degree(u) = 1, ∂Jtu = 0, u ∼ ηt, t ∈ [0, 1]}/G

whose boundary is the disjoint union of M0 and M1. To complete the proof
we will show that for a suitable choice of Jt the moduli space M is compact,
and hence a cobordism between M0 and M1.
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We choose a family JN
t exactly as in section 2.2 but with the additional

condition that if ft(E) 6⊂ B̊4(R) × R
2(n−2) ⊂ B4(S) × R

2(n−2) then JN
t is

stretched to length N along ft(∂E). On the other hand, if ft(E) ⊂ B̊4(R)×
R
2(n−2) then we require JN

t to be the standard product integrable structure
on (CP 2(S) \B4(R))×R

2(n−2). As f0(E) and f1(E) lie in B4(R)×R
2(n−2)

this condition leaves us free to choose JN
0 and JN

1 as in section 2.3. In
particular, arguing by contradiction in the case of Theorem 1.9 (i), we can
choose J0 such that M0 has a single element and J1 such that M1 is empty.

We claim that for such JN
t , with N chosen sufficiently large, the moduli

space M is compact. The line of argument follows that of Lemma 2.10.
Suppose that a sequence of curves un ∈ M converges to a holomorphic
building, which will be JN

t holomorphic for some t ∈ [0, 1]. As the un all
have degree 1, our limiting building will have a single component u in Xt

which is also of degree 1 and so somewhere injective. It is required to show
that u represents an element of M.

Now, the un have area roughly S−(a2+b) and so the area of u is bounded
above by S − (a2 + b) and the action of its negative ends is bounded above
by S and below by a2 + b. We can apply Lemma 2.10 once we show that
in fact this action is bounded above by R, or equivalently that the area of
u is bounded below by S − R. Indeed, then the only possible limits are as
described in Lemma 2.10, see also Lemma 2.6, and the proof follows.

We argue by contradiction and suppose that for all large N we can find
a JN

t holomorphic limiting component u in Xt with area less than S −R.
If the almost-complex structure JN

t is standard on (CP 2(S) \B4(R))×
R
2(n−2) then by the monotonicity theorem as in [9], Lemma 2.12 (see Lemma

2.9 above), we can conclude that u must have area at least S −R, a contra-
diction.

Hence, for all large N we can find a degree 1 curve uN in some Xt, with
area less than S − R and with respect to an almost-complex structure JN

t

stretched to length N along ft(∂E). We will take a limit of these curves uN

as N → ∞ and see that the area of the limiting component v in Xt \ ft(E)
is at least S − R. This implies that the uN , at least for large N , also have
area at least S −R, giving our contradiction.

To investigate this limit we need to review the structure of the Reeb
orbits on ∂E. Without loss of generality we may assume that the ci are
rationally indepenent. Then there are n geometrically disctinct closed orbits
on ∂E, namely δk = ∂E∩{zi = 0, i 6= k}. The r fold cover of δk has Conley-
Zehnder index

µ(rδk) = 2r + (n− 1) + 2
∑

j 6=k

⌊
rck
cj

⌋.

Suppose that v has a total of s negative ends, with sk being covers of
δk and the ith of these covering δk with multiplicity rki . Then v has virtual
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index given by the formula

index(v) = (n− 3)(2 − s) + 6−

n
∑

k=1

sk
∑

i=1

(2rki + n− 1 + 2
∑

j 6=k

⌊
rck
cj

⌋)

= (n− 3)(2 − 2s) + 6− 2s− 2

n
∑

k=1

sk
∑

i=1

(rki +
∑

j 6=k

⌊
rck
cj

⌋).

As we work with a 1-parameter family of almost-complex structures and
u is somewhere injective (as it has degree 1), we may assume that this index
is at least −1. This eliminates most of the possibilities for the ends of v.
Indeed, we see that v must have a single negative end, which is asymptotic
to either δ1, the double cover 2δ1, or δ2. Hence v has area S − c1, S − 2c1
or S − c2. Moreover, if the end is asymptotic to 2δ1 then we must have
2c1 < c2, and by Lemma 4.1 this means that 2c1 < R. Similarly, if the
end is asymptotic to δ2 then we must have c2 < 2c1, and hence Lemma 4.1
implies c2 < R. In all cases then, the area of v is bounded below by S − R
and our proof is compete.

4.2 Some symplectic embeddings.

In this section we give some examples of the general nonextension result
described in Theorem 1.9. Everything here is a fairly direct consequence of
Theorem 1.9, but we think there is some insight into the nature of symplectic
embeddings.

We will work with a specific 6-dimensional polylike domainQ = Q(b, 1, 2)
with b > 1. Then by Theorem 1.3 we have the following.

Theorem 4.2. Let b+1 < R < b+2. Then the two embeddings f0, f1 : Q→
B4(R)×R

2 given by f0(z1, z2, z3) = (z1, z2, z3) and f1(z1, z2, z3) = (z2, z3, z1)
are not isotopic.

Next observe the following.

Lemma 4.3. If A > 1, B = bA
A−1 and C = 2A, then Q ⊂ E(B,A,C).

Proof. If (z1, z2, z3) ∈ Q then we have

π|z1|
2

B
+
π|z2|

2

A
+
π|z3|

2

C
≤

b

B
+

1

A
(π|z2|

2 +
π|z3|

2

2
)

≤
b

B
+

1

A
≤ 1.

Now, with A,B,C as in Lemma 4.3, if A,B < b+2, or equivalently b+2
2 <

A < b+ 2, then by inclusion we have E(B,A,C) ⊂ B̊4(2 + b) × R
2. Hence

the map f0 from Theorem 4.2 extends (as the inclusion) to an embedding
of E. Therefore we can apply Theorem 1.9 to say the following.
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Proposition 4.4. Let b+2
2 < A < b+2. The map f1 : Q→ B̊4(b+2)×R

2,
(z1, z2, z3) 7→ (z2, z3, z1) does not extend to an embedding of E.

Proposition 4.4 is certainly an extension theorem (rather than an em-
bedding obstruction) as we know that an embedding of E exists, namely the
inclusion f0. However, there is no embedding of E of the form (z1, z2, z3) 7→
(g1(z2, z3), z1), since there exists a map g1 : E(A, 2A) → B̊4(b + 2) if and
only if A < b+2

2 . This is a consequence for example of the Ekeland-Hofer ca-
pacities, [4]. In other words, Proposition 4.4 says nothing about extensions
of embeddings in dimension 4.

Nevertheless we can obtain a new extension result for 4-dimensional em-
beddings, saying that the obstructions to the extension of an embedding to
an ellipsoid can be partially localized. The following is a generalization of
Proposition 1.10 (iii).

Proposition 4.5. Let b+2
2 < A < b + 1. The inclusion map E(A, 2A) ∩

{π|z2|
2 = 2} → B̊4(b + 2) does not extend to a symplectic embedding

E(A, 2A) ∩ {π|z2|
2 ≥ 2} → B̊4(b+ 2).

Before proving this, we remark that this is an extension result in the
sense that embeddings of E(A, 2A)∩{π|z2|

2 ≥ 2} exist, at least for some A,
as shown in the following.

Lemma 4.6. If A < b+3
2 then there exists an embedding E(A, 2A)∩{π|z2 |

2 ≥

2} → B̊4(b+ 2).

Proof. Choose an Ã with A− 1
2 < Ã < b+2

2 . This is possible by our hypoth-

esis on A. Then we have E(A, 2A) ∩ {π|z2|
2 ≥ 2} ⊂ E(Ã, 4Ã). Indeed, if

(z1, z2) ∈ E(A, 2A) ∩ {π|z2|
2 ≥ 2} then

π|z1|
2

Ã
+
π|z2|

2

4Ã
=
A

Ã
(
π|z1|

2

A
+
π|z2|

2

4A
)

=
A

Ã
(
π|z1|

2

A
+
π|z2|

2

2A
−
π|z2|

2

4A
)

≤
A

Ã
(1−

2

4A
) =

A− 1
2

Ã
< 1.

Finally, there exists an embedding E(Ã, 4Ã) → B4(2Ã) ⊂ B4(b + 2).
This follows from the classification of ellipsoid embeddings into balls con-
tained in [17], although this particular embedding was also known at least
to Opshtein, [20] Lemma 2.1.

Proof. ( of Proposition 4.5.) Let E = E(B,A,C) as above, that is b+2
2 <

A < b + 1, B = bA
A−1 and C = 2A. Again we let Q = Q(b, 1, 2) be the

polylike domain inside E, and look at the map f1 as above. We will argue
by contradiction and show that if an extension g exists as in Proposition 4.5
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then an extension of f1|Q to a map E → B̊4(b + 2) × R
2 must also exist,

contradicting Proposition 4.4.
We first note that f1(E∩{π|z3|

2 ≤ 2}) ⊂ B̊4(b+2)×R
2. This is because

f1(z1, z2, z3) = (z2, z3, z1) and if (z1, z2, z3) ∈ E ∩ {π|z3|
2 ≤ 2} then

π|z2|
2 + π|z3|

2 = A(
π|z2|

2

A
+
π|z3|

2

2A
) +

π|z3|
2

2
≤ A+ 1 < b+ 2.

Next we consider the action of a Hamiltonian diffeomorphism h on the
domain f1(E) = E(A, 2A,B). The diffeomorphism will restrict to the iden-
tity on f1(Q) = E(1, 2) ×B2(b) ⊂ E(A, 2A,B).

Let χ : [0,∞) → [0,∞) be a cut-off function with χ(x) = 0 if x < 2
and χ(x) = 1 if x > 2 + ǫ, for a small ǫ. Then for K large we define the
Hamiltonian function

H(z1, z2, z3) = Kx3χ(π|z2|
2).

Here we are denoting by x3 and y3 the real and imaginary parts of z3. The
resulting time 1 flow h of the Hamiltonian vector field corresponding to H
leaves the region {π|z2|

2 ≤ 2}, and in particular f1(Q), pointwise fixed. It
also preserves |z1| and |z2| and the coordinate x3, but the y3 coordinate of
points with π|z2|

2 > 2 is increased under h. Regarding level sets of h(f1(E))
we can say the following.

I. if d ≥ B then h(f1(E)) ∩ {z3 = c+ id} ⊂ E(A, 2A) ∩ {π|z2|
2 > 2};

II. if d ≤ K−B then h(f1(E))∩{z3 = c+id} ⊂ E(A, 2A)∩{π|z2 |
2 < 2+ǫ}.

For ǫ sufficiently small this second region lies in B̊4(b + 2) × R
2 by the

computation above.
We may assume that our extension g is actually the inclusion on a narrow

domain E(A, 2A) ∩ {2 ≤ π|z2|
2 ≤ 2 + ǫ}. Then consider the map g × id :

(z1, z2, z3) 7→ (g(z1, z2), z3) restricted to the portion of C3 with y3 ≥ K−B.
By our hypothesis and point I. above, this maps h(f1(E))∩{y3 ≥ K−B} →
B̊4(b + 2) × C. But by point II. our map extends as the identity to the
remainder of h(f1(E)), and in particular is the identity on h(f1(Q)) = f1(Q).
Thus we have an extension of the embedding f1 of Q, and this contradicts
Proposition 4.4 as required.
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