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ON KOSTANT’S THEOREM FOR THE LIE SUPERALGEBRA Q(n)

ELENA POLETAEVA AND VERA SERGANOVA

1. Introduction

A finite W -algebra is a certain associative algebra attached to a pair (g, e) where g
is a complex semisimple Lie algebra and e ∈ g is a nilpotent element. Geometrically
a finite W algebra is a quantization of the Poisson structure on the so-called Slodowy
slice (a transversal slice to the orbit of e in the adjoint representation). In the case
when e = 0 the finite W -algebra coincides with the universal enveloping algebra U(g)
and in the case when e is a regular nilpotent element, the corresponding W -algebra
coincides with the center of U(g). The latter case was studied by B. Kostant [15] who
was motivated by applications to generalized Toda lattices. The general definition
of a finite W -algebra was given by A. Premet in [24]. I. Losev used the machinery
of Fedosov quantization to prove important results relating representations of W -
algebras and primitive ideals of U(g) [16, 17, 18] (see also [25, 26, 27]). He used
this result to prove long standing conjectures of A. Joseph and others concerning
primitive ideals in U(g), [11].
On the other hand, affine W -algebras were first constructed by physicists [8, 9].

The role of the Slodowy slice in W -algebras in the principal case was recognized in
[2]. A. De Sole and V.G. Kac in [7] established the relation between affine and finite
W -algebras.
Let us mention an important discovery of physicists, [28], that for g = sl(n) finite

W -algebras are closely related to Yangians. This connection was further studied in
[4] and [6].
It is interesting to generalize all above applications to Lie superalgebras. Finite W -

algebras for Lie superalgebras have been extensively studied by C. Briot, E. Ragoucy,
J. Brundan, J. Brown, S. Goodwin, W. Wang, L. Zhao and other mathematicians
and physicists [3, 5, 31, 32]. Analogues of finite W -algebras for Lie superalgebras in
terms of BRST cohomology were defined in by A. De Sole and V.G. Kac in [7].
In [3] C. Briot and E. Ragoucy observed that finite W -algebras associated with

certain nilpotent orbits in gl(pm|pn) can be realized as truncations of the super-
Yangian of gl(m|n), see [19] for definition.
The principal finite W -algebras for gl(m|n) associated to regular (principal) nilpo-

tent elements were described as certain truncations of a shifted version of the super-
Yangian Y (gl(1|1)) in [5]. It is also proven there that all irreducible modules over
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principal finite W -algebras are finite-dimensional for gl(m|n). Furthermore, [5] con-
tains a classification of irreducible modules using highest weight theory.
In [32] L. Zhao generalized certain results about finite W -algebras to the case of Lie

superalgebras. In particular he has proved that the definition of a finite W -algebra
does not depend on a choice of an isotropic subspace l and a good Z-grading. He has
also proved an analogue of the Skryabin theorem establishing equivalence between
the category of modules over a finite W -algebra and the category of generalized
Whittaker g-modules. He also gave a definition of a finite W -algebra for the queer
Lie superalgebra Q(n) .
In [22, 23] we described the finite W -algebras in the regular case for some classical

and exceptional Lie superalgebras of defect one.
In this paper we are interested in the finite W -algebra associated with a regular

nilpotent element χ ∈ g∗0̄ for a Lie superalgebra g with reductive even part g0̄. (Since
not all such superalgebras admit an even invariant form, we can not identify g with
g∗, and we use the notation Wχ instead of We.) We prove that for basic classical
g or Q(n) and the regular χ the algebra Wχ satisfies the Amitsur-Levitzki identity
([1]) (Corrolary 3.6). In the proof we use some sort of reduction by constructing
an injective homomorphism ϑ : Wχ → W̄ s

χ, where s is the reductive part of some

parabolic subalgebra p ⊂ g, and W̄ s
χ is an analogue of Wχ for s. As a corollary we

obtain that all irreducible representations of Wχ are finite-dimensional (Proposition
3.7).
We study in detail the case when g = Q(n) and χ is regular. In this case, p is a

Borel subalgebra and s is a Cartan subalgebra. We obtain results about the image
of ϑ in this case, which imply, in particular, that the center of Wχ coincides with the
center of U(Q(n)) (Corollary 5.10).
Using Sergeev’s construction of certain elements in the universal enveloping algebra

U(Q(n)) ([24]), we construct generators of Wχ. Using these generators, we prove that
the associated graded algebra GrKWχ with respect to the Kazhdan filtration is iso-
morphic to S(gχ) (the symmetric algebra of the annihilator gχ of χ in g) (Conjecture
2.8 and Corollary 4.9). Furthermore, we prove that Wχ is isomorphic to a quotient of
the super-Yangian of Q(1) defined by M. Nazarov and A. Sergeev ([20, 21]) (Theorem
6.1). Finally, we construct n even and n odd generators in Wχ, such that all even
generators commute and generate the polynomial subalgebra of rank n in Wχ, and
the commutators of odd generators lie in the center of Wχ (Theorem 5.13).
Acknowledgments. The authors would like to thank J. Brundan, M. Nazarov

and A. Sergeev for helpful discussions. A significant part of this work was done at
the Max-Planck-Institut fur Mathematik in Bonn in the Fall of 2012. We thank the
MPIM for the hospitality and support. The second author was also supported by
NSF grant DMS - 1303301.
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2. Finite W -algebras for Lie superalgebras

2.1. Definitions. Let g = g0̄⊕g1̄ be a Lie superalgebra with reductive even part g0̄.
Let χ ∈ g∗0̄ ⊂ g∗ be an even nilpotent element in the coadjoint representation. 1 By
gχ we denote the annihilator of χ in g. By definition

gχ = {x ∈ g | χ([x, g]) = 0}.

A good Z-grading for χ is a Z-grading g =
⊕

j∈Z

gj satisfying the following two condi-

tions

(1) χ(gj) = 0 if j 6= −2;

(2) gχ belongs to
⊕

j≥0

gj .

Note that χ([·, ·]) : g−1×g−1 → C is a non-degenerate skew-symmetric even bilinear
form on g−1. Let l be a maximal isotropic subspace with respect to this form. We

consider a nilpotent subalgebra m = (
⊕

j≤−2

gj)⊕ l of g. The restriction of χ to m

χ : m −→ C

defines a one-dimensional representation Cχ =< v > of m.

Definition 2.1. The induced g-module

Qχ := U(g)⊗U(m) Cχ
∼= U(g)/Iχ,

where Iχ is the left ideal of U(g) generated by a − χ(a) for all a ∈ m, is called the

generalized Whittaker module.

Definition 2.2. [24]. Define the finite W -algebra associated to the nilpotent element
χ to be

Wχ := EndU(g)(Qχ)
op.

As in the Lie algebra case, the superalgebras Wχ are all isomorphic for different
choices of good gradings and maximal isotropic subspaces l [32].
If g admits an even non-degenerate invariant supersymmetric bilinear form, then

g ≃ g∗ and χ(x) = (e|x) for some nilpotent e ∈ g0̄. By the Jacobson–Morozov
theorem e can be included in sl(2) =< e, h, f >. As in the Lie algebra case, the

linear operator adh defines a Dynkin Z-grading g =
⊕

j∈Z

gj , where

gj = {x ∈ g | adh(x) = jx}.

1 Denote by G0̄ the algebraic reductive group of g0̄. Then χ is nilpotent if the closure of G0̄-orbit
in g∗

0̄
contains zero.
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As follows from representation theory of sl(2), the Dynkin Z-grading is good. Let
ge := Ker(ade). Note that as in the Lie algebra case, dim ge = dim g0 + dim g1 and

ge ⊆
⊕

j≥0

gj.

Most results of this paper concern the case when g admits an odd non-degenerate
invariant supersymmetric bilinear form. In this case g ≃ Πg∗ and χ(x) = (E|x) for
some nilpotent E ∈ g1̄. Among classical Lie superalgebras only Q(n) or PSQ(n)
admit an odd non-degenerate invariant supersymmetric bilinear form. We will see
that in this case there is an analogue of the Dynkin Z-grading.
Note that by Frobenius reciprocity

EndU(g)(Qχ) = HomU(m)(Cχ, Qχ).

That defines an identification of Wχ with the subspace

Qm
χ = {u ∈ Qχ | au = χ(a)u for all a ∈ m}.

In what follows we denote by π : U(g) → U(g)/Iχ the natural projection. By above

(2.1) Wχ = {π(y) ∈ U(g)/Iχ | (a− χ(a))y ∈ Iχ for all a ∈ m},

or, equivalently,

(2.2) Wχ = {π(y) ∈ U(g)/Iχ | ad(a)y ∈ Iχ for all a ∈ m}.

The algebra structure on Wχ is given by

π(y1)π(y2) = π(y1y2)

for yi ∈ U(g) such that ad(a)yi ∈ Iχ for all a ∈ m and i = 1, 2.

Definition 2.3. A Z-grading g =
⊕

j∈Z

gj is called even, if gj = 0 unless j is an even

integer.

The definition of Wχ for an even good Z-grading is simpler, since in this case
g−1 = 0. Hence there is no complications of choice of a Lagrangian subspace l and

m =
⊕

j≥1

g−2j .

Let p :=
⊕

j≥0

g2j . It follows directly from definition that p is a parabolic subalgebra

of g. From the PBW theorem,

U(g) = U(p)⊕ Iχ.

The projection pr : U(g) −→ U(p) along this direct sum decomposition induces
an isomorphism: U(g)/Iχ

∼
−→ U(p). Thus, the algebra Wχ can be regarded as a

subalgebra of U(p).
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2.2. Kazhdan filtration on Wχ. Define the Z-grading on T (g) induced by the shift
by 2 of the fixed good Z-grading. In other words, we set the degree of X ∈ gj to
be j + 2. It induces a filtration on U(g) and therefore on U(g)/Iχ, which is called
the Kazhdan filtration. We will denote by GrK the corresponding graded algebras.
Recall that by (2.1) Wχ ⊂ U(g)/Iχ. Hence we have the induced filtration on Wχ. It
is not hard to see that GrKU(g) is supercommutative and therefore GrKWχ is also
supercommutative. For any X ∈ Wχ we denote by GrKX the corresponding element
in GrKWχ. The following result is very important.

Theorem 2.4. A. Premet [24]. Let g be a semisimple Lie algebra. Then the associ-
ated graded algebra GrKWχ is isomorphic to S(gχ).

We believe that the above theorem holds for basic classical Lie superalgebras if
dim(g−1)1̄ is even. In fact, for g = gl(m|n) and regular χ it is proven in [5]. In this
paper we prove the analogous result for regular χ and g = Q(n) (see Corollary 4.9).
We will prove now a weaker general result. Let l′ be some subspace in g−1 satisfying

the following two properties

• g−1 = l⊕ l′;
• l′ contains a maximal isotropic subspace with respect to the form χ([·, ·]) on
g−1.

If dim(g−1)1̄ is even, then l′ is a maximal isotropic subspace. If dim(g−1)1̄ is odd,
then l⊥∩ l′ is one-dimensional and we fix θ ∈ l⊥∩ l′ such that χ([θ, θ]) = 2. It is clear
that π(θ) ∈ Wχ and π(θ)2 = 1.

Let p =
⊕

j≥0

gj . By the PBW theorem, U(g)/Iχ ≃ S(p ⊕ l′) as a vector space.

Therefore GrK(U(g)/Iχ) is isomorphic to S(p ⊕ l′) as a vector space. The good
grading of g induces the grading on S(p⊕ l′). For any X ∈ S(p⊕ l′) we denote by X̄
the element of highest degree in this grading. Following the original Premet’s proof
we will prove now the following statement.

Theorem 2.5. (a) Assume that dim(g−1)1̄ is even. If X ∈ GrKWχ, then X̄ ∈ S(gχ).
(b) Assume that dim(g−1)1̄ is odd. If X ∈ GrKWχ, then X̄ ∈ S(gχ ⊕ Cθ).

Proof. We start with the following simple observation.

Lemma 2.6. Let x ∈ p ⊕ l′. Then χ([m, x]) = 0 if and only if x ∈ gχ for even
dim(g−1)1̄ and x ∈ gχ ⊕ Cθ for odd dim(g−1)1̄.

Proof. Note that if x ∈ gi and Y ∈ gj , then χ([Y, x]) 6= 0 implies i + j = −2.
Therefore if x ∈ p, the condition χ([m, x]) = 0 implies the condition χ([g, x]) = 0,
and thus x ∈ gχ. If x ∈ l′, then the condition χ([m, x]) = 0 is equivalent to the
condition χ([l, x]) = 0. Therefore x ∈ l⊥ ∩ l′ = Cθ. �
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Let X ∈ GrKWχ. Passing to the graded version of (2.2) we obtain that for any
Y ∈ m we have

(2.3) π(adY (X)) = 0.

Define γ : m⊗ S(p⊕ l′) → S(p⊕ l′) by putting

γ(Y, Z) = π(adY (Z))

for all Y ∈ m, Z ∈ S(p ⊕ l′). It is easy to see that if Y ∈ g−i, where i > 0, and
Z ∈ S(p ⊕ l′)j , then γ(Y, Z) ∈ S(p ⊕ l′)j−i ⊕ S(p ⊕ l′)j−i+2). Hence we can write
γ = γ0 + γ2 where γ0(Y, Z) is the projection on S(p ⊕ l′)j−i and γ2(Y, Z) is the
projection on S(p⊕ l′)j−i+2. The condition (2.3) implies that for any X ∈ GrKWχ

(2.4) γ2(m, X̄) = 0.

On the other hand, γ2 : m× S(p⊕ l′) → S(p⊕ l′) is a derivation with respect to the
second argument defined by the condition

γ2(Y, Z) = χ([Y, Z])

for any Y ∈ m, Z ∈ p ⊕ l′. Now by induction on the polynomial degree of X̄ in
S(p⊕ l′), using Lemma 2.6, one can show that (2.4) implies X̄ ∈ S(gχ) (respectively,
X̄ ∈ S(gχ ⊕ Cθ)). �

Proposition 2.7. Assume that dim(g−1)1̄ is even (respectively, odd). Let y1, . . . , yp
be a basis in gχ homogeneous in the good Z-grading. Assume that there exist
Y1, . . . , Yp ∈ Wχ such that GrKYi = yi for all i = 1, . . . , p.
(a) Y1, . . . , Yp generate Wχ (respectively, Y1, . . . , Yp and π(θ) generate Wχ) ;
(b) GrKWχ ≃ S(gχ) (respectively, GrKWχ ≃ S(gχ) ⊗ C[ξ], where C[ξ] is the

exterior algebra generated by one element ξ).

Proof. We will give a proof in the case when dim(g−1)1̄ is even. The odd case is
analogous and we leave it to the reader. Let us first prove (a) by contradiction.
Assume that X ∈ Wχ is an element of minimal Kazhdan degree such that it does not
lie in the subalgebra generated by Y1, . . . , Yp. By Theorem 2.5 we have

GrKX =
∑

c(a1, . . . , ap)y
a1
1 . . . yapp .

Let

Z = X −
∑

c(a1, . . . , ap)Y
a1
1 . . . Y ap

p .

Then Kazhdan degree of Z is less than that of X . By minimality of degree of X we
conclude that Z = 0. That contradicts our assumption.
To prove (b) write p = gχ ⊕ r, where r is some graded subspace complementary to

gχ. Let γ : S(p⊕l′) → S(gχ) denote the natural projection with kernel (r⊕l′)S(p⊕l′).
By (a) and Theorem 2.5 the restriction γ : GrKWχ → S(gχ) is an isomorphism of
rings. �
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Conjecture 2.8. Assume that g is a Lie superalgebra with reductive even part g0̄.
If dim(g−1)1̄ is even, then GrKWχ ≃ S(gχ) and if dim(g−1)1̄ is odd, then GrKWχ ≃
S(gχ)⊗ C[ξ], where C[ξ] is the exterior algebra generated by one element ξ.

2.3. Kostant’s theorem and the regular case for Lie superalgebras. A nilpo-
tent χ ∈ g∗0̄ is called regular if G0̄-orbit of χ has maximal dimension, i.e. the dimen-
sion of gχ

0̄
is minimal. Let us recall that for a regular nilpotent χ and a reductive Lie

algebra g the algebra Wχ is isomorphic to the center Z(g) of U(g), see [15].
It is not hard to see that this result of B. Kostant does not hold for Lie superalge-

bras. In Section 3 we will prove that for regular χ, Wχ satisfies the Amitsur–Levitzki
identity and all irreducible representations of Wχ are finite-dimensional with dimen-
sion not greater than 2k+1, where k is the constant depending on defect of g and the
parity of dimg

χ

1̄
. Recall that for a contragredient g the defect of g is the maximal

number of mutually orthogonal linearly independent isotropic roots, [14].

2.4. Good Z-gradings for superalgebras in the regular case. Good Z-gradings
for basic classical superalgebras are classified in [12]. In the case when χ is regular
and g is of type II (i.e. g0̄ is semisimple and g1̄ is a simple g0̄-module), the only good
Z-grading is the Dynkin Z-grading, and it is never even. If g is of type I, i.e. g0̄ has
a non-trivial center, we can choose an even good Z-grading for any χ. For the Lie
superalgebra Q(n) the analogue of Dynkin Z-grading is even for any χ.
Let us concentrate on the case of basic classical or exceptional Lie superalgebras of

type II and regular χ. In this case χ(·) = (e|·) for some principal nilpotent element
e ∈ g0̄. We are going to describe the Dynkin Z-grading on g in terms of a specific
Borel subalgebra. Let b0̄ ⊂ g0̄ be the Borel subalgebra containing e. Since e is
principal, this Borel subalgebra is unique. Let Π0 denote the set of simple roots of
b0̄.

Lemma 2.9. Let g be a basic classical or exceptional Lie superalgebra of type II.
(a) There exists a Borel subalgebra b0̄ ⊂ b ⊂ g with the set of simple roots Π such

that for any root β ∈ Π0 either β ∈ Π or β = α1 + α2 for some α1, α2 ∈ Π.
(b) Let d denote the defect of g. Then the number of odd roots in Π equals 2d if

g = osp(2m+1|2n) for m ≥ n, osp(2m|2n) for m ≤ n or G3, and the number of odd
roots in Π equals 2d + 1 if g = osp(2m + 1|2n) for m < n, osp(2m|2n) for m > n,
D(2, 1; a) or F4.
(c) Let e, h, f be the sl(2)-triple such that h ∈ h. Then α(h) = 2 for any even

α ∈ Π and α(h) = 1 for any odd α ∈ Π, i.e. the Dynkin Z-grading is consistent.

Proof. (a) Among all Borel subalgebras containing b0̄ pick up the one that has max-
imal number of odd roots and contains an odd non-isotropic root if such roots exist.
For ortho-symplectic superalgebra those Borel subalgebras are listed in [10].
For the exceptional superalgebras we list the simple roots using the roots descrip-

tion in [13]. If g = G3, the set of simple roots is {δ, γ1 − δ, γ2}, where γ1 is the short
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and γ2 is the long simple root of G2. If g = F4, then the set of simple roots is

{ε1 − ε2,
1

2
(−ε1 + ε2 − ε3 − δ),

1

2
(−ε1 − ε2 + ε3 + δ),

1

2
(ε1 + ε2 − ε3 + δ)}.

(b) follows by direct inspection.
(c) follows from the condition [h, e] = 2e and (a). �

Corollary 2.10. Let g be a basic classical or exceptional Lie superalgebra of type
II, and d be its defect. If g = osp(2m + 1|2n) for m ≥ n, osp(2m|2n) for m ≤ n or
G3, then dimg−1 = (0|2d). If g = osp(2m+ 1|2n) for m < n, osp(2m|2n) for m > n,
D(2, 1; a) or F4, then dimg−1 = (0|2d + 1). By Lemma 2.9(c) dimg−1 equals the
number of irreducible sl(2)-components in g1̄. Therefore dim(gχ)1̄ = 2d or 2d+ 1.

Corollary 2.11. Let g satisfy the assumptions of Corollary 2.10.
(a) One can choose a maximal isotropic subspace l ⊂ g−1 such that l = g−α1

⊕
· · ·⊕g−αd

for some isotropic mutually orthogonal roots α1, . . . , αd ∈ Π. In particular,
[l, l]=0.
(b) There exists a parabolic subalgebra p ⊂ g with Levi subalgebra s such that

m ∩ s is an even one dimensional subspace, and if n− denotes the nil radical of the
opposite parabolic p−, then n− ⊂ m.
(c) If g does not have non-isotropic roots (i.e. g = osp(2m|2n) or F4), then [s, s]

is isomorphic to a direct sum of several copies of sl(1|1) and one copy of sl(1|2). If g
has non-isotropic roots (i.e. g = osp(2m+1|2n) or G3), then [s, s] is isomorphic to a
direct sum of several copies of sl(1|1) and one copy of osp(1|2).

Proof. Let Γ denote the Dynkin diagram of Π. For any subset C ⊂ Π we denote
by ΓC the corresponding subdiagram of Γ. Let Π′ denote the set of all odd roots of
Π, the subgraph ΓΠ′ is connected and Π′ has at most one non-isotropic root. Let
us choose a subset A = {α1, . . . αd} ⊂ Π′ of mutually orthogonal isotropic roots
such that the subgraph ΓΠ′\A has maximal number of connected components. If Π′

contains a non-isotropic root, then ΓΠ′\A is a disjoint union of single vertex diagrams.
If all roots of Π′ are isotropic, then ΓΠ′\A is a disjoint union of several single vertex
diagrams and one diagram consisting of two connected isotropic vertices. The latter
is the diagram of sl(1|2).
Now we set s to be the subalgebra of g generated by h and g±β for all β ∈ Π′\A and

let p = b + s. We leave to the reader to check that all requirements of the corollary
are true for this choice. �

Example 2.12. Let g = osp(3|4). Then Π has the Dynkin diagram

⊗−⊗ ⇒ •,

and A consists of one middle vertex. In this case [s, s] ≃ sl(1|1)⊕ osp(1|2).

Example 2.13. Let g = G3. Then Π has the Dynkin diagram

• ⇐ ⊗ ⇚ ◦,
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and A again coincides with the midle vertex. In this case we also have [s, s] ≃
sl(1|1)⊕ osp(1|2).

2.5. The queer superalgebra Q(n). Recall that the queer Lie superalgebra is de-
fined as follows

Q(n) := {

(

A B
B A

)

| A,B are n× n matrices}.

Let otr

(

A B
B A

)

= trB.

Remark 2.14. Q(n) has one-dimensional center < z >, where z = 12n. Let

SQ(n) = {X ∈ Q(n) | otrX = 0}.

The Lie superalgebra Q̃(n) := SQ(n)/ < z > is simple for n ≥ 3, see [13].

Note that g = Q(n) admits an odd non-degenerate g-invariant supersymmetric
bilinear form

(x|y) := otr(xy) for x, y ∈ g.

Therefore, we identify the coadjoint module g∗ with Π(g), where Π is the change of
parity functor.
Let ei,j and fi,j be standard bases in g0̄ and g1̄ respectively:

ei,j =

(

Eij 0
0 Eij

)

, fi,j =

(

0 Eij

Eij 0

)

,

where Eij are elementary n× n matrices.
Let sl(2) =< e, h, f >, where

e =
n−1
∑

i=1

ei,i+1, h = diag(n− 1, n− 3, . . . , 3− n, 1− n), f =
n−1
∑

i=1

i(n− i)ei+1,i.

Note that e is a regular nilpotent element, h defines an even Dynkin Z-grading of g
whose degrees on the elementary matrices are























0 2 · · · 2n− 2 0 2 · · · 2n− 2
−2 0 · · · 2n− 4 −2 0 · · · 2n− 4
· · · · · · · · · · · · · · · · · · · · · · · ·

2− 2n · · · · · · 0 2− 2n · · · · · · 0
0 2 · · · 2n− 2 0 2 · · · 2n− 2
−2 0 · · · 2n− 4 −2 0 · · · 2n− 4
· · · · · · · · · · · · · · · · · · · · · · · ·

2− 2n · · · · · · 0 2− 2n · · · · · · 0























.
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Let E =
∑n−1

i=1 fi,i+1. Since we have an isomorphism g∗ ≃ Π(g), an even regular
nilpotent χ ∈ g∗ can be defined by χ(x) := (x|E) for x ∈ g. Note that the Dynkin
Z-grading is good for χ. We have that

(2.5) gχ = gE = {z, e, e2, . . . , en−1 | H0, H1, . . . , Hn−1}, dim(gE) = (n|n),

where Hk =
∑n−k

i=1 (−1)i+k−1fi,i+k for k = 0, . . . , n− 1. Let

m =

n−1
⊕

j=1

g−2j .

Note that m is generated by ei+1,i and fi+1,i, where i = 1, . . . , n− 1, and

(2.6) χ(ei+1,i) = 1, χ(ei+k,i) = 0 if k ≥ 2, χ(fi+k,i) = 0 if k ≥ 1.

The left ideal Iχ and Wχ are defined now as usual. Moreover,

b :=

n−1
⊕

j=0

g2j

is a Borel subalgebra of g, h := g0 is a Cartan subalgebra, and b = h⊕ n, where

n :=

n−1
⊕

j=1

g2j .

Note that the algebra Wχ can be regarded as a subalgebra of U(b).

3. Some general results

3.1. The Harish-Chandra homomorphism. In this section we assume that g is
a basic classical Lie superalgebra or Q(n). Let p ⊂ g be a parabolic subalgebra such
that n− ⊂ m ⊂ p−, where n− denotes the nilradical of the opposite parabolic p−.
Let s be the Levi subalgebra of p, n be its nilradical and ms = m ∩ s. Note that
m = n− ⊕ms. We denote by Qs

χ the induced module U(s)⊗U(ms) Cχ, where by χ we
understand the restriction of χ on s. Let

W̄ s
χ = EndU(s)Q

s
χ = (Qs

χ)
ms

.

Let Jχ (respectively J s
χ) be the left ideal in U(p) (respectively in U(s)) generated

by a− χ(a) for all a ∈ ms.
Finally, let ϑ̄ : U(p) → U(s) denote the projection with the kernel nU(p). Note

that ϑ̄(Jχ) = J s
χ. Thus, the projection ϑ′ : U(p)/Jχ → U(s)/J s

χ is well defined.
Note that we have an isomorphism of vector spaces Qχ ≃ U(p)/Jχ, henceWχ can be

identified with a subspace in (U(p)/Jχ)
ms

. On the other hand, W̄ s
χ can be identified

with the subspace (U(s)/Js
χ)

ms

. Consider a map ϑ : Wχ → U(s)/J s
χ obtained by
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the restriction of ϑ′ to Wχ. Since adms(n) ⊂ n, ϑ maps adms-invariants to adms-
invariants. In other words, ϑ(Wχ) ⊂ W̄ s

χ. Furthermore, one can easily see that

ϑ : Wχ → W̄ s
χ is a homomorphism of algebras.

An important example is as follows. Assume that g admits an even good grading

with respect to χ. Then we can set p =
⊕

i≥0

gi. Then s = g0, m
s = 0 and ϑ is a

homomorphism Wχ → U(s).

Theorem 3.1. The homomorphism ϑ : Wχ → W̄ s
χ is injective.

Proof. We consider a new grading g =
⊕

i∈Z

g(i) such that p =
⊕

i≥0

g(i). Note that Jχ

is a graded ideal and hence Qχ is also a graded vector space with respect to this new
grading. Note that (Qχ)(0) = Qs

χ. For any t ∈ C\{0} let φt denote the automorphism

of g that multiplies elements of g(j) by tj . Let X ∈ Wχ = Qm
χ . Write

X =

s
∑

i=d

X(i),

where X(i) ∈ (Qχ)(i) and X(d) 6= 0. Our goal is to show that d = 0. Let

χ0 = lim
t→0

φt(χ).

Then χ0(n
−) = 0, χ0|ms = χ|ms. Note that

t−dφt(X) ∈ Wφt(χ)

and hence by the standard continuity argument X(d) ∈ (U(g)⊗U(m) Cχ0
)m. Note that

U(g)⊗U(m) Cχ0
= U(g)⊗U(p−) U(p−)⊗U(m) Cχ0

.

Furthermore, U(p−) ⊗U(m) Cχ0
has the trivial action of n− and is isomorphic to Qs

χ

as an s-module. Thus, X(d) ∈ (U(g)⊗U(p−) Q
s
χ)

m.
We need now the following Lemma.

Lemma 3.2. (U(g)⊗U(p−) Q
s
χ)

n− = Qs
χ.

Proof. Let ζ be a generic central character of U(s) and S be a quotient of Qs
χ ad-

mitting this central character. Consider the parabolically induced module M :=
U(g) ⊗U(p−) S (here we assume that n− acts trivially on S). We will prove that

Mn− = S.
Let γ : Z(g) → Z(s) be the restriction of the Harish-Chandra projection U(g) →

U(s) with kernel n−U(g) + U(g)n+. Note that M admits central character γ∗(ζ).

Any simple s-submodule N ⊂ Mn− that admits central character ζ ′ generates in M
a submodule admitting central character γ∗(ζ ′). Hence we have γ∗(ζ) = γ∗(ζ ′).
Recall the correspondence between central characters and weights. One chooses a

Borel subalgebra bs in s and set ζλ to be the central character of the Verma module
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over s with highest weight λ. Furthermore bs ⊕ n− is a Borel subalgebra in g and
we define the U(g)-central character ζ̄λ to be the central character of the Verma
module over g with highest weight λ. Obviously, γ∗(ζλ) = ζ̄λ. Moreover, all simple
s-subquotients of M admit central character ζµ for some µ ∈ λ+R(n−) where R(n−)
is the set of weights of U(n−). Recall that if λ is typical, then ζ̄λ = ζ̄ν implies that ν
is obtained from λ by the shifted action of the Weyl group of g0.
Let us choose a typical λ such that the intersection of the orbit of λ and λ+R(n−)

equals λ. Suppose that there exists a simple N ⊂ Mn− ∩ n−M . Then N admits
U(s)-central character ζµ for some µ ∈ λ + R(n−), µ 6= λ. But then ζ̄µ 6= ζ̄λ. A
contradiction.
Since S is generic, the above argument implies (U(g)⊗U(p−) Q

s
χ)

n− = Qs
χ. �

Now we can finish the proof of the theorem. By Lemma 3.2

(U(g)⊗U(p−) Q
s
χ)

m = (Qs
χ)

ms

= W̄ s
χ.

That implies d = 0. �

3.2. The case of a regular χ. If χ is regular and admits an even good Z-grading,

then g is isomorphic to sl(m|n), osp(2|2n) or Q(n). In this case we set p =
⊕

i≥0

gi. If

g is of type II, then we define p as in Corollary 2.11.
If g = Q(n) we set k = n

2
if n is even and n−1

2
if n is odd. In other cases we set

k = d (the defect of g) if g is of type I or g is of type II and dimg
χ

1̄
is even. If g is of

type II and dimg
χ

1̄
is odd, then we set k = d+ 1.

Proposition 3.3. W̄ s
χ satisfies Amitsur–Levitzki identity, i.e. for any u1, . . . , u2k+1 ∈

W̄ s
χ

(3.1)
∑

σ∈S
2k+1

sgn(σ)uσ(1) . . . uσ(2k+1) = 0.

Proof. We first consider the case of even Z-grading. Then W̄ s
χ = U(s). Let us assume

first that g = Q(n). Then the even good Z-grading coincides with the Dynkin Z-
grading and s = g0 = h is a Cartan subalgebra of g. Denote

xi = ei,i, ξi = (−1)i+1fi,i.

Then xi lie in the center of U(h) and we have [fi,i, fi,i] = 2xi. From this it is easy to
see that U(h0̄) = C[x1, . . . , xn] coincides with the center of U(h).
Let F denote the algebraic closure of the field of fractions of U(h0̄) and let U(h)F =

F ⊗U(h0̄) U(h). Then U(h)F is isomorphic to the Clifford algebra associated with a
non-degenerate symmetric form on an n-dimensional space. Thus, U(h)F ≃ M2k(F )
for even n and U(h)F ≃ M2k(F )×M2k(F ) for odd n, where by Ms(F ) we denote the
algebra of s × s matrices over F . Thus, by the Amitsur–Levitzki theorem (see [1]),
U(h)F satisfies (3.1). Since U(h) is a subalgebra of U(h)F , it also satisfies (3.1).
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Now let g = sl(m|n) or osp(2|2n). Then the even part of s coincides with the
Cartan subalgebra h, which is abelian. The basis of the odd part consists of root
elements X1, . . . , Xk, Y1, . . . , Yk such that [Xi, Yj] = 0 if i 6= j, [Xi, Xj ] = [Yi, Yj] = 0
for all i, j ≤ k. Thus, s has a triangular decomposition s = s− ⊕ h ⊕ s+, with
s+ spanned by X1, . . . , Xk and s− spanned by Y1, . . . , Yk. Let λ ∈ h∗ and Mλ =
U(s)⊗U(h⊕s+) Cλ denote the Verma module over s. The dimension of Mλ equals 2k.

An easy calculation shows that
∏

λ∈h∗

Mλ is a faithful U(s)-module. Therefore U(s)

is isomorphic to a subalgebra in
∏

λ∈h∗

EndC(Mλ). Since
∏

λ∈h∗

EndC(Mλ) satisfies the

Amitsur–Levitzki identity, U(s) must satisfy it as well.
Finally, let us consider the case when g is of type II. Here we are going to consider

two subcases. We will use notations of the proof of Corollary 2.11.
First, let us assume that Π contains an odd non-isotropic root β. Then Π′ \ A =

{β1, . . . , βk−1, β = βk}. Then [s, s] is a direct sum of k− 1 copies of sl(1|1) generated
by the root spaces g±βi

, i = 1, . . . , k− 1 and one copy of osp(1|2) generated by g±βk
.

Furthermore, ms ⊂ osp(1|2) is generated by g−2β . Let us write s = s′ ⊕ r, where
r = osp(1|2). Then W̄ s

χ = U(s′) ⊗ W̄ r
χ, where W̄ r

χ is the usual W -algebra for the
regular χ and r = osp(1|2). In the following example we give an explicit description
of W -algebra for osp(1|2).
Let r = osp(1|2) =< X, Y,H | θ, r >, where

X = E23, Y = E32, H = E22 −E33, θ = E12 − E31, r = E13 + E21.

Let sl(2) =< e, h, f >, where e = X, h = H, f = Y . The element h defines a
Z-grading on r:

r = r−2 ⊕ r−1 ⊕ r0 ⊕ r1 ⊕ r2, where

r−2 =< Y >, r−1 =< θ >, r0 =< H >, r1 =< r >, r2 =< X > .

Consider the even non-degenerate invariant supersymmetric bilinear form (a|b) =
1
2
str(ab) on r: (θ|r) = 1, (X|Y ) = −1

2
, (H|H) = −1. Let χ(x) = (e|x) for x ∈ r

and letWχ be the correspondingW -algebra. Note that gχ = ge =< X | r >, m = r−2,
and χ(Y ) = −1

2
. We have that π(θ) ∈ W r

χ, and π(θ)2 = 1
2
. Let Ω be the Casimir

element of r. Then
π(Ω) = π(2X +H −H2 + 2rθ).

Let
R = π(r −Hθ).

Note that π(Ω) and R belong to Wχ.

Lemma 3.4. a) Wχ is generated by π(Ω), π(θ) and R. The defining relations are

[π(Ω), R] = [π(Ω), π(θ)] = 0,
[R,R] = π(Ω), [R, π(θ)] = −1

2
, [π(θ), π(θ)] = 1.
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b) For any c ∈ C, Wχ/(Ω−c) is isomorphic to a Clifford algebra with two generators
and it has a unique irreducible representation Mc of dimension 2.

Proof. Since GrK(π(Ω)) = 2X , GrK(R) = r, then (a) follows from Proposition 2.7
(a).
The proof of (b) is straightforward.

�

We use Lemma 3.4 (b) to prove the Amitsur–Levitzki identity in the latter case. We
again consider the familyMλ⊗Mc, whereMλ is the Verma module over s′ andMc is as

in Lemma 3.4 (b). Then
∏

λ∈h∗,c∈C

(Mλ⊗Mc) is a faithful W̄ s
χ-module. Therefore W̄ s

χ is

isomorphic to a subalgebra in
∏

λ∈h∗,c∈C

EndC(Mλ⊗Mc). Since
∏

λ∈h∗,c∈C

EndC(Mλ⊗Mc)

satisfies the Amitsur–Levitzki identity, W̄ s
χ must satisfy it as well.

Finally we assume that all odd roots in Π are isotropic. Then

Π′ \ A = {β1, . . . , βk−1, βk}

with the only non-orthogonal pair βk−1, βk. In this case [s, s] is a direct sum of
k − 2 copies of sl(1|1) generated by the root spaces g±βi

, i = 1, . . . , k − 2 and one
copy of sl(1|2) generated by g±βk−1

, g±βk
. Furthermore, ms ⊂ sl(1|2) is generated by

f ∈ g−βk−1−βk
. As in the previous case we write s = s′ ⊕ r, where r = sl(1|2). Then

W̄ s
χ = U(s′)⊗ W̄ r

χ, where

W̄ r
χ = (U(r)⊗Cf Cχ)

f ,

where χ(f) = 1.
We realize r in the standard matrix form and introduce the following notations:

h1 = E11 + E33, h2 = E11 + E22, f = E32, e = E23, e
+ = E13, e

− = E12,
f− = E31, f

+ = E21, C = h1 + h2.

Let π : U(r) → U(r)/U(r)(f − 1) be the natural projection. We denote by Ω the
quadratic Casimir element of r and set

a = [f−, e+e−] = h1e
− − e+, b = [e−, f+f−] = h2f

− − f+.

The reader can easily check that π(C), π(Ω), π(e−), π(f−), π(a) and π(b) belong to
W̄ r

χ.

Lemma 3.5. a) W̄ r
χ is generated by π(C), π(Ω), π(e−), π(f−), π(a) and π(b). It is

clear that π(Ω) lies in the center of W̄ r
χ. The other defining relations are

[π(C), π(e−)] = π(e−), [π(C), π(a)] = π(a),
[π(C), π(f−)] = −π(f−), [π(C), π(b)] = −π(b),
[π(e−), π(f−)] = 1, [π(a), π(b)] = π(Ω),
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and the commuators of all other odd generators are zero.
b) Let c, d ∈ C, c 6= 0, U be the subalgebra in W̄ r

χ generated by π(C), π(Ω), π(a)
and π(e−), Uc,d = U/(π(Ω) − c, π(C) − d, π(a), π(e−)) be the one-dimensional U -
module. The induced module Mc,d = W̄ r

χ⊗U Uc,d is simple and has dimension 4. The

product
∏

c,d∈C

Mc,d is a faithful W̄ r
χ-module.

Proof. We leave the proof to the reader. For assertion (a) one should use a suitable
modification of Proposition 2.7 (a). �

We also leave to the reader the proof of Proposition 3.3 in the last case since it is
completely similar to the previous case. �

In what follows we denote by A the image ϑ(Wχ) of Wχ in W̄ s
χ.

Corollary 3.6. Wχ satisfies (3.1).

Proof. By Proposition 3.1, A ≃ Wχ. By Proposition 3.3, A satisfies (3.1). �

Proposition 3.7. Let M be a simple Wχ-module. Then dimM ≤ 2k+1.

Proof. Consider M as a module over the associative algebra Wχ, forgetting the Z2-
grading. Then either M is simple or M is a direct sum of two non-homogeneous
simple submodules: M = M1 ⊕M2.
In the former case we claim that dimM ≤ 2k. Indeed, assume dimM > 2k. Let V

be a subspace of dimension 2k + 1. By the density theorem for any X1, . . . , X2k+1 ∈
EndC(V ) one can find u1, . . . , u2k+1 inWχ such that (ui)|V = Xi for all i = 1, . . . , 2k+1.
Since EndC(V ) does not satisfy (3.1), we obtain contradiction with Corollary 3.6.
In the latter case, we can prove in the same way that dimM1 ≤ 2k and dimM2 ≤ 2k.

Therefore dimM ≤ 2k+1.
�

Conjecture 3.8. Every irreducible representation of A ≃ Wχ is isomorphic to a
subquotient of some irreducible representation of W̄ s

χ restricted to A.

4. Generators of Wχ for the queer Lie superalgebra Q(n)

In the rest of the paper we study in detail the case when χ is regular and g = Q(n).
In this section we construct some generators of Wχ. In particular, we will prove

that Wχ is finitely generated. We use the elements e
(m)
i,j and f

(m)
i,j of U(Q(n)) defined

in [29] recursively:

e
(m)
i,j =

n
∑

k=1

ei,ke
(m−1)
k,j + (−1)m+1

n
∑

k=1

fi,kf
(m−1)
k,j ,(4.1)

f
(m)
i,j =

n
∑

k=1

ei,kf
(m−1)
k,j + (−1)m+1

n
∑

k=1

fi,ke
(m−1)
k,j .
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Then

[ei,j, e
(m)
k,l ] = δj,ke

(m)
i,l − δi,le

(m)
k,j , [ei,j, f

(m)
k,l ] = δj,kf

(m)
i,l − δi,lf

(m)
kj ,(4.2)

[fi,j, e
(m)
k,l ] = (−1)m+1δj,kf

(m)
i,l − δi,lf

(m)
k,j ,

[fi,j, f
(m)
k,l ] = (−1)m+1δj,ke

(m)
i,l + δi,le

(m)
k,j .

Proposition 4.1. A. Sergeev [29].

The elements
∑n

i=1 e
(2m+1)
i,i generate Z(Q(n)).

Remark 4.2. In contrast with the Lie algebra case the center Z(Q(n)) is not Noe-
therian, in particular, it is not finitely generated.

Lemma 4.3. π(e
(m)
n,1 ) and π(f

(m)
n,1 ) belong to Wχ.

Proof. By (4.2) we have that

[ei,j, e
(m)
n,1 ] = [fi,j, e

(m)
n,1 ] = [ei,j , f

(m)
n,1 ] = [fi,j, f

(m)
n,1 ] = 0

for all i > j. In other words, e
(m)
n,1 , f

(m)
n,1 ∈ U(g)adm. Hence π(e

(m)
n,1 ), π(f

(m)
n,1 ) ∈ Wχ. �

Lemma 4.4. Let 1 ≤ l ≤ n− 1. Then

(4.3) π(e
(l)
m,1) =

{

1 if m = l + 1,
0 if l + 2 ≤ m ≤ n,

π(f
(l)
m,1) = 0, if l + 1 ≤ m ≤ n.

Proof. We will prove the statement by induction in l. For l = 1 we have that

(4.4) π(e
(1)
m,1) = π(em,1), π(f

(1)
m,1) = π(fm,1).

Then (4.3) follows from (2.6). Assume that (4.3) holds for l. From (4.1) we have that

e
(l+1)
m,1 =

n
∑

k=1

em,ke
(l)
k,1 + (−1)l

n
∑

k=1

fm,kf
(l)
k,1,(4.5)

f
(l+1)
m,1 =

n
∑

k=1

em,kf
(l)
k,1 + (−1)l

n
∑

k=1

fm,ke
(l)
k,1.

Note that

[em,k, e
(l)
k,1] = e

(l)
m,1, [em,k, f

(l)
k,1] = f

(l)
m,1,(4.6)

[fm,k, e
(l)
k,1] = (−1)l+1f

(l)
m,1, [fm,k, f

(l)
k,1] = (−1)l+1e

(l)
m,1.

Hence

e
(l+1)
m,1 =

m−1
∑

k=1

(e
(l)
k,1em,k + e

(l)
m,1) +

n
∑

k=m

em,ke
(l)
k,1 + (−1)l

(

m−1
∑

k=1

(−f
(l)
k,1fm,k + (−1)l+1e

(l)
m,1) +

n
∑

k=m

fm,kf
(l)
k,1

)

,

f
(l+1)
m,1 =

m−1
∑

k=1

(f
(l)
k,1em,k + f

(l)
m,1) +

n
∑

k=m

em,kf
(l)
k,1 + (−1)l

(

m−1
∑

k=1

(e
(l)
k,1fm,k + (−1)l+1f

(l)
m,1) +

n
∑

k=m

fm,ke
(l)
k,1

)

.
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Then

π(e
(l+1)
m,1 ) =

m−1
∑

k=1

π(e
(l)
k,1)π(em,k) +

n
∑

k=m

(π(em,k)π(e
(l)
k,1) + (−1)lπ(fm,k)π(f

(l)
k,1))+

(−1)l+1
(

m−1
∑

k=1

π(f
(l)
k,1)π(fm,k)

)

,

π(f
(l+1)
m,1 ) =

m−1
∑

k=1

π(f
(l)
k,1)π(em,k) +

n
∑

k=m

(π(em,k)π(f
(l)
k,1) + (−1)lπ(fm,k)π(e

(l)
k,1))+

(−1)l
(

m−1
∑

k=1

π(e
(l)
k,1)π(fm,k)

)

.

Then by (2.6)

(4.7) π(e
(l+1)
m,1 ) = π(e

(l)
m−1,1) +

n
∑

k=m

(

π(em,k)π(e
(l)
k,1) + (−1)lπ(fm,k)π(f

(l)
k,1)

)

,

(4.8) π(f
(l+1)
m,1 ) = π(f

(l)
m−1,1) +

n
∑

k=m

(

π(em,k)π(f
(l)
k,1) + (−1)lπ(fm,k)π(e

(l)
k,1)

)

.

Let m ≥ l + 2. Then by induction hypothesis,

(4.9) π(e
(l)
k,1) = π(f

(l)
k,1) = 0 for k = m, . . . , n.

If m = l + 2, then π(e
(l+1)
m,1 ) = π(e

(l)
l+1,1) = 1, and if m ≥ l + 3, then π(e

(l+1)
m,1 ) =

π(e
(l)
m−1,1) = 0. Also, if m ≥ l + 2, then π(f

(l+1)
m,1 ) = π(f

(l)
m−1,1) = 0. Hence (4.3) holds

for l + 1. �

Corollary 4.5.

(4.10) π(e
(m)
n,1 ) = 0 for m ≤ n− 2, π(e

(n−1)
n,1 ) = 1; π(f

(m)
n,1 ) = 0 for m ≤ n− 1,

Lemma 4.6.

π(e
(n)
n,1) = π(z), π(f

(n)
n,1 ) = π(H0).

Proof. Let 1 ≤ m ≤ n. We will show that

(4.11) π(e
(m)
m,1) =

m
∑

k=1

π(ek,k), π(f
(m)
m,1 ) =

m
∑

k=1

(−1)k−1π(fk,k).
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Again we proceed by induction on m. If m = 1, then (4.11) obviously holds by (4.4).
Assume that (4.11) holds for m. From (4.1) and (4.2) we have that

e
(m+1)
m+1,1 =

n
∑

k=1

em+1,ke
(m)
k,1 + (−1)m

n
∑

k=1

fm+1,kf
(m)
k,1 =

m
∑

k=1

(

e
(m)
k,1 em+1,k + e

(m)
m+1,1

)

+

n
∑

k=m+1

em+1,ke
(m)
k,1 +

(−1)m
(

m
∑

k=1

(−f
(m)
k,1 fm+1,k + (−1)m+1e

(m)
m+1,1) +

n
∑

k=m+1

fm+1,kf
(m)
k,1

)

,

f
(m+1)
m+1,1 =

n
∑

k=1

em+1,kf
(m)
k,1 + (−1)m

n
∑

k=1

fm+1,ke
(m)
k,1 =

m
∑

k=1

(

f
(m)
k,1 em+1,k + f

(m)
m+1,1

)

+

n
∑

k=m+1

em+1,kf
(m)
k,1 +

(−1)m
(

m
∑

k=1

(e
(m)
k,1 fm+1,k + (−1)m+1f

(m)
m+1,1) +

n
∑

k=m+1

fm+1,ke
(m)
k,1

)

.

Using (2.6) and (4.3) we obtain

π(e
(m+1)
m+1,1) = π(e

(m)
m,1) + π(em+1,m+1),

π(f
(m+1)
m+1,1 ) = π(f

(m)
m,1 ) + (−1)mπ(fm+1,m+1).

By induction hypothesis we have

π(e
(m+1)
m+1,1) =

m
∑

k=1

π(ek,k) + π(em+1,m+1) =
m+1
∑

k=1

π(ek,k),

π(f
(m+1)
m+1,1 ) =

m
∑

k=1

(−1)k−1π(fk,k) + (−1)mπ(fm+1,m+1) =

m+1
∑

k=1

(−1)k−1π(fk,k).

Hence π(e
(n)
n,1) = π(z) and π(f

(n)
n,1 ) = π(H0). �

Consider the Kazhdan filtration on U(b). By definition, the graded algebraGrKU(b)
is isomorphic to S(b). Moreover, GrKU(b) ≃ S(b) is a commutative graded ring,
where the grading is induced from the Dynkin Z-grading of g. For any X ∈ U(b) let
GrK(X) denote the corresponding element in GrKU(b) and P (X) denote the highest
weight component of GrK(X) in the Dynkin Z-grading. For X ∈ U(b), we denote by
degP (X) the Kazhdan degree of GrK(X) and by wtP (X) the weight of the highest
weight component of GrK(X).

Lemma 4.7. P (π(e
(n)
n,1)) = z,

P (π(e
(n−1+k)
n,1 )) = ek−1, k = 2, . . . , n,(4.12)

P (π(f
(n−1+k)
n,1 )) = Hk−1, k = 1, . . . , n.
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Proof. We will prove a more general statement. We claim that for 0 ≤ l ≤ n− 1 and
1 ≤ p ≤ n

P (π(e
(p+l)
p,1 )) =

r
∑

i=1

ei,i+l,(4.13)

P (π(f
(p+l)
p,1 )) =

r
∑

i=1

(−1)l+1−ifi,i+l, r = min{p, n− l}.

In particular,

degP (π(e
(p+l)
p,1 )) = degP (π(f

(p+l)
p,1 )) = 2l + 2,

wtP (π(e
(p+l)
p,1 )) = wtP (π(f

(p+l)
p,1 )) = 2l.

We proceed to the proof of (4.13) by induction on l and p. Note that if l = 0, then
(4.13) holds for any 1 ≤ p ≤ n by (4.11). Assume that if l ≤ k− 1, then (4.13) holds
for any 1 ≤ p ≤ n. Let l = k. Show that (4.13) holds for p = 1. Note that

e
(1+k)
1,1 =

(

n
∑

i=1

e1,ie
(k)
i,1

)

+ (−1)k
(

n
∑

i=1

f1,if
(k)
i,1

)

.

Let X = π(e1,ie
(k)
i,1 ), Y = π(f1,if

(k)
i,1 ) where i = 1, . . . , k. Note that

degP (π(e1,i)) = degP (π(f1,i)) = 2i,

wtP (π(e1,i)) = wtP (π(f1,i)) = 2i− 2.

By induction hypothesis,

degP (π(e
(k)
1,i )) = degP (π(f

(k)
1,i )) = 2(k − i) + 2,

wtP (π(e
(k)
1,i )) = wtP (π(f

(k)
1,i )) = 2(k − i).

Then

degP (X) = 2k + 2, wtP (X) = 2k − 2,

degP (Y ) = 2k + 2, wtP (Y ) = 2k − 2.

Let X = π(e1,k+1e
(k)
k+1,1). Then by (4.3) X = π(e1,k+1). Hence

degP (X) = 2k + 2, wtP (X) = 2k.

Finally, by (4.3)

π(e
(k)
k+i,1) = 0 for i = 2, . . . , n− k, π(f

(k)
k+i,1) = 0 for i = 1, . . . , n− k.

Hence

P (π(e
(1+k)
1,1 )) = e1,k+1.
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Let l = k and assume that (4.13) holds for p ≤ m. Show that it holds for p = m+1.
Note that

e
(m+1+k)
m+1,1 =

(

n
∑

i=1

em+1,ie
(m+k)
i,1

)

+ (−1)m+k
(

n
∑

i=1

fm+1,if
(m+k)
i,1

)

.

Thus

π(e
(m+1+k)
m+1,1 ) =

(

m−1
∑

i=1

π(em+1,ie
(m+k)
i,1 )

)

+ π(em+1,me
(m+k)
m,1 )+

k
∑

i=1

π(em+1,m+ie
(m+k)
m+i,1 ) + π(em+1,m+k+1e

(m+k)
m+k+1,1) +

n−m−k
∑

i=2

π(em+1,m+k+ie
(m+k)
m+k+i,1)+

(−1)m+k
(

m
∑

i=1

π(fm+1,if
(m+k)
i,1 ) +

k
∑

i=1

π(fm+1,m+if
(m+k)
m+i,1 )+

n−m−k
∑

i=1

π(fm+1,m+k+if
(m+k)
m+k+i,1)

)

.

Let X = π(em+1,ie
(m+k)
i,1 ), where i = 1, . . . , m − 1, and Y = π(fm+1,if

(m+k)
i,1 ), where

i = 1, . . . , m. Then by (4.2) and (2.6)

X = π(e
(m+k)
i,1 em+1,i + e

(m+k)
m+1,1) = π(e

(m+k)
m+1,1),

Y = π(−f
(m+k)
i,1 fm+1,i + (−1)m+k+1e

(m+k)
m+1,1) = π((−1)m+k+1e

(m+k)
m+1,1).

By induction hypothesis

degP (X) = degP (Y ) = 2k,(4.14)

wtP (X) = wtP (Y ) = 2k − 2.

Let X = π(em+1,me
(m+k)
m,1 ). Then by (4.2) and (2.6)

X = π(e
(m+k)
m,1 em+1,m + e

(m+k)
m+1,1) = π(e

(m+k)
m,1 + e

(m+k)
m+1,1).

By induction hypothesis

degP (π(e
(m+k)
m+1,1)) = 2k,(4.15)

wtP (π(e
(m+k)
m+1,1)) = 2k − 2,

degP (π(e
(m+k)
m,1 )) = 2k + 2,(4.16)

wtP (π(e
(m+k)
m,1 )) = 2k.
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Let X = π(em+1,m+ie
(m+k)
m+i,1 ), Y = π(fm+1,m+if

(m+k)
m+i,1 ) for i = 1, . . . , k. Then by

induction hypothesis

degP (X) = degP (Y ) = 2k + 2,(4.17)

wtP (X) = wtP (Y ) = 2k − 2.

Let X = π(em+1,m+k+1e
(m+k)
m+k+1,1). Hence by (4.3) X = π(em+1,m+k+1). Then

degP (X) = 2k + 2,(4.18)

wtP (X) = 2k.

Finally, by (4.3) π(em+1,m+k+ie
(m+k)
m+k+i,1) = 0 for i = 2, . . . , n−m− k and

π(fm+1,m+k+if
(m+k)
m+k+i,1) = 0 for i = 1, . . . , n−m − k. From (4.14)-(4.18) one can see

that the highest degree component in π(e
(m+1+k)
m+1,1 ) has degree 2k + 2, and its highest

weight component has weight 2k. In fact, if m ≥ n−k, then by (4.16) this component

is P (π(e
(m+k)
m,1 )). By induction hypothesis P (π(e

(m+k)
m,1 )) =

∑n−k
i=1 ei,i+k. If m < n− k,

then P (π(e
(m+k)
m,1 )) =

∑m

i=1 ei,i+k. Note that in this case π(e
(m+1+k)
m+1,1 ) has an additional

element π(em+1,m+k+1) of degree 2k + 2 and weight 2k according to (4.18). Clearly,

P (π(em+1,m+k+1)) = em+1,m+k+1 and P (π(e
(m+k)
m,1 )) + P (π(em+1,m+k+1)) 6= 0. Hence

P (π(e
(m+1+k)
m+1,1 )) = P (π(e

(m+k)
m,1 )) + P (π(em+1,m+k+1)) =

m+1
∑

i=1

ei,i+k.

Then in either case,

P (π(e
(m+1+k)
m+1,1 )) =

r
∑

i=1

ei,i+k, where r = min{m+ 1, n− k}.

Thus if 0 ≤ l ≤ n− 1 and 1 ≤ p ≤ n, then

P (π(e
(p+l)
p,1 )) =

r
∑

i=1

ei,i+l, where r = min{p, n− l}.

Similarly, one can prove that

P (π(f
(p+l)
p,1 )) =

r
∑

i=1

(−1)l+1−ifi,i+l, r = min{p, n− l}.

In particular, if p = n and l = k, where k = 0, . . . , n− 1, we have

P (π(e
(n+k)
n,1 )) =

n−k
∑

i=1

ei,i+k = ek,

P (π(f
(n+k)
n,1 )) =

n−k
∑

i=1

(−1)k+1−ifi,i+k = Hk.
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�

Proposition 4.8. π(e
(m)
n,1 ) and π(f

(m)
n,1 ) for m = n, . . . , 2n− 1 generate Wχ.

Proof. The statement follows from Lemma 4.7 and Proposition 2.7 (a). �

Corollary 4.9. Lemma 4.7 and Proposition 2.7 (b) imply that Conjecture 2.8 is true
for g = Q(n) and regular χ.

Corollary 4.10. The natural homomorphism U(g)adm → Wχ is surjective.

Proof. Since e
(m)
n,1 , f

(m)
n,1 ∈ U(g)adm, the statement follows from Proposition 4.8. �

5. Further results about the structure of Wχ for g = Q(n)

5.1. The Harish-Chandra homomorphism for Q(n). Recall that for g = Q(n)
and regular χ we have p = b. We study in detail the restriction of the Harish-Chandra
homomorphism ϑ : U(b) −→ U(h) to Wχ. We start with calculating the images of
the generators.

Proposition 5.1.

ϑ(π(e
(n+k−1)
n,1 )) = [

∑

i1≥i2≥...≥ik

(xi1 + (−1)k+1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik)]even,(5.1)

ϑ(π(f
(n+k−1)
n,1 )) = [

∑

i1≥i2≥...≥ik

(xi1 + (−1)k+1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik)]odd.

Proof. We will prove by induction on l and p that if 0 ≤ l ≤ n − 1 and 1 ≤ p ≤ n
then

ϑ(π(e
(p+l)
p,1 )) + ϑ(π(f

(p+l)
p,1 )) =(5.2)

∑

p≥i1≥i2≥...≥ik≥1

(xi1 + (−1)lξi1) . . . (xil − ξil)(xil+1
+ ξil+1

).

Note that if l = 0, then (5.2) holds for any 1 ≤ p ≤ n since by (4.11)

ϑ(π(e
(p)
p,1)) + ϑ(π(f

(p)
p,1 )) =

ϑ(

p
∑

i=1

π(ei,i)) + ϑ(

p
∑

i=1

(−1)i−1π(fi,i)) =

p
∑

i=1

(xi + ξi).
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Assume that if l ≤ k − 1, then (5.2) holds for any 1 ≤ p ≤ n. Let l = k, show that
(5.2) holds for p = 1. We have

ϑ(π(e
(1+k)
1,1 )) + ϑ(π(f

(1+k)
1,1 )) =

ϑ(π(e1,1)π(e
(k)
1,1) + (−1)kπ(f1,1)π(f

(k)
1,1 )) + ϑ(π(e1,1)π(f

(k)
1,1 ) + (−1)kπ(f1,1)π(e

(k)
1,1)) =

(e1,1 + (−1)kf1,1)(ϑ(π(e
(k)
1,1) + ϑ(π(f

(k)
1,1 )) =

(x1 + (−1)kξ1)
∑

i1=i2=...=ik=1

(xi1 + (−1)k−1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik) =

∑

i1=i2=...=ik+1=1

(xi1 + (−1)kξi1) . . . (xik − ξik)(xik+1
+ ξik+1

).

Let l = k and assume that (5.2) holds for p ≤ m. Show that it holds for p = m+ 1.
By induction hypothesis we have

ϑ(π(e
(m+1+k)
m+1,1 )) + ϑ(π(f

(m+1+k)
m+1,1 )) = ϑ(π(e

(m+k)
m,1 )) + ϑ(π(f

(m+k)
m,1 ))+

(em+1,m+1 + (−1)m+kfm+1,m+1)ϑ(π(e
(m+k)
m+1,1)) + ϑ(π(f

(m+k)
m+1,1 )) =

∑

m≥i1≥i2≥...≥ik+1≥1

(xi1 + (−1)kξi1) . . . (xik − ξik)(xik+1
+ ξik+1

)+

(xm+1 + (−1)kξm+1)
∑

m+1≥i1≥i2≥...≥ik≥1

(xi1 + (−1)k−1ξi1) . . . (xik−1
− ξik−1

)(xik + ξik) =

∑

m+1≥i1≥i2≥...≥ik+1≥1

(xi1 + (−1)kξi1) . . . (xik − ξik)(xik+1
+ ξik+1

).

Thus (5.2) is proven. In particular, if p = n we obtain (5.1). �

Proposition 5.2.

(5.3) π(e
(n+1)
n,1 ) = π(

1

2

n
∑

i=1

e2i,i +

n−1
∑

i=1

ei,i+1 +
∑

i<j

(−1)i−jfi,ifj,j +
1

2
z2 − z),

and

(5.4) ϑ(π(e
(n+1)
n,1 )) =

1

2

n
∑

i=1

x2
i +

∑

i<j

ξiξj +
1

2
z2 − z.

Proof. We will prove by induction on m that for 1 ≤ m ≤ n
(5.5)

π(e
(m+1)
m,1 ) = π(

1

2

m
∑

i=1

e2i,i+

min(m,n−1)
∑

i=1

ei,i+1+
∑

1≤i<j≤m

(−1)i−jfi,ifj,j+
1

2
(

m
∑

i=1

ei,i)
2−

m
∑

i=1

ei,i).

If m = 1, then

π(e
(2)
1,1) = π(e21,1 + e1,2 − f 2

1,1) = π(e21,1 + e1,2 − e1,1).
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Assume that (5.5) holds for m. By (4.1)

e
(m+2)
m+1,1 =

n
∑

i=1

em+1,ie
(m+1)
i,1 − (−1)m

n
∑

k=i

fm+1,if
(m+1)
i,1 .

Then by (2.6) and (4.3)

π(e
(m+2)
m+1,1) = π(e

(m+1)
m,1 )+π(em+1,m+1)π(e

(m+1)
m+1,1)+π(em+1,m+2)π(e

(m+1)
m+2,1)−(−1)mπ(fm+1,m+1)π(f

(m+1)
m+1,1 ).

By induction hypothesis and using (4.11) we have

π(e
(m+2)
m+1,1) = π

(1

2

m
∑

i=1

e2i,i +

min(m,n−1)
∑

i=1

ei,i+1 +
∑

1≤i<j≤m

(−1)i−jfi,ifj,j +
1

2
(

m
∑

i=1

ei,i)
2 −

m
∑

i=1

ei,i

)

+

π
(

em+1,m+1(

m+1
∑

i=1

ei,i) + em+1,m+2 − (−1)mfm+1,m+1(

m+1
∑

i=1

(−1)i−1fi,i)
)

=

π
(1

2

m+1
∑

i=1

e2i,i +

min(m+1,n−1)
∑

i=1

ei,i+1 +
∑

1≤i<j≤m+1

(−1)i−jfi,ifj,j +
1

2
(

m+1
∑

i=1

ei,i)
2 −

m+1
∑

i=1

ei,i

)

.

Thus (5.5) is proven. In particular, if m = n we obtain (5.3). Finally, applying ϑ to
(5.3) we obtain (5.4). �

5.2. On the center of Wχ. Recall that we denote by A the image ϑ(Wχ) of Wχ in
U(h). Set A0 = A ∩ U(h0̄).

Lemma 5.3. Define odd elements Φ0, . . . ,Φn−1 of Wχ as follows:

Φ0 = π(f
(n)
n,1 ) = π(H0),

Φk =
(1

2
ad(π(e

(n+1)
n,1 ))

)k

(Φ0), k = 1, . . . , n− 1.

Then (a) P (Φk) = Hk,
(b)

[Φm,Φp] = 0, if m+ p is odd ,

(c) there exist z0, z2, . . . ∈ π(Z(Q(n))) such that

[Φm,Φp] = (−1)mzm+p if m+ p is even.

Proof. LetX, Y ∈ Wχ. To prove (a) observe that if P (X), P (Y ) ∈ gχ and [P (X), P (Y )] 6=

0, then P ([X, Y ]) = [P (X), P (Y )]. Since P (π(e
(n+1)
n,1 )) = e and P (Φ0) = H0, the

statement follows from the relation

Hk = (
1

2
ad(e))k(H0).
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To prove (b) and (c) we use ϑ. We first notice that (5.4) implies

ϑ(Φk) =

n
∑

j=1

φ
(k)
j ξj

for some polynomial φ
(k)
j ∈ C[x1, . . . , xn] of degree k. Hence [ϑ(Φm), ϑ(Φp)] ∈

C[x1, . . . , xn]. Since xi lie in the center of h, we get

[ϑ(Φm+1), ϑ(Φp)] =
1

2
[[ϑ(π(e

(n+1)
n,1 )), ϑ(Φm)], θ(Φp)] =

−
1

2
[ϑ(Φm), [ϑ(π(e

(n+1)
n,1 )), ϑ(Φp)]] = −[ϑ(Φm), ϑ(Φp+1)].

Since ϑ is injective, that implies

[Φp,Φq] = (−1)r−p[Φr,Φs],

if p+ q = r + s.
In particular, if p+ q is odd we have

[Φp,Φq] = (−1)q−p[Φq,Φp] = 0.

This implies (b).
To prove (c) we set

zi = [Φ0,Φi] for even i, 0 ≤ i ≤ n− 1.

Since ϑ(zi) ∈ A0, (c) follows from Lemma 5.4. �

Lemma 5.4. A0 = ϑ(π(Z(g))).

Proof. It is not hard to see that the restriction of ϑ on Z(g) coincides with the stan-
dard Harish-Chandra homomorphism. Thus, from Sergeev’s result, [30], we know
that ϑ(Z(g)) coincides with the space of symmetric polynomials p in x1, . . . , xn sat-
isfying the additional condition

(5.6)
∂p

∂xi

−
∂p

∂xj

∈ (xi + xj)U(h0̄)

for all i < j ≤ n. In view of Proposition 3.1, it is sufficient to prove that if p ∈ A0,
then p is symmetric and satisfies (5.6).
First, we will prove the last assertion in the case when n = 2. It follows from

Lemma 5.3 and Theorem 5.1 that A is generated by z0 = 2x1 + 2x2, φ0 = ξ1 + ξ2,
φ1 = x2ξ1−x1ξ2 and z1 = −ϑ(π(e32,1))+

1
4
z20−

1
2
z0 = x1x2−ξ1ξ2. By direct calculation

we can check that

φ2
0 =

1

2
z0, φ0φ1 = −

1

2
z0ξ1ξ2, φ

2
1 =

1

2
z0x1x2, [z1, φ0] = −2φ1, [z1, φ1] = 2x1x2φ0.

Let A0 denote the even part of A. The above relations imply that A0 is a subring
in C[z0, x1x2] ⊕ C[z0, x1x2]ξ1ξ2. Moreover, A0/(z0A0) = C[z1]. Therefore A0 = C ⊕
z0C[z0, x1x2], i.e. A

0 consists of symmetric polynomials satisfying (5.6).
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Let p = ϑ(u) for some u ∈ Wχ ⊂ U(b). Then we have

(5.7) π(ad ei+1,i(u)) = 0

and

(5.8) π(ad fi+1,i(u)) = 0

for all i = 1, . . . , n− 1.
Let si be the subalgebra in g generated by ei,i+1, ei,i, ei+1,i, ei+1,i+1, fi,i+1, fi,i, fi+1,i,

fi+1,i+1. Clearly, si is isomorphic to Q(2). Note that the orthogonal compliment s⊥i
(with respect to the invariant form) is ad si-invariant, b∩ s⊥i is a Lie subalgebra and,
moreover,

π(ad ei+1,i(u)) = 0, π(ad fi+1,i(u)) = 0

whenever u ∈ U(b ∩ s⊥i ).
Therefore any u ∈ Wχ satisfying (5.7) and (5.8) for a given i can be written in

the form u =
∑

ujvj for some uj ∈ U(si ∩ b) satisfying (5.7) and (5.8) and arbitrary
vj ∈ U(s⊥i ∩ b).
Thus, (5.7) and (5.8) can be checked locally for si. Indeed, if ϑ(u) ∈ U(h0̄), then

ϑ(u) =
∑

ϑ(uj)ϑ(vj),

where ϑ(vj) ∈ U(h0̄ ∩ s⊥i ) = C[x1, . . . , xi−1, xi+2, . . . , xn] and ϑ(uj) ∈ U(h0̄ ∩ si) =
C[xi, xi+1]. Since we already know the result for Q(2), we obtain ϑ(uj)(xi+1, xi) =

ϑ(uj)(xi, xi+1) and
∂ϑ(uj)

∂xi
−

∂ϑ(uj)

∂xi+1
∈ (xi + xi+1)U(h0̄ ∩ si). Therefore ϑ(u) is invariant

under all adjacent transpositions and therefore is symmetric. Moreover,

∂ϑ(u)

∂xi

−
∂ϑ(u)

∂xi+1

∈ (xi + xi+1)U(h0̄).

Since ϑ(u) is symmetric, the last condition implies (5.6) for ϑ(u). �

Let φk := ϑ(Φk). Consider U(h) as a free U(h0̄)-module and let V denote the free
submodule generated by ξ1, . . . , ξn. Then V is equipped with U(h0̄)-valued bilinear

symmetric form B(x, y) = [x, y]. If ω = ϑ(π(1
2
e
(n+1)
n,1 )), then T = adω is an U(h0̄)-

linear operator. As we have seen in the proof of Lemma 5.3, T is skew-symmetric
with respect to the form B, i.e.

B(Tv, w) + B(v, Tw) = 0.

Furthermore, in these terms φk = T k(φ0). The matrix of T in the standard basis
ξ1, . . . , ξn has 0 on the diagonal and

(5.9) tij =

{

xj if i < j,
−xj if i > j.
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Lemma 5.5. The characteristic polynomial det(λ Id−T ) of T equals

λn + σ2λ
n−2 + · · ·+ σ2kλ

n−2k,

where σr =
∑

i1<···<ir

xi1 . . . xir are the elementary symmetric functions.

Proof. Let

pn(x1, . . . , xn;λ) = det(λ Id−T ) = λn +

n
∑

i=1

fn,i(x1, . . . , xn)λ
n−i.

Note that fn,i(x1, . . . , xn) is a symmetric polynomial, since the substitutions xi 7→
xj , xj 7→ xi preserves the determinant of λ Id−T . It is also easy to calculate that
det T = x1 . . . xn if n is even. If n is odd, then det T = 0, since T is skew-symmetric
with respect to B. Finally, if xn = 0 we have a relation

pn(x1, . . . , xn−1, 0;λ) = λpn−1(x1, . . . , xn−1;λ).

That implies

fn,i(x1, . . . , xn−1, 0) = fn−1,i(x1, . . . , xn−1),

for i ≤ n− 1. Since it is also easy to show that the degree of fn,i is i, we can finish
the proof by induction in n. �

Corollary 5.6. There exists s = (s1, . . . , sn) ∈ Rn
>0 such that the specialization of

det(λ Id−T ) at the point x1 = s1, . . . , xn = sn has distinct eigenvalues.

Proof. Assume that n = 2k is even. Let Polevn denote the set of monic even poly-
nomials in C[λ] of degree n and Polev,+n denote the subset of polynomials with real
positive coefficients. Let ϕ : Rn

>0 → Polev,+n be the specialization map, i.e. ϕ(s) is the
specialization of det(λ Id−T ) at s ∈ R

n
>0. From the above Lemma, dϕ(s) is surjective

for generic s ∈ Rn
>0. Therefore Imϕ contains a non-empty open subset in Rn

>0.
Define the map ρ : Cn → Polevn by the formula

ρ(t1, . . . , tk) =

k
∏

i=1

(λ2 − t2i ).

Obviously, ρ is surjective. Set

U = {(t1, . . . , tk) ∈ C
k | ti 6= ±tj for all i 6= j}.

Then ρ(U) is Zariski open in Polevn . Therefore the intersection Polev,+n ∩ ρ(U) is a
non-empty Zariski open subset in Polev,+n . Hence Polev,+n ∩ ρ(U) is dense in Polev,+n in
the usual topology and the intersection Imϕ ∩ ρ(U) is not empty. This implies the
statement for even n.
For odd n the proof is similar and we leave it to the reader. �

Lemma 5.7. φ0, . . . φn−1 are linearly independent over U(h0̄).
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Proof. For each s = (s1, . . . , sn) ∈ Cn consider the ideal Is = (x1 − s1, . . . , xn − sn) ∈
U(h0̄). Let Vs = V/IsV and Ts, Bs and (φi)s denote the corresponding operator, form
and vector in Vs. It suffices to show that (φ0)s, . . . (φn−1)s are linearly independent
for some s. By Corollary 5.6 we can find s ∈ Rn

>0 such that all eigenvalues of
Ts are distinct. Let v1, . . . , vn denote an eigenbasis for Ts, and let Hs denote the
Hermitian form such that Hs(ξi, ξj) = Bs(ξi, ξj) for all i, j = 1, . . . , n. Then Hs is
positive definite and Ts is skew-hermitian with respect to Hs. Hence all eigenvalues
of Ts are purely imaginary and Hs(vi, vj) = 0 if i 6= j. Let (φ0)s =

∑n

i=1 aivi.
Since all eigenvalues of Hs are distinct and (φl)s = T l(φ0)s, linear independence of
(φ0)s, . . . (φn−1)s is equivalent to the fact that ai are not zero for all i = 1, . . . n.

Assume that some ai = 0. Since ai =
Hs(vi,(φ0)s)
Hs(vi,vi)

, that implies Hs(vi, (φ0)s) = 0. Let

vi = t1ξ1 + · · ·+ tnξn. Then the last condition implies
∑n

i=1 siti = 0. But then the
first coordinate of Tsvi equals s2t2 + · · · + sntn = −s1t1. Since Tsvi = avi for some
purely imaginary a, we obtain t1 = 0. Repeating this argument we can prove by
induction that all ti are zero and obtain a contradiction. �

Problem. Calculate ϑ(Φi) and ϑ(zi).

Lemma 5.8. The centralizer of A in U(h) coincides with U(h0̄).

Proof. Suppose that u lies in the centralizer of A. Recall that F denotes the field
of fractions of U(h0̄). Then since U(h) is a free U(h0̄)-module, U(h) ⊂ U(h)F . By
Lemma 5.7, AF contains ξ1, . . . , ξn. Hence we have [ξi, u] = 0 for all i = 1, . . . , n.
Therefore u lies in the center of U(h), which coincides with U(h0̄). �

Corollary 5.9. The center of A coincides with A0.

Proposition 3.1, Lemma 5.4 and Corollary 5.9 imply.

Corollary 5.10. The center of Wχ coincides with π(Z(Q(n))).

5.3. New generators and relations. We will need the following realization of
Q(n) given by M. Nazarov and S. Sergeev in [21]. Let the indices i, j run through
−n, . . . ,−1, 1, . . . , n. Put p(i) = 0 if i > 0 and p(i) = 1 if i < 0. As a vector space
Q(n) is spanned by the elements

Fij = Eij + E−i,−j.

Note that F−i,−j = Fij . The elements Fij with i > 0 form a basis of Q(n).

For any indices n ≥ 1 and i, j = ±1, . . . ,±n, we denote by F
(m)
ij the following

element of U(Q(n)):

(5.10) F
(m)
ij =

∑

k1,...,km−1

(−1)p(k1)+...+p(km−1)Fik1Fk1k2 . . . Fkm−2km−1
Fkm−1j.

Note that

(5.11) F
(m)
ij = (−1)m−1F

(m)
−i,−j,
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(5.12) F
(m)
ij = e

(m)
ij , for i, j > 0,

(5.13) F
(m)
ij = (−1)m+1f

(m)
−i,j, for i < 0, j > 0.

Proposition 5.11. For odd k and m we have

(5.14) [π(e
(n+k)
n,1 ), π(e

(n+m)
n,1 )] = 0.

Proof. We prove the statement by induction on l = k + m. Obviously, if l = 2,
then (5.14) is true. Assume that the statement is true for odd k and m such that
k +m ≤ l − 2. According to [21]

[F
(m)
n,1 , F

(k)
n,1 ] =

m−1
∑

r=1

[F
(k+r−1)
n,1 , F

(m−r)
n,1 ] +

m−1
∑

r=1

(−1)r(F
(k+r−1)
−n,1 F

(m−r)
−n,1 − F

(m−r)
n,−1 F

(k+r−1)
n,−1 ).

Thus from (5.11), (5.12), (5.13) we have
(5.15)

[e
(m)
n,1 , e

(k)
n,1] =

m−1
∑

r=1

[e
(k+r−1)
n,1 , e

(m−r)
n,1 ]+

m−1
∑

r=1

(−1)r+1((−1)k+mf
(k+r−1)
n,1 f

(m−r)
n,1 +f

(m−r)
n,1 f

(k+r−1)
n,1 ).

Furthermore, from [21]

[F
(m)
−n,1, F

(k)
−n,1] =

m−1
∑

r=1

(F
(k+r−1)
−n,1 F

(m−r)
−n,1 − F

(m−r)
−n,1 F

(k+r−1)
−n,1 )

+
m−1
∑

r=1

(−1)r+1(F
(k+r−1)
n,1 F

(m−r)
n,1 − F

(m−r)
−n,−1F

(k+r−1)
−n,−1 ).

Thus from (5.11), (5.12), (5.13) we have

[f
(m)
n,1 , f

(k)
n,1 ] = −

m−1
∑

r=1

(f
(k+r−1)
n,1 f

(m−r)
n,1 − f

(m−r)
n,1 f

(k+r−1)
n,1 )(5.16)

+

m−1
∑

r=1

(−1)r+1((−1)k+me
(k+r−1)
n,1 e

(m−r)
n,1 + e

(m−r)
n,1 e

(k+r−1)
n,1 ).

Lemma 5.12. For odd m we have

[π(f
(n)
n,1 ), π(f

(n+m)
n,1 )] = 0.

Proof. From (5.16)

[π(f
(n)
n,1 ), π(f

(n+m)
n,1 )] = −

m−1
∑

r=1

(

π(f
(n+m+r−1)
n,1 )π(f

(n−r)
n,1 )− π(f

(n−r)
n,1 )π(f

(n+m+r−1)
n,1 )

)

+

m−1
∑

r=1

(−1)r+1
(

− π(e
(n+m+r−1)
n,1 )π(e

(n−r)
n,1 ) + π(e

(n−r)
n,1 )π(e

(n+m+r−1)
n,1 )

)

.
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Note that the first sum is zero, since π(f
(n−r)
n,1 ) = 0 for r ≥ 1 by (4.10), and the second

sum is also zero, since π(e
(n−1)
n,1 ) = 1 and π(e

(n−r)
n,1 ) = 0 for r ≥ 2 by (4.10). �

Let
(5.17)

[e
(n+k)
n,1 , e

(n+m)
n,1 ]e = [e

(n+m)
n,1 , e

(n+k−1)
n,1 ] + [e

(n+m+1)
n,1 , e

(n+k−2)
n,1 ] + . . .+ [e

(n+m+k−2)
n,1 , e

(n+1)
n,1 ],

(5.18)

[e
(n+k)
n,1 , e

(n+m)
n,1 ]f = [f

(n+m)
n,1 , f

(n+k−1)
n,1 ]− [f

(n+m+1)
n,1 , f

(n+k−2)
n,1 ] + . . .− [f

(n+m+k−2)
n,1 , f

(n+1)
n,1 ].

Then

[π(e
(n+k)
n,1 ), π(e

(n+m)
n,1 )] = π([e

(n+k)
n,1 , e

(n+m)
n,1 ]e) + π([e

(n+k)
n,1 , e

(n+m)
n,1 ]f),

since by (4.10)

π(e
(n)
n,1) = π(z), π(e

(n−1)
n,1 ) = 1, π(e

(n−r)
n,1 ) = 0 for r ≥ 2, π(f

(n−r)
n,1 ) = 0 for r ≥ 1,

and by Lemma 5.12

[π(f
(n+m+k−1)
n,1 ), π(f

(n)
n,1 )] = 0,

since m+ k − 1 is odd.
Note that each of the sums in (5.17) and (5.18) has k− 1 terms, where k− 1 is even.

Denote by [e
(m)
n,1 , e

(k)
n,1]e and by [e

(m)
n,1 , e

(k)
n,1]f the first and the second sum in (5.15),

respectively. Thus

[e
(m)
n,1 , e

(k)
n,1] = [e

(m)
n,1 , e

(k)
n,1]e + [e

(m)
n,1 , e

(k)
n,1]f .

Also, denote by [f
(m)
n,1 , f

(k)
n,1 ]f and by [f

(m)
n,1 , f

(k)
n,1 ]e the first and the second sum in (5.16),

respectively. Thus

[f
(m)
n,1 , f

(k)
n,1 ] = [f

(m)
n,1 , f

(k)
n,1 ]f + [f

(m)
n,1 , f

(k)
n,1 ]e.

Let

Am = π([e
(n+m)
n,1 , e

(n+k−1)
n,1 ]+[e

(n+m+1)
n,1 , e

(n+k−2)
n,1 ]+[f

(n+m)
n,1 , f

(n+k−1)
n,1 ]−[f

(n+m+1)
n,1 , f

(n+k−2)
n,1 ]).

We claim that Am = 0. Note that Am = Am
e + Am

f , where

Am
e = π([e

(n+m)
n,1 , e

(n+k−1)
n,1 ]e+[e

(n+m+1)
n,1 , e

(n+k−2)
n,1 ]e+[f

(n+m)
n,1 , f

(n+k−1)
n,1 ]e−[f

(n+m+1)
n,1 , f

(n+k−2)
n,1 ]e),

Am
f = π([e

(n+m)
n,1 , e

(n+k−1)
n,1 ]f+[e

(n+m+1)
n,1 , e

(n+k−2)
n,1 ]f+[f

(n+m)
n,1 , f

(n+k−1)
n,1 ]f−[f

(n+m+1)
n,1 , f

(n+k−2)
n,1 ]f).

Let us show that Am
e = 0. Note that

[e
(n+m)
n,1 , e

(n+k−1)
n,1 ]e = [e

(n+k−1)
n,1 , e

(n+m−1)
n,1 ] + [e

(n+k)
n,1 , e

(n+m−2)
n,1 ]+

[e
(n+k+1)
n,1 , e

(n+m−3)
n,1 ] + [e

(n+k+2)
n,1 , e

(n+m−4)
n,1 ] + . . . ,

[f
(n+m)
n,1 , f

(n+k−1)
n,1 ]e = −[e

(n+k−1)
n,1 , e

(n+m−1)
n,1 ] + [e

(n+k)
n,1 , e

(n+m−2)
n,1 ]

− [e
(n+k+1)
n,1 , e

(n+m−3)
n,1 ] + [e

(n+k+2)
n,1 , e

(n+m−4)
n,1 ] + . . . .
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Thus

[e
(n+m)
n,1 , e

(n+k−1)
n,1 ]e+[f

(n+m)
n,1 , f

(n+k−1)
n,1 ]e = 2[e

(n+k)
n,1 , e

(n+m−2)
n,1 ]+2[e

(n+k+2)
n,1 , e

(n+m−4)
n,1 ]+. . . .

By induction hypothesis

[π(e
(n+k)
n,1 ), π(e

(n+m−2)
n,1 )] = [π(e

(n+k+2)
n,1 ), π(e

(n+m−4)
n,1 )] = . . . = 0

for positive k,m − 2, m − 4, . . . Note that (5.14) also holds for odd k,m such that
k ≤ −1 or m ≤ −1 by (4.10). Similarly

[e
(n+m+1)
n,1 , e

(n+k−2)
n,1 ]e−[f

(n+m+1)
n,1 , f

(n+k−2)
n,1 ]e = 2[e

(n+k−2)
n,1 , e

(n+m)
n,1 ]+2[e

(n+k)
n,1 , e

(n+m−2)
n,1 ]+. . . = 0.

By induction hypothesis

[π(e
(n+k−2)
n,1 ), π(e

(n+m)
n,1 )] = [π(e

(n+k)
n,1 ), π(e

(n+m−2)
n,1 )] = . . . = 0.

Hence Am
e = 0. Let us show that Am

f = 0. Note that

[e
(n+m)
n,1 , e

(n+k−1)
n,1 ]f = −[e

(n+k−1)
n,1 , e

(n+m)
n,1 ]f =

(f
(n+m)
n,1 f

(n+k−2)
n,1 − f

(n+k−2)
n,1 f

(n+m)
n,1 )− (f

(n+m+1)
n,1 f

(n+k−3)
n,1 − f

(n+k−3)
n,1 f

(n+m+1)
n,1 ) + . . . ,

[e
(n+m+1)
n,1 , e

(n+k−2)
n,1 ]f = −[e

(n+k−2)
n,1 , e

(n+m+1)
n,1 ]f =

(f
(n+m+1)
n,1 f

(n+k−3)
n,1 − f

(n+k−3)
n,1 f

(n+m+1)
n,1 )− (f

(n+m+2)
n,1 f

(n+k−4)
n,1 − f

(n+k−4)
n,1 f

(n+m+2)
n,1 ) + . . . ,

[f
(n+m)
n,1 , f

(n+k−1)
n,1 ]f = [f

(n+k−1)
n,1 , f

(n+m)
n,1 ]f =

− (f
(n+m)
n,1 f

(n+k−2)
n,1 − f

(n+k−2)
n,1 f

(n+m)
n,1 )− (f

(n+m+1)
n,1 f

(n+k−3)
n,1 − f

(n+k−3)
n,1 f

(n+m+1)
n,1 )− . . . ,

− [f
(n+m+1)
n,1 , f

(n+k−2)
n,1 ]f = −[f

(n+k−2)
n,1 , f

(n+m+1)
n,1 ]f =

(f
(n+m+1)
n,1 f

(n+k−3)
n,1 − f

(n+k−3)
n,1 f

(n+m+1)
n,1 ) + (f

(n+m+2)
n,1 f

(n+k−4)
n,1 − f

(n+k−4)
n,1 f

(n+m+2)
n,1 ) + . . . .

In the sum of the right-hand sides of these equations all terms cancel out. Hence
Am

f = 0. Then Am = 0. Similarly,

Am+2 = Am+4 = . . . = Am+k−3 = 0.

Then

[π(e
(n+k)
n,1 ), π(e

(n+m)
n,1 )] =

1

2
(k−3)
∑

i=0

Am+2i = 0.

�

We set

zi = π(e
(n+i)
n,1 ) for odd i, 1 ≤ i ≤ n− 1.

Theorem 5.13. Elements z0, . . . , zn−1 are algebraically independent inWχ. Together
with Φ0, . . . ,Φn−1 they form a complete set of generators in Wχ.
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Proof. By Lemma 5.3, we have P (Φi) = Hi for i ≤ n − 1, P (zi) = ei for even
0 < i ≤ n−1 and P (z0) = z. By Lemma 4.7, P (zi) = ei for odd i ≤ n−1. Therefore
the second assertion follows from Proposition 2.7. The algebraic independence of
z0, . . . , zn−1 follows from algebraic independence of the corresponding elements in
S(gχ). �

Conjecture 5.14. Let g be a basic classical Lie superalgebra and χ is regular. Then
it is possible to find a set of generators of Wχ such that even generators commute,
and the commutators of odd generators are in π(Z(g)).

6. Super-Yangian of Q(n)

Super-Yangian Y (Q(n)) was studied by M. Nazarov and A. Sergeev [21]. Recall
that Y (Q(n)) is the associative unital superalgebra over C with the countable set of
generators

T
(m)
ij where m = 1, 2, . . . and i, j = ±1,±2, . . . ,±n.

The Z2-grading of the algebra Y (Q(n)) is defined as follows:

p(T
(m)
ij ) = p(i) + p(j), where p(i) = 0 if i > 0, and p(i) = 1 if i < 0.

To write down defining relations for these generators we employ the formal series
in Y (Q(n))[[u−1]]:

(6.1) Ti,j(u) = δij · 1 + T
(1)
i,j u

−1 + T
(2)
i,j u

−2 + . . . .

Then for all possible indices i, j, k, l we have the relations

(u2 − v2)[Ti,j(u), Tk,l(v)] · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l)(6.2)

= (u+ v)(Tk,j(u)Ti,l(v)− Tk,j(v)Ti,l(u))

− (u− v)(T−k,j(u)T−i,l(v)− Tk,−j(v)Ti,−l(u)) · (−1)p(k)+p(l),

where v is a formal parameter independent of u, so that (6.2) is an equality in the
algebra of formal Laurent series in u−1, v−1 with coefficients in Y (Q(n)).
For all indices i, j we also have the relations

(6.3) Ti,j(−u) = T−i,−j(u).

Note that the relations (6.2) and (6.3) are equivalent to the following defining rela-
tions:

([T
(m+1)
i,j , T

(r−1)
k,l ]− [T

(m−1)
i,j , T

(r+1)
k,l ]) · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) =(6.4)

T
(m)
k,j T

(r−1)
i,l + T

(m−1)
k,j T

(r)
i,l − T

(r−1)
k,j T

(m)
i,l − T

(r)
k,j T

(m−1)
i,l

+ (−1)p(k)+p(l)(−T
(m)
−k,jT

(r−1)
−i,l + T

(m−1)
−k,j T

(r)
−i,l + T

(r−1)
k,−j T

(m)
i,−l − T

(r)
k,−jT

(m−1)
i,−l ),
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(6.5) T
(m)
−i,−j = (−1)mT

(m)
i,j ,

where m, r = 1, . . . and T
(0)
ij = δij .

Theorem 6.1. There exists a surjective homomorphism:

ϕ : Y (Q(1)) −→ Wχ

defined as follows:

ϕ(T
(k)
1,1 ) = (−1)kπ(e

(n+k−1)
n,1 ), ϕ(T

(k)
−1,1) = (−1)kπ(f

(n+k−1)
n,1 ), for k = 1, 2, . . . .

Proof. Note that even and odd generators of Y (Q(1)) are T
(m)
1,1 and T

(m)
−1,1, respectively,

where m = 1, 2, . . . . We are going to check that the relations (6.4) for generators of
Y (Q(1)) are preserved by ϕ. We separate this checking in the following three cases.
Case 1: Even generators. We want first to check that ϕ preserves the relation

[T
(m)
1,1 , T

(p)
1,1 ]− [T

(m−2)
1,1 , T

(p+2)
1,1 ] =

(6.6)

T
(m−1)
1,1 T

(p)
1,1 + T

(m−2)
1,1 T

(p+1)
1,1 − T

(p)
1,1 T

(m−1)
1,1 − T

(p+1)
1,1 T

(m−2)
1,1 +

− T
(m−1)
−1,1 T

(p)
−1,1 + T

(m−2)
−1,1 T

(p+1)
−1,1 + (−1)m+p−1T

(p)
−1,1T

(m−1)
−1,1 − (−1)m+p−1T

(p+1)
−1,1 T

(m−2)
−1,1 .

First, we will prove the relation

(−1)m+p
(

[e
(m+n−1)
n,1 , e

(p+n−1)
n,1 ]− [e

(m+n−3)
n,1 , e

(p+n+1)
n,1 ]

)

=

(6.7)

(−1)m+p−1
(

e
(m+n−2)
n,1 e

(p+n−1)
n,1 + e

(m+n−3)
n,1 e

(p+n)
n,1 − e

(p+n−1)
n,1 e

(m+n−2)
n,1 − e

(p+n)
n,1 e

(m+n−3)
n,1

)

+

(−1)m+p−1
(

− f
(m+n−2)
n,1 f

(p+n−1)
n,1 + f

(m+n−3)
n,1 f

(p+n)
n,1

)

+

f
(p+n−1)
n,1 f

(m+n−2)
n,1 − f

(p+n)
n,1 f

(m+n−3)
n,1 .

Note that

(6.8) [e
(m+n−1)
n,1 , e

(p+n−1)
n,1 ]e − [e

(m+n−3)
n,1 , e

(p+n+1)
n,1 ]e =

2
∑

r=1

[e
(p+n+r−2)
n,1 , e

(m+n−r−1)
n,1 ],

[e
(m+n−1)
n,1 , e

(p+n−1)
n,1 ]f − [e

(m+n−3)
n,1 , e

(p+n+1)
n,1 ]f =(6.9)

2
∑

r=1

(−1)r+1((−1)m+pf
(p+n+r−2)
n,1 f

(m+n−r−1)
n,1 + f

(m+n−r−1)
n,1 f

(p+n+r−2)
n,1 ).

Multiplying the sum of equations (6.8) and (6.9) by (−1)m+p, we obtain (6.7).
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By Lemma 4.4, the application of π to (6.7) implies that ϕ preserves the relation
(6.6).
Case 2: Odd generators. Next we will check that ϕ preserves the relation

− ([T
(m)
−1,1, T

(p)
−1,1]− [T

(m−2)
−1,1 , T

(p+2)
−1,1 ]) =

T
(m−1)
−1,1 T

(p)
−1,1 + T

(m−2)
−1,1 T

(p+1)
−1,1 − T

(p)
−1,1T

(m−1)
−1,1 − T

(p+1)
−1,1 T

(m−2)
−1,1 +

T
(m−1)
1,1 T

(p)
1,1 − T

(m−2)
1,1 T

(p+1)
1,1 + (−1)m+pT

(p)
1,1 T

(m−1)
1,1 − (−1)m+pT

(p+1)
1,1 T

(m−2)
1,1 .

We claim that the following relation holds

(−1)m+p−1
(

[f
(m+n−1)
n,1 , f

(p+n−1)
n,1 ]− [f

(m+n−3)
n,1 , f

(p+n+1)
n,1 ]

)

=

(6.10)

(−1)m+p−1
(

f
(m+n−2)
n,1 f

(p+n−1)
n,1 + f

(m+n−3)
n,1 f

(p+n)
n,1 − f

(p+n−1)
n,1 f

(m+n−2)
n,1 − f

(p+n)
n,1 f

(m+n−3)
n,1

)

+

(−1)m+p−1
(

e
(m+n−2)
n,1 e

(p+n−1)
n,1 − e

(m+n−3)
n,1 e

(p+n)
n,1

)

+

− e
(p+n−1)
n,1 e

(m+n−2)
n,1 + e

(p+n)
n,1 e

(m+n−3)
n,1 .

Indeed, use

[f
(m+n−1)
n,1 , f

(p+n−1)
n,1 ]f − [f

(m+n−3)
n,1 , f

(p+n+1)
n,1 ]f =(6.11)

−

2
∑

r=1

(f
(p+n+r−2)
n,1 f

(m+n−r−1)
n,1 − f

(m+n−r−1)
n,1 f

(p+n+r−2)
n,1 ),

[f
(m+n−1)
n,1 , f

(p+n−1)
n,1 ]e − [f

(m+n−3)
n,1 , f

(p+n+1)
n,1 ]e =(6.12)

2
∑

r=1

(−1)r+1((−1)m+pe
(p+n+r−2)
n,1 e

(m+n−r−1)
n,1 + e

(m+n−r−1)
n,1 e

(p+n+r−2)
n,1 ).

Multiplying the sum of equations (6.11) and (6.12) by (−1)m+p−1, we obtain (6.10).
The end of the proof is as in the previous case.
Case 3: Even and odd generators. Finally, we will check that ϕ preserves the relation

[T
(m)
1,1 , T

(p)
−1,1]− [T

(m−2)
1,1 , T

(p+2)
−1,1 ] =

T
(m−1)
−1,1 T

(p)
1,1 + T

(m−2)
−1,1 T

(p+1)
1,1 − T

(p)
−1,1T

(m−1)
1,1 − T

(p+1)
−1,1 T

(m−2)
1,1 +

T
(m−1)
1,1 T

(p)
−1,1 − T

(m−2)
1,1 T

(p+1)
−1,1 + (−1)m+pT

(p)
1,1 T

(m−1)
−1,1 − (−1)m+pT

(p+1)
1,1 T

(m−2)
−1,1 .
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We claim that the following relation holds

(−1)m+p
(

[e
(m+n−1)
n,1 , f

(p+n−1)
n,1 ]− [e

(m+n−3)
n,1 , f

(p+n+1)
n,1 ]

)

=

(6.13)

(−1)m+p−1
(

f
(m+n−2)
n,1 e

(p+n−1)
n,1 + f

(m+n−3)
n,1 e

(p+n)
n,1 − f

(p+n−1)
n,1 e

(m+n−2)
n,1 − f

(p+n)
n,1 e

(m+n−3)
n,1

)

+

(−1)m+p−1
(

e
(m+n−2)
n,1 f

(p+n−1)
n,1 − e

(m+n−3)
n,1 f

(p+n)
n,1

)

− e
(p+n−1)
n,1 f

(m+n−2)
n,1 + e

(p+n)
n,1 f

(m+n−3)
n,1 .

According to [21]

[F
(m)
n,1 , F

(k)
−n,1] =

m−1
∑

r=1

(F
(k+r−1)
n,1 F

(m−r)
−n,1 − F

(m−r)
n,1 F

(k+r−1)
−n,1 )+

m−1
∑

r=1

(−1)r+1(F
(k+r−1)
−n,1 F

(m−r)
n,1 + (−1)m+kF

(m−r)
−n,1 F

(k+r−1)
n,1 ).

Thus from (5.11), (5.12), (5.13) we have

[e
(m)
n,1 , f

(k)
n,1 ] =

m−1
∑

r=1

(−1)r((−1)m+ke
(k+r−1)
n,1 f

(m−r)
n,1 + e

(m−r)
n,1 f

(k+r−1)
n,1 )+(6.14)

m−1
∑

r=1

(f
(k+r−1)
n,1 e

(m−r)
n,1 − f

(m−r)
n,1 e

(k+r−1)
n,1 ).

We denote by [e
(m)
n,1 , f

(k)
n,1 ]ef and by [e

(m)
n,1 , f

(k)
n,1 ]fe the first and the second sum in (6.14),

respectively, then

[e
(m)
n,1 , f

(k)
n,1 ] = [e

(m)
n,1 , f

(k)
n,1 ]ef + [e

(m)
n,1 , f

(k)
n,1 ]fe.

Note that

[e
(m+n−1)
n,1 , f

(p+n−1)
n,1 ]ef − [e

(m+n−3)
n,1 , f

(p+n+1)
n,1 ]ef =(6.15)

2
∑

r=1

((−1)m+pe
(p+n+r−2)
n,1 f

(m+n−r−1)
n,1 + e

(m+n−r−1)
n,1 f

(p+n+r−2)
n,1 ),

[e
(m+n−1)
n,1 , f

(p+n−1)
n,1 ]fe − [e

(m+n−3)
n,1 , f

(p+n+1)
n,1 ]fe =(6.16)

2
∑

r=1

(f
(p+n+r−2)
n,1 e

(m+n−r−1)
n,1 − f

(m+n−r−1)
n,1 e

(p+n+r−2)
n,1 ).

Multiplying the sum of equations (6.15) and (6.16) by (−1)m+p, we obtain (6.13).
The proof can be finished by the same argument as in two previous cases.

�
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