
ar
X

iv
:1

40
3.

39
25

v1
 [

m
at

h.
N

A
]

 1
6

M
ar

 2
01

4

A NEW PRECONDITIONER FOR THE GENERANK PROBLEM

DAVOD KHOJASTEH SALKUYEH † , VAHID EDALATPOUR‡ , AND DAVOD HEZARI§

Abstract. Identifying key genes involved in a particular disease is a very important problem
which is considered in biomedical research. GeneRank model is based on the PageRank algorithm
that preserves many of its mathematical properties. The model brings together gene expression
information with a network structure and ranks genes based on the results of microarray experiments
combined with gene expression information, for example from gene annotations (GO). In the present
study, we present a new preconditioned conjugate gradient algorithm to solve GeneRank problem
and study its properties. Some numerical experiments are given to show the effectiveness of the
suggested preconditioner.

Key words. Gene network, Gene ontologies, Conjugate gradient, Chebyshev, Preconditioner,
M-matrix.

AMS subject classifications. 65F10, 65F50; 9208, 92D20.

1. Introduction. Identifying genes involved in a particular disease is regarded
as a great challenge in post-genome medical research. Such identification can provide
us with a better understanding of the disease. Furthermore, it is often considered
as the first step in finding treatments for it. However, the genetic bases of many
multifactorial diseases are still uncertain, and modern technologies usually report
hundreds or thousands of genes related to a disease of interest. In this context is
where gene-disease prioritization methods are of use.

The act of finding the most potentially successful genes among a variety of listed
genes has been defined as the gene prioritization problem. Considering rapid growth
in biological data sources containing gene-related information such as, for instance, se-
quence information, microarray expression data, functional annotation data, protein-
protein interaction data, and the biological and medical literature, we can see much
interest in recent years in developing bioinformatics approaches that can analyze this
data and help with the identification of important genes. The common aim in the
present study is to prioritize the genes in a way that those related to the disease under
study possibly appear at the top of ranking.

In the last decade, several methods have been proposed for ranking or prioritiz-
ing genes by relevance to a disease. Some of these methods have been collected at Gene
Prioritization Portal: http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php.
These methods fall into two broad classes. The first class of the methods mostly uses
microarray expression data; these methods focus on identifying genes that are differen-
tially expressed in a disease, and use simple statistical measures such as the t-statistic
or related classification methods in machine learning to rank genes based on this prop-
erty. The second class of methods which is more general, often making use of a variety
of data sources; these methods start with some existing knowledge of ‘training’ genes
already known to be related to the disease under study, and directly or indirectly rank
the remaining genes based on their similarity to these training genes. There are also

†Corresponding author. Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
Email: khojasteh@guilan.ac.ir, salkuyeh@gmail.com

‡Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
Email: vedalat.math@gmail.com

§Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
Email: hezari h@yahoo.com

1

http://arxiv.org/abs/1403.3925v1

2 D. K. Salkuyeh, V. Edalatpour and D. Hezari

some methods that rank or prioritize genes based on their overall likelihood of being
involved in some disease in general.

Those kinds of methods that purpose to improve an initial ranking obtained from
expression data by augmenting it with a network structure derived from other data
sources can be related to the methods of second class. For example, the GeneRank
algorithm of Morrison et al. [6], is an intuitive change of PageRank algorithm used
by the Google search engine that preserves many of its mathematical properties. It
combines gene expression information with a network structure derived from gene
annotations (gene ontologies (GO)) or expression profile correlations. In the resulting
gene ranking algorithm the ranking of genes can be obtained by solving a large linear
system of equations. Wu et al. [9, 10] showed that this is equivalent to a symmetric
positive definite linear system of equations and analyzed its properties. Then they
used the conjugate gradient (CG) algorithm in conjunction with a diagonal scaling
to solve the system. Their numerical experiments show that it is the most effective
among the tested methods. In this paper, we propose another preconditioner for the
GeneRank problem and study its properties.

Throughout this paper, we use the following notations, definitions and results.
A matrix A is called nonnegative (positive) and is denoted by A ≥ 0 (A > 0) if
each entry of A is nonnegative (positive). Similarly, for n-dimensional vectors, by
identifying them with n × 1 matrices, we can also define x ≥ 0 and x > 0. For a
square matrix A, an eigenvalue of A is denoted by λ(A) and the smallest and largest
eigenvalues of A are given by λmin(A) and λmax(A), respectively. For any nonsingular
symmetric matrix A we have Cond(A) = ‖A‖2‖A

−1‖2 = λmax(A)/λmin(A) (see [1]).
Definition 1.1. A matrix A = (aij) ∈ R

n×n is called a Z-matrix if for any
i 6= j, aij ≤ 0. An M -matrix is a Z-matrix with nonnegative inverse.

Theorem 1.2. [1] A Z-matrix A = (aij) is an M -matrix if and only if there
exists a positive vector x, such that Ax is positive.

Theorem 1.3. [8] A Hermitian matrix A is positive definite if and only if all
eigenvalues of A are positive.

The rest of the paper is organized as follows. In section 2 we introduce the
GeneRank problem in details. Section 3 is devoted for presenting our preconditioner.
In section 4 we present some numerical experiments to show the effectiveness our
preconditioner. Finally, concluding remarks are given in section 5.

2. The GeneRank problem formulation. Let the set G = {g1, ..., gn} be n
genes in a microarray. Similar to the idea of PageRank, if a gene is connected with
many highly ranked genes, it should be highly ranked as well, even if it may have a low
rank from the experimental data. In GO, if two genes share at least one annotation
with other genes, they are defined to be connected. From this idea, we can build a
gene network whose adjacent matrix is W , with entries

Wij =

{

1, gi and gj (i 6= j) have the same annotation in GO,
0, otherwise.

(2.1)

In contrast to PageRank, the connections are not directed. Thus, instead of a non-
symmetric hyperlink matrix, GeneRank considers the symmetric adjacency matrix W
of the gene network, i.e., WT = W . Let

degi =

n
∑

j=1

wij

A New Preconditioner for the GeneRank Problem 3

Note that since a gene might not be connected to any of the other genes, W may
have zero rows. Now, suppose that the diagonal matrix D is defined by D =
diag(d1, . . . , dn), where

di =

{

degi, degi > 0,
1, otherwise.

(2.2)

Then the GeneRank problem can be written as the following large scale nonsymmetric
linear system (Morrison et al. [6])

(I − αWD−1)x = (1− α)ex,(2.3)

where I denotes the n × n identity matrix. Also α is the damping factor with 0 <
α < 1, and ex = [ex1, ex2, . . . , exn]

T , with exi ≥ 0, is the absolute value of the
expression change for gi, i = 1, 2, . . . , n. The solution vector x is called GeneRank
vector, and its entries provide information about the significance of a gene. Morrison
et al suggested using α = 0.5. However, the optimal choice of α is still an interesting
topic and deserves further study.

Note that W is a sparse matrix in general. Morrison et al. [6], used a direct
method for the computation of GeneRank vector that is extremely inefficient when
the problem is very large or α is very close to 1. Yue et al [11], reformulated the
GeneRank model as a linear combination of three parts, and presented an explicit
formulation for the GeneRank vector. In Wu et al [9], the GeneRank problem was
rewritten as a large scale eigenvalue problem, and it was solved by some Arnoldi-type
algorithms. In [10], Wu and coworkers proved that the matrix D− αW is symmetric
positive definite matrix and showed that the nonsymmetric linear system (2.3) can be
rewritten as the following symmetric positive definite (SPD) linear system

(D − αW)x̂ = (1− α)ex,(2.4)

with x̂ = D−1x. Note that equation (2.4) is equivalent to equation (2.3). With
this modification, methods that are suitable for symmetric systems, can be used for
the GeneRank problem. They implemented the Jacobi preconditioner (symmetric
diagonal scaling) on D − αW . In that case, the preconditioned system is given by

(I − αD−
1

2WD−
1

2)x̄ = (1− α)D−
1

2 ex,(2.5)

with x̄ = D
1

2 x̂ = D
1

2 (D−1x) = D−
1

2x.
Wu and coworkers [10] also showed that the eigenvalues of the preconditioned

matrix are bounded as follows:

λmax(I − αD−
1

2WD−
1

2) ≤ 1 + α,(2.6)

λmin(I − αD−
1

2WD−
1

2) ≥ 1− α.(2.7)

These bounds are independent of the size of the matrix, and they only depend on the
value of a parameter used in the GeneRank model.

Recently, Benzi and Kuhlemann in [3] showed that coefficient matrices (2.3) and
(2.4) have a nice property that we introduce it here:

Theorem 2.1. Both of the matrices D−αW and I+αD−
1

2WD−
1

2 are M-matrix
for 0 < α < 1.

4 D. K. Salkuyeh, V. Edalatpour and D. Hezari

They then implemented the classical Chebyshev iteration for the GeneRank prob-
lem. It is a polynomial scheme to accelerate the convergence of the stationary iterative
method

x(k+1) = x(k) +M−1(b−Axk), k = 0, 1, . . . ,

to solve a linear system of equation Ax = b, in which M is a nonsingular matrix.
If the matrix I − M−1A is similar to a symmetric matrix with eigenvalues lying in
an interval [lmin, lmax], then the Chebyshev iteration to solve Ax = b is given by (for
more details, see [3, 4])

yk+1 =
ωk+1

2− (lmin + lmax)

{

2M−1(b −Ay(k)) + [2− (lmin + lmax)](y
(k) − y(k−1))

}

+y(k−1), k = 1, 2, . . . ,

where y(0) = x(0), y(1) = x(1) and

ωk+1 =
1

1−
w2

k

4ω2

, w2 =
2ω2

2ω2 − 1
, ω1 = 1, ω =

2− (lmin + lmax)

lmax − lmin
.

For the GeneRank problem, it is considered lmin = 1−α, lmax = 1+α, A = D−αW ,
b = ex and M = D = diag(A).

Numerical results presented in [3] show that the number of iterations of the
method is usually more than those of the CG method with the diagonal scaling.
However, the cost per iteration is much lower and leads to faster convergence in terms
of CPU time.

3. Main results. Wu et al. [9, 10] showed that coefficient matrix of linear
system (2.4) is symmetric positive definite and therefore we can use the conjugate
gradient method ([5]) to solve the system. As we know that the convergence rate
of the CG method depends on the condition number of the matrix in question, or
more generally the distribution of eigenvalues. If the eigenvalue distribution of the
preconditioned system is better than that of the original one, the convergence will be
accelerated dramatically. For this reason Wu and coworkers applied Jacobi precondi-
tioner on the system (2.4) to accelerate in convergence of the method. In this case,
the linear system (2.5) were resulted. Considering (2.6) and (2.7), we can conclude
that increasing α from 0 to 1 can cause an increase in the ratio of λmax/λmin and
therefore the coefficient matrix would be increasingly ill-conditioned and the rate of
convergence of CG expected to decrease as α increases.

From now on, for the sake of the simplicity, let Jα = αD−
1

2WD−
1

2 and Sα =
I − Jα. It is noted that the matrix Sα is the coefficient matrix of the system (2.5).
We now propose the preconditioner Mα = I + Jα for the system (2.5). In this case,
the preconditioned system takes the form

MαSαx̄ = Mαbα,(3.1)

where bα = (1−α)D−
1

2 ex. In the sequel, we investigate the properties of the proposed
preconditioner.

Theorem 3.1. For every 0 < α < 1, the matrix MαSα is symmetric positive
definite M-matrix.

Proof. Clearly, we have

Tα := MαSα = I − J2
α = I − (I − Sα)

2.

A New Preconditioner for the GeneRank Problem 5

Therefore,

λ(Tα) = 1− (1− λ(Sα))
2.

According to the relations (2.6) and (2.7) we have 0 < λ(Sα) < 2. Hence, by the
latter equation we deduce that 0 < λ(Tα) < 1. Now since Tα is a symmetric matrix
with positive eigenvalues, it follows that Tα is symmetric positive definite. Obviously,
Tα is a Z-matrix. From Theorem 2.1, Sα is an M -matrix. Therefore, by Theorem 1.2,
there exists a positive vector x such that Sαx > 0. Hence, Tαx = (I + Jα)Sαx > 0.
This shows that the matrix Tα is an M-matrix.

Lemma 3.2. If W 6= 0, then λmin(Sα) = 1− α.
Proof. Let x = (x1, . . . , xn)

T , such that

xi =

{

1, degi > 0,
0, otherwise,

for i = 1, 2, . . . , n. Obviously, we have Wx = Dx. Now, assuming y = D
1

2x 6= 0, we
get

(I − αD−
1

2WD−
1

2)y = (1− α)y,

which is equivalent to Sαy = (1 − α)y. Now by Eq. (2.7), we see that 1 − α is the
smallest eigenvalue of Sα.

Remark 3.3. In the case that W = 0, we have Sα = I and there is nothing to
investigate.

Theorem 3.4. The spectral condition number of Tα is not greater than that of
the matrix Sα, i.e.,

Cond2(Tα) ≤ Cond2(Sα).

Proof. Since both of the matrices Sα and Tα are symmetric, it is enough to prove
that

λmax(Tα)

λmin(Tα)
≤

λmax(Sα)

λmin(Sα)
.

For every eigenvalue λ(Sα) of Sα, we have λmin(Sα) ≤ λ(Sα) ≤ λmax(Sα). Then,

1− λmax(Sα) ≤ 1− λ(Sα) ≤ 1− λmin(Sα).

From Lemma 3.2, we have λmin(Sα) ≤ 1. We now consider two cases, λmax(Sα) ≥ 1
and λmax(Sα) < 1. If λmax(Sα) ≥ 1, then by Eq. (2.6) and Lemma 3.2 we have
λmax(Sα) − 1 ≤ 1 − λmin(Sα). Therefore 1 − (1 − λmax(Sα))

2 ≥ 1 − (1 − λmin(Sα))
2

and since the maximum value of 1− (1− λ(Sα))
2 is equal to 1, we get

Cond(Tα) ≤
1

1− (1 − λmin(Sα))2
≤

λmax(Sα)

λmin(Sα)
= Cond(Sα)

Now, suppose that λmax(Sα) ≤ 1. In this case, it is easy to see that

Cond(Tα) =
1− (1− λmax(Sα))

2

1− (1 − λmin(Sα))2
≤

λmax(Sα)

λmin(Sα)
= Cond(Sα)

6 D. K. Salkuyeh, V. Edalatpour and D. Hezari

Therefore, the proof of theorem is completed.

This theorem shows that the eigenvalues of the matrix Tα are clustered at least
as the matrix Sα. As we shall see, for the presented numerical experiments the
eigenvalues of Tα are more clustered than those of the matrix Sα.

Remark 3.5. From Lemma 3.2, if W 6= 0, then λmin(Sα) = 1 − α. Therefore,
according to the relation λ(Tα) = 1 − (1 − λ(Sα))

2 we have λmin(Tα) = 1 − α2.
Having in mind that 0 < λ(Tα) < 1, we deduce that 1 − α2 ≤ λ(Tα) < 1. Note that
1− α ≤ λ(Sα) ≤ 1 + α.

4. Numerical experiments. As we mentioned, Wu et al. in [10] successfully
employed the Jacobi preconditioner together with the CG algorithm for the solution
of the linear system. They have deduced that the CG method in conjunction with the
Jacobi preconditioner was faster among the tested methods for each of the presented
examples. In this section we compared the numerical results of our preconditioner
with those of the Jacobi preconditioner.

All the numerical experiments presented in this section were computed in double
precision and the algorithms are implemented in MATLAB 7.12.0 and tested on a
64-bit 1.73 GHz intel Q740 core i7 processor and 4GB RAM running windows 7.
We use the stopping criteria based on the 1-norm of the residual. That is, we stop
iterating as soon as ‖r‖1 < tol, where tol is a given tolerance. The initial guess
is the null vector. We use two different choices for ex: ex = (1

n
)e, where e is the

vector of all ones, and ex = p, where p is a randomly chosen probability vector –that
is, a random vector with entries in (0, 1). For each adjacency matrix, we use four
different values of α to form the corresponding GeneRank matrices D − αW : α =
0.5, 0.75, 0.80, 0.99. The obtained numerical results are presented in some tables. In all
the tables, “CG”, “PCG”, “Chebyshev” and “CG-Mα” are, respectively, denoted for
the CG method implemented for the system (2.4), CG method applied to the system
(2.5), Chebyshev iteration and the CG algorithm to the system (2.4) in conjunction
with the preconditioner Mα.

Example 4.1. In this example there are three adjacency matrices, w All which
is of size 4, 047× 4, 047, with 339, 596 nonzero entries, w Up which is of size 2, 392×
2, 392, with 128, 468 nonzero entries and w Down which is of size 1, 625× 1, 625 with
67, 252 nonzero entries and three expression change vectors expr data, expr dataUp
and expr dataDown. These matrices were constructed using the all three sections of
the GO, where a link is presented between two genes if they share a GO annotation.
Only genes which are up-regulated are included in w Up and only down-regulated in
w Down [6]. The data files are available from [2]. The results for the these matrices
are given in Tables 4.1, 4.2 and 4.3. In these tables (hereafter for other tables) the
number of iterations for the convergence together with the CPU time (in parenthesis)
in seconds are given. Here we mention that, in this example, the tolerance tol is
taken to be 10−14. As the numerical experiments show our preconditioner is more
effective than the Jacobi preconditioner. It seems that the number of iterations of
our method is about half of those of the CG method in conjunction with the Jacobi
preconditioner. In addition, as seen our preconditioner outperforms in terms of both
number of iterations and CPU times.

For more investigation, in Figures 4.1, 4.2 and 4.3 we depict the eigenvalues
distribution of Sα and Tα for test matrices w Down when α = 0.5, w Up when
α = 0.75 and w All when α = 0.9, respectively. As seen the eigenvalues of the Tα are
more clustered than those of Sα for all the three test matrices.

Example 4.2. In this example, we use two different types of test data for our

A New Preconditioner for the GeneRank Problem 7

0 500 1000 1500 2000
0.4

0.6

0.8

1

1.2

1.4

1.6

Eigenvalues of S
0.5

Order: 1, 2, …, 1625

M
ag

ni
tu

de
: λ

1, λ
2, …

, λ
16

25

0 500 1000 1500 2000
0.4

0.6

0.8

1

1.2

1.4

1.6

Eigenvalues of T
0.5

Order: 1, 2, …, 1625

M
ag

ni
tu

de
: λ

1, λ
2, …

, λ
16

25

Fig. 4.1. Eigenvalue distribution of S0.5 and T0.5 for the matrix w Down.

Table 4.1

Results for the w All matrix. Here ex = extr data.

α 0.50 0.75 0.80 0.99
CG 381(0.700) 441(0.772) 456(0.785) 603(1.012)
PCG 26(0.051) 39(0.082) 42(0.081) 69(0.133)
Chebyshev 23(0.030) 36(0.048) 41(0.057) 177(0.195)
CG-Mα 11(0.023) 16(0.037) 18(0.044) 30(0.064)

Table 4.2

Results for the w Up matrix. Here ex = extr dataUp.

α 0.50 0.75 0.80 0.99
CG 309(0.142) 360(0.162) 377(0.173) 488(0.221)
PCG 26(0.017) 39(0.026) 42(0.022) 70(0.033)
Chebyshev 22(0.008) 36(0.013) 41(0.014) 177(0.058)
CG-Mα 11(0.006) 16(0.011) 18(0.012) 31(0.017)

Table 4.3

Results for the w Down matrix. Here ex = extr dataDown.

α 0.50 0.75 0.80 0.99
CG 267(0.087) 310(0.091) 322(0.094) 427(0.131)
PCG 27(0.010) 40(0.013) 44(0.014) 76(0.024)
Chebyshev 22(0.007) 35(0.008) 40(0.009) 173(0.035)
CG-Mα 11(0.006) 17(0.006) 18(0.006) 32(0.013)

8 D. K. Salkuyeh, V. Edalatpour and D. Hezari

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Eigenvalues of S
0.75

Order: 1, 2, …, 2392

M
ag

ni
tu

de
: λ

1, λ
2, …

, λ
23

92

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Eigenvalues of T
0.75

Order: 1, 2, …, 2392

M
ag

ni
tu

de
: λ

1, λ
2, …

, λ
23

92

Fig. 4.2. Eigenvalue distribution of S0.75 and T0.75 for the matrix w Up.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Eigenvalues of S
0.9

Order: 1, 2, …, 4047

M
ag

ni
tu

de
: λ

1, λ
2, …

, λ
40

47

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Eigenvalues of T
0.9

Order: 1, 2, …, 4047

M
ag

ni
tu

de
: λ

1, λ
2, …

, λ
40

47

Fig. 4.3. Eigenvalue distribution of S0.9 and T0.9 for the matrix w All.

A New Preconditioner for the GeneRank Problem 9

Table 4.4

Results for the SNPa matrix. Here ex = (1

n
)e, where e is the vector of all ones.

α 0.50 0.75 0.80 0.99
CG 86(2.420) 116(3.321) 128(3.663) 469(13.321)
PCG 17(0.514) 27(0.818) 30(0.922) 91(2.738)
Chebyshev 17(0.208) 28(0.359) 31(0.384) 130(1.402)
CG-Mα 9(0.164) 13(0.213) 15(0.236) 44(0.704)

Table 4.5

Results for the SNPa matrix. Here ex = p, where p is a random probability vector.

α 0.50 0.75 0.80 0.99
CG 127(3.649) 174(5.011) 193(5.607) 721(20.411)
PCG 26(0.789) 41(1.242) 46(1.375) 139(4.203)
Chebyshev 17(0.211) 27(0.354) 30(0.352) 125(1.368)
CG-Mα 8(0.124) 13(0.209) 14(0.232) 43(0.713)

experiments. The first matrix is a SNPa adjacency matrix (single-nucleotide poly-
morphism matrix). This matrix has n = 152, 520 rows and columns, and is very
sparse with only 639,248 nonzero entries. The second type is RENGA adjacency ma-
trix (range-dependent random graph model). In our experiments we set λ = 0.9 and
β = 1, the default values in RENGA. Both of these types of matrices are tested in
[10]. The results for the SNPa matrix are given in Tables 4.4 and 4.5, and the results
for the RENGA matrix with n = 100, 000 and n = 500, 000 are given in Tables 4.6
and 4.7. In this example the tolerance tol is assumed to be 10−10. As the numeri-
cal experiments show the proposed preconditioner is more effective tahn the diagonal
scaling and Chebyshev iteration method.

5. Conclusion. In this paper, a preconditioner has been presented for the Gen-
eRank problem. Then some of its properties have been given. Finally some numerical
experiments have been presented to show the effectiveness of the proposed precondi-
tioner. As seen it does not need any CPU time to set up the preconditioner and the
preconditioner is explicitly in hand. Our numerical results show that the proposed
preconditioner is more effective than the ones presented in the literature.

Acknowledgements. We would like to thank Prof. Yimin Wei from Fudan
University for providing us the SNPa data and Prof. Michele Benzi from Emory
University to provide us the code of Chebyshv acceleration method.

REFERENCES

[1] O. Axelsson, Iterative solution methods, Cambridge University Press, Cambridge, 1996
[2] S. Agarwal and S. Sengupta, Ranking genes by relevance to a disease, Proc. LSS Comput. Syst.

Bioinform. Conf. 8 (2009) 37-46.
[3] M. Benzi and V. Kuhlemann, Chebyshev acceleration of the GeneRank algorithm, Electronic

Transactions on Numerical Analysis 40 (2013) 311-320.
[4] G.H. Golub and C.F. van Loan, Matrix Computations, 3rd edition, Johns Hopkins University

Press, Baltimore, 1996.
[5] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal

of Research of the National Bureau of Standards 49 (1952) 409-436.
[6] J. Morrison, R. Breitling, D. Higham and D. Gilbert, GeneRank: using search engine for the

analysis of microarray experiments, BMC Bioinform, 6 (2005) 233-246.

10 D. K. Salkuyeh, V. Edalatpour and D. Hezari

Table 4.6

Results for the RENGA matrices. Here ex = (1

n
)e, where e is the vector of all ones.

n = 100, 000
α 0.50 0.75 0.80 0.99
CG 43(0.789) 47(0.840) 48(0.863) 129(2.305)
PCG 14(0.262) 22(0.431) 24(0.459) 95(1.824)
Chebyshev 17(0.183) 27(0.245) 31(0.259) 127(0.905)
CG-Mα 8(0.092) 12(0.141) 14(0.168) 53(0.673)

n = 500, 000
CG 23(2.612) 27(3.006) 30(3.398) 106(12.019)
PCG 13(1.578) 20(2.453) 22(2.661) 86(10.497)
Chebyshev 17(0.901) 27(1.371) 30(1.512) 125(6.359)
CG-Mα 7(0.645) 12(1.100) 14(1.234) 50(4.671)

Table 4.7

Results for the RENGA matrices. Here ex = p, where p is arandom probability vector.

n = 100, 000
α 0.50 0.75 0.80 0.99
CG 68(1.254) 73(1.299) 75(1.337) 222(4.021)
PCG 22(0.418) 34(0.667) 39(0.732) 165(3.286)
Chebyshev 17(0.167) 26(0.255) 30(0.269) 122(0.883)
CG-Mα 8(0.093) 12(0.145) 14(0.170) 53(0.668)

n = 500, 000
CG 36(4.101) 45(5.109) 50(5.637) 200(22.676)
PCG 21(2.509) 34(4.168) 38(4.585) 163(19.841)
Chebyshev 16(0.838) 26(1.360) 29(1.455) 120(6.062)
CG-Mα 8(0.733) 12(1.094) 13(1.174) 51(4.761)

[7] Y. Saad. Iterative methods for sparse linear systems, 2nd Edition. SIAM, Philadelphia, 2003.
[8] J. Stoer, R. Bulirsch, Introduction to numerical analysis, New York: Springer-Verlag, 1980.
[9] G. Wu, Y. Zhang, and Y.Wei. Krylov subspace algorithms for computing GeneRank for the

analysis of microarray data mining. Journal of Computational Biology 17 (2010) 631646.
[10] G. Wu, W. Xu, Y. Zhang, and Y. Wei, A preconditioned conjugate gradient algorithm for

GeneRank with application to microarray data mining, Data Min. Knowl. Disc. 26 (2013)
27-56.

[11] B. Yue, H. Liang and F. Bai, Understanding the GeneRank model, IEEE 1st Int Conf Bioinform
Biomed Eng. 6-8 (2007) 248251.

