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Abstract. We study the formation of auxin peaks in a generic class of concentration-based
auxin transport models, posed on static plant tissues. Using standard asymptotic analysis we prove
that, on bounded domains, auxin peaks are not formed via a Turing instability in the active transport
parameter, but via simple corrections to the homogeneous steady state. When the active transport
is small, the geometry of the tissue encodes the peaks’ amplitude and location: peaks arise where
cells have fewer neighbours, that is, at the boundary of the domain. We test our theory and per-
form numerical bifurcation analysis on two models which are known to generate auxin patterns for
biologically plausible parameter values. In the same parameter regimes, we find that realistic tissues
are capable of generating a multitude of stationary patterns, with a variable number of auxin peaks,
that can be selected by different initial conditions or by quasi-static changes in the active trans-
port parameter. The competition between active transport and production rate determines whether
peaks remain localised or cover the entire domain. We relate the occurrence of localised patterns to
a snaking bifurcation structure, which is known to arise in a wide variety of nonlinear media but has
not yet been reported in plant models.

Keywords: auxin transport model, auxin patterns, localised patterns, snaking, numerical bifur-

cation analysis

1. Introduction. The hormone auxin plays a crucial role in plant develop-
ment [1, 2, 3, 4], yet the mechanisms through which it accumulates in certain cells and
interacts with cell growth mechanisms remain largely unclear. The patterns formed
during the growth of a plant are controlled by the local auxin concentration. For
example, it is known that the distribution of auxin maxima in the shoot apex gives
rise to the formation of primordia [5, 6, 7, 8, 10, 11]. Similarly, the distribution of
auxin in the root tip coordinates cell division and cell expansion [12, 13]. In models
of root hair initiation, intra-cellular levels and gradients of auxin concentration in-
fluence the localisation of G-proteins, which in turn promote hair formation [14]. In
addition, it is known that the distribution of auxin in the leaf primordia mediates
vascular patterning [1]. In recent years, many aspects of the molecular basis of these
mechanisms have been unraveled and mathematical models of auxin transport have
been proposed to explain growth and development [15, 16, 17, 18].

Computer simulations are often used to compare the model output with observed
data such as auxin distribution, venation patterns, growth or development. At cellular
level, carriers such as PIN-FORMED (PIN) proteins, which are localised in the cell
membrane, determine the rate and direction of auxin transport. The coordinated
activity of many cells can create peaks of auxin that drive differentiation and growth.
Various models that implement and refine these ideas have been proposed [5, 6, 7,
12, 19, 20, 21]. Such models differ primarily in the specifics of the transport and the
coupling to the cell growth and division, but a common feature is that they generate
spatially-extended patterns of auxin concentration, which have also been observed
experimentally.
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Existing transport models can be classified into two main categories, flux-based
and concentration-based, depending on how auxin influences the localization of trans-
port mediators (PINs) to form patterns. In flux-based models, first proposed in [22],
the polarization depends on the net auxin flux between neighbouring cells: the higher
the net flux towards the neighbours, the more PIN will accumulate at the membrane,
and changes in the PIN distribution determine changes in auxin fluxes. By con-
trast, in concentration-based models it is assumed that the PIN accumulation on the
membrane is caused by differences in auxin concentration between neighbouring cells.
This type of models was introduced in [5] and [7]. For other reviews on flux- and
concentration-based models we refer the reader to [24, 25, 26, 27].

In the models mentioned above, patterns are found by direct numerical simula-
tion, upon choosing control parameters within a plausible biological range. However,
there is still a large uncertainty on many of the parameter values which are often
approximated [28, 29], adopted from different systems [30] or estimated with large
error margins [31]. Furthermore, it is unclear what is the effect of systematic param-
eter variations on the generated patterns and how this relates to the behaviour of the
biological system: understanding the formation of auxin peaks from a dynamical sys-
tem standpoint is still an open problem, therefore a mathematical exploration of the
parameter variations may generate new, experimentally testable hypotheses, thereby
gaining insight into pattern formation mechanisms [1, 10, 32].

In spite of the uncertainty on experimental parameters, it is believed that active
transport is a key player in auxin patterning [29]. Transport models posses an inherent
time-scale separation: the growth hormone dynamics involve short time scales (of the
order of seconds) [53], while changes in cellular shapes and proliferation of new cells
occur on much slower time scales (hours or days) [54]. In order to determine the
distribution of auxin in the plant, it is then possible to concentrate on the fast time
scale of the hormone transport, assume a static cell structure and study the plant
tissue as a dynamical system, subject to variations in the active transport parameter.

In this paper we perform such exploration on concentration-based auxin models,
which are studied using standard bifurcation analysis techniques [33]. In particular, we
find steady states of the system and explore their dependence upon control parameters,
investigating how patterns lose or gain stability in response to parameter changes. The
aim is to predict qualitatively the distribution patterns that can occur for a certain
parameter range and to understand transitions between different types of patterns.

At present, only a few papers regard transport models as dynamical systems:
among them, Reference [23] stands out for being a systematic analysis of flux- and
concentration-based models, whose auxin patterns are studied by considering local
interactions between cells. In the present paper, we take the analysis one step further,
by finding steady states simultaneously in the whole tissue, and by studying the
important effects of its boundedness on the auxin patterns.

The main result of our analysis is that, in a large class of concentration-based
models posed on finite tissues, peaks do not arise from an instability of the homoge-
neous steady state, as it was previously reported for unbounded tissues [5, 7, 36, 37]:
on regular bounded domains, the geometry of the tissue drives the formation of small
auxin peaks, which nucleate without instabilities near the boundary.

Further, we investigate the effects of changes in the active transport coefficient,
in the diffusivity coefficient and in the auxin production coefficient for two specific
examples: the concentration-based model proposed by Smith et al. [5] and a more
recent modification studied by Chitwood et al. [34]. In these systems the localised
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peaks, determined analytically for small values of the active transport coefficient,
persist also for moderate and large values of this control parameter. We found that,
owing to their boundedness, realistic tissues can select from a multitude of patterned
configurations, characterised by a variable number of localised peaks and organised
in a characteristic snaking bifurcation diagram.

Snaking bifurcation diagrams are commonly found for localised states arising in
(systems of) nonlinear partial differential equations posed in one [38, 39, 40, 41, 42, 43],
two [44, 45] and three [46, 47] spatial dimensions, as well as in discrete [48] and non-
local systems [49, 50, 51, 52]. However, this mechanism has never been reported
for auxin models: solutions with localised peaks undergo a series of saddle-node bi-
furcations, giving rise to a hierarchy of steady states with an increasing number of
bumps. A direct consequence of this mechanism is that the resulting patterns are
robust against changes in the transport parameter and other control parameters as
found, for instance, by Sahlin et al. [36]. We argue that this mechanism could be a
robust feature in several other types of concentration-based auxin models.

The paper is structured as follows: in Section 2 we summarise our working hy-
potheses and describe the main results of the paper; in Section 3.1 we present our
calculations for a simple 1D tissue, giving a primer on bifurcation analysis for auxin
models; in Section 3.2 we generalise our results to 2D tissues, which are further dis-
cussed in Section 4; finally, we provide a more formal presentation of our general
asymptotic results in Section 5.

2. Mathematical formulation and summary of the main results. We
begin by giving a generic definition of concentration-based models, and a summary
of the main results of the paper. In concentration-based models, cells are identified
with an index i ∈ {1, . . . , n} and to each cell it is associated a set of neighbours
Ni, containing |Ni| neighbours, and a vector of m time-dependent state variables
yi(t). For instance, yi may contain the auxin concentration (m = 1) or both auxin
and PIN-FORMED1 concentrations (m = 2). Generically, the rate of change of the
concentrations is expressed as a balance between production and decay within the
cell, diffusion towards neighbouring cells and active transport, hence we study generic
concentration-based auxin models of the form

ẏi = π(yi)−δ(yi)+D
∑
j∈Ni

(yj−yi)+T
∑
j∈Ni

νji(y1, . . . ,yn)−νij(y1, . . . ,yn), (2.1)

where π, δ, are the production and decay functions, respectively, D is a diffusion
matrix, T is the active transport parameter and νij are the active transport func-
tions. In this paper we concentrate on the fast time scale of hormone transport and
hence consider plant organs as static cell structures, so the number of cells n remains
constant in time. We make two key assumptions:

Hypothesis 1 (Regular domains). Cells are arranged in a regular domain, that
is, they have all the same shape and size and they tessellate the tissue. We do not
make any assumption on the dimensionality of the domain.

Hypothesis 2 (Active transport functions). The active transport functions can
be expressed as

(νij)l = ψl(yi,yj)
ϕl(yj)∑

k∈Ni
ϕl(yk)

, for l = 1, . . . ,m, (2.2)

where the functions ψl, ϕl depend on the model choices.
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Fig. 2.1. Two mechanisms for the formation of spots, explained with bifurcation diagrams
(top) and representative patterns in 1D (centre) and 2D (bottom). Turing bifurcation (left): on
unbounded domains, or bounded domains with periodic boundary conditions, the homogeneous state
(0) is attracting for low values of the active transport parameter T (a blue arrow indicates time
evolution); when T is increased above a critical value, the flat state becomes unstable and the system
evolves towards a fully patterned state (2); states with low auxin peaks (1) may be attracting or
repelling, depending on the bifurcation type. Snaking mechanism (right): on bounded domains with
free boundary conditions, the flat state (0) exists only for T = 0; upon increasing T , we find an
attracting state with low auxin peaks at the boundary (1), followed by several other attracting states
with variable number of peaks (2, 3); the tissue is able to select from different patterns, depending
on the initial condition and on the value of T .
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Hypothesis 2 is a factorisation of the active transport functions that is met by
several models in literature [5, 7, 35, 31, 34]: active transport between cell i and j is
influenced by the respective concentrations yi and yj , but also by concentrations in the
neighbours of cell i. In Section 2.1 we introduce examples of concrete models satisfying
Hypothesis 2 and in Section 5 we derive explicit expressions for the corresponding
functions ψl, ϕl.

It is established in literature that concentration-based models are capable of re-
producing auxin patterns that are found in SAM experiments [5, 7, 6, 58, 34, 36], for
biologically realistic values of the transport parameters. In this paper we will address
the following questions: What type of patterns are generated by the class of models
described above? Do they all predict the occurrence of auxin peaks? What are the
instabilities that lead to the formation of auxin peaks? Are auxin patterns robust to
changes in the control parameters and initial conditions?

These question have been partially addressed in previous papers [5, 7, 34, 36, 6,
56, 23], where analytical results have been obtained only for particular models and
only for regular domains without boundaries, where all cells have the same number
of neighbours. In such domains a homogeneous steady state yi = y∗, satisfying the
balancing condition π(yi) = δ(yi), is known to exist for all values of T [5, 6, 7, 34, 36,
56, 37]. In domains without boundaries, the formation of peaks has been explained
in terms of a Turing bifurcation in the active transport parameter (see Figure 2.1):
peaks are formed all at once as T is varied, and they derive from an instability of the
homogeneous steady state. From a dynamical system viewpoint, however, we expect
that boundary conditions and finite domain sizes affect the formation and selection
of auxin patterns. The main result of our investigation is that the mechanism for the
formation of peaks is radically different in tissues of finite size, and in particular:

Result 1 (Homogeneous steady states). In finite domains, concentration-based
models (2.1) satisfying Hypotheses 1–2 support a homogeneous equilibrium yi = y∗ for
T = 0 but, generically, this homogeneous state is not present when T 6= 0. This result
is a direct consequence of the geometry of the domain: an inspection of Equation (2.2)
shows that the active transport terms νij contain a nested sum over the neighbours of
the cell i and, in a finite domain, the number of neighbours varies from cell to cell,
namely cells at the boundary of the regular tissue have fewer neighbours than cells
in the interior; consequently, νij − νji is generally different from 0 at the boundary,
even when yi = y∗. The conclusion is that, on finite domains, peaks can not form
with a Turing bifurcation, since the homogeneous steady state exists for T = 0, but
not for T 6= 0 (however small). For regular domains where the number of neighbours
is the same for all cells, the Turing mechanism is still possible. In addition, a Turing
bifurcation is also possible in any domain, provided that T = 0 and diffusion is used
as a bifurcation parameter. In this regime, however, the active transport is absent and
the tissue is a standard medium with reaction-diffusion mechanisms, which is not a
biologically valid hypothesis for auxin models.

Result 2 (Origin of auxin peaks). To understand how peaks are formed from
the homogeneous state we study the case of small active transport coefficients. For
0 < T � 1 and in the absence of passive transport, D = 0, the models above generate
steady states with small peaks. Such states take the form

yi = y∗ + Tξi
[
π′(y∗)− δ′(y∗)

]−1
ψ(y∗,y∗) +O(T 2) (2.3)

where the coefficients ξi depend on the number of neighbours at distance 2 from the
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ith cell1, namely

ξi = 1−
∑
j∈Ni

1

|Nj |
.

Equation (2.3) predicts that peaks are formed as small perturbations of the homoge-
neous steady state (see Figure 2.1). The amplitude of small peaks is proportional to T
and ξi. Importantly, ξi = 0 in the interior of regular domains, therefore peaks localise
at the boundary and without bifurcations, as opposed to the Turing scenario where
they form everywhere owing to an instability of y∗: the mechanism on finite domains
is purely geometric, as the location of the peaks is determined by the factors ξi.

Result 3 (Effect of passive transport). For small active transport and at the
presence of passive transport, D 6= 0, we still obtain solutions with localised peaks,
similar to the case discussed above. The location of the peaks depends again on
ξ1, . . . , ξn.

Remark 2.1 (Applicability of analytical results). Results 1–3 are valid for
generic models of the form (2.1), provided they satisfy Hypotheses 1–2. In partic-
ular, these results are valid for regular cellular arrays in any spatial dimension. The
main implication of this result is that a wide class of concentration-based models are
able to generate spontaneously auxin peaks in various geometries, irrespective of the
model specifics. A similar derivation can be done for irregular domains, albeit the
coefficients ξi depend in this case on the local cellular volumes as well as the number
of neighbours.

The analytical theory described above, which is presented in more detail in Sec-
tion 5, is valid only for small values of the active transport coefficient and does not
explain the formation of peaks in the interior of the domain [6, 36, 9]. While it is
difficult to make general analytical predictions for larger values of T , it is possible to
explore the solution landscape of specific models via numerical methods. We investi-
gated regular domains in two concrete models by Smith et al. [5] and Chitwood et
al. [34] (henceforth called the Smith model and the Chitwood model, respectively)
which satisfy Hypotheses 1–2 and will be described in detail in Section 2.1. Our com-
putations confirm the theoretical Results 1–3 and provide numerical evidence for the
following conclusions:

Result 4 (Formation of stable auxin spots in the interior). As the active trans-
port rises, the two models by Smith and Chitwood predict the formation of peaks in
the interior. Peaks are formed progressively, from the boundary towards the interior
via saddle-node bifurcations, with a characteristic snaking bifurcation diagram. From
a biological perspective, this means that the tissue can form peaks that are robust with
respect to changes in the control parameters. In addition, the tissue is capable of se-
lecting from a variety of auxin patterns, with a variable number of spots, depending
on the initial conditions and on the value of the auxin transport parameter T (see
Figure 2.1).

Result 5 (Robustness of the snaking mechanism). The scenario above is robust
to perturbations to secondary parameters, that is, solutions with localised peaks at the
boundary should be observable in experiments for which the two models are applicable,
if the active transport is inhibited with respect to passive transport.

Furthermore, in numerical calculations we are able to violate Hypotheses 1–2 and
see how this affects our results. An important conclusion is the following:

Result 6 (Irregular domains). When the Smith and the Chitwood models are

1Neighbours at distance 2 from a cell i are neighbours of the neighbours of cell i.
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posed on irregular domains, the bifurcation structure presented above persists. Auxin
peaks are formed progressively via saddle-node bifurcations, albeit they may in principle
nucleate in the interior of the domain before the boundary is filled. Furthermore, this
scenario is robust to changes in secondary parameters, so Result 5 is still valid on
irregular domains for both models.

2.1. Two models of auxin transport. We now present two models that will
be analysed in detail using the asymptotic theory of Section 5 and numerical simu-
lations. As a first example we consider the Smith model [5], which features 2 state
variables per cell, namely the indole-3-acetic acid (IAA) concentration, ai(t), and the
PIN-FORMED1 (PIN1) amount, pi(t). The model features IAA production, decay,
active and passive transport terms, whereas for PIN1 only production and decay are
included. This results in the following set of coupled nonlinear ODEs

dai
dt

=
ρIAA

1 + κIAAai
− µIAAai +

D

Vi

∑
j∈Ni

lij
(
aj − ai

)
+
T

Vi

∑
j∈Ni

[
Pji(a,p)

a2j
1 + κTa2i

− Pij(a,p)
a2i

1 + κTa2j

]
,

(2.4)

dpi
dt

=
ρPIN0

+ ρPINai
1 + κPINpi

− µPINpi, (2.5)

for i = 1, . . . , n. In this model D is a diffusion coefficient, Vi is the cellular volume,
lij = Sij/(Wi + Wj) is the ratio between the contact area Sij of the adjacent cells
i and j, and the sum of the corresponding cellular wall thicknesses Wi and Wj . In
addition, T is the active transport coefficient and Pij is the number of PIN1 proteins
on the cellular membrane of cell i facing cell j,

Pij(a,p) = pi
lij exp (c1aj)∑

k∈Ni
lik exp (c1ak)

. (2.6)

The Smith model posed on a regular domain satisfies Hypotheses 1–2 in Section 2
and the reader can find explicit expressions for the functions ϕl, ψl in Section 5.1.2.
More details on the model and simulations of realistic phyllotactic patterns can be
found in [5].

The second concentration-based transport model that will be studied below is the
more recent Chitwood model [34]. This modification of the Smith model is able to
produce stable spiral phyllotactic patterns once cell division is included. The system
also features 2 variables per cell, the IAA concentration and the PIN1 amount, and
it is given by the following set of coupled nonlinear ODEs

dai
dt

=
ρIAA

1 + κIAAai
− µIAAai +

D

Vi

∑
j∈Ni

lij
(
aj − ai

)
+
T

Vi

∑
j∈Ni

[
Pji(a,p)

exp (c2aj)− 1

exp (c2ai)
− Pij(a,p)

exp (c2ai)− 1

exp (c2aj)

]
,

(2.7)

dpi
dt

=
ρPIN0

+ ρPINai
1 + κPINpi

− µPINpi, (2.8)

for i = 1, . . . , n, where Pij are given by (2.6) and the only new parameter, c2, controls
the exponential transport. The Chitwood model posed on a regular domain also
satisfies Hypotheses 1–2, as shown in Section 5.1.2.
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Table 2.1
Control parameters for the Smith and Chitwood models (parameter values are taken from [5]

and [34]). We examine variations in T , D and ρIAA , for which we report a range of values in the
second part of the table.

Symbol Description Domain
Value

Unit
Smith et al. Chitwood et al.

c1 PIN distribution 1.099 1.099 1/µM
κ

PIN
PIN saturation 1 1 1/µM

κT Transport saturation 1
c2 Exponential transport 2D reg. 0.588 1/µM

2D irreg. 0.405 1/µM
κIAA IAA saturation 1 1 1/µM
ρ

PIN0
PIN base production 0 0 µM/h

ρPIN PIN production 1 1 1/h
µPIN PIN decay 0.1 0.1 1/h
µ

IAA
IAA decay 0.1 0.1 1/h

ρ
IAA

IAA production [0.3, 1.5] [0.7, 2.0] µM/h
D IAA diffusion [0, 1] [0, 1] µm2/h
T IAA transport coefficient 1D reg. [0, 6] µm3/h

2D reg. [0, 2] [0, 2.5] µm3/h
2D irreg. [0, 120] [0, 95] µm3/h

In the reminder of the paper we shall fix most parameters in the Smith and the
Chitwood models, and we will examine variations in the active transport parameter
T , auxin diffusion coefficient D and auxin production coefficient ρIAA. In Table 2.1 we
report a brief description of parameters for both models, together with characteristic
values and units, which are taken from [5, 34].

Remark 2.2 (Comparison with experimental parameters). The model equa-
tions 2.4–2.8 show that the transport parameters T and D are scaled by the cellular
volumes Vi: comparisons to experimental parameters and other computer simulations
available in literature should be based on the ratios T/Vi and D/Vi. Through these
ratios we implicitly specify T/D, so as to account for competition between active and
passive transports.

Remark 2.3 (Tissue types). We model 3 plant tissues: identical cubic cells ar-
ranged on a line of finite length (here and henceforth, 1D regular), identical hexagonal
prismic cells tessellating a finite square (2D regular) and irregular prismic cells tes-
sellating an almost-circular domain (2D irregular, taken from Merks et al. [55]). We
stress that the nomenclature 1D and 2D refers to the domain, not the cells, which
are assumed to have consistently assigned volumes and contact areas. We note that
cellular volumes and contact areas may change between different domains (see also
Remark 2.2).

3. Results.

3.1. A primer on the formation of auxin peaks - a 1D regular tissue.
In this section, we present in detail Results 1–5 for the Smith model posed on a
1D regular tissue, which is represented in Figure 3.1. The tissue consists of a file
of n identical cubic cells with volume V = 1µm3 and lij = 1µm. We assume that
there exist cells to the left of cell 1 and that the net proximal flux is zero, hence
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i = 1 i = 2 i = n

2.459

2.457
140 150

ai

i

n = 150

D = 0.18 µm2/h
D = 0.06 µm2/h
D = 0 µm2/h

(µM)

Fig. 3.1. Approximate solution pattern in the 1D regular tissue. Top: geometry of a one-
dimensional cellular array of identical cells; there exist cells to the left of i = 1, but the next flux
with cell 1 is 0; at i = n we have a physical boundary, therefore no cells exist to the right of cell n
and Nn = n− 1. Bottom: predicted approximate solution pattern a∗ + Tαi in the proximity of the
boundary i = n for the Smith model with n = 150 and various values of the diffusion coefficient.
Parameters: T = 3 ·10−5µm3/h, D = 1µm2/h, ρIAA = 0.85µM/h other parameters as in Table 2.1.

we prescribe Neumann boundary conditions at i = 1. We impose that there are no
cells to the right of cell n, so we use a free boundary condition2 at i = n by setting
Nn = n − 1. In this geometry, the tissue has a physical boundary only at i = n, as
illustrated in Figure 3.1, so each cell has 2 neighbours, except cell n, which has only
1 neighbour. This geometry (with periodic boundary conditions) has been studied in
other auxin-patterning simulations: it was used in reference [56] as an approximation
of a root tissue and in reference [59] to model part of a leaf, between the midvein and
the margin. In this paper, we use this geometry only as a primer to illustrate how
the asymptotic and numerical calculations are used to predict the formation of auxin
spots in concentration-based models. While the focus is on the Smith model, several
of the results presented in this section, are valid in more general models and spatial
configurations (we refer the reader to Remark 2.1 and the whole Section 2 for further
comments on the generality of these results).

3.1.1. From homogeneous to patterned solutions. The Smith model posed
on a regular domain satisfies Hypotheses 1–2 (as shown in Section 5.1.2), so we can ap-
ply the asymptotic theory in Section 5 (in particular, Lemma 5.1). On an unbounded
array (or on a bounded array with periodic boundary conditions) every cell has the
same number of neighbours, therefore the model admits the following homogeneous

2The free boundary condition at i = n should not be confused with a zero Dirichlet boundary
condition, for which we would prescribe Nn = {n− 1, n+ 1} and yn+1(t) ≡ 0.
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steady state

ai = a∗ =
−1 +

√
1 + 4κIAAρIAA/µIAA

2κIAA

,

pi = p∗ =
−1 +

√
1 + 4κPIN(ρPIN0

+ ρPINa∗)/µPIN

2κPIN

,

(3.1)

for i = 1, . . . n. However the 1D regular domain considered here is finite, so the
homogeneous solution exists only for T = 0 µm3/h, as for positive T the sums in
the transport term in (2.4) do not vanish in general (Result 1). For D = 0µm2/h
and T � 1µm3/h, Lemma 5.1 shows the existence of patterns in the form of small
deviations from the homogeneous steady state (see Section 5.1.2 for a full derivation)

ai =



a∗ for i = 1 . . . n− 2,

a∗ + T
p∗

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
(a∗)2

1 + κT (a∗)2
for i = n− 1,

a∗ − T p∗

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
(a∗)2

1 + κT (a∗)2
for i = n.

pi =



p∗ for i = 1, . . . , n− 2,

p∗ +

[
(ρPIN0

+ ρPINa
∗)κPIN

(1 + κPINp∗)2
+ µPIN

]−1
ρPIN

1 + κPINp∗
(ai − a∗) for i = n− 1,

p∗ −
[

(ρPIN0 + ρPINa
∗)κPIN

(1 + κPINp∗)2
+ µPIN

]−1
ρPIN

1 + κPINp∗
(ai − a∗) for i = n.

(3.2)
The equations above predict that, for infinitesimal values of the transport coeffi-

cient T , the perturbed solution coincides with the homogeneous solution, except for
a small peak at cell n− 1 and a small dip at cell n (see also bold curve in Figure 3.1).
In other words, peaks are present where the number of neighbours differs from the
number of neighbours in the unbounded domain, that is, where the sum in the active
transport in Equation (2.4) is nonzero (Result 2). The analysis above applies also
in the limit of slow dynamics of the PIN1 proteins: upon assuming p constant and
homogeneous in the tissue, we find that ai is as in Equation 3.2, with p∗ replaced by
p (see Section 5.1.1 for details).

We have thus established that, in regular domains, a small auxin transport coeffi-
cient T elicit low auxin peaks. Such correlation was previously reported in numerical
experiments on various models [7, 36] and we now provide a mathematical explanation
of this phenomenon.

Asymptotic calculations can also be carried out in the presence of diffusion (D 6=
0), leading to a linear system for the perturbations. In Section 5.2 we present a
derivation for generic models in generic tissues, which is then specialised for the Smith
model as an example. Quantitative results of this calculation are shown in Figure 3.1,
where we plot approximate steady states for the Smith model towards the boundary
i = n for T = 3 · 10−5µm3/h and various values of the diffusion coefficient. We
notice that, in the regime of small active transport and comparatively much bigger
diffusion coefficient, a peak is still present at the boundary. Inspecting the solid line
(D = 0 µm2/h) and the dashed lines (D = 0.06 µm2/h and D = 0.18 µm2/h) we see
that the peaks decrease in amplitude and are more spread out, as expected (Result
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Fig. 3.2. Bifurcation diagram and selected solution patterns for the Smith model posed on a row
of 150 identical cells with Neumann boundary conditions at i = 1 and free boundary conditions at i =
n (see Figure 3.1). Left: 2-norm of auxin concentration versus active transport parameter T . Right:
as the snaking bifurcation diagram is ascended, new peaks are formed from the boundary towards the
interior. Bottom-right: stable segments of the branch are found between Hopf bifurcations HP2 and
HP3, HP4 and HP5, etc. Other secondary instabilities (not shown) are present along the unstable
branches. Parameters: D = 1µm2/h, ρIAA = 0.85µM/h; other parameters as in Table 2.1.

3). As a concluding remark, we point out that these results are not influenced by
the no-flux boundary conditions specified at i = 1: the only physical boundary is at
i = n, where the number of neighbours differs from the interior.

3.1.2. Forming high peaks in the interior via snaking. We now turn to
the more interesting question of how the tissue develops high auxin peaks (Result 4)
which are observed in experiments. Once again, we illustrate our findings in the 1D
regular case and generalise in the following sections.

In realistic simulations the transport coefficient T is not necessarily small [5, 7, 29],
therefore it is interesting to explore the solution landscape when T is increased at the
presence of diffusion. This is done using numerical bifurcation analysis, that is, equi-
libria of systems (2.1) are followed in parameter space using Newton–Raphson method
and pseudo-arclength continuation [33]. Linear stability is then inferred computing
the spectrum of the Jacobian at the steady state.

In Figure 3.2 we show a branch of solutions of the Smith model for the 1D regular
domain obtained with the parameter set in Table 2.1. We start the computation from
the homogeneous solution at T = 0 and follow the pattern for increasing values of T .
As T changes, we plot the 2-norm of the auxin vector, ‖a‖2, which is a measure of
the spatial extent of the solution (the lower ‖a‖2, the more localised the pattern) and
denote stable (unstable) branches with solid (dashed) or thick (thin) lines.
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boundary conditions at i = n. The plot shows the 2-norm of the IAA concentration vector versus
the continuation parameter T . Parameters as in Figure 3.2.

The low peak found close to the boundary persists for increasing values of T
and grows steadily until we meet a first turning point (TP1). Before exploring the
diagram in full, we compare our numerical findings with the analytical predictions
of the asymptotic theory, valid for small T . The analytic asymptotic profile (3.2)
gives a relative error ‖a− (a∗+ Tα)‖2/‖a‖2 less than 0.4% for T ≤ 0.2 µm3/h, after
which higher-order terms become predominant. This is shown in Figure 3.3 where we
compare a branch of approximate solutions (magenta) to a branch of solutions to the
full nonlinear problem (blue) for D = 1µm2/h and small values of T .

As we ascend the bifurcation diagram in Figure 3.2, new peaks are formed on the
left side of the existing peaks, that is, towards the interior of the domain, until the
whole domain is filled with peaks. We note that peaks are regularly spaced, as it was
also observed in [5, 7, 57].

This bifurcation diagram resembles the one found for reaction–diffusion PDEs
posed on the real line [40, 41, 42] except that here peaks are formed at the bound-
ary rather than at the core of the domain. When peaks fill the entire domain, the
branch enters an unstable irregular regime without snaking (not shown). Branches of
solutions with peaks covering the entire domain are also present (not shown) and are
partially discussed in Section 3.1.4.

Remark 3.1 (Biological interpretation of snaking). The diagram in Figure 3.2
makes a plausible biological prediction for the formation of large peaks. A tissue
composed of a string of cells, in the presence of passive diffusion, selects auxin patterns
depending on the value of the active transport. Our analysis of the Smith model
predicts that there exist two main regimes: for small T there is a single low auxin
peak at the boundary. As T becomes larger, we enter a regime where the tissue can
select from a large variety of auxin patterns. If, for instance T ≈ 1.9µm3/h, the tissue
is able to select pattern 1, 2 or 3, which have a variable number of peaks. Therefore,
the pattern selected in experiments depends highly upon the initial conditions of the
system, similarly to what was reported by Jönsson and Krupinski [58]. As we shall
see, a slanted version of the snaking bifurcation diagram is also present in 2D domains

12



0�25

�0.6

0.6

Re(l )

Im(l )

�0.1 0.1

0.4

�0.4
Re(l )

Im(l )

-0.008 0.006

-0.2

0.2
HP1

Re(l )

Im(l )

TP1

�0.1 0.1Re(l )

0.4

�0.4

Im(l )

TP1
HP1

HP2

TP2 �0.04 0.04

0.2

�0.2

Re(l )

Im(l )

TP2 HP2

HP1

1 150i
0

0.07

1 150i

HP2

0

0.12

Fig. 3.4. Spectral computations of selected solution profiles. Top panel: spectrum of a sta-
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snaking bifurcation branch of Figure 3.2. Bottom panels: unstable eigenfunctions at HP1 and HP2.
Parameters as in Figure 3.2.

(both regular and irregular and for both the Smith and the Chitwood models).

3.1.3. Instabilities on the snaking branch. To understand if a solution pat-
tern in stable to small perturbations we study in detail the eigenvalues of the Jacobian
matrix (Result 4). The Jacobian matrix for the spatially-extended system (2.4)–(2.5)
is sparse with a characteristic block structure determined by transport and diffusion
terms (we refer the reader to [59] for a detailed description) and, for relatively small
systems such as this one, eigenvalues are computed with dense linear algebra routines.

In this example, the solution with one small peak at the boundary becomes un-
stable at a Hopf bifurcation (HP1) at T ≈ 2.1 µm3/h, closely followed by other
oscillatory instabilities and a saddle-node bifurcation (TP1) at T ≈ 2.2 µm3/h, after
which the solution remains unstable. On the snaking branch, we find that saddle-node
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Fig. 3.5. Spatio-temporal state obtained via time simulation of the Smith model posed on a one-
dimensional domain, close to the Hopf bifurcation HP1. We set T & THP1

(and other parameters
as in Figure 3.2) and use as initial condition a steady state with one peak at the boundary, obtained
for T . THP1

. A long-time periodic auxin wave travels (and new auxin peaks are recruited) from
the boundary towards the interior of the domain.

and Hopf bifurcations alternate regularly, as documented in Figure 3.2: saddle-node
bifurcations align at T ≈ 1.9 µm3/h and T ≈ 2.5 µm3/h, while Hopf bifurcations
depart from each other as patterns become less localised. In this parameter setting,
stable portions of the branch are delimited by two Hopf bifurcations, which, to the
best of our knowledge, has not been reported before for snaking in reaction–diffusion
systems. It should be noted, however, that Burke and Dawes [60] found Hopf bifurca-
tions at the bottom of the snaking branch for an extended Swift–Hohenberg equation,
which may lead to a bifurcation structure similar to the one in Figure 3.2 if secondary
parameters are varied.

In Figure 3.4 we show spectra of solutions at selected points on the branch.
Overall these spectra resemble those found in discretised advection-diffusion PDEs,
with largely negative real eigenvalues associated with diffusion terms of the governing
equations. In this context, however, increasing the number of cells does not alter the
cell spacing, hence the spectrum does not grow in the negative real direction for larger
system sizes.

We monitored spectra of localised solutions as the snaking branch was ascended
(see Figure 3.4): immediately after the Hopf bifurcation HP1, multiple eigenvalues
cross the imaginary axis, therefore several oscillatory instabilities exist between HP1

and TP1 (HP2 and TP2, etc.). In the bottom panel of Figure 3.4 we show that
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coefficient ρIAA (other parameters as in Figure 3.2). The lower the ρIAA, the wider the snaking
width and the stable branches. For sufficiently large values of ρIAA the snaking disappears and peaks
form at once on a fully stable branch.

the Hopf eigenfunction at HP1 has a maximum near the boundary and the one for
HP2 is also spatially localised. We expect that branches of time-periodic (possibly
spatially-localised) solutions emerge from the Hopf bifurcations. We have not observed
stable small-amplitude oscillations in direct numerical simulations, but we report the
existence of stable periodic states in which a temporal oscillation of the peak at i = n
initiates a wave of auxin moving towards the boundary at i = 1, with long oscillation
periods.

In Fig. 3.5 we show such a periodic solution obtained via time simulation in the
neighbourhood of HP1 (which is also visible in Figure 3.3). We set T & THP1

and
use as initial condition a steady state (with one peak at the boundary), obtained for
T . THP1 . In the resulting periodic state, auxin peaks are dynamically formed from
the tip towards the interior of the domain: we point out that the period of oscillations
(about 377 hours) is much greater than the period associated to the unstable Hopf
eigenvalues. In addition, on such long time scales it is reasonable to assume that new
cells are formed, so the geometry of the problem should change as well.

It was recently shown by Farcot and Yuan that, in one-dimensional flux-based
models with no-flux boundary conditions, active transport is sufficient to elicit auxin
oscillations [56]. In the concentration-based model considered here, oscillatory states
in regular one-dimensional arrays are also found in a regime where active transport
dominates over diffusion.

3.1.4. Changes in the auxin production parameter. We conclude this
primer on the 1D tissue by investigating the robustness of the snaking scenario de-
scribed above (Results 5). In [59] it was shown that the auxin production parameter
ρIAA has a significant influence on the solution profiles, therefore it is interesting to

15



study how changes in this parameter affect the bifurcation structure. We repeated
the numerical continuation of the Smith model for 20 values of ρIAA in the interval
[0.3 µM/h, 1.5 µM/h]. For low values of ρ

IAA
, both the oscillatory instability HP1 and

the saddle node TP1 move to the right and give rise to snaking bifurcation diagrams
with increasingly wider stable segments (see Figure 3.6). As a consequence, in biolog-
ical experiments where the auxin production was kept to a low value, the tissue would
support multiple auxin patterns for a wider range of active transport coefficients. In
the limit ρ

IAA
� µ

IAA
decay dominates over production, hence large peaks can not

be sustained and indeed we find that the solution with a single small peak at the tip
persists for very large values of T . This is in line with previous papers by Sahlin et al.
[36] and De Reuille et al. [6] where it was postulated that auxin patterning demands
a minimal level of auxin production within the tissue.

On the other hand, increasing ρIAA causes the snaking diagram to shrink and
then disappear for ρIAA ≥ 1.2 µM/h. In Figure 3.6 we show a fully stable branch for
ρIAA = 1.5 µM/h. On this branch peaks develop at once from the small-amplitude
solution, without turning points. We mention however that for ρIAA between 1.2 µM/h
and 1.3 µM/h, Hopf bifurcations are found along the non-snaking branch (not shown),
similar to what is found for the infinite domain [59].

As snaking branches distort, several types of secondary instabilities and collisions
with neighbouring branches occur. In particular, we report codimension-2 Bogdanov–
Takens bifurcations originating from the collision between TP2 and HP2, (TP4 and
HP4, TP6 and HP6, etc.) when ρIAA is varied. The existence of these codimension-2
bifurcations could also be envisaged from the spectra in Figure 3.4. These instabilities,
as the ones reported in the previous section, indicate that the tissue is capable of
sustaining oscillations and dynamical auxin patterning, as well as steady states with
multiple peaks. Dynamic states with spatio-temporal coherence (such as the one
reported in Figure 3.5) are interesting from a biological standpoint [21], as they
occur for the biologically plausible parameter values reported in Table 2.1. However,
we could not find them in 2D domains with realistic parameter values, hence we do
not discuss them further in this paper.

3.2. Two-dimensional domains. We now move to more realistic geometries
and study 2D domains with approximately square and circular boundaries, on which
we prescribe free boundary conditions. In this Section we will revisit Results 1–6 in
the 2D setting for both the Smith and the Chitwood models, so we refer the reader
to the general summary in Section 2 and the 1D primer in Section 3.1.

The methods described in the previous section apply straightforwardly to the
2D case. In the first example we consider the Smith model on a grid of 50 by 50
hexagonal prismic cells with lij = 1µm and Vi = 3

√
3/2µm3. Cells have 6 neighbours

in the interior, 3 neighbours at the left and right edges, and 4 neighbours at the top
and bottom edges. In this domain, corners are not all equal (see Figure 3.7) and
we chose this configuration intentionally, to illustrate the influence of the number of
neighbouring cells on the emerging patterns in 2D domains.

Figure 3.8 shows the values of the geometric pre-factors ξ for 2 corners of the
domain: our asymptotic analysis for D = 0 µm2/h (see the discussion in Section 3.1.1
and the generic derivation in Section 5) predicts the formation of peaks at the bound-
aries, with the highest peak at the top-left and bottom-right corners. Numerical
computations for positive D show that these peaks persist and become prominent for
increasing T (Figure 3.7, pattern 2). As in the one-dimensional case, patterns are
arranged on a snaking bifurcation branch, even though in two-dimensions the snaking
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Fig. 3.7. Bifurcation diagram and selected solution patterns for the Smith model posed on a
regular array of 50 by 50 hexagonal cells with 6 neighbours in the interior, 3 neighbours at the left
and right edges and 4 neighbours at the top and bottom edges. Larger peaks are developed initially
at the top-left and bottom-right corner (see also the values of the pre-factors ξi in Figure 3.8) and
new peaks are formed along the left and right edges, where we have fewer neighbours. Parameters:
D = 1µm2/h, ρIAA = 1.5µM/h; other parameters as in Table 2.1.

is slanted. Peaks arise initially in all four corners, then new spots are formed along
the left and right edges (where cells have fewer neighbours), and then, for sufficiently
large values of ρIAA, along the top and bottom edges. In contrast with the 1D case,
we have not found oscillatory bifurcations in this region of parameter space, so we
conclude that stable portions of the branch are now delimited by turning points (see
Figure 3.7). From a biological perspective, this means that patterns with peaks at
the boundary are more likely to be observable in experiments, as they are stable in a
wider region of parameter space.

In a second example, we consider the Chitwood model posed on the 2D regular
domain, using the parameters of Table 2.1. Remarkably, the resulting bifurcation
diagram (not shown) is analogous to the one found in Figure 3.7 for the Smith model.
As a further confirmation, we tested the robustness of the snaking mechanism to
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Fig. 3.8. Geometric pre-factors ξ at the top-left and top-right corners of the 2D regular
domain of Figure 3.7. The interior set I is now clearly visible. Peaks and dips are proportional, for
small T and D = 0, to the values of ξi. When D 6= 0 the largest peak is formed in the interior, close
to the top/left corner and a smaller one is formed in the interior, towards the top/right corner.
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Fig. 3.9. Bifurcation diagram and selected solution patterns for the Chitwood model posed
on the same domain of Figure 3.7 and a slightly larger value of the auxin production coefficient
(ρIAA = 2µM/h, D = 1µm2/h and other parameters are as in Table 2.1). A ring of peaks is
developed at the boundary, owing to the increased value of ρIAA. Other spots are formed in pairs
(pattern 2), until they fill a full row (pattern 3) and the whole domain (not shown).
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Fig. 3.10. Bifurcation diagram and selected solution patterns for the Smith model for an
almost-circular domain of 742 irregular cells (geometry taken from [55]). We find an irregular and
slanted bifurcation diagram with stable portion delimited by saddle-node bifurcations. Parameters:
D = 1µm2/h, ρIAA = 1.5µM/h; other parameters as in Table 2.1.

changes in the auxin production coefficient, as it was done for the 1D case in Figure 3.6.
We set ρIAA = 2µM/h and show in Figure 3.9 the corresponding bifurcation diagram
and solution patterns. While active transport remains responsible for the selection of
peaks towards the boundary, the interplay with auxin production allows the formation
of a ring of spots at the boundary as opposed to single spots at the corners (see pattern
1 in Figure 3.9). After the first turning point, spots are formed in pairs (pattern 2),
until they fill a full row (pattern 3) and the whole domain (not shown). As in Section
3.1.4, the auxin production coefficient has a large influence on the resulting peaks.
For this 2D regular domain, we also scanned several values of the auxin production
coefficient and confirmed that comparatively high values of ρIAA induce the formation
of peaks all-at-once (similar to top panel of Figure 3.6), hence a fully patterned tissue
is possible without a Turing bifurcation.

In the remaining 2 examples, 742 irregular prismic cells cover an almost-circular
domain in a realistic tissue with free boundary conditions (see Figure 3.10, whose
geometry has been extracted from [55]). Even though the asymptotic analysis is not
valid for irregular arrays, we expect results to be qualitatively similar if cellular vol-
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Fig. 3.11. Bifurcation diagram and selected solution patterns for the Chitwood model for an
almost-circular domain of 742 irregular cells (geometry taken from [55]). We find an irregular and
slanted bifurcation diagram with stable portion delimited by saddle-node bifurcations. Parameters:
D = 1µm2/h, ρIAA = 1.5µM/h; other parameters as in Table 2.1.

umes and contact areas do not vary greatly from cell to cell. In these examples the
number of neighbours varies over the domain; however, the cells at the boundaries
have predominantly fewer neighbours and this is where peaks are formed initially.
The bifurcation diagram is now plotted in terms of the scaled bifurcation parameter
T/〈lij〉, where 〈·〉 denotes the average in the tissue (so far we have considered cases
where 〈lij〉 = 1µm, so the following diagrams are directly comparable with the ones
above). We note that in this domain 〈lij〉 ≈ 13.26µm and 〈Vi〉 ≈ 294µm3. As in
the 2D regular cases, stable portions of the branch are enclosed between consecu-
tive saddle-nodes bifurcations and there are no oscillatory instabilities on the stable
branches. Figure 3.10 shows the results for the Smith model: as usual, peaks are
formed initially at the boundary and then fill the interior (see pattern 4), and the
slanted snaking ensures the existence of stable solutions with localised peaks in a
wide regime of the parameter T .

When we pose Chitwood model on the same irregular domain, the results are
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strikingly similar, as seen in Figure 3.11: peaks form initially at the top-left quadrant
of the circular domain (see patterns 1 and 2 in Figures 3.10 and 3.11), confirming
that it is the geometry of the tissue to drive the spots location. An inspection of
the fully patterned tissues (patterns 4 in Figures 3.10 and 3.11) reveal that model
parameters and functional forms for the active transport functions have an influence
on the size and structure of the peaks. Variations in ρ

IAA
also confirmed the trend

seen in Figure 3.6 (not shown).

4. Discussion. In this paper we investigated the origin of auxin peaks in generic
concentration-based models and proposed a robust mechanism for their formation
over short time scales, using a combination of asymptotic and numerical bifurcation
analysis.

The asymptotic calculations, valid for a class of models with identical cells and
weak active transport, show that peaks emerge as boundary corrections to the ho-
mogeneous steady state: the peak amplitude depends on the local geometry and is
higher in regions where cells have fewer neighbours, that is, next to the boundary.
Crucially, this is a direct consequence of the mathematical structure of the models
considered here (Hypotheses 1–2): since the active transport depends on the number
of neighbours at distance 2 from the ith cell via the geometric coefficients ξi, then
deviations from the homogeneous state will always appear at the boundaries, where
the number of neighbours is different from the interior of the tissue. This mechanism
is different from (and not in contrast with) the Turing bifurcation scenario reported in
previous studies on unbounded domains: on finite tissues, peaks do not emerge from
instabilities of the flat state, but they simply morph from it for low values of T . The
most immediate consequence of our mathematical analysis is that, in concentration-
based models, active transport and geometry concur to promote localisation of auxin
peaks [11].

In irregular domains, a similar asymptotic analysis can be carried out, but the
peak selection mechanism in this case also depends on the cellular volumes and contact
areas, so we can not exclude a priori that peaks will form in the interior as well as on
the boundary. A statistical characterisation of the peaks location in relation to the
variance of the cellular array is possible and should be considered in future studies.

The two models by Smith [5] and Chitwood [34] fit in the framework discussed
above and, for these systems, we have provided numerical evidence that peaks persist
for moderate and large values of the active transport rate T : large-amplitude peaks
are arranged on a snaking branch, which becomes slanted in 2D tissues. A major
implication of the numerical findings of Figures 3.10–3.11 is that localised auxin peaks
are observable: a slow experimental sweep in the active transport from low to high
values should reveal an initial localisation of the peaks, which then progressively de-
localise and fill the domain. Conversely, if the active transport is kept constant, the
tissue should be able to select from more than one pattern, depending on the initial
condition.

Since snaking is now recognised as the footprint of localisation in a wide variety
of nonlinear media, we expect that bifurcation diagrams similar to the ones shown in
this paper for the Smith and the Chitwood models might also arise generically. One
class of models that are of interest and can be analysed via numerical bifurcation
analysis are flux-based auxin models, which have not been studied in this paper.
While numerical continuation is readily applicable to such models, they are likely to
require a separate analytic treatment, as some of them do not possess the factorisation
presented in Hypothesis 2.
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Importantly, we find that the bifurcation scenario is influenced by the auxin pro-
duction rate, since the selectable configurations depend sensitively on the balance be-
tween auxin production and active transport. The results in Figure 3.6 (also confirmed
by the 2D irregular calculations of Figures 3.10 and 3.11) support the conclusion that
if auxin production rate was decreased quasi-statically, either actively or passively, the
organism would be able to switch from fully-patterned states to configurations with
few peaks at the boundary. In addition, since the parameters of the concentration-
based models considered here are scaled by cellular volumes, we expect tissues with
different cell sizes to behave similarly: in tissues with larger V , the snaking limits are
expected to occur for larger values of T , so as to keep the ratio T/V constant (and a
similar reasoning is valid for the passive transport parameter D).

The conclusion reported above are naturally limited to experiments that are well
approximated by concentration-based models, and for the plausible biological param-
eter values selected in the original papers by Smith et al. [5] and Chitwood et al.
[34]. We note that an experimental validation of the predictions presented here re-
quires the ability to detect changes in the auxin distribution during development. An
experimental technique that could help testing the predictions of these two models is
the one recently proposed by Brunoud et al. [53], which allows to visualise auxin with
high spatio-temporal resolution. We note that it would be possible to apply numerical
bifurcation analysis also to a modified model that accounted for markers’ dynamics
and auxin-sensor interactions.

A further desirable property of the experimental setup would be the ability to
stimulate auxin peaks locally (thereby changing initial conditions) and test whether
the tissue settles to a new equilibrium. In view of the large uncertainty on the pa-
rameter values of the models, we expect our predictions to agree qualitatively with
experimental results.

5. Materials and Methods. In this section we present an analytical frame-
work to construct steady state solutions featuring localised auxin peaks in generic
concentration-based models.

5.1. Asymptotic derivation of peak solutions. We begin by giving a generic
definition of concentration-based models in the absence of diffusion: as mentioned
above, several examples from literature can be cast in this form.

Definition 5.1 (Concentration-based model without diffusion). A concentration-
based model without diffusion is a set of m× n ODEs of the form

ẏi = π(yi)− δ(yi) + T
∑
j∈Ni

νji(y1, . . . ,yn)− νij(y1, . . . ,yn), i = 1, . . . , n, (5.1)

where π, δ : Rm
+ → Rm

+ , are the production and decay functions, respectively, T ∈ R+,
is the (nonnegative) active transport parameter, {1, . . . , n} are vertices of a static
undirected graph G, Ni ⊆ {1, 2, . . . , n} is the set of neighbours of cell i, containing
|Ni| elements and νij : Rm

+ × · · · × Rm
+ → Rm

+ are the active transport functions.
We will assume π, δ and νij to be smooth vector fields depending on a set of control
parameters p ∈ Rp

+, but we omit this dependence for simplicity and write, for instance,
π(yi) instead of π(yi;p).

Remark 5.1. Concrete examples of concentration based models in this form can
be found in section 5.1.1 an section 5.1.2

We now prove the following result
Lemma 5.1. Let us consider the concentration-based model (5.1) and let us sup-

pose that there exist vector-valued functions ψ : Rm
+ × Rm

+ → Rm
+ and ϕ : Rm

+ → Rm
+

22



such that

νij(y1, . . . ,yn) = ψ(yi,yj)�ϕ(yj)�
∑
k∈Ni

ϕ(yk), for all i, j = 1, . . . , n, (5.2)

where � and � denote the standard Hadamard product and division between vectors.
Further, let y∗ ∈ Rm be such that π(y∗) = δ(y∗), ψ(y∗,y∗) 6= 0 and ϕ(y∗) 6= 0, then

1. If T = 0 or all cells have the same number of neighbours, |Ni| = |N ∗|,
then the homogeneous solution (y∗, . . . ,y∗)T ∈ Rnm is a steady state for the
concentration-based model.

2. If 0 < T � 1 and cells have different number of neighbours and the Jacobian
matrix π′(y∗)−δ′(y∗) is nonsingular, then a inhomogeneous steady state (to
leading order) is given by

yi = y∗ + ξiT
[
π′(y∗)− δ′(y∗)

]−1
ψ(y∗,y∗), i = 1, . . . , n

where the coefficients ξi depend on the local properties of the cellular array,
namely

ξi = 1−
∑
j∈Ni

1

|Nj |
.

Proof. If T = 0 the statement is clearly true, so henceforth we assume T 6= 0.
Since π(y∗)−δ(y∗) = 0, the right-hand side of (5.1) vanishes for all i if |Ni| = |Nj | =
|N ∗|. On the other hand, if not all cells have the same number of neighbours and T
is small, we may seek for asymptotic steady states in the form yi = y∗+Tηi +O(T 2)
for i = 1, . . . , n and (ηi)j = O(1). A Taylor expansion of the right-hand side around
(y∗, . . . ,y∗)T ∈ Rnm gives, to leading order,

0 = π(y∗)− δ(y∗) + T [π′(y∗)− δ′(y∗)]ηi + T
∑
j∈Ni

νji(y
∗, . . . ,y∗)− νij(y∗, . . . ,y∗),

(5.3)
In order to find an expression for ηi, we evaluate the sums in (5.3):∑
j∈Ni

νji(y
∗, . . . ,y∗)− νij(y∗, . . . ,y∗)

=
∑
j∈Ni

(
ψ(y∗,y∗)�ϕ(y∗)�

∑
k∈Nj

ϕ(y∗)−ψ(y∗,y∗)�ϕ(y∗)�
∑
k∈Ni

ϕ(y∗)

)

= ψ(y∗,y∗)
∑
j∈Ni

(
1

|Nj |
− 1

|Ni|

)
,

= −ξiψ(y∗,y∗)

(5.4)

and combining (5.3) with (5.4) we obtain the assert.
Remark 5.2 (Small-amplitude peak solutions). In finite regular arrays, cells in

the interior have all the same number of neighbours, so we can use these properties
to give formal definitions of interior and boundary sets

I =

i ∈ {1, . . . , n}
∣∣∣∣∣∣1−

∑
j∈Ni

1

|Nj |
= 0

 ,

B = {1, . . . , n} \ I.
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In passing, we note that B contains in general more cells than the physical boundary.
Lemma 5.1 shows that, to leading order, steady states for small T deviate from the
homogeneous solutions only in B, where auxin peaks and dips are proportional to T
and ξi, namely

yi =

{
y∗ if i ∈ I,

y∗ + ξiT
[
π′(y∗)− δ′(y∗)

]−1
ψ(y∗,y∗) if i ∈ B.

(5.5)

Remark 5.3 (Irregular domains). Lemma 2.1 can not be applied in general if
the domain is irregular, that is, if cells have different volumes and contact lengths: if,
say, the active transport function νij depends explicitly on the cellular volume Vi and
the Vi are not all equal, then it is not possible to express νij as in (5.2). However
the theory can be extended to the case of irregular domains. We do not report this
derivation here, but note that it features, as expected, cellular volumes and contact
areas.

5.1.1. One-dimensional domain and one component per cell. As an ex-
ample, we consider the Smith model [5] with constant fixed PIN1 amount, posed on a
one-dimensional array of identical cells with volume V , Neumann boundary conditions
at i = 1 and free boundary conditions at i = n. The Neumann boundary conditions
are obtained by considering ghost cells [59], therefore boundary and interior sets are
given by I = 1, . . . , n− 2 and B = {n − 1, n}, respectively. Furthermore we denote
by p the fixed PIN concentration and apply Lemma 5.1 with m = 1, yi = ai and

π : a 7→ ρIAA

1 + κ
IAA

a
, δ : a 7→ −µIAAa,

ψ : (a, b) 7→ p

V

a2

1 + κT b2
, ϕ : a 7→ exp(c1a),

where all parameters are assumed to be strictly positive. By balancing production
and decay terms we find the positive homogeneous state

a∗ =
−1 +

√
1 + 4κIAAρIAA/µIAA

2κIAA

.

In the absence of active transport, a∗ is a stable steady state of the model since
π′(a∗) − δ′(a∗) < 0. For 0 6= T � 1µm3/h, a∗ is not a steady state since B is
nonempty and ξn−1 = −1/2, ξn = 1/2, hence we obtain, to leading order

ai =



a∗ for i = 1 . . . n− 2,

a∗ + T
p

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
(a∗)2

1 + κT (a∗)2
for i = n− 1,

a∗ − T p

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
(a∗)2

1 + κT (a∗)2
for i = n.

5.1.2. One-dimensional domain and two components per cell. The Smith
model [5] features 2 ODEs per cell. If we pose this model on a one-dimensional array
of identical cells, the graph G associated to the nodes is the same as in our previous
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example, hence B, I and ξ are unchanged. We can now apply Lemma 5.1 with m = 2,
yi = (ai, pi)

T and

π :

[
a
p

]
7→


ρIAA

1 + κIAAa

ρPIN0
+ ρPINa

1 + κPINp

 , δ :

[
a
p

]
7→
[
−µIAAa
−µPINp

]
,

ψ :

([
a
p

]
,

[
b
q

])
7→

 pV a2

1 + κT b2

0

 , ϕ :

[
a
p

]
7→
[
exp(c1a)

0

]
.

Balancing production and decay terms we find a homogeneous strictly positive
steady state for T = 0

y∗ =

[
a∗

b∗

]
=


−1 +

√
1 + 4κIAAρIAA/µIAA

2κIAA

−1 +
√

1 + 4κPIN(ρPIN0
+ ρPINa∗)/µPIN

2κPIN


which is stable since

Spec(π′(y∗)− δ′(y∗)) =

{
− ρIAAκIAA

(1 + κIAAa∗)2
− µIAA, −

(ρPIN0
+ ρPINa

∗)κPIN

(1 + κPINa∗)2
− µPIN

}
Since the parameters are assumed to be positive with the exception of ρPIN0

which is
nonnegative (see also Table 2.1 ) we do not have a zero eigenvalue.

The inverse of π′(y∗)− δ′(y∗) can be computed explicitly and for T � 1µm3/h
we obtain to leading order

ai =



a∗ for i = 1 . . . n− 2,

a∗ + T
p

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
(a∗)2

1 + κT (a∗)2
for i = n− 1,

a∗ − T p

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
(a∗)2

1 + κT (a∗)2
for i = n,

pi =



p∗ for i = 1 . . . n− 2,

p∗ + T
p

2V

[
ρPIN

1 + κPINp∗

][
(a∗)2

1 + κT (a∗)2

]
[

ρIAAκIAA

(1 + κIAAa∗)2
+ µIAA

][
(ρPIN0

+ ρPINa
∗)κPIN

(1 + κPINp∗)2
+ µPIN

] for i = n− 1,

p∗ − T p

2V

[
ρPIN

1 + κPINp∗

][
(a∗)2

1 + κT (a∗)2

]
[

ρIAAκIAA

(1 + κIAAa∗)2
+ µIAA

][
(ρPIN0

+ ρPINa
∗)κPIN

(1 + κPINp∗)2
+ µPIN

] for i = n.
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Another example of a concentration based transport model that features 2 ODEs
per cell is the Chitwood model [34]. The model is given by

π :

[
a
p

]
7→


ρIAA

1 + κIAAa

ρPIN0
+ ρPINa

1 + κPINp

 , δ :

[
a
p

]
7→
[
−µIAAa
−µPINp

]
,

ψ :

([
a
p

]
,

[
b
q

])
7→

 pV exp c2 a− 1

exp c2 b

0

 , ϕ :

[
a
p

]
7→
[
exp(c1a)

0

]
.

For the same domain as above and with m = 2 and yi = (ai, pi)
T we can apply

Lemma 5.1.
The homogeneous steady state for T = 0 is the same as for the Smith model and

for T � 1µm3/h we obtain to leading order

ai =



a∗ for i = 1 . . . n− 2,

a∗ + T
p

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
exp (c2 a

∗)− 1

exp (c2 a∗)
for i = n− 1,

a∗ − T p

2V

[
ρIAAκIAA

1 + κIAA(a∗)2
+ µIAA

]−1
exp (c2 a

∗)− 1

exp (c2 a∗)
for i = n,

pi =



p∗ for i = 1 . . . n− 2,

p∗ + T
p

2V

[
ρPIN

1 + κPINp∗

][
(a∗)2

1 + κT (a∗)2

]
[

ρIAAκIAA

(1 + κIAAa∗)2
+ µIAA

][
(ρPIN0 + ρPINa

∗)κPIN

(1 + κPINp∗)2
+ µPIN

] for i = n− 1,

p∗ − T p

2V

[
ρPIN

1 + κPINp∗

][
(a∗)2

1 + κT (a∗)2

]
[

ρIAAκIAA

(1 + κIAAa∗)2
+ µIAA

][
(ρPIN0 + ρPINa

∗)κPIN

(1 + κPINp∗)2
+ µPIN

] for i = n.

5.1.3. Two-dimensional domain of identical hexagonal cells. Lemma 5.1
also applies when the Smith or the Chitwood model are posed on a two-dimensional
array of identical hexagonal cells. In this case, the computations for y∗ are identical to
the previous example and the asymptotic derivation is also straightforward. Instead
of writing the full expressions for B, I and ξ, we refer the reader to Figure 3.8, where
the values of ξ are shown for two corners of the domain. As claimed in Section 3.1.4,
the highest peaks occur at the top-left and right-bottom corners.

5.2. Models with diffusion. We can extend the definition of concentration-
based models to the case where diffusion is present.

Definition 5.2 (Concentration-based model with diffusion). A concentration-
based model with diffusion is a set of mn ODEs of the form

ẏi = π(yi)−δ(yi)+D
∑
j∈Ni

(yj−yi)+T
∑
j∈Ni

νji(y1, . . . ,yn)−νij(y1, . . . ,yn), (5.6)
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for i = 1, . . . , n, where D ∈ Rm×m is a diagonal diffusion matrix and all other
quantities are as in Definition 5.1

Remark 5.4. Reasoning like in Lemma 5.1, we obtain yi = y∗ + Tηi + O(T 2)
where ηi satisfy

[J(y∗) +L⊗D]

η1...
ηn

 =

ξ1ψ(y∗,y∗)
...

ξnψ(y∗,y∗)

 ,
J(y) ∈ Rmn×mn is block-diagonal with blocks π′(y∗) − δ′(y∗), L ∈ Rn×n is the
Laplacian matrix associated to the graph G with Neumann boundary conditions and
⊗ denotes the Kronecker product between matrices. The operator L ⊗D is negative
semi-definite and it has a zero eigenvalue, corresponding to a constant eigenvector.
However, summing this matrix to J(y) = π′(y∗)− δ′(y∗), makes the resulting linear
operator non-singular.

In the presence of diffusion we can not directly apply the formula (5.5), even
for regular cellular arrays: owing to diffusion, cells in I will also deviate from the
homogeneous state, hence peaks and dips are not necessarily formed within B, but
may occur in interior cells that are close to the boundary. First-order corrections
for these cases can be computed analytically using Chebyshev polynomials [61] or
numerically using linear algebra routines. Even though we report below an example of
this calculation, we point out that in practice this is not necessary, since the numerical
bifurcation software gives access to the full nonlinear solution and to its linear stability.

5.2.1. One-dimensional domain with diffusion and two components per
cell. We return to the Smith model with m = 2, posed on a row of identical cells,
and we now add diffusion only in the auxin component.

The expressions for a∗ and p∗ are unchanged from Section 5.1.2, as is the first
order approximation of pi (since there is no diffusion for p). Expressions for the
first-order approximations in ai are more involved: proceeding as explained above for
generic models with diffusion, we obtain, to leading order
(

ρIAAκIAA

(1 + κ
IAA

a∗)
2 + µIAA

)


1 0 . . . . . . 0
0 1 0 . . . 0

. . .

. . .

0 . . . . . . 0 1

+
D

V


−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1





·



η1
η2
...
...
ηn

 =



ξ1ψ (a∗,p∗)
ξ2ψ2 (a∗,p∗)

...

...
ξnψn (a∗,p∗)

 =


0
...
0

1
2ψn−1 (a∗,p∗)
− 1

2ψn (a∗,p∗)

 .(5.7)

Solving this linear equation above led to the approximate solution profiles in
Figure 3.1 and the red solution branch in Figure 3.3. The same derivation and figures
can be obtained for the Chitwood model (not shown).
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