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Resilient Coordination of Networked Multiagent
Systems Based on Distributed State Emulators

Tansel Yucelen and Gerardo De La Torre

Abstract— This note studies resilient coordination of net-
worked multiagent systems in the presence of misbehaving
agents, i.e., agents that are subject to adversaries modeled
as exogenous disturbances. Apart from the existing relevant
literature that make specific assumptions on the graph topology
and/or the fraction of misbehaving agents, we present an
adaptive control architecture based on distributed state emula-
tors and show that the nominal networked multiagent system
behavior can be retrieved even if all agents are misbehaving.

A. Introduction

Although networked multiagent systems are envisioned to
autonomously function in place of humans for repetitive,
demanding, and often safety-critical missions the current
level of controls technology is incapable of providing the
needed usability and resiliency of multiagent systems. Be-
cause, the control algorithms of these systems are computed
distributively without having a centralized entity monitoring
the activity of agents, and hence, adversaries such as at-
tacks to the communication network and/or failure of agent-
wise components can easily result in system instability and
prohibit the accomplishment of system-level objectives [1].
The fragile nature of multiagent systems has triggered the
development of detection and isolation algorithms during
the last few years [2]–[7]. For example, [2] and [3] make a
specific assumption on the network connectivity (other than
the standard assumption on the connectedness of networked
agents) and [4] requires that at most a fraction of any normal
agent’s neighbors to be adversaries, or misbehaving agents,
for achieving resilient multiagent system behavior. Like
[2] and [3], a computationally expensive and not scalable
algorithm is proposed in [5] and [6] based on input observers
technique, where the effect of misbehaving agents on the
overall multiagent system performance is also quantified, and
an extension of this work is given in [7] also focusing on
the detection and isolation of misbehaving agents.

This note develops an adaptive control architecture to en-
sure resilient coordination of networked multiagent systems
in the presence of misbehaving agents. Specifically, we show
that the nominal networked multiagent system behavior can
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be retrieved with the proposed methodology that utilizes a
novel distributed state emulators. Apart from the existing
relevant literature [2]–[7] that make specific assumptionson
the graph topology and/or the fraction of misbehaving agents,
the proposed framework can achieve performance recovery
on an arbitrary but connected communication topology and
even if all agents are misbehaving.

B. Mathematical Preliminaries

The notation used in this note is fairly standard. Specif-
ically, R denotes the set of real numbers,R

n×m denotes
the set ofn × m real matrices,S

n×n

+ denotes the set of
n×n symmetric nonnegative-definite real matrices,diag(v)
denotes a diagonal matrix with scalar (or matrix) entries
given byv, In denotes then×n identity matrix,(·)T denotes
the transpose,⊗ denotes the Kronecker product, “,” denotes
the equality by definition, and1n denotes an × 1 vector
with 1 in all entries. In addition, we write‖ · ‖ for the
euclidean norm,‖ · ‖F for the Frobenius norm,λi(A) for the
i-th eigenvalue of the matrix A, spec(A) for the spectrum
of matrix A, π0(A), π+(A), and π−(A) for the number
of eigenvalues (counted with algebraic multiplicities) ofA
having zero, positive, and negative real parts, respectively,
det(A) for the determinant of A,max(·) for the maximum,
andmin(·) for the minimum.

We now introduce several results that are necessary for
the development of the main result of this note.

Lemma 1 [8]. Consider the matrix given by

M =

[

A B
0 D

]

. (1)

Then, the determinant ofM satisfies

det(M) = det(A)det(D). (2)

Lemma 2 [9]. SupposeZ(λ) = Aλ2 + Bλ + C denotes
the quadratic matrix polynomial whereA ∈ R

n×n and
C ∈ R

n×n, andA is nonsingular. IfB ∈ R
n×n is positive-

definite, thenπ+(Z) = π−(A)+π−(C), π−(Z) = π+(A)+
π+(C), and π0(Z) = π0(C), where π+(Z) + π−(Z) +
π0(Z) = 2n.

We next recall some of the basic notions from graph the-
ory and networked multiagent systems [10,11]. Specifically,
graphs are broadly used in networked multiagent systems to
encode interactions between a group of agents. Anundirected
graph G is defined by a setVG = {1, . . . , n} of nodes
and a setEG ⊂ VG × VG of edges. If the unordered pair
(i, j) ∈ EG , then nodesi are j are neighbors and the
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neighboring relation is indicated withi ∼ j. The set of
neighbors of nodei is denoted byNG(i) = {j|(i ∼ j) ∈
E(G)}. The degree of a node is given by the number of
its neighbors. Lettingdi be the degree of nodei, then the
degree matrix of a graphG, ∆(G) ∈ R

n×n, is given by
∆(G) , diag(d), d = [d1, . . . , dn]

T. The adjacency matrix
of a graphG, A(G) ∈ R

n×n, is given by

[A(G)]ij ,

{

1, if (i, j) ∈ EG ,
0, otherwise.

(3)

The Laplacian matrix of a graph,L(G) ∈ S̄
n×n
+ , plays a

central role in many graph theoretic treatments of networked
multiagent systems is given byL(G) , ∆(G)−A(G), where
the spectrum of the Laplacian for a connected, undirected
graph can be ordered as0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤
λn(L(G)), with 1n as the eigenvector corresponding to the
zero eigenvalueλ1(L(G)) andL(G)1n = 0n holds.

Networked multiagent systems can be modeled by a graph
G, where nodes and edges, represent agents and interagent
information exchange links, respectively. In particular,let
xi(t) ∈ R

N denote the state of agenti at timet ≥ 0, whose
dynamics are described by

ẋi(t) = ui(t), t ≥ 0, xi(t0) = xi0, i ∈ V(G), (4)

with ui(t) ∈ R
N being the control input of agenti. We

consider agents having dynamics of the form given by (4) to
focus the main result of this note. In addition, we focus on
the consensus problem without loss of much generality when
presenting the main contribution of this note. In particular, if
agenti is allowed to access the relative state information with
respect to its neighbors, a solution to the standard consensus
problem can be given by

ui(t) = −
∑

i∼j

(xi(t)− xj(t)), i ∈ V(G), (5)

for a connected and undirected graph (throughout this note,
we assume that the graphG is connected and undirected).
The networked multiagent system given by (4) and (5) can
now be described in the form given by

ẋ(t) = −(L(G) ⊗ IN )x(t), t ≥ 0, x(t0) = x0, (6)

where x(t) = [xT
1(t), · · · , x

T
n(t)]

T denotes the aggregated
state vector. For ease of exposition, we consider the case
of N = 1. However, all results presented in this note can be
trivially extended to the general case. Finally, considering
(6), we note that

x(t) → [(1n1
T
n/n)⊗ IN ]x0 as t → ∞, (7)

since the graphG is assumed to be connected and undirected.
That is, the networked multiagent system is said to reach a
consensus sincex1 = x2 = · · · = xn.

C. Resilient Coordination Based on State Emulators and
Adaptive Control

This section introduces the proposed adaptive control
approach based on state emulators to enable resilient co-

ordination of networked multiagent systems in the presence
of misbehaving agents. The agent dynamics given by (4) are
augmented to incorporate the effect of these misbehaviors as

ẋi(t) = ui(t) + wi, t ≥ 0, xi(t0) = xi0, i ∈ V(G), (8)

wherewi ∈ R is an unknown disturbance applied to agenti.
Notice that we represent adversaries as disturbances similar
to [12]. Specifically, we say that an agent is misbehaving if
there exists a time such thatwi 6= 0, i ∈ V(G). It should be
mentioned here that we only consider the case of constant
exogenous disturbances for the ease of exposition (using the
results of Section VI of [12], our following results can be
easily extended to the case of time-varying disturbances).

In order to mitigate the effect of these exogenous dis-
turbances, the nominal consensus protocol given by (5) is
modified as

ui(t) = −
∑

i∼j

(xi(t)− xj(t)) + ŵi, i ∈ V(G), (9)

whereŵi is an adaptive control signal, which estimates the
disturbance of agenti, and is updated as

˙̂wi(t) = α(xi(t)− x̂i(t)), t ≥ 0, ŵi(t0) = ŵi0, (10)

whereα > 0, ŵi0 = 0, and x̂i(t) is a state emulator given
by

˙̂xi(t) = −dix̂i(t)+
∑

i∼j

xj(t), t ≥ 0, x̂i(0) = x̂i0. (11)

The undisturbed response of the system is captured byx̂i(t).
However, notice that indirect disturbances from neighboring
agents still affect the emulator system. Using (8) and (11),
the dynamics of the emulator state estimate error are given
by

˙̃xi(t) = −dix̃i(t)− w̃i(t), t ≥ 0, x̃i(t0) = x̃i0, (12)

where x̃(t) , xi(t) − x̂i(t) and w̃(t) , wi − ŵi(t). In
addition, the exogenous disturbance estimate error dynamics
are given by

˙̃wi(t) = −αx̃i(t), t ≥ 0, w̃i(t0) = w̃i0. (13)

Now, the networked multiagent system can be described in
a compact form as

˙̂x(t) = −∆(G)x̂(t) +A(G)x(t), x̂(t0) = x̂0, (14)
˙̃x(t) = −∆(G)x̃(t)− w̃(t), x̃(t0) = x̃0, (15)
˙̃w(t) = αx̃(t), w̃(t0) = W̃0, (16)

where x̂(t) = [x̂1(t), . . . , x̂n(t)]
T ∈ R

n, x̃(t) =
[x̃1(t), . . . , x̃n(t)]

T ∈ R
n, w̃(t) = [w̃1(t), . . . , w̃n(t)]

T ∈ R
n,

denote the aggregated emulator state, emulator estimate error,
and disturbance estimate error, respectively. Furthermore,
(14) can be equivalently written as

˙̂x(t) = −L(G)x̂(t) +A(G)x̃(t), t ≥ 0, x̂(t0) = x̂0. (17)

Next, we consider the state transformation given by

ŷ(t) = T x̂(t) = [ẑ12(t), ẑ13(t), . . . , ĉG(t)]
T (18)



where ẑ1i(t) = x̂1(t) − x̂i(t) and ĉG(t) =
∑

i∈V(G) x̂i(t).
Under this state transformation and using (17), it follows
that

˙̂y(t) = −TLT−1ŷ(t) + TAx̃(t), t ≥ 0, ŷ(t0) = ŷ0. (19)

Furthermore, since the graph is undirected and connected,
(19) can be partitioned as

˙̂z1(t) = A1ẑ1(t) +A2x̃(t), t ≥ 0, ẑ1(t0) = ẑ10, (20)
˙̂cG(t) =

∑

i∈V(G)
dix̃i(t), ĉG(t0) = ĉG0, (21)

wherez1 = [z12, z13, . . . , z1n]
T, A1 ∈ R

n−1×n−1 andA2 ∈
R

n−1×n−1 are the matrices obtained by removing thenth

row and column fromTL(G)T−1 and the matrix obtain by
removing thenth row from TA(G), respectively.

The estimate update given by (10) requires each agent to
have access to its state,xi(t). This requirement is not needed
for the standard consensus protocol (5). However, as shown
in the following result, the modified consensus protocol (9)
allows the network multiagent system to achieve consensus
even in the presence of disturbances. Specifically, the fol-
lowing result shows that the modified consensus protocol
given by (9) results in consensus despite the presence of
disturbances. Furthermore, the estimates of the disturbances
converge to the actual exogenous disturbances ast → ∞.

Theorem. Consider the network multiagent system given
by (20), (15), and (16). Then, the solution(ẑ1(t), x̃(t), w̃(t))
is exponentially stable for all(ẑ10, x̃0, w̃0) ∈ R

n−1 × R
n ×

R
n.
Proof. Note that the system is equivalently described by

ξ̇(t) = Mξ(t), t ≥ 0, ξ(t0) = ξ0, where

M =





A1 A2 0n−1×n

0n×n−1 −∆(G) −In
0n×n−1 αIn 0n×n



 , (22)

and ξ(t) = [ẑ1(t)
T, x̃(t)T, w̃(t)T]T ∈ R

3n−1. Using Lemma
1 the spectrum ofM is described as

spec(M) = spec(A1) ∪ spec(

[

−∆(G) −In
αIn 0

]

). (23)

Since the graph is assumed to be connected the spectrum of
the Laplacian is described as

spec(−L(G)) = {0} ∪ {λ2(−L(G)), . . . , λn(−L(G))}

= {0} ∪ spec(A1) (24)

whereλi(−L(G)) < 0, ∀i ∈ {2, . . . , n}. Furthermore, note

that the characteristic polynomial of

[

−∆(G) −In
αIn 0

]

is

given asZ(λ) = λ2In + λ∆(G) + αIn. Therefore, it can
be concluded from Lemma 2 thatπ+(Z) = 0, π0(Z) = 0
andπ−(Z) = 2n. Thus,λi(M) < 0, ∀i ∈ {1, . . . , 3n − 1}.
Therefore, the system is exponentially stable for all initial
conditions andt ≥ 0. �

Notice from (14) and (21) that̃x(t) acts as a vanishing
perturbation to an ideal consensus equation. Furthermore,if
‖x̃(t)‖2 is sufficiently small, then agents not only achieve

consensus but the agreement point stays close to the original
centroid of the system – the point that would have been
reached in the undisturbed case. That is, the effect of the
disturbances on the overall system performance can be
related to‖x̃(t)‖2. In addition, α has a direct effect on
the bound of‖x̃(t)‖2. To see this, consider the energy
function E(x̃(t), w̃(t)) = 1

2 x̃
Tx̃ + 1

2α w̃
Tw̃. Taking the

time derivative yieldsĖ(x̃(t), w̃(t)) = −x̃T∆(G)x̃ ≤ 0.
Therefore,E(x̃(t), w̃(t)) ≤ E(x̃(0), w̃(0)) =

‖w̃‖2

2

2α and
‖x̃‖2 ≤ ‖w̃‖2√

α
. As α is increased, the magnitude of the

vanishing perturbation term‖x̃‖2 becomes smaller. Meaning,
during transient-time the state emulator system (14) and the
emulator centroid,̂c(t), are effected less by disturbances.
Finally, note that̂cG(t) =

∫ t

0

∑

i∈V(G) dix̃i(t) dt+ĉ0 remains
bounded sincẽx(t) exponentially converges to0.

D. Concluding Remarks

Control algorithms of networked multiagent systems are
generally computed distributively without having a central-
ized entity monitoring the activity of agents; and therefore,
adversaries such as attacks to the communication network
and/or failure of agent-wise components can easily result
in system instability and prohibit the accomplishment of
system-level objectives. Motivation from this standpoint,
we proposed a new adaptive control approach based on
distributed state emulators to guarantee a desired system-
level performance in the presence of misbehaving agents.
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