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Abstract. In this paper we find functions over bounded domains in
the 2-dimensional Euclidean space, whose graphs (in the Heisenberg
space) has constant mean curvature different from zero and taking on
(possibly) infinite boundary values over the boundary of the domain.

1. Introduction

The classical Dirichlet problem for the constant mean curvature and
minimal surfaces (H-surfaces and minimal surfaces from now on) in the
3-dimensional Euclidean space R3, consists in the determination of a func-
tion u = u(x, y) satisfying the partial differential equation

(1.1) (1 + q2)r− 2pqs + (1 + p2)t = 2H(1 + p2 + q2)3/2

in a fixed domain Ω in the (x, y)−plane, and taking on assigned continu-
ous value on the boundary of Ω.

In order to introduce the Jenkins-Sering theory, we divide the equation
(1.1) in two cases.

• For the case of minimal surfaces in R3, the Dirichlet problem was
solved by Radô in 1930, for convex domains, see [16]. Radô based
his proof on the existence theorem for the parametric problem of
least area. In [10] Jenkins and Serrin gave an alternate proof en-
tirely avoiding reference to the parametric problem.

On the other hand, it was well known that in 1934 H. F. Scherk
discovered his famous minimal surface which is a graph of a func-
tion defined over a square and taking on infinite boundary data.
More precisely, Scherk find out the surface given by

z = log cos x− log cos y, |x| < π/2, |y| < π/2.

The graph of this function is a minimal surface in R3, the function
takes on plus infinite and minus infinite boundary data on alter-
nates sides of the boundary of the square. We call this surface, the
Scherk example. This Scherk example can be seem as a solution of
the Dirichlet problem for the minimal curvature equation, taking
on infinite boundary values over the boundary of the square.
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In [10] Jenkins and Serrin developed an existence and unique-
ness theory applicable to situation in which continuity of the data is
set aside and which infinite boundary values are allowed on entire
arcs of the boundary. Fundamental for they work was the existence
of a solution of the Dirichlet problem in a convex domain with as-
signed boundary data, notice that this work generalize the Scherk
example. From now on, we call this kind of surfaces, Jenkins-Serrin
surfaces and the theory development, the Jenkins-Serrin theory.

The Jenkins-Serrin theory was extend to H×R (here H label the
2-dimensional hyperbolic space) by Nelli and Rosenberg in [13],
and to M2 ×R, where M2 is an arbitrary Riemannian surface, by
Pinheiro in [15]. And for non-compact domains, the Jenkins-Serrin
theory was treated by Mazet L., Rodríguez, M. and Rosenberg, H.
in [12].

Different of the 3-dimensional product spaces H×R and S2×R

(here S2 label the 2-dimensional Euclidean sphere), which are ho-
mogeneous and simply connected, having 4-dimensional isometry
groups, we have the Heisenberg space Nil3(τ) and the universal
cover of the space PSL2(R) (here PSl2(R) denote the preserving-
orientation isometries of the hyperbolic space H) which we denote
by P̃SL2(R, τ). For more details, see for instance [19], [4].

The Jenkins-Serrin theory for compact domains in Nil3(τ) was
treated by Ana Lucia Pinheiro in [14] and for the P̃SL2(R, τ) (in the
τ = −1/2 case) space by Rami-Younes in [20].
• On the other hand, for the case H 6= 0, the Jenkins-Serrin theory

for bounded domains was extended to R3 by Spruck in [18], for
H×R and S2 ×R by Hauswirth, Rosenberg and Spruck in [9].

For unbounded domains, the Jenkins-Serrin theory was extended
to H×R by Folha and Mello in [6], and in the case M2 ×R (here
M2 label a Hadamard surface) by Folha and Rosenberg in [8].

If we consider complete, simply connected, 3-dimensional homogeneous
manifolds having 4-dimensional isometry groups, it result open the case
H 6= 0 for bounded domains in the Heisenberg space Nil3(τ) and the
P̃Sl2(R, τ) space. As we have remarked, the fundamental fact in the
Jenkins-Serrin theory, was the existence of a solution of the Dirichlet prob-
lem with prescribed continuous boundary data, on a convex domain.
Since that in [2] Dajczer and Lira solve this Dirichlet problem for gen-
eral 3-manifolds carrying on a non-singular Killing field, we use the ex-
istence of such solution to extend the Jenkins-Serrin Theory to Nil3(τ)
in the case H 6= 0 for bounded domains. The key idea is the study
the flux of monotone increasing and decreasing sequences of solutions
of the Dirichlet problem along arcs where they diverge, we will use the
Killing submersion in order to study the geometric behaviour of such se-
quences of graphs. The Jenkins-Serrin problem for unbounded domain in
the P̃SL2(R, τ) space is treated in [7] and for a Killing Submersion, see [1].



JENKINS-SERRIN PROBLEM 3

The paper is organized as follow, in Section 2 we give the details of the
Heisenberg space Nil3(τ) seem as a Riamannian submersion over the 2-
dimensional Euclidean space R2. We prove a Maximum principle and we
cite the existence theorem of the Dirichlet problem. In Section 3, we deal
with H-sections, and establishes the Jenkins-Serrin problem as well as we
study the properties of the flux of the sequences of solutions. Finally in
Section 4, we prove the main theorems.

2. Preliminares

We denote by Nil3(τ) the 3-dimensional Lie group endowed with a left
invariant metric g. For each τ 6= 0, Nil3(τ) is a homogeneous simply
connected Riemannian manifold.

In Euclidean coordinates Nil3(τ) = (R3, g), where R3 label the 3-dimensional
Euclidean space and Nil3(τ) is endowed with the metric

(2.1) g = dx2 + dy2 + (τ(ydx− xdy) + dz)2

The Lie group Nil3(τ) is one of the eight Thurston’s geometries (see [19]),
and it is well known that there exists a Killing submersion (see [17])

π : Nil3(τ) −→ R2

(2.2) (x, y, z) 7−→ (x, y)

from Nil3(τ) into the Eucliedan 2-dimensional space R2. That is π is a
Riemannian submersion, the bundle curvature is τ and the unit vector
field along the fibers is a Killing vector field. Therefore translations along
the fibers are isometries. We denote this Killing vector field by ξ.

We call a vector field Z ∈ χ(Nil3(τ)) vertical if it is a non-zero multiple
of ξ and horizontal if g(Z, ξ) = 0.

In order to obtain an orthonormal frame on Nil3(τ), we consider the
canonical frame {e1 = ∂x, e2 = ∂y} of R2 and consider the horizontal lift
E1 and E2 of e1 and e2 respectively. Then the canonical orthonormal frame
{E1, E2, ξ} of Nil3(τ) is given by

E1 = ∂x − τy∂z, E2 = ∂y + τx∂z, ξ = ∂z.

Denote by ∇ the Riemannian connection of Nil3(τ), so

∇E1 E1 = 0 ∇E1 E2 = τE3 ∇E1 E3 = −τE2

∇E2 E1 = −τE3 ∇E2 E2 = 0 ∇E2 E3 = τE1

∇E3 E1 = −τE2 ∇E3 E2 = τE1 ∇E3 E3 = 0

[E1, E2] = 2τE3, [E2, E3] = 0 = [E1, E3]

for more details see [3], [5], [4].
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The isometry group of Nil3(τ) has dimension 4, the isometries of Nil3(τ)
are the translations generated by the Killing vector fields

F1 = ∂x + τy∂z, F2 = ∂y − τx∂z, F3 = ∂z

and the rotations about the z-axis corresponding to

F4 = −y∂x + x∂y

The translations corresponding to F1 and F2 are respectively

(x, y, z) 7−→ (x + t, y, z + τty)

and
(x, y, x) 7−→ (x, y + t, z− τtx)

where t ∈ R.

2.1. The mean curvature equation and the maximum principle. We iden-
tify the space R2 with its lift R2 × {0} ⊂ Nil3(τ) and for a given domain
Ω ⊂ R2, we also denote by Ω its lift to R2 × {0}.

To a function u ∈ C0(Ω) on Ω, we define the graph of u, denoted by
Σ(u), as being the set

(2.3) Σ(u) = {(x, y, u(x, y)) ∈ Nil3(τ); (x, y) ∈ Ω}
Throughout this paper the surface Σ(u) will have mean curvature H > 0
with respect to the upward pointing normal vector of Σ(u).

In order to obtain the normal vector N of Σ(u), consider the function

u∗ : Nil3(τ) −→ R

(x, y, z) 7−→ u∗(x, y, z) = u(x, y)
and set F(x, y, z) = z− u∗(x, y, z). Therefore, Σ(u) = F−1(0), that is Σ(u)
is the level surface of F. It is well known that the function H satisfies

(2.4) divNil3(τ)

(
∇gF
|∇gF|

)
= −2H

where divNil3(τ) and ∇g denote the divergence and gradient in Nil3(τ).
Thus, the upward pointing normal N is given by

N =
∇gF
|∇gF|

.

A straightforward computation shows

∇gF = −(ux + τy)E1 − (uy − τx)E2 + E3

hence
W2 := |∇gF| = 1 + (ux + τy)2 + (uy − τx)2|.

Using the Riemannian submersion, the function u satisfies the equation
(the mean curvature equation)

(2.5) divR2

(
α

W
∂x +

β

W
∂y

)
= 2H



JENKINS-SERRIN PROBLEM 5

where

(2.6) α = τy + ux, β = −τx + uy, and W2 = 1 + α2 + β2.

Thus, the surface Σ(u) has mean curvature function H if and only if u is a
solution of the following PDE

(2.7) LH(u) :=
1

W
[(1 + β2)uxx + (1 + α2)uyy − 2αβuxy]− 2H = 0

for α, β and W from (2.6).

Notice that

N =
1

W
(−αE1 − βE2 + E3) = Nh + Nv

where

Nh = horizontal part of N =
−G(u)

W
=

αE1 + βE2

W
and

Nv = vertical part of N =
E3

W
.

Consider two functions
u, v : Ω −→ R,

the upwards pointing normal N1 and N2 of Σ(u1) and Σ(u2) are respec-
tively

(2.8)


N1 = −G(u1)

W1
+

1
W1

E3

N2 = −G(u2)

W2
+

1
W2

E3

where Wi = W(ui), i = 1, 2.
Notice that 〈WiNi, E3〉 = 1 and

〈G(u1)− G(u2),
G(u1)

W1
− G(u2)

W2
〉 = (W1 + W2)(1− 〈N1, N2〉)

=
W1 + W2

2
|N1 − N2|2 ≥ 0(2.9)

On the other hand

G(ui) = −(uix + τy)E1 − (uiy − τx)E2

Setting

X̃i = −π∗(G(ui)) = α∂x + β∂y = (uix + τy)∂x + (uiy − τx)∂y

and

Xui =
X̃i

Wi
we conclude that

Xu1 − Xu2 = ∇0u1 −∇0u2,
where ∇0 denotes the gradient in the Euclidean space R2.
Using the Riemannian submersion (2.9) becomes

(2.10) 〈∇0u1 −∇0u2, Xu1 − Xu2〉R2 ≥ 0
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Thus, we have proved the next lemma.

Lemma 2.1. Let u1 and u2 be functions in C2(Ω), Ω ⊂ R2 and set Wi = W(ui),
i = 1, 2. Then

(2.11) 〈∇0u1 −∇0u2, Xu1 − Xu2〉 ≥ 0

with equality at a point if and only if ∇0u1 = ∇0u2.

Following the above notation, the mean curvature function H of the
surface Σ(u) satisfy the equation

(2.12) divR2(Xu) = 2H

where Xu = −π∗

(
G(u)

W

)
.

For this situation, we prove the following maximum principle.

Theorem 2.2. (Maximum principle) Consider Ω ⊂ R2 a bounded domain. Let
u, v ∈ C2(Ω) be two functions whose graphs Σ(u) and Σ(v) have the same
prescribed mean curvature H. Let E ⊂ ∂Ω be a finite set of points such that
∂Ω− E consists of smooth arcs, and suppose that u and v extend continuously to
each smooth arc of ∂Ω− E. If u ≥ v on ∂Ω, then u ≥ v on Ω.

Proof. Consider the set D = {x ∈ Ω, u(x)− v(x) < 0}. We can translate
the surfaces Σ(u) and Σ(v) in the ∂z direction to assume that u < v on
Ω− E, and by contradiction, we are supposing that D is not empty.

The boundary of D consists of proper curves in Ω which goes to points
of E. We can also assume that those curves are regular, ie. ∇0(u− v) is
nonzero on ∂D. Denote by D̂ a connected component of D and let D̂ε ⊂ D̂
be the domain such that ∂D̂ε is the set of points in ∂D̂ whose distance
from, E is greater from ε > 0, for ε small enough, together with the union
∪Cε of circular arcs contained in D̂ which are part of circles centered at
points of ∂D̂ ∩ E, having radius ε.

From the mean curvature equation (2.12), we hace∫
Dε

divR2(Xu − Xv) = 0

and by Stokes’ Theorem

(2.13) 0 =
∫

D̂ε

divR2(Xu − Xv) =
∫

∂D̂ε

〈Xu − Xv, η〉

where η is the outward unit conormal to ∂D̂ε.

From Lemma 2.1

(2.14) 〈Xu − Xv,∇0u−∇0v〉 ≥ 0

As ∇0(u− v) 6= 0 and u− v ≡ 0 on ∂D̂ε −∪Cε, and u− v < 0 on D̂ε, the
vector ∇0(u− v) is a positive multiple of η on ∂D̂ε −∪Cε. Therefore from
(2.14) ∫

∂D̂ε−∪Cε

〈Xu − Xv, η〉R2 ≥ δ > 0.
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On the other hand, on ∪Cε, we have∫
∪Cε

〈Xu − Xv, η〉 ≤
∫
∪Cε

|〈Xu − Xv, η〉| ≤ 2× length(∪Cε)

thence, making εtend to zero, we conclude that∫
ε
〈Xu − Xv, η〉 > 0,

which contradicts (2.13). Thus D is empty and u ≤ v on Ω.

�

2.2. The Dirichlet problem. In [2] Dajczer and Lira have proved the ex-
istence and uniqueness of Killing graphs with prescribed mean curvature
in Killing submersions. In our context, the surfaces Σ(u) ⊂ Nil3(τ) which
are the graph of the function

u : Ω ⊂ R2 −→ R

are Killing graphs, since they are transverse to the vertical Killing field ξ.
From now on, the surfaces Σ(u) will be called Killing graphs.

For a domain Ω ⊂ R2 with boundary Γ = ∂Ω, we denote the corre-
spondent Killing cylinders by M0 = π−1(Ω) and K = π−1(Γ). We denote
by Hcyl the inward mean curvature of K and by RicNil3(τ) the Ricci tensor
of Nil3(τ). Then it has showed in [2, Theorem 1] the following theorem.

Theorem 2.3. (The Dirichelt problem) Let Ω ⊂ R2 be a domain with compact
closure and C2,α boundary. Suppose Hcyl > 0 and

inf
Nil3(τ)

RicNil3(τ) ≥ −2 inf
Γ

H2
cyl .

Let H ∈ Cα(Ω) and φ ∈ C2,α(Γ) be given functions. If

sup
Ω
|H| ≤ inf

Γ
Hcyl .

Then, there exists a unique function u ∈ C2,α(Ω) satisfying u|Γ = φ whose
Killing graph Σ(u) has mean curvature H.

In this paper the ambient Ricci tensor in the v-direction is defined by

RicNil3(τ)(v) =
2

∑
i=1
〈R(wi, v)v, wi〉

where R is the curvature tensor and {w1, w2, v} is an orthonormal basis.

Remark 2.4. Fix a point p0 ∈ Nil3(τ) and take a unit vector v ∈ Tp0Nil3(τ).
Let Π be the plane orthogonal to the vector v. After a rotation around the
vertical fiber passing by p0, we can suppose that

Π = [E1, aE2 + bE3], a2 + b2 = 1.

That is, {E1, aE2 + bE3} is a orthonormal basis for Π and thence

v = −bE2 + aE3.
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Using the Riemannian connection ∇, we have

−2τ2 ≤ RicNil3(τ)(v) ≤ 2τ2.

Denote by Γ ⊂ R2 a piecewise C1 smooth simple Jordan curve. Taking
the parametrization

c : [a, b] −→ Γ

s 7−→ c(s) ∈ Γ

consider the geodesic curvature k(s) of Γ at the point c(s) ∈ Γ, it is well
known that when the fiber of the killing submersion are geodesic, then the
mean curvature Hcyl of the vertical cylinder π−1(Γ) is given by

Hcyl =
k(s)

2
.

From the Ricci condition in Theorem 2.3 and remark 2.4, τ must be satisfy

(2.15) τ2 ≤ inf
s

(
k(s)

2

)2

With this in mind, the Theorem 2.3 can be write in the next form.

Theorem 2.5. (The Dirichelt problem) Let Ω ⊂ R2 be a domain with compact
closure and C2,α boundary. Suppose Hcyl > 0 and H ≥ |τ| for a constant H. Let
φ ∈ C2,α(Γ) be given functions. If

2H ≤ k(s),

where k(s) denotes the geodesic curvature of Γ. Then, there exists a unique func-
tion u ∈ C2,α(Ω) satisfying u|Γ = φ whose Killing graph Σ(u) has mean curva-
ture H.

Once there, using Theorem 2.5 we can prove an important theorem for
sequences of solutions of the mean curvature equation.

Theorem 2.6. (Compactness theorem) Let {un} be a uniformly bounded se-
quences of solutions of the constant mean curvature equation (2.12) in a bounded
domain Ω. Then there exists a subsequence which converges uniformly on com-
pact subsets to a solution of (2.12) in Ω.

Proof. From Theorem 2.5, we obtain an interior estimate for the first and
second derivative as well as to the solutions of the equation (2.12). There-
fore on compact subdomains we have the equicontinuity of the second
derivatives. Consequently by Arzela-Ascoli’s Theorem, we obtain a sub-
sequence which converges uniformly on compact subsets to a solution of
(2.12) in Ω. �
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3. H-sections

A section is the image of a map

u : Ω ⊂ R2 → Nil3(τ),

such that π ◦ u = Id|Ω, where Id label the identity map restricted to the
domain Ω and π is the canonical projection from Nil3(τ) over R2. Thus,
identifying the domain Ω with its lift to R2 × {0}, we identify the section
u with the Killing graph Σ(u) and by simplicity we denote this surface by
Σu.

In this section we are going to consider sections u : Ω ⊂ R2 → Nil3(τ)
whose Killing graph Σu has constant mean curvature (CMC-graphs) H.
We call such Killing graphs, H-sections or H-surfaces. For a piece of curve
γ ⊂ B, we denote by k(γ) its geodesic curvature. It has showed in [17,
Theorem 3.3] the following theorem.

Theorem 3.1. Let π : Nil3(τ)→ R2 the Killing submersion and let

u : Ω→ Nil3(τ)

be an H-section over a domain Ω ⊂ R2. Let U0 be a neighbourhood of an arc
γ ⊂ ∂Ω and ι : U0 → Nil3(τ) a section.
Assume that for any sequence (xn) of Ω which converge to a point x ∈ γ, the
height of u(xn) goes to +∞, that is, u(xn)− ι(xn) → +∞, then γ is a smooth
curve with k(γ) = 2H. If H > 0, then γ is convex with respect to Ω if and
only if, the mean curvature vector

−→
H of Σu points up along Σu. Moreover, Σu

converges to the vertical H-cylinder π−1(γ) with respect to the Ck-topology, for
any k ∈N.

As a consequence of this theorem, we prove the following lemma.

Lemma 3.2. Let u be a solution of (2.12) in a domain Ω bounded in part by an
arc γ and suppose that m ≤ u ≤ M on γ. Then, there is a constant c = c(Ω)
such that for any compact C2 sub-arc γ′ ⊂ γ,

(i) If k(γ′) ≥ 2H, with strict inequality except for isolated points, there is a
neighbourhood V of γ′ in Ω such that

u ≥ m− c

in V.
(ii) If k(γ′) > −2H, there is a neighbourhood V of γ′ in Ω such that

u ≤ M + c

in V.

Proof. First suppose that k > 2H on some sub-arc γ′ ⊂ γ, let p0 be the
middle point of γ′ and consider the curve γ′1 tangent to γ′ at the point p0
having 2H < k(γ′1) < k (with respect to the interior normal to Ω), notice
that γ′ is outside of Ω.
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Let Γ be the curve joining the endpoints o γ′1 having curvature k(γ′1)
with respect to the outward pointing unit normal vector to Ω. Finally
consider the sub-arc Γ′ ⊂ Γ which lies in Ω. The sub-arc Γ′ intersects the
arc γ′ in two points, these two points determine a segment of γ′, which we
will call γ′ again. Now consider the domain ∆ ⊂ Ω bounded by Γ′ and γ′,
where k(γ′) > 2H and k(Γ′) > 2H wit respect to the interior unit normal
of ∆.

Claim 3.3. The function u = u|Γ′ satisfies |u| ≤ C, for some constant C.

Proof of the Claim. Denote by Σu the graph of u over ∆. As Σu is trans-
verse to the Killing field ξ, then Σu is stable, therefore we have curvature
estimates.

Now suppose that there is a sequence of points (pn) in ∆ such that u(pn)
goes to −∞. Then the tangent planes Tu(pn)Σu becomes vertical when
n goes to +∞. Using the curvature estimates, we obtain a small fixed
δ > 0, such that Σu is locally the graph of a function over a ball of radius
δ, centered at the origin of Tu(pn)Σu. From Theorem 3.1, Γ′ must have
curvature k(Γ′) = −2H which contradicts our assumption, analogously in
the case u(pn) goes to +∞, we get a contradiction, proving the claim.

It was shown in [2], that the Dirichlet problem{
L(u) = 2H, in ∆
u|Γ′ = C, u|γ′ = m

has a sub-solution, so there is a constant c = c(Ω) such that

u ≥ m− c.

On the other hand, for the case (ii), suppose there exists a decreasing
sequence {Vn} of neighbourhood of γ, that is Vn ⊃ Vn+1, such that for
each n, there exists a point pn ∈ Vn with u(pn) = un > n. Notice that the
mean curvature vector is pointing upwards and the graph of the function
u has constant mean curvature H. Using curvature estimates, we obtain
a graph Σun over the tangent plane Tu(pn)Σ(u), so from Theorem 3.1, Σun

converges to the vertical cylinder π−1(γ), thus γ must have constant geo-
desic curvature −2H, which is a contradiction. This completes the proof
of the lemma.

�

3.1. The Jenkins-Serrin problem. We are going assume that H > 0 with
respect to the upward unit normal of the Killing surface Σu. Then if u
tends to +∞ for any approach to a boundary arc γ, necessarily the cur-
vature k(γ) = 2H is constant, while if u tends to −∞ on γ, k(γ) = −2H.
Thus we must deal with non-convex domains Ω with ∂Ω piecewise C2

and consists of three set of open arcs {Ai}, {Bi} and {Ci} satisfying
k(Ai) = 2H, k(Bi) = −2H and k(Ci) ≥ 2H respectively. The Jenkins-Serrin
problem consist in to find a solution of (2.12) in Ω taking on the boundary
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values +∞ on Ai, −∞ on the Bi and arbitrary continuous boundary data
on the Ci.

In order to give a precise announcement of the Jenkins-Serrin problem,
we consider the following definitions.

Definition 3.4. (Admissible domain) We say that a bounded domain Ω is
admissible if it is simply connected and its ∂Ω is piecewise C2 and consists
of three set of C2 open arcs {Ai}, {Bi} and {Ci} satisfying k(Ai) = 2H,
k(Bi) = −2H and k(Ci) ≥ 2H respectively (with respect to the interior of
Ω). We suppose that no two of the arcs Ai and no two of the arcs Bi have
a common endpoint.

The Jenkins-Serrin problem is defined in the next definition.

Definition 3.5. (The Jenkins-Serrin problem) Given an admissible domain
Ω, the Jenkins-Serrin problem is to find a solution of (2.12) in Ω which
assumes the value +∞ on each Ai, −∞ on each Bi and assigned continuous
data on each of the open arcs Ci. Note that the continuous data are allowed
to become unbounded at the endpoints.

Remark 3.6. A solution of the Jenkins-Serrin problem is called a Jenkins-
Serrin solution.

Definition 3.7. Let Ω be an admissible domain. We say that P is an admis-
sible polygon if P is a simply domain contained in Ω with ∂P piecewise
smooth consisting of arcs of constant curvature k = ±2H with vertices
chosen from among the endpoints of the families {Ai}, {Bi} and {Ci}.
For an admissible P, let α(P) and β(P) be the total length of the arcs ∂P
belonging to {Ai} and {Bi} respectively. Finally, let l(P) be the perimeter
of P and A(P) be the area of P.

3.2. Flux formulas. In this section, we deal with flux formulas for H-
sections which are the crucial tool to obtain the Jenkins-Serrin solution
of the Jenkins-Serrin problem.

We have denoted by Xu the negative of the projection via π of the hori-
zontal part of the normal vector N.
Let u ∈ C2(Ω) ∩ C1(Ω) be a solution of (2.12) in a domain Ω. Then, inte-
grating (2.12) over Ω gives

(3.1) 2HA(Ω) =
∫

∂Ω
〈Xu, ν〉ds

where A(Ω) denotes the area of Ω and ν is the outer conormal to ∂Ω. The
right hand integral in (3.1) is called the f lux of u across Ω. Let γ be a
subarc of ∂Ω (homeomorphic to [0, 1]). Even if u is not differentiable on γ
we can define the flux of u across γ as follows.

Definition 3.8. Choose ζ to be a simple smooth curve in Ω so that γ ∪ ζ
bounds a simple connected domain ∆ζ . We then define the flux of u across



12 CARLOS PEÑAFIEL

γ to be

(3.2) Fu(γ) = 2HA(∆ζ)−
∫

ζ
〈Xu, ν〉ds.

Notice that the integral in (3.2) is well defined as an improper integral.
To see that, this definition is independent of ζ, let ζ ′ be another choice of
curve and consider the 2-chain R with oriented boundary ζ ′ − ζ. By the
Divergence Theorem and equation (2.12) we have

2HA(∆ζ ′)− 2HA(∆ζ) =
∫

ζ ′
〈Xu, ν〉ds−

∫
ζ
〈Xu, ν〉ds.

Therefore, the definition makes sense. Thus, if u ∈ C1(Ω ∪ γ), then

Fu(γ) =
∫

γ
〈Xu, ν〉ds.

Thus, we obtain the following lemma.

Lemma 3.9. Let u be a solution of (2.12) in a domain Ω and let ζ be a piecewise
C1 curve in Ω. Then

2HA(Ω) =
∫

∂Ω
〈Xu, ν〉ds and |

∫
ζ
〈Xu, ν〉ds| ≤ |ζ|.

Now we will prove some interesting lemmas.

Lemma 3.10. Let Ω be a domain bounded in part by a piecewise C2 arc ζ satis-
fying k(ζ) ≥ 2H. Let u be a solution of (2.12) in Ω which is continuous in ζ.
Then

(3.3) |
∫

ζ
〈Xu, ν〉ds| < |ζ|.

Proof. It is suffices to prove (3.3) for a small subarc γ of ζ. To this end let
p ∈ ζ and let Ωε = Ω∩ Bε(p). Then by the Theorem 2.5, there is a solution
v of (2.12) in Ωε with v = u + 1 on γ and v = u on the remainder of the
boundary. Set w = v− u, then by Lemma 2.1

0 <
∫

Ωε

〈∇0w, Xv − Xu〉dv =
∫

γ
〈Xv − Xu, ν〉ds.

Thence Fu(γ) < Fv(γ) ≤ |γ|. �

Lemma 3.11. Let Ω be a domain bounded in part by an arc γ and let u be a
solution of (2.12) in Ω. Then,

(i) if u tends to +∞ on γ, we have
∫

γ〈Xu, ν〉ds = |γ|,
(ii) if u tends to −∞ on γ, we have

∫
γ〈Xu, ν〉ds = −|γ|.

Proof. Suppose u → +∞ on γ. Notice that the upwards normal vector N
on the surface Σu is becoming horizontal when we approach of γ. Then at
points sufficiently near to γ, we have

〈Xu, ν〉 ≥ 1− ε,
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where ν is the outer conormal to γ ⊂ ∂Ω, and ε > 0 small enough. Con-
sequently ∫

γ
〈Xu, ν〉ds ≥

∫
γ
(1− ε)ds,

which implies ∫
γ
〈Xu, ν〉ds ≥ |γ|.

On the other hand, if u→ −∞ on γ, we have

(3.4) 〈Xu, ν〉 ≤ −1 + ε,

at points sufficiently near γ, and for ε > 0 small enough.

As 〈Xu, ν〉 < 0, Lemma (3.9) implies

(3.5) Fu(γ) ≥ −|γ|.

Now from (3.4) ∫
γ
〈Xu, ν〉ds ≤

∫
γ
(−1 + ε)ds

for all ε > 0, small enough. Thence

(3.6) Fu(γ) ≤ −|γ|.

We conclude from (3.5) and (3.6) that Fu(γ) = −|γ|. �

The following lemma is a simple extension of Lemma 3.11.

Lemma 3.12. Let Ω be a domain bounded in part by an arc γ and let {un} be a
sequence of solutions of (2.12) in Ω with each un continuous on γ. Then

(i) if the sequence tends to +∞ con compact subsets of γ while remaining
uniformly bounded on compact subsets of Ω, we have

lim
n−→+∞

∫
γ
〈Xun , ν〉ds = |γ|

(ii) if the sequence tends to −∞ con compact subsets of γ while remaining
uniformly bounded on compact subsets of Ω, we have

lim
n−→+∞

∫
γ
〈Xun , ν〉ds = −|γ|

We also need the next lemma.

Lemma 3.13. Let Ω be a domain bounded in part by an arc γ with k(γ) = 2H
and let {un} be a sequence of solutions of (2.12) in Ω with each un continuous on
γ. Then if the sequence diverges to −∞ uniformly on compact subsets of Ω while
remaining uniformly bounded on compact subsets of γ, we have

lim
n−→+∞

∫
γ
〈Xu, ν〉ds = |γ|.
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Proof. Note that the sequence {Xun = −π∗(Nh
un
)} converges uniformly to

the outer normal ν on compact subsets of Ω. This implies

(3.7) lim
n−→+∞

〈Xun , ν〉 = 1

We obtain the lemma by integrating equation (3.7). �

3.3. Divergence lines. Now we focus our attention in the study of con-
vergence of H-sections {un} over a domain Ω ⊂ R2.

Remember that, we have denoted by Gum the gradient in Nil3(τ) of the
function un. We beginning this section with the next lemma.

Lemma 3.14. Let p ∈ Ω and suppose that |Gun(p)| is uniformly bounded.
Then, there exists a subsequence of {vn = un − un(p)} converging uniformly to
a solution of (2.12) in a neighbourhood of p in Ω.

Proof. Notice that the surfaces Σvn are simply the translation of the surfaces
Σun along the Killing field ξ. So Nvn(q) = Nun(q) and Gvn(q) = Gun(q)
for all q ∈ Ω.

As Σvn is stable, since the sections are transverse to the Killing field ξ,
curvature estimates guarantee the existence of disks Dδ

n(p) ⊂ TpΣvn with
small positive radius δ, independent of n (it depends only on the distance
of p to ∂Ω), where each Σvn is a local graph (denoted by Σ(vn, δ)) over
Dδ

n(p), having bounded geometry.

As |Gvn(p)| is bounded and taking into account

N = −Gvn

Wn
+ ξ,

there exists a subsequence of Nvn(p) which converges to a non-horizontal
vector and thus, the tangent planes associated to this subsequence con-
verge to a non-vertical plane Π(p).

Notice that the sequence of graphs {Σ(vn, p)} have height and slope
uniformly bounded, thence there is a subsequence which converges uni-
formly to a H-graph over the disk Dδ(p) ⊂ Π(p). Moreover, since Π(p) is
not vertical, there exists a geodesic ball B(p, δ) ⊂ Ω centered at p of radius
δ with 0 < δ ≤ δ, such that, the H-graph is a H-section. We conclude that
there exists a neighbourhood of p in Ω where a subsequence of the {vn}
converges to a solution of equation (2.12). �

The Lemma 3.14 motives the following definition.

Definition 3.15. We say that the set

C = {p ∈ Ω; |Gun(p)| is bounded}
is the convergence set of the sequence {un}, and D = Ω− C is the diver-
gence set of {un}.

Notice that, from Lemma 3.14, the convergence set C is an open subset
of Ω.
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Lemma 3.16. Let C′ be a connected bounded component of C. Then for any p ∈
C′, there exists a subsequence {vn′ = un′ − un′(p)} which converges uniformly
on compact subsets of C′ to a solution of (2.12) over C′.

Proof. Taking a countable dense set {pn} in C′. According to the Lemma
3.14, each point pm has a neighbourhood where a subsequence of {vn}
converges to an H-section. This convergence is uniform on compact sets of
the neighbourhood. By a diagonal process, we constructed a subsequence
of {vn} which converges uniformly on compact subsets of C′ to an H-
section, this happens for any p ∈ C′. �

Now, we study the divergent set D, where the sequence {|Gun(p)|}
diverges. If p ∈ D, |Gvn(p)| is unbounded and we can consider a subse-
quence {vn′} of {vn = un − un(p)} such that |Gvn′(p)| → +∞. Therefore
{Nvn′ (p)} converges to a horizontal vector N(p).

We are going consider the identification. ι(Ω) ≈ Ω

Lemma 3.17. Let p ∈ Ω and {un} be a sequence of solutions of (2.12) in the
domain Ω.

(i) If p ∈ C, there is a subsequence of {vn} where vn = un − un(p), con-
verging uniformly in a neighbourhood of p ∈ Ω.

(ii) If p ∈ D, there is a compact arc Lp(δ̃) of curvature 2H, containing p such
that after passing to a subsequence, {Nvn(p)} converges to a horizontal
vector whose projection via π is orthogonal to Lp(δ̃), having the same
direction as the curvature vector to the graph of vn at ι(p) ≈ p.

Proof. The first part of the lemma was proved in Lemma 3.16. We denote
by Σvn the graph of the function vn over Ω. Note that Nvn(q) = Nun(q)
and the convergence and divergence set are the same for {un} and {vn}.

Since H-sections are stables, they have curvature estimates, see [17].
The curvature estimates give us an δ > 0 independent of n (δ only depends
on the distance from p to ∂Ω). Such that a neighbourhood of vn(p) in Σvn is
a graph in geodesic coordinates, with height and slope uniformly bounded
over the disk Dδ

n(vn(p)) of radius δ centered at the origin of TpΣvn . We call
this graph Σ(vn(p), δ)

Suppose that p ∈ D. Since |Gvn(p)| is unbounded, there is a subse-
quence of Nvn(p) that converges to a horizontal vector N(p). So, for this
subsequence, the tangent planes TpΣvn converges to a vertical plane Π(p)
and the graphs Σ(vn(p), δ) converge to a constant mean curvature H graph
Σ(p, δ) over a disk of radius δ′ ≤ δ, centered at the origin of Π(p). By the
choice of the direction of the normal vector and the choice of H > 0, the
limit of the curvature vectors of Σ(vn(p), δ) has the same direction as the
normal limit.

Taking the curve Lp ⊂ Ω passing through p, orthogonal to π∗(N(p))
with curvature 2H and the curvature vector at p having the same direction
as π∗(N(p)). We want to prove Σ(p, δ′) ⊂ π−1(Lp).
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Since Σ(p, δ′) is tangent to π−1(Lp) at vn(p), if Σ(p, δ′) is in one side of
π−1(Lp), by the maximum principle, we have that Σ(p, δ′) ⊂ π−1(Lp). If
this is not the case, Σ(p, δ′)∩π−1(Lp) is composed by k ≥ 2 curves passing
through vn(p). These curves separate Σ(p, δ′) in 2k components and the
adjacent components lies in alternative sides of π−1(Lp). Moreover, the
curvature vector alternates from pointing down to pointing up when one
goes from one component to other. This implies that the normal vector to
Σ(p, δ′) points down and up. So, for n big enough, the normal vectors to
Σ(vn(p), δ) would point down and up, which does not occur.

Let Lp(δ̃) ⊂ Ω, δ′ ≥ δ̃ be the curve contained in Σ(p, δ′) ∩ ι(Lp) which
contains p ≈ ι(p), and has length 2δ̃. Since Σ(p, δ′) ⊂ π−1(Lp), we have
that, for all q ∈ Lp(δ̃) the normal vector to Σ(p, δ′) at q is a horizontal
vector normal to Lp(δ̃) at q. �

Lemma 3.18. Let {un} be a sequence of solutions of (2.12) in Ω. Given p ∈ D,
there is a curve L ⊂ Ω of curvature 2H which passes through p such that, after
passing to a subsequence, the sequence of normal vectors {Nun |L} converges to
a horizontal vector, whose projection via π is normal to L, and having the same
direction as the curvature vector of L. This curve L contains the compact arc
Lp(δ̃) given in Lemma 3.17.

Proof. Let L be the curve of constant curvature 2H in Ω, which contains
Lp(δ̃) joining the points of ∂Ω (Lp(δ̃) is given in the Lemma 3.17). Given
p, q ∈ Ω, denote by pq the compact arc in L between p and q. We define

Λ = {q ∈ L; T(q) is true}
where

• T(q) = there is a subsequence of {un} such that {Nun |pq} becomes
horizontal, whose projection via π becomes orthogonal to L, hav-
ing the same direction as the curvature vector of L.

We want to prove that Λ = L. Since p ∈ Λ, Λ is not empty. We will
prove that Λ is open and closed. First, we will prove that Λ is open.
Let q be a point in Λ. denote by uΛ(n) the subsequence associated to Λ.
Since Λ ⊂ D, Lemma 3.17 give us a curve Lq(δ̃) through q such that, after
passing to a subsequence {NuΛ(n) |Lq(δ)} becomes horizontal and has the
same direction as the curvature vector of Lq(δ). Note that this subsequence
of {NuΛ(n) |Lq(δ)} converges to a horizontal vector normal to Lq(δ) and to L
simultaneously, so Lq(δ) ⊂ L, thus Λ is open.

Now, we will prove that Λ is closed. We take a convergent sequence
{qn} in Λ, qn → q ∈ L. We will show that q ∈ Λ.
For each m, there is a subsequence of {uΛ(n)} such that {NuΛ(n) |pqm

} be-
comes horizontal with the same direction as the curvature vector of L in
pqm. By the diagonal process, we obtain a subsequence of {uΛ(n)} such
that {NuΛ(n) |pqm

} converges to a horizontal vector having the same direc-
tion as the curvature vector of L in pqm for all m. Then by Lemma 3.17, we
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can find a curve Lqm(δ) having constant curvature 2H through qm (for m
large, δ depends only on the distance from q to ∂Ω) such that {NuΛ(n) |pqm

}
converges to a horizontal vector having the same direction as the curva-
ture vector to Lqm(δ). So, Lqm ⊂ L and since qm → q, we have that, for all
m large enough, q ∈ Lqm(δ). Consequently q ∈ Λ.

�

An important conclusion of the Lemma 3.18 is that the divergence set
is given by D =

⋃
i∈I Li, where Li is a curve called a divergence curve,

having curvature 2H. More precisely, we have the following definition.

Definition 3.19. (Divergence line) Let L ⊂ Ω be a curve having constant
curvature k(L) = 2H, p ∈ L and {vn = un− un(p)}. If there exists a subse-
quence of {Nvn|L} which converges to a horizontal vector whose projection
via π is orthogonal to L, then we said that L is a divergence line of {un}.

Lemma 3.20. Let {un} be a sequence of solutions of (2.12) in Ω. Suppose that
the divergence set D of {un} is composed of countable number of divergence lines.
Then there exists a subsequence of {un}, again denoted by {un} such that

• the divergence set of {un} is composed of a countable number of pairwise
disjoint divergence lines,

Proof. Suppose that D 6= ∅ and let L1 be a divergence line of {un}, Lemma
3.17 guarantees that, after passing to a subsequence, {Nun(q)} converges
to a horizontal vector whose projection via π is orthogonal to L1 at q
for all q ∈ L. The divergence set of this sequence is contained in the
divergence set of the original sequence, so the divergence set associated to
this subsequence has only countable number of lines. This subsequence
is still denoted by {un} and its divergence set by D. If there is a line
L2 6= L1 in D, we can find a subsequence such that {Nun(q)} converges
to a horizontal vector whose projection via π is orthogonal to L2 at q for
each q ∈ L2. This implies that L1 ∩ L2 = ∅. In fact, if this does not occur,
we take a point q ∈ L1 ∩ L2, such that the sequence {Nun(q)} converges
to a horizontal vector whose projection is orthogonal to L1 and L2 at q
having the same direction as the curvature vector of L1 and L2. Then
the uniqueness of a curve through q having constant curvature 2H with
a given tangent vector shows that L1 = L2. We continues this process to
get a subsequence of {un} still denoted by {un}, whose divergence set is
composed of a countable number of pairwise disjoint divergence lines.

�

Lemma 3.21. Let Ω be a domain bounded in part by an arc C having k(C) ≥ 2H.
Let {un} be an increasing or decreasing sequence of solutions of (2.12) in Ω with
each un continuous in Ω ∪ C. Suppose that γ is an interior arc of Ω of curvature
2H forming part of the boundary D. Then γ cannot terminate at an interior point
of C if {un} either diverges to ±∞ or remains uniformly bounded on compact
subsets of C.
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Proof. Suppose that γ is an arc in ∂D that terminates at an interior point
p of C. By considering only a small neighbourhood of p, we may assume
that C is C2. By Theorem 3.1, the sequence {un} cannot diverge to −∞
on C. Moreover, id the curvature of C is not identically 2H and {un}
remains uniformly bounded on compact subsets of C, Lemma 3.2 insures
that a neighbourhood of C is contained in C a contradiction. Hence assume
k(C) ≡ 2H. Suppose {un} diverges to +∞ on C and there exists exactly
one such γ terminates at p. Let q be a point of γ close to p and choose
s on C close to p so that the geodesic segment sq lies in C. Let T be the
triangle formed by rq and the constant curvature 2H arcs qp and pr. Then
by Lemma 3.9

(3.8) 2HA(T) = Fun(pq) + Fun(pr) + Fun(rq)

while by Lemma 3.12

(3.9) lim
n−→+∞

Fun(qp) = |qp|, lim
n−→+∞

Fun(pr) = |pr|.

From (3.8), (3.9) and Lemma 3.10 we conclude

(3.10)
2HA(T)

|rq| ≥ |qp|+ |pr|
|rq| − 1

Keeping p fixed, we move q to q′ and r to r′ along the same arcs so that
|q′p| = λ|qp| and |pr′| = λ|pr| and form the triangle T′ by joining q′ to
r′ by a geodesic. Then the left hand side of (3.10) tends to zero as λ → 0
while the right hand side of (3.10) remains uniformly positive, a contradic-
tion. The only other possibility is that two arcs γ1 and γ2 terminates at p.
Then again we can find a triangle T ⊂ C whose edges are two constant cur-
vature 2H arcs and a geodesic segment as before (perhaps ∂T∩ C = {p}).
The same arguments gives a contradiction.

In the case the sequence remains uniformly bounded on compact sub-
sets of C and there is exactly on γ, we choose r on C so that T is contained
in D. By Lemma 3.2 (ii) the sequence must be divergent to −∞ on D. We
now reach a contradiction as above by using Lemma 3.12. If there are two
arcs terminates at p, then D is necessarily the convex lens domain formed
by γ1 and γ2 (that is γ2 = γ∗1 , see Remark 4.3). Choose the point q on γ1
and r on γ2 and form T in D. Then (3.8), (3.9) and (3.10) still hold and we
reach a contradiction as before. �

We ended this section with the following theorem.

Theorem 3.22. (Monotone convergence theorem) Let {un} be a monotonically
increasing or decreasing sequence of solutions of (2.12) in a fixed domain Ω. If
the sequence is bounded in a single point of Ω, there is a non-empty open set
C ⊂ Ω such that {un} converges to a solution in C. The convergence is uniform
on compact subsets of C and the divergence is uniform on compact subsets of
D = Ω− C. If D is non-empty, ∂D consists of arcs of curvature ±2H and parts
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of ∂Ω. These arcs are convex to C for increasing sequences and concave to C for
decreasing sequences.

4. The main theorems

In this section we deal with the solution for the Jenkins-Serrin problem,
see Section 3.1 for notations and definitions. More precisely, we will prove
the following two theorems.

Theorem 4.1. (Main Theorem 1) Consider the Jenkins-Serrin problem in an ad-
missible domain Ω and suppose the family {Ci} is empty. Then, there exists a
solution for the Jenkins-Serrin problem if and only if

(4.1) α(∂Ω) = β(∂Ω) + 2HA(Ω)

and for all admissible polygons P

(4.2) 2α(P) < l(P) + 2HA(P) and 2β(P) < l(P)− 2HA(P)

where α(P) and β(P) are the total length of the arcs in ∂P belonging to {Ai}
and {Bi} respectively, finally l(P) denotes the perimeter of P and A(Ω) denotes
the area of P.

Following the notations of Theorem 4.1, we have the next theorem.

Theorem 4.2. (Main Theorem 2) Consider the Jenkins-Serrin problem in an ad-
missible domain Ω and suppose the family {Ci} is non-empty. Then, there exists
a Jenkins-Serrin solution of the Jenkins-Serrin problem if and only if

(4.3) 2α(P) < l(P) + 2HA(P) and 2β(P) < l(P)− 2HA(P)

for all admissible polygon P.

Before we prove the theorems, we will use the flux formulas to see that
each Jenkins-Serrin solution u satisfies the equations (4.1),(4.2) and (4.3)
for an admissible polygon P.
Notice that an admissible polygon P can be write in the form

P = {∪i A
P
i } ∪ {∪jB

P
i } ∪ {∪kηP

k }

where AP
i , BP

j are arcs in P ∩ ∂Ω and {ηP
k } is composed by 2H-curves in

Ω and possible arcs Ck in ∂Ω.

For an admissible polygon P, the flux formulas yields

Fu(∂P) = 2HA(P).

Where, we conclude that

Fu({∪i A
P
i }) = −Fu(P− {∪i A

P
i }) + 2HA(P)

Fu({∪jB
P
i }) = −Fu(P− {∪iB

P
i }) + 2HA(P)
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Taking the firs equality for instance, we have

α(P) = Σi|AP
i | = Fu({∪i A

P
i })

= −Fu(P− {∪i A
P
i }) + 2HA(P)

≤ |Fu(P− {∪i A
P
i })|+ 2HA(P)

= |Fu({∪jB
P
j } ∪ {η

P
k })|+ 2HA(P)

≤ |Fu({∪jB
P
j })|+ |Fu({ηP

k })|+ 2HA(P)

= β(P) + |Fu({ηP
k })|+ 2HA(P)

= l(P)− α(P)− |{ηP
k }|+ |Fu({ηP

k })|+ 2HA(P)

< l(P)− α(P) + 2HA(P)

where we used that Fu(Bj) = −|Bj| and Fu(ηk) < |ηk|. Thus

2α(P) < l(P) + 2HA(P).

Analogously, we can see

2β(P) < l(P)− 2HA(P).

On the other hand, when {∪kCk} = ∅ and ∂P = ∂Ω, from flux formulas
we have

Fu({∪i A
P
i } ∪ {∪jB

P
i }) = 2HA(Ω)

that is
Fu({∪i A

P
i }) + Fu({∪jB

P
i }) = 2HA(Ω)

which implies
α(P)− β(P) = 2HA(Ω).

Remark 4.3. (Lens domain) We call a domain D, a lens domain, if D is
bounded by an arc γ of curvature 2H and its geodesic reflection γ∗.

In order to prove these two last theorems, we are going prove some
results.

Proposition 4.4. Consider the Jenkins-Serrin problem in an admissible domain
Ω and suppose the family {Bj} is empty, k(Ck) > 2H and the assigned data f
on the arcs Ck are bounded below. Then, there exists a Jenkins-Serrin solution for
this Jenkins-Serrin problem if and only if

(4.4) 2α(P) < l(P) + 2HA(P)

for all admissible polygon P.

Proof. Let un be the solution of (2.12) in Ω such that

un =

{
n on ∪ Ai
min(n, f ) on ∪ Ci,

such solution exits and is unique by the Dirichlet Theorem (Theorem 2.5).
Moreover by the Maximum principle (Theorem 2.2), the sequence {un} is
monotone increasing, so the Monotone Convergence Theorem (Theorem
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3.22) applies. Suppose that, there is a point p ∈ Ω such that un(p)→ +∞,
then there is a divergence line L(p) passing through p, thus the divergence
set D is not empty. Supposing that the divergence set D is composed by
a countable divergence lines, so from Lemma 3.20, we have that D is the
union of pairwise disjoint divergence lines.

By Lemma 3.18 an interior arc of Ω which bounds D must be of curva-
ture 2H and by Lemma 3.21, it can terminates only among the endpoints
of the arcs Ai or Ci. Moreover by Lemma 3.2 a neighbourhood of each Ci
is contained in C. Therefore, the boundary of each component of D is an
admissible polygon P with vertices among those of the Ai and Ci. Also
the curvature 2H arcs forming the boundary which are not among the Ai
are concave to D by Theorem 3.1.

By Lemma 3.9 applied to each un in P

(4.5) 2HA(P) = Fun(∂P−∪′Ai) + Fun(∪′Ai)

where ∪′Ai is the union of the arcs Ai which are part of P. Then by
Lemma 3.12

(4.6) lim
n−→+∞

Fun(∂P−∪′Ai) = α(P)− l(P) = −(l(P)− α(P)).

But |Fun(∪′Ai)| ≤ α(P), hence from (4.5)

2HA(P) ≤ (α(P)− l(P)) + α(P)

that is
2HA(P) + l(P) ≤ 2α(P),

contradicting our assumption (4.4). Thus D is empty and the sequence
converges uniformly on compact subsets of Ω to a solution u. Since each
un is uniformly bounded in a neighbourhood of each Ci by Lemma 3.2, a
standard barrier argument shows that u = f on ∪Ci.

Since the necessity of (4.4) is clear, this completes the proof. �

Similarly, we have the next theorem.

Proposition 4.5. Consider the Jenkins-Serrin problem in an admissible domain
Ω and suppose that the family {Ai} is empty, k(Ci) > 2H and the assigned data
f on the arcs Ci are bounded above. Then, there exists a Jenkins-Serrin solution if
and only if

(4.7) 2β(P) < l(P)− 2HA(P)

for all admissible polygon P.

Now we use Proposition 4.4 and Proposition 4.5 to construct some use-
full barriers in order to remove the assumption k(Ci) > 2H.

Example 4.6. Let B = Bδ(P) be a ball of small radius δ centered at P, and
let Q and R be the "antipodal" points on ∂B. choose points Q1 and Q2
on ∂B and symmetric with respect to the geodesic through QPR. Now
let B1 be an arc of curvature −2H (as seem from P) joining Q1 and Q2
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and set A1 = B∗i (the geodesic reflection of B1 across its endpoints). Let
R1 and R2 on ∂B be reflections on ∂B of Q1 and Q2 (with respect to the
geodesic orthogonal to QPR through P) and define B2 and A2. Then for δ
small compared with H, the domain B+ bounded by A1, A2 and parts of
∂B satisfies the conditions of Proposition 4.4 and similarly, the domain B−

bounded by B1, B2 and parts of ∂B satisfies the condition of Proposition
4.5.

Let u+ be the solution of (2.12) in B+ with boundary values +∞ on
A1 ∪ A2 and the constant value M on the remainder of the boundary.
Similarly, let u− be the solution of (2.12) in B− with boundary values −∞
on B1 ∪ B2 and the constant value −M on the remainder of the boundary.

With this example we obtain the following proposition.

Proposition 4.7. Let Ω be a domain bounded in part by an arc γ and let {un}
be a sequence of solutions of (2.12) in Ω which converges uniformly on compact
subsets of Ω to a solution u. Suppose each un is continuous on Ω ∪ γ, then

(i) Suppose the boundary values of un converges uniformly on compact sub-
sets of γ to a bounded limit f . If k(γ) ≥ 2H, then u is continuous on
Ω ∪ γ and u = f on γ.

(ii) If k(γ) = 2H and the boundary values of un diverges uniformly to +∞
on compact subsets of γ, then u takes on the boundary values +∞ on γ.

(iii) If k(γ) = −2H and the boundary values of un diverges to −∞ on com-
pact subsets of γ, then u takes on the boundary values −∞ on γ.

Proof. (i) It suffices to prove that the sequence {un} is uniformly bounded
in the intersection of Ω with a neighbourhood of any interior point P of γ.
Orient the ball of Example 4.6, so that the geodesic joining QPR is tangent
to ∂Ω. We may choose the points Qi i = 1, 2 and δ small enough so that
the arc joining Q2 and R2 lies in a compact subset of Ω. Then if M is large
enough

un ≤ u+ in Ω ∩ B+ and un ≥ u− in Ω ∩ B−.

Therefore, the sequence is uniformly bounded in a neighbourhood of P.

(ii) Let P be an interior point of γ. Similarly as in (i), we obtain that
there exists M large enough so that

un ≥ −M in W = Bε(P) ∩Ω.

Let vm be the solution of (2.12) in W with boundary values m on γ∩ Bε(P)
and −M on the remaining boundary. By the Maximum Principle un ≥ vm
for n sufficiently large so u ≥ vm in W. In particular, u(P) > m for every
m and u must take on the value +∞ at P.

(iii) Again for P interior to γ, un ≤ M in W = Bε(P) ∩ Ω. Let vm
be the solution of (2.12) in W with boundary values −m on γ ∩ Bε(P)
and M on the remaining boundary. By the Maximum Principle un ≤ vm
for n sufficiently large, so u ≤ vm in W. Since the vm are monotonically
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decreasing (and converges to a solution with infinite boundary values on
γ ∩ Bε(P)), u must takes on the value −∞ at P. �

We can now extend Proposition 4.4 and Proposition 4.5 to allow the
arcs Ci to satisfy k(Ci) ≥ 2H. The only changed needed in the proof
of Proposition 4.4 is to use part (i) of Proposition 4.7 to show that the
solution takes on the required boundary data on the arcs Ci. The extension
of Proposition 4.5 is more delicate. Since if k(Ci) = 2H for some i, we do
not know that the sequence is bounded bellow in a neighbourhood of Ci.
However by Lemma 3.21 a neighbourhood of Ci is either contained in C
or in D. We have already handled the former case. In the latter case,
consider a component of D whose boundary is an admissible polygon P
(with vertices among those of the Bi and Ci) containing a subset ∪′Ci of
the arcs Ci of curvature 2H and a subset ∪′Bi of the arc Bi. The interior
arcs of Ω which are in P are convex to D. By Lemma 3.9 applied to each
un in P

(4.8) 2HA(P) = Fun(∪′Bi) + Fun(∪′Ci) + Fun(∂P−∪′Bi −∪′Ci)

Then by Lemma 3.12

(4.9) lim
n−→+∞

Fun(∂P−∪′Bi −∪′Ci) = l(P)− β(P)− Σ′|Ci|

and by Lemma 3.13

(4.10) lim
n−→+∞

Fun(∪′Ci) = Σ′|Ci|

But |Fun(∪′Bi)| ≤ β(P), hence

2HA(P) ≥ −β(P) + Σ′|Ci|+ (l(P)− Σ′|Ci| − β(P)) = l(P)− 2β(P)

contradicting our assumption (4.7).

Thus D is empty and the sequence converges uniformly on compact
subsets of Ω to a solution u. Finally we use parts (i) and (ii) of Proposition
4.7 to show that our solution achieves the boundary values.

We state these result as

Theorem 4.8. Consider the Jenkins-Serrin problem in an admissible domain Ω
and suppose the family {Bi} is empty and the assigned data f on the arcs Ci are
bounded bellow. Then, there exists a solution if and only if

(4.11) 2α(P) < l(P) + 2HA(P)

for all admissible polygons P.

Theorem 4.9. Consider the Jenkins-Serrin problem in an admissible domain Ω
and suppose the family {Ai} is empty and the assigned data f on the arcs Ci are
bounded above. Then, there exists a solution if and only if

(4.12) 2β(P) < l(P)− 2HA(P)

for all admissible domain.
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Now we prove the Main Theorem 2 (Theorem 4.2). That is, we allow
both families {Ai} and {Bi} to occur and allow the data f on the {Ci} to
be unbounded both above and bellow as we approach the endpoints.

Proof. (Main Theorem 2) By Theorem 4.8 the first condition of (4.3) guar-
antees the existence of a solution u+ of (2.12) in Ω∗ such that

u+ =


+∞ on ∪ Ai
0 on ∪ B∗i
max( f , 0) on ∪ Ci.

Similarly, by Theorem 4.9, the second condition of (4.3) guarantees the
existence of a solution u− of (2.12) in Ω∗ such that

u− =


−∞ on ∪ Bi
0 on ∪ Ai
min( f , 0) on ∪ Ci.

Now let un be the solution of (2.12) in Ω∗ such that

un =


n on ∪ Ai
−n on ∪ B∗i
fn on ∪ Ci,

where fn is the truncation of f above by n and bellow by −n.

By the Maximum Principle

un ≤ u+ in Ω∗ and u− ≤ un in Ω.

Therefore the sequence {un} is uniformly bounded on compact subsets
of Ω and a subsequence converges uniformly on compact subsets to a
solution u in Ω. By Proposition 4.7, u takes on the boundary assigned
data. The necessity of the condition (4.3) follows essentially as in the
Theorem 4.8 and Theorem 4.9.

�

Finally, we focus our attention in the proof of the Main Theorem 1.

Proof. (Main Theorem 1) let vn be a solution of (2.12) in Ω∗ with boundary
values n on each Ai and 0 on each B∗i . For 0 < c < n we define for n ≥ 1

Ec = {vn − v0 > 0} and Fc = {vn − v0 < c};
we suppress the dependence of these sets on n. Let Ei

c and Fi
c denote

respectively the components of Ec and Fc whose closure contains respec-
tively Ai and B∗i . By the maximum principle Ec = ∪Ei

c and Fc = ∪Fi
c. If c

is sufficiently close to n, the sets {Ei
c} will be distinct and disjoint (to see

this, note that we can separate any two of the Ai by a curve joining two of
the B∗i on which vn − v0 is bounded away from n). Now we define µ(n) to
be the infimum of the constants c such that the sets {Ei

c} are distinct and
disjoints. The sets {Ei

µ} will again be distinct although there must be at

least one pair (i, j), i 6= j such that Ei
µ ∩ Ej

µ is nonempty. This implies that
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given any Fi
µ there is some Fj

µ distinct from it. Now let u+
i , i = 1, ..., k be

the solution of (2.12) in Ω∗ taking on the boundary values +∞ on Ai and 0
on the remaining boundary. This solution exists by Theorem 4.8 since the
solvability condition (4.11) follows trivially from (4.1) and (4.2). Also let
u−i be the solution of (2.12) in the domain Ω̃ bounded by ∪Ai, B∗i ,∪j 6=iBj
taking on the boundary values −∞ on ∪j 6=iBj and 0 on the remaining of
the boundary. In order to know that the solution exists by Theorem 4.9,
we need to verify (4.12), thus we need only consider the admissible poly-
gon P in Ω̃ which contain the lens domain L formed by Bi and B∗i . Let P
be the corresponding admissible polygon for Ω formed by deleting L. By
(4.1) and (4.2) we have

2β = 2(|Bi|+
◦
∑
i 6=j
|Bj|) ≤ l(P)− 2HA(P)

or equivalently

2β = 2
◦
∑
i 6=j
|Bi| ≤ l(P̃))− 2HA(P̃) + (2HA(L)− 2|Bi|).

However since a solution (for example vn) exits in L, we have by Lemma
3.10 2HA(L) < 2|Bi| so condition (4.12) is satisfied.

We now set

u+(p) = max
i
{u+

i (p)} in Ω∗ and u−(p) = min
i
{u−i (p)} in Ω.

We note that if we compare each u+
i to a fixed bounded solution in

Ω∗ (which exists since Ω is admissible), then by the maximum principle
there is a constant N > 0 such that u+

i > −N, i = 1, ..., k. Finally we set
un = vn − µ(n).

We now claim that

un ≤ u+ + M in Ω∗ and un ≥ u− −M in Ω.

where M = N + supΩ∗ |v0|. Suppose un > v0 at some point p. Then

vn − v0 > µ(n)

at p, so that p is in some Ei
µ. Applying the maximum principle in the

domain Ei
µ, we obtain

un ≤ u+
i + N + sup

Ei
µ

|vo| ≤ u+ + M at p.

On the other hand, suppose un < v0 at some point p ∈ Ω. Then vn −
v0 > µ(n) at p, so that p is in some Fi

µ. By what has been shown above,

there is a corresponding j = j(i) so that Fi
µ ∩ Fj

µ = ∅, we obtain

un ≥ u−j − sup
Fi

µ

|vo| ≥ u− −M.
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Therefore the claim is justified and the sequence {un} is uniformly
bounded on compact subsets of Ω. By the compactness principle, a sub-
sequence {un} converges uniformly on compact subsets of Ω to a solution
u. We still must show that u takes on the required boundary values. We
observe that a subsequence µ(n) diverges to +∞ otherwise we can ex-
tract a subsequence converging to a finite limit µ0. Each un would then
be bounded below in Ω∗ uniformly in n, and the boundary values of un
would tend uniformly on compact subsets of ∪B∗i to −µ0 and diverge
uniformly to +∞ on ∪Ai. Once again we could find a subsequence con-
verging uniformly on compact subsets to a solution in Ω∗. By Proposition
4.7 we would have

v =

{
+∞ on ∪ Ai
−µ0 on ∪ B∗i

We can now obtain a contradiction to (4.1) by a flux argument. By Lemma
3.9

(4.13) 2HA(Ω) = Fv(ΣAi) + Fv(ΣBi)

while by Lemma 3.10 and Lemma 3.11

(4.14) |Fv(ΣBi)| < β and Fv(ΣAi) = α

Combining (4.13) and (4.14) gives α− β < 2HA(Ω), a contradiction. In the
same way, we see n− µ(n) diverges to +∞. Summing up we have shown
that the boundary values of un, namely, −µ(n) on ∪B∗i and n− µ(n) on
∪Ai diverges to −∞ and +∞ respectively. Therefore un diverges to −∞
on ∪Bi. Since the necessity conditions (4.1) and (4.2) is straightforward,
we conclude the theorem. �

We ended this paper with the following maximum principle at the in-
finity, the prove of this theorem is similar to this one in [14, Theorem 4.1]

Theorem 4.10. (Maximum principle at infinity) Let Ω ⊂ R2 be an admissible
domain, suppose that the family {Ck} is nonempty, and let u, v be solutions of
the Dirichlet problem in Nil3(τ), with the same continuous values on each arc
Ck ⊂ ∂Ω. Then u = v on Ω.

References

[1] Cui, Q. and Penafiel, C. The Jenkin-Serrin Problem for Constant Mean Curvature
Graphs in Killing Submersion. Pre-print.

[2] Dajczer, M. and Lira, J. Killing graphs with prescribed mean curvature and Riemannian
submersions. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(3): 763-775, 2009.

[3] Dajczer, M., Alias, L. J. and Rosenberg, H. The Dirichlet problem for CMC surfaces in
Heisenberg space. pre-print

[4] Daniel, Benoit. Isometric Immersions into 3-dimensional Homogeneous Manifolds.
Comment. Math. Helv., ISSN 0010-2571. 82-1, 87-131. 2007.

[5] Figueroa, C.; Mercuri, F.; Pedrosa, R. Invariant surfaces of the Heisenberg group.. Ann.
Mat. Pura Appl, 177 (1999), 173–194.

[6] Folha, A. and Melo, S. The Dirichlet problem for constant mean curvature graphs in
H×R over unbounded domains. Pac. J. of Math., 251: 1, 2011.



JENKINS-SERRIN PROBLEM 27

[7] Folha, A. and Penafiel, C. The Generalized Dirichlet Problem for Constant Mean Cur-
vature Graphs Over Unbounded Domains in the Space P̃SL2(R, τ) over unbounded
domains. Pre-print.

[8] Folha, A. and Rosenberg, H. The Dirichlet problem for constant mean curvature graphs
in M2 ×R. Geomtry and Topology, 16: 1171-1203, 2012.

[9] Hauswirth, L. Rosenberg, H. and Spruck, J. Infinite boundary value problems for con-
stant mean curvature graphs in H × R and S2 × R. Amer. J. Math., 131(1): 195-226,
2009.

[10] Jenkins, H. and Serrin, J. Variational problems of minimal surface type II. Boundary
value problems for the minimal surface equation. Arch. Rational Mech. Anal., 31: 321-
342, 1966.

[11] Leandro, C. and Rosenberg, H. Removable singularities for sections of Riemannian
submersions of prescribed mean curvature. Bull. Sci. Math., 132(4): 445-452, ISSN 0007-
4497, 2009.

[12] Mazet, L. Rodríguez, M. and Rosenberg, H. The Dirichlet problem for the minimal
surface equation-with possible infinite boundary data- over domains in a Riemannian
surface. Proc. London Math. Soc., 3(102): 985-1023, 2011.

[13] Nelli, B. and Rosenberg, H. Minimal surfaces in H × R. Bull. Braz. Math. Soc., 33:
263-292, 2002.

[14] Pinheiro, A. L. Minimal vertical graphs in Heisenberg space. Preprint., 0(0): 0-0.
[15] Pinheiro, A. L. The theorem of Jenkins-Serrin in M2 ×R. Bull. Braz. Math. Soc., 40(1):

117-148, 2009.
[16] Radö, T. The problem of least area and the problem of Plateau. Math. Z., 32: 763-796,

1930.
[17] Rosenberg H., Souam R. and Toubiana E. General Curvature Estimates for Sta-

ble H-Surfaces in 3-Manifolds and Applications J. Differential Geom., 84(3): 623-648,
MR2669367, 2010.

[18] Spruck J. Infinite boundary value problem for surfaces of constant mean curvature.
Arch. Rationa Mech. Anal., 49: 1-31, 1972.

[19] Thurston, William. Three-Dimensional Geometry and Topology. Princeton, 1997.
[20] Younes R. Minimal surfaces in P̃SL2(R) Illinois J. Math., 54(2): 671-712, 2010.

Carlos Penafiel - penafiel@im.ufrj.br
Universidade Federal de Rio de Janeiro
Instituto de Matemática e Estatística
Av. Athos da Silveira Ramos 149,
Centro de Tecnologia, Bloco C
Cidade Universitária - Ilha do Fundão
CEP 21941-909
Rio de Janeiro, RJ - Brasil.


	1. Introduction
	2. Preliminares
	2.1. The mean curvature equation and the maximum principle
	2.2. The Dirichlet problem

	3. H-sections
	3.1. The Jenkins-Serrin problem
	3.2. Flux formulas
	3.3. Divergence lines

	4. The main theorems
	References

