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A SMALL INFINITELY-ENDED 2-KNOT GROUP

R. BUDNEY AND J. A. HILLMAN

Abstract. We show that a 2-knot group discovered in the course
of a census of 4-manifolds with small triangulations is an HNN
extension with finite base and proper associated subgroups, and
has the smallest base among such knot groups.

1. introduction

Nontrivial classical knot groups have one end. This is equivalent to
the asphericity of the knot complement, in the light of Dehn’s Lemma
and Poincaré duality in the universal cover. In higher dimensions the
complements of nontrivial knots are never aspherical. However, Ker-
vaire gave a uniform algebraic characterization of n-knot groups for all
n ≥ 3, and a partial characterization of 2-knot groups [8]. (Artin’s spin-
ning construction shows that classical knot groups are 2-knot groups
and 2-knot groups are high dimensional knot groups.) These charac-
terizations have been used to provide examples of such groups with
various properties. In particular, they have been used to find knots
whose groups have more than one end.
The 2-twist spins τ2K of 2-bridge knots K provide many examples of

2-knot groups with two ends. The first examples of higher dimensional
knots with infinitely-ended groups were given in [5]. Their examples
are 2-knots, and the groups are HNN extensions with finite base and
proper associated subgroups. The simplest of these has presentation

〈a, b, t | tat−1 = a2, a3 = 1, aba−1 = b2〉,

with base 〈a, b〉 ∼= Z/7Z⋊2Z/3Z and both associated subgroups 〈a〉 ∼=
Z/3Z. (Note that the second and third relations together imply that
b7 = 1.) It is clear from this presentation that the group is also a free
product with amalgamation of 〈a, b〉 with 〈a, t〉 ∼= πτ231 over 〈a〉, where
31 is the trefoil knot [9]. In fact it is the group of a satellite of τ231
with companion Fox’s Example 10, as is clear from the analysis of the
groups of such knots in [7]. Replacing the trefoil with other 2-bridge
knots gives all of the examples of §1 of [5].
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In §2 we shall show that a knot exterior recently discovered in the
course of a computational census of 4-manifolds with small triangu-
lations has group π which is an HNN extension with base the gener-
alized quaternionic group Q(16) and (distinct) associated subgroups
Q(8). This group is not properly the group of a satellite knot (§3). In
§4 we show that no smaller finite group is the base of an HNN exten-
sion which is an infinitely-ended knot group, and that there is only one
such group with base Q(16). However there are such groups with base
D8×Z/2Z and associated subgroups (Z/2Z)3 (§5). In §6 we show that
all knots with the exterior described in §2 are strongly +amphicheiral,
and we determine generators for Out(π) ∼= (Z/2Z)3.
For us, an n-knot is a locally flat embedding of Sn in Sn+2, and so

orientations of the spheres determine orientations of the knot comple-
ments and preferred meridians for the knots. We shall use Chapter 14
of [6] as a one-stop reference for the aspects of higher dimensional knot
theory that we need. All homology groups considered below shall have
integral coefficients, and so we shall write Hi(G) instead of Hi(G;Z).

2. The knot exterior

The knot exterior of this paper was discovered while forming a census
of 4-manifolds triangulable with 6 or less pentachora. Precisely, Ben
Burton generalized the census-generation algorithm in Regina [2] to
enumerate all unordered 4-dimensional delta-complexes whose vertex
links are triangulated 3-spheres or more generally 3-manifolds. Trian-
gulations having a non-spherical manifold vertex link are called cusped

triangulated manifolds. Most of the non-trivial knot exteriors in the
census are of ideal/cusped type. A previous paper was written on the
simplest non-trivial knot exterior in the census [1]. A future paper will
describe the census in full.
In the census there are approximately 1.4 million combinatorial classes

of knot exteriors in homotopy spheres. By combinatorial class we mean
triangulated manifolds, up to homeomorphism that preserve the sim-
plicial subdivision from the triangulation, i.e. the homeomorphisms
need not preserve the characteristic maps of the individual simplices.
Among these 1.4 million triangulations, 8521 have non-abelian fun-
damental group. Most of these have finitely generated commutator
subgroup. There are just twenty exceptional cases.
Ten of these have group Φ with presentation 〈a, t | tat−1 = a2〉,

and so are homeomorphic to the exterior of Fox’s Example 10. The
final ten all have fundamental group isomorphic to the group π with
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presentation

〈a, t | a8, a−2tata2t−2, a2tata−2t−2, a4t−1a−4t〉.

We briefly describe one of the ten triangulations giving a manifold
M with fundamental group π. At present we know there are at most
two PL homeomorphism types represented by these triangulations.

M (0123) (0124) (0134) (0234) (1234)
0 4 (0123) 3 (0124) 2 (1320) 2 (0234) 1 (1234)
1 5 (0123) 4 (1240) 4 (4320) 2 (1234) 0 (1234)
2 0 (4031) 5 (3142) 3 (4013) 0 (0234) 1 (0234)
3 5 (0421) 0 (0124) 2 (1340) 4 (1423) 5 (4031)
4 0 (0123) 1 (4012) 5 (0324) 1 (4310) 3 (0342)
5 1 (0123) 3 (0321) 3 (2431) 4 (0314) 2 (1402)

The leftmost column lists the pentachora of the triangulation, la-
belling them 0 through 5. In each row, to the right of the pentachoron
index is a collection of pairs n(abcd). The first number n indicates on
which pentachoron this tetrahedral facet is glued to. The entry (abcd)
indicates the affine-linear map on the tetrahedral facet. For example,
the row 1 5(0123) 4(2104) 4(4320) 2(1234) 0(1234) indicates that in
the pentachoron indexed by 1, the 4th tetrahedron is glued to the 4th
tetrahedron but in pentachoron 5, with vertices (0123) glued to (0123)
in that order. Similarly, the 2nd tetrahedron is glued to the 1st tetra-
hedron but in pentachoron 4, with vertices (0134) sent to (4320) in
that order, etc. We leave the readers to consult the documentation for
[2] for details. In summary, this triangulation has no internal vertices –
after performing the above gluings, all the vertices have been identified,
thus the single vertex has vertex link a 30-tetrahedron triangulation of
S1×S2. The triangulation has 3 edges, 12 triangles, 15 tetrahedra and
6 pentachora.
Verification that M is a knot exterior in a homotopy sphere is similar

to the argument in [1] and left to the reader. (Up to changes of ori-
entation, there are at most two knots with exterior homeomorphic to
M .) Budney and Burton have automated the process and it is imple-
mented in the software [2]. Perhaps for some readers it would be more
appealing to read the algorithm implemented in Regina. At present
the 4-manifolds tools are in the development repository of Regina, and
these tools will be in the general release of Regina by version 5.0. One
can readily check that the above triangulation has a single non-trivial
symmetry, an involution that reverses orientation and acts non-trivially
onH1(M). The involution is the simplicial map that sends pentachoron
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0 to pentachoron 2, sending vertices (01234) to (24103), in that order.
Pentachoron 1 is sent to pentachoron 3, sending vertices (01234) to
(23041), in that order, and pentachoron 4 to pentachoron 5, sending
vertices (01234) to (42130), in that order.
Returning to the group π = π1(M), we find that the third relator

in the above presentation is a consequence of the others, and so this
presentation simplifies to

〈a, t | tat−1 = a2t2a−2t−2, a8, a4t = ta4〉.

Setting b = ta2t−1, this becomes

〈a, b, t | ta2t−1 = b, tabt−1 = a2, a4 = b2 = (ab)2〉.

(The final two relations imply that bab−1 = a−1. Hence a8 = 1, and so
a4 is a central involution.) Thus π ∼= B ∗H ϕ is an HNN extension, with
base B ∼= Q(16), the generalized quaternionic group with presentation

〈a, b | a4 = b2 = (ab)2〉.

and associated subgroups H = 〈a2, ab〉 ∼= ϕ(H) = 〈a2, b〉 ∼= Q(8).
The commutator subgroup is an iterated generalized free product with
amalgamation

π′ ∼= . . . B ∗H B ∗H B . . . ,

and is perfect (π′ = π′′). Since H and ϕ(H) are proper subgroups of
B the commutator subgroup is not finitely generated. Hence no knot
with this group is fibred.

3. π is not properly the group of a satellite knot

If an n-knot K is a satellite of K1 about K2 relative to a simple
closed curve γ in X(K1) then

πK ∼= πK2/〈〈w
q〉〉 ∗w=[γ] πK1,

where [γ] ∈ πK1 has order q ≥ 0 and w is a meridian for K2. The case
q = 0 corresponds to [γ] having infinite order. (See [7], or page 271 of
[6].) If K2 = τrk is the r-twist spin of an (n− 1)-knot k and (q, r) = 1
then πK2/〈〈w

q〉〉 ∼= Z/qZ. Thus every 2-knot group with non-trivial
torsion is trivially the group of a satellite knot. We shall say that πK
is properly the group of a satellite knot if |πK2/〈〈w

q〉〉| > q.
Suppose that the group π of §2 is properly the group of a satellite

knot. Since π has a central subgroup of order 2, it is not of the form
A ∗Z B with A and B nontrivial knot groups. Hence π ∼= G ∗Z/qZ H ,
where G is a knot group and H is the quotient of a knot group by the
qth power of a meridian, for some q > 0, but is not cyclic.
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Since π is an HNN extension with finite base it is virtually free.
(See Corollary IV.1.9 of [4]. The argument given there implies that
π has a free subgroup of index dividing 16!.) Therefore so are G and
H , and all these groups have well-defined virtual Euler characteristics.
Mayer-Vietoris arguments give

χv(π) = χv(Q(16))− χv(Q(8)) =
1

16
−

1

8
= −

1

16

and

χv(π) = χv(G) + χv(H)−
1

q
,

while χv(G) ≤ 0, since G is an infinite virtually free group. Hence

χv(H) ≥
1

q
−

1

16
.

Now since π ∼= Q(16)∗Q(8)ϕ, any finite subgroup of π is conjugate to
a subgroup of Q(16). Therefore q divides 8, and so χv(H) > 0. Hence
H is finite, and so it is isomorphic to a subgroup of Q(16).
We then find that the only possibility is that q = 8 and H ∼= Q(16).

But then χv(G) = 0, and so G′ is finite, and is either Z/8Z or Q(16).
Neither of these groups admits a meridianal automorphism, and so
there is no such knot group G. Thus we may conclude that π is not
properly the group of a satellite knot.
HNN extensions arise naturally in knot theory when an n-knotK has

a minimal Seifert hypersurface V , one for which the pushoffs from V to
either side of Y = Sn+2 \ V are both π1-injective. The knot group πK
is then an HNN extension with base π1(Y ) and associated subgroups
isomorphic to π1(V ). There are 2-knots with group Z/3Z ⋊ Z (the
group of the 2-twist spun trefoil) which do not have minimal Seifert
hypersurfaces. (See Chapter 17 of [6].) Does a 2-knot with exterior
the manifold M of §2 have a minimal Seifert hypersurface realizing the
HNN structure π ∼= Q(16)∗Q(8)ϕ? (Knots related by composition with
reflections of Sn or Sn+2 have similar Seifert hypersurfaces.)

4. hnn extensions with small finite base

Let G = B ∗C φ be an HNN extension with base B and associated
subgroups C and φ(C). Let j : C → B be the natural inclusion.
Consideration of the Mayer-Vietoris sequence for the extension shows
that H1(G) ∼= Z and H2(G) = 0 if and only if H1(j) − H1(φ) is an
isomorphism and H2(j)−H2(φ) is surjective. If the H1 condition holds
then B/N is perfect, where N = 〈〈{j(g)−1φ(g)|g ∈ C}〉〉 is the normal
closure of {j(g)−1φ(g)|g ∈ C} in B. In particular, if B is solvable then
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N = B. The H2 condition holds automatically if H2(B;Z) = 0, in
particular, if B is a finite group of cohomological period 4.
If both homological conditions hold and N = B then the stable letter

of the HNN extension normally generates G, and so G is a knot group
[5]. (However, such HNN extensions need not be 2-knot groups. The
group Z/5Z ⋊2 Z is a high dimensional knot group which is an HNN
extension with H = B = Z/5Z, but the Farber-Levine condition fails,
since 22 6≡ 1 mod (5). See Chapter 14 of [6].)
In particular, if B is finite and C is a proper subgroup then B is

nonabelian, and C/C ′ ∼= B/B′. Hence H1(B) cannot be cyclic of even
order. Therefore B is neither a dihedral group D2k with k odd, nor
Z/3Z ⋊−1 Z/4Z. This leaves only Q(8), D8, D12 and A4 among the
groups of order less than 16.
The groupQ(8) has no proper subgroup with abelianization (Z/2Z)2.

If B = D4k then C must be isomorphic to D4l, for some l dividing k.
But then H2(C) ∼= H2(B) = Z/2Z, and H2(j) and H2(φ) are the same
isomorphism. Hence H2(j) − H2(φ) is not an epimorphism. Thus we
may exclude D8 and D12. If B = A4 then C must be Z/3Z. Since
H2(Z/3Z) = 0 and H2(A4) = Z/2Z, this group may be excluded also.
Thus the smallest possible base must have order at least 16. The

group Q(16) has two proper subgroups with abelianization (Z/2Z)2.
These are 〈a2, b〉 and 〈a2, ab〉, and are isomorphic to Q(8). The au-
tomorphism a 7→ a, b 7→ ab of Q(16) carries one onto the other. Fix
generators x, y for Q(8). Then we may assume that j(x) = a2 and
j(y) = b. If φ is another embedding then φ(x) and φ(y) have order
4, so one must be a±2 and the other aib. If, moreover, H1(j)− H1(φ)
is an isomorphism then φ(x) = aib and φ(y) = a±2, and i must be
odd. After conjugation in Q(16) we may assume that φ(x) = ab and
φ(y) = a2. Since Q(16) is solvable and H2(Q(16)) = 0 the HNN exten-
sion π = Q(16) ∗Q(8) ϕ is a knot group, and it has the smallest finite
base among all such HNN extensions. Moreover, it is the unique such
group with HNN base Q(16).

5. further examples with base of order 16

There are eight other non-abelian groups of order 16. Four are
semidirect products K ⋊ L with K and L cyclic. In three of these
four cases H2(C) = H2(B) = Z/2Z, and so these may be ruled out,
by the argument that excluded D8 and D12. The fourth group M16

has presentation 〈a, x | a8 = x2 = 1 , xax = a5〉. The abelianization is
Z/4Z⊕Z/2Z, and so C must be 〈a2, x〉. There is no second embedding
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φ such that H1(j)−H1(φ) is an isomorphism, and so we may rule out
M16. (Note that H2(M16) = 0.)
The next group to consider is (Z/2Z)2 ⋊θ Z/4Z, the semidirect prod-

uct with action generated by θ = ( 1 1
0 1 ) ∈ GL(2,F2), and with pre-

sentation 〈a, b, x | a4 = b2 = x2 = 1, ab = ba, bx = xb, axa−1 = bx〉.
(Since b = a2(ax)2, this group is generated by {a, x}.) This has
abelianization Z/4Z ⊕ Z/2Z, and so H2(C) = Z/2Z. It follows from
the LHS spectral sequence for B as a semidirect product that H2(B)
maps onto H1(Z/4Z; (Z/2Z)

2) = Ker(θ − I) = Z/2Z. Hence either
H2(B) = Z/2Z and H2(j) − H2(φ) = 0, or H2(B) has order ≥ 4. In
neither case is H2(j)−H2(φ) an epimorphism, and so we may exclude
this group.
The remaining three have abelianization (Z/2Z)3, so C must be an

abelian subgroup of index 2, and hence normal. These are Q(8)×Z/2Z,
D8×Z/2Z and the central product ofD8 with Z/4Z, with presentation

〈a, c, x | a4 = x2 = 1, a2 = c2, ac = ca, cx = xc, xax = a−1〉.

We may eliminate Q(8)× Z/2Z and the central product immediately,
as neither has a proper subgroup with abelianization (Z/2Z)3.
The final group is B = D8 × Z/2Z, with presentation

〈a, b, x | a4 = b2 = x2 = 1, ab = ba, bx = xb, xax = a−1〉.

There are two proper subgroups isomorphic to (Z/2Z)3. These are
〈a2, b, x〉 and 〈a2, b, ax〉, and the automorphism a 7→ a, b 7→ b, x 7→ ax
of B carries one onto the other Let {c1, c2, c3} be the standard basis for
(Z/2Z)3. Then we may assume that C is the image of the embedding
j : (Z/2Z)3 → B determined by j(c1) = a2, j(c2) = b and j(c3) = x.
Let V = (Z/2Z)2, and let ei be the image of the generator of

H2(V ) = Z/2Z under the inclusion of V onto the subgroup generated
by {ck|k 6= i}. Then {e1, e2, e3} is a basis for H2(C) ∼= (Z/2Z)3. We
also haveH2(B) ∼= (Z/2Z)3, sinceH2(B) = H2(D8)⊕(H1(D8)⊗Z/2Z),
by the Künneth Theorem. This has a basis {f1, f2, f3}, where f1 is the
image of the generator of H2(D8), f2 = a ⊗ b and f3 = x ⊗ b. The
homomorphism H2(j) sends e1, e2 and e3 to f3, f1 and 0, respectively.

Reimbeddings satisfying the H1 condition must carry C to C̃ =
〈a2, b, ax〉. There are |GL(3,F2)| = 168 possible isomorphisms φ. Con-
jugation in B reduces this by half (since [B : C] = 2), but this still
leaves too many possibilities to examine easily by hand. We shall just
give one example.

Let j̃(c1) = ax, j̃(c2) = a2 and j̃(c3) = b. Then Im(j̃) = C̃, and
H2(j̃) sends e1, e2 and e3 to 0, f2 + f3 and f1, respectively. It follows
easily that the homological conditions are satisfied. Let φ = j̃j−1 (so
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φ(a2) = ax, φ(b) = a2 and φ(x) = b), and let π = B ∗C φ. Then the
stable letter of the HNN extension is a normal generator for π, since
B is solvable, and so π is a high-dimensional knot group. Is there a
2-knot group with HNN basis B = D8 × Z/2Z?

6. symmetries

Four of the ten (ideal) triangulations in the census which realize
π have simplicial involutions which reverse orientation and acts non-
trivially on H1(M). In particular, the triangulation displayed in §2
has a single non-trivial symmetry, which is such an involution. It is
the simplicial map that sends pentachoron 0 to pentachoron 2, sending
vertices (01234) to (24103), in that order. Pentachoron 1 is sent to
pentachoron 3, sending vertices (01234) to (23041), in that order, and
pentachoron 4 to pentachoron 5, sending vertices (01234) to (42130),
in that order.
The open 4-manifold M is the interior of a compact 4-manifold M ,

with boundary ∂M ∼= S1 × S2, and the involution extends to M . It is
known that there are 13 involutions of S1 × S2, up to conjugacy [10].
In Tollefson’s classification precisely three reverse both the orientation
and the meridian, and they are determined by their fixed-point sets.
One has fixed-point set S0 ∐ S2, and does not extend across D2 × S2.
The others have fixed-point set S2 ∐ S2 and S0 ∐ S0, respectively, and
extend to involutions of D2×S2. Computation shows that the present
involution fixes S0 ∐ S0 (i.e., four points) in ∂M , and thus extends
across any homotopy 4-sphere of the form M ∪D2 × S2. Hence every
knot with exterior M is strongly +amphicheiral. Is any such knot also
invertible or reflexive?
On the algebraic side, it is easy to determine the outer automorphism

classes of π, since every automorphism of an HNN extension with finite
base must carry the base to a conjugate of itself. Thus Out(π) is
generated by automorphisms which fix Q(16) set-wise. If α is such an
automorphism then α(a) = ai and α(b) = ajb, for some odd i = ±1
and some j, and α(t) = wtǫ, for some w ∈ π′ = 〈〈a〉〉 and ǫ = ±1.
Suppose first that ǫ = 1. The images of the relations give equations

wbiw−1 = ajb and wtai+jbt−1w−1 = a2i.

The first equation implies that w ∈ Q(16), by the uniqueness of normal
forms for elements of an HNN extension. Hence j must be even, and
so i+ j = 2k + 1, for some k. The second equation then becomes

wbka2w−1 = a2i,



A SMALL INFINITELY-ENDED 2-KNOT GROUP 9

and so k is also even. On following this through, we find that there is
an unique such automorphism for each w ∈ Q(16). Four of these are
inner automorphisms, given by conjugation by elements of the subgroup
〈a2, ab〉, and so we need only consider the automorphisms f and g, given
by f(a) = a, f(b) = b and f(t) = a4t, and g(a) = a−1, g(b) = a−2b and
g(t) = at. It is easy to see that fg = gf and f 2 = g2 = idπ.
There is also an automorphism h such that h(a) = a, h(b) = ab and

h(t) = (at)−1. This automorphism induces the involution of π/π′ ∼= Z.
We have fh = hf and (gh)2 = idπ, while h2 is conjugation by a, and
so h8 = idπ. Thus Out(π) ∼= (Z/2Z)3, and is generated by the images
of f , g and h.
The HNN structure determines a Mayer-Vietoris sequence

· · · → H4(Q(16)) → H4(π) → H3(Q(8)) → H3(Q(16)) → . . . ,

where the right hand homomorphism is the difference of the homo-
morphisms induced by the inclusions of the two associated subgroups.
Since H3(Q(8)) ∼= Z/8Z, H3(Q(16)) ∼= Z/16Z and H4(Q(16)) = 0,
it follows that H4(π) is cyclic of order dividing 8. Since both of the
homomorphisms H3(Q(8)) → H3(Q(16)) induced by the inclusions are
injective, H3(π) 6= 0. The automorphisms f and g preserve the associ-
ated subgroups, and induce the identity on H3(Q(8)). Hence they also
induce the identity on H4(π). How does h act on this homology group?

References

[1] Budney, R., Burton, B. and Hillman, J. A. Triangulating a Cappell-Shaneson
knot complement, Math. Res. Lett. 19 (2012), 1117–1126.

[2] Burton, B. A., Budney, R., Pettersson, W. et al., Regina: Software for 3-
manifold topology and normal surface theory,
http://regina.sourceforge.net/, 1999–2013.

[3] Burde, G. and Zieschang, H. Knots,
de Gruyter Studies in Mathematics 5,
W. de Gruyter Verlag, Berlin – New York (1985).

[4] Dicks, W. and Dunwoody, M. J. Groups Acting on Graphs,
Cambridge Studies in Advanced Mathematics 17,
Cambridge University Press, Cambridge – New York – Melbourne (1989).
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