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Abstract

We consider fully nonlinear obstacle-type problems of the form{
F (D2u, x) = f(x) a.e. in B1 ∩ Ω,

|D2u| ≤ K a.e. in B1\Ω,

where Ω is an unknown open set and K > 0. In particular, structural con-
ditions on F are presented which ensure that W 2,n(B1) solutions achieve
the optimal C1,1(B1/2) regularity when f is Hölder continuous. Moreover,
if f is positive on B1, Lipschitz continuous, and {u 6= 0} ⊂ Ω, then we
obtain local C1 regularity of the free boundary under a uniform thickness
assumption on {u = 0}. Lastly, we extend these results to the parabolic
setting.

1 Introduction
Obstacle-type problems appear in several mathematical disciplines such as min-
imal surface theory, potential theory, mean field theory of superconducting vor-
tices, optimal control, fluid filtration in porous media, elasto-plasticity, and
financial mathematics [Caf98, Caf77, CS02, Rod87, KN77]. The classical obsta-
cle problem involves minimizing the Dirichlet energy on a given domain in the
space of square integrable functions with square integrable gradient constrained
to remain above a fixed obstacle function and with prescribed boundary data.
Due to the structure of the Dirichlet integral, this minimization process leads
to the free boundary problem

∆u = fχ{u>0} in B1,

where B1 ⊂ Rn is the unit ball centered at the origin. A simple one-dimensional
example shows that even if f ∈ C∞, u is not more regular than C1,1. If the
right-hand side is Lipschitz continuous, then the Harnack inequality may be
used to show that u achieves this optimal regularity.

E. Indrei acknowledges support from the Australian Research Council, US NSF Grant
DMS-0932078 administered by the Mathematical Sciences Research Institute in Berkeley, CA,
and US NSF PIRE Grant OISE-0967140 administered by the Center for Nonlinear Analysis
at Carnegie Mellon University.
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An obstacle-type problem is a free boundary problem of the form

∆u = fχΩ in B1, (1)

where Ω is an (unknown) open set. If Ω = {u 6= 0} and f is Lipschitz continuous,
monotonicity formulas may be used to prove C1,1 regularity of u. Nevertheless,
this method fails when f is Hölder continuous. Recently, a harmonic analysis
technique was developed in [ALS13] to prove optimal regularity under the weak-
est possible assumption on f : if f is Dini-continuous, then u is uniformly C1,1

in B1/2, where the bound on the Hessian depends on ‖u‖L∞(B1).
Fully nonlinear analogs of (1) have been considered by several researchers.

The case
F (D2u) = fχΩ in B1

has been studied in [Lee98] for Ω = {u > 0} and in [LS01] when Ω = {u 6= 0}.
Moreover, a fully nonlinear version of the method in [ALS13] was developed in
[FS13a] and applied to {

F (D2u) = 1 a.e. in B1 ∩ Ω,

|D2u| ≤ K a.e. in B1\Ω,

where Ω is an open set, K > 0, and u ∈ W 2,n(B1). The idea is to replace the
projection on second-order harmonic polynomials carried out in [ALS13] with a
projection involving the BMO estimates in [CH03]. Subject to certain structural
conditions on F , this tool is employed to prove that u ∈ C1,1 inB1/2 and, under a
standard thickness assumption, that the free boundary is locally C1. Moreover,
the general structure of the equation enables the authors to recover previous
regularity results (e.g. when Ω = {u 6= 0}) and address nonlinear parabolic
free boundary problems in the case when the elliptic operator does not depend
explicitly on the spatial variable [FS13b].

Our main result is Theorem 2.1 and establishes optimal regularity for the
free boundary problem{

F (D2u, x) = f(x) a.e. in B1 ∩ Ω,

|D2u| ≤ K a.e. in B1\Ω,
(2)

where Ω is an open set, K > 0, f is Hölder continuous, and under certain struc-
tural conditions on F (see §1.1). As a direct consequence, we obtain optimal
regularity for general operators F (D2u,Du, u, x) and thereby address a prob-
lem discussed by Figalli and Shahgholian [FS13a, Remark 1.1], see Corollary
2.2. Free boundary problems of this type appear in the mean field theory of
superconducting vortices [CS02, Introduction].

The underlying principle in the proof is to locally apply Caffarelli’s elliptic
regularity theory [Caf89] to rescaled variants of (2) in order to obtain a bound on
D2u. The main difficulty lies in verifying an average Ln decay of the right-hand
side in question. However, one may exploit that u ∈ C1,α(B1), D2u is bounded
in B1\Ω, and the BMO estimates in [CH03] to prove that locally around a free
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boundary point, the coincidence set B1\Ω decays fast enough to ensure the Ln
decay. Our assumptions on the structure of F involve conditions which enable
us to utilize standard tools such as the maximum principle and Evans-Krylov
theorem.

Moreover, once we establish that u ∈ C1,1 in B1/2, the corresponding regu-
larity theory for the free boundary follows in a standard way through the clas-
sification of blow-up solutions and is carried out in §3. Indeed, non-degeneracy
holds if f is positive on B1 and {|∇u| 6= 0} ⊂ Ω. Moreover, blow-up solutions
around thick free boundary points are half-space solutions, and this fact com-
bines with a directional monotonicity result to yield C1 regularity of the free
boundary, see Theorem 3.9 for a precise statement.

Finally, we generalize the above-mentioned results to the parabolic setting
in §4 by considering the free boundary problem{

H(u(X), X) = f(X) a.e. in Q1 ∩ Ω,

|D2u| ≤ K a.e. in Q1\Ω,

where X = (x, t) ∈ Rn ×R, H(u(X), X) := F (D2u(X), X)− ∂tu(X), Q1 is the
parabolic cylinder B1(0)× (−1, 0), Ω ⊂ Q1 is some unknown set, and K > 0.

Acknowledgements

We thank Alessio Figalli, Henrik Shahgholian, and John Andersson for enlight-
ening discussions on obstacle-type free boundary problems. Moreover, we wish
to thank Henrik Shahgholian and John Andersson for their valuable remarks on
a preliminary version of this paper.

1.1 Setup
In what follows, we record the structural conditions on the operator F that will
be employed throughout this paper. The first three conditions are well known
in the study of free boundary problems and provide tools such as the maximum
principle and Evans-Krylov theorem. The last condition, which we denote by
(H4), is the new ingredient which controls the oscillation of the operator in the
spatial variable and enables the application of Caffarelli’s regularity theory in
our general framework, see Remarks 2 & 3. Moreover, we note that throughout
the paper the constants of proportionality in our estimates may change from
line to line while still being denoted by the same symbol C.

(H1) F (0, x) = 0 for all x ∈ Ω.

(H2) The operator F is uniformly elliptic with ellipticity constants λ0, λ1 > 0
such that

P−(M −N) ≤ F (M,x)− F (N, x) ≤ P+(M −N) ∀x ∈ Ω,

where M and N are symmetric matrices and P± are the Pucci operators

P−(M) := inf
λ0 Id≤N≤λ1 Id

TrNM, P+(M) := sup
λ0 Id≤N≤λ1 Id

TrNM.
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(H3) F (M,x) will be assumed to be concave or convex in M for all x in Ω.

(H4)
|F (M,x)− F (M,y)| ≤ C|M ||x− y|α,

for some α ∈ (0, 1].

Remark 1. Note that (H1) is not restrictive since we can work with G(M,x) :=
F (M,x)−F (0, x) which fulfills (H2) with the same ellipticity constants as well
as (H3) and (H4). The uniform ellipticity also implies Lipschitz regularity,

|F (M,x)− F (N, x)| ≤ max{|P−(M −N)|, |P+(M −N)|} ≤ nλ1|M −N |. (3)

In particular,

|F (M,x)−F (M,y)| ≤ |F (M,x)−F (0, x)|+|F (M,y)−F (0, y)| ≤ 2nλ1|M |. (4)

Remark 2. Let

β(x) = sup
M∈S

|F (M,x)− F (M, 0)|
|M |

and β̃(x) = sup
M∈S

|F (M,x)− F (M, 0)|
|M |+ 1

,

where S is the space of symmetric matrices. Note that (H4) implies the Hölder
continuity of both β and β̃.
Remark 3. (H4) is equivalent to saying that if

β̄(x, y) = sup
M∈S

|F (M,x)− F (M,y)|
|M |

,

then β̄ is dominated (up to a constant) by |x − y|α for some α ∈ (0, 1]. When
y = 0, this is equivalent to asking that β is Hölder continuous at the origin
which comes up in [Caf89] and [CC95]. In fact, one may weaken this to a
suitable integrability condition.

2 C1,1 regularity
In this section, we prove optimal regularity for W 2,n(B1) solutions of the free
boundary problem (2):

Theorem 2.1. Let f ∈ Cα(B1) be a given function and Ω a domain such that
u : B1 → R is a W 2,n(B1) solution of{

F (D2u, x) = f(x) a.e. in B1 ∩ Ω,

|D2u| ≤ K a.e. in B1\Ω.

Assume F satisfies (H1)-(H4). Then there exists a constant C > 0, depending
on ‖u‖W 2,n(B1), ‖f‖L∞(B1), the dimension, and the ellipticity constants such
that

|D2u| ≤ C, a.e. in B1/2.
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Since W 2,n(B1) solutions of (2) are C1,α(B1), one may utilize the above
theorem to deduce an optimal regularity result for more general operators and
thereby address a problem discussed by Figalli and Shahgholian [FS13a, Remark
1.1]:

Corollary 2.2. Let f ∈ Cα(B1) be a given function and Ω a domain such that
u : B1 → R is a W 2,n(B1) solution of{

F (D2u,Du, u, x) = f(x) a.e. in B1 ∩ Ω,

|D2u(x)| ≤ K a.e. in B1\Ω,

and assume that: F (0, v, t, x) = 0 for all v ∈ Rn, t ∈ R, and x ∈ Ω; F satisfies
(H1)-(H3) in the matrix variable (keeping all other variables fixed); and,

|F (M,w1, s1, x1)−F (M,w2, s2, x2)| ≤ C|M |(|w1−w2|α1+|s1−s2|α2+|x1−x2|α3),

for some αi ∈ (0, 1]. Then there exists a constant C > 0, depending on
‖u‖W 2,n(B1), ‖f‖L∞(B1), the dimension, and the ellipticity constants such that

|D2u| ≤ C, a.e. in B1/2.

Proof. Define
F̃ (M,x) := F (M,Du(x), u(x), x),

and simply note that the assumptions on F together with the fact that u ∈
C1,α(B1) imply that F̃ satisfies the assumptions of Theorem 2.1.

Standing assumptions: Unless otherwise stated, we let x0 ∈ B1/2 ∩ Ω and
assume without loss of generality that u(x0) = |∇u(x0)| = 0 (otherwise we can
replace u(x) with ũ(x) := u(x)− u(x0)−∇u(x0) · (x− x0)).
Moreover, set

Ar(x0) :=
(Br(x0)\Ω)− x0

r
= B1\((Ω− x0)/r).

Whenever we refer to a solution u of (2), it is implicit that u ∈ W 2,n and F
satisfies (H1)-(H4).

The theorem will be established through several key lemmas. The first step
consists of finding a suitable approximation for the Hessian of u at x0 through
the following projection lemma.

Lemma 2.3. Let f ∈ L∞(B1) and u be a solution to (2). Then there exists a
constant C = C(‖u‖W 2,n(B1), ‖f‖L∞(B1), n, λ0) > 0 such that

min
F (P,x0)=f(x0)

 
Br(x0)

|D2u(y)− P |2 dy ≤ C, ∀r ∈ (0, 1/4).
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Proof. Let Qr(x0) := (D2u)r,x0 =
ffl
Br(x0)

D2u(y) dy and note that for t ∈ R,
the ellipticity and boundedness of F implies

P−(t Id) ≤ F (Qr(x0) + t Id, x0)− F (Qr(x0), x0) ≤ P+(t Id)

⇒λ0tn− C ≤ F (Qr(x0) + t Id, x0) ≤ λ1tn+ C.

Thus, there exists ξr(x0) ∈ R such that F (Qr(x0) + ξr(x0) Id, x0) = f(x0) (by
continuity). With this in mind,

min
F (P,x0)=f(x0)

 
Br(x0)

|D2u(y)− P |2 dy

≤
 
Br(x0)

|D2u(y)−Qr(x0)− ξr(x0) Id |2 dy

≤ 2

 
Br(x0)

|D2u(y)−Qr(x0)|2 dy + 2ξr(x0)2

≤ 2CBMO + 2ξr(x0)2,

where we have used the BMO estimate in [FS13a]. It remains to find a uniform
bound on ξr(x0): applying (3), (4), Hölder’s inequality, and the BMO estimate
again, we obtain

|F (Qr(x0), x0)| =
∣∣∣∣ 
Br(x0)

F (Qr(x0)−D2u(y) +D2u(y), x0) dy

∣∣∣∣
≤
 
Br(x0)

|F (D2u(y), x0)|+ nλ1|D2u(y)−Qr(x0)| dy

≤
 
Br(x0)

(
|F (D2u(y), x0)− F (D2u(y), y)|+ |F (D2u(y), y)|

+ nλ1|D2u(y), x0)−Qr(x0)|
)
dy

≤
 
Br(x0)

|F (D2u(y), x0)− F (D2u(y), y)| dy

+ max{||f ||∞, nλ1K}

+ nλ1

√ 
Br(x0)

|D2u(y)−Qr(x0)|2 dy

≤ 2nλ1‖D2u‖W 2,n(B1) + max{||f ||∞, nλ1K}+ CBMO =: C.

Thus,

P−(ξr(x0) Id) ≤ F (Qr(x0) + ξr(x0) Id, x0)− F (Qr(x0), x0) ≤ P+(ξr(x0) Id)

⇒λ0ξr(x0)n− C ≤ F (Qr(x0) + ξr(x0) Id, x0) ≤ λ1ξr(x0)n+ C

⇒λ0ξr(x0)n− C ≤ f(x0) ≤ λ1ξr(x0)n+ C.

In particular, |ξr(x0)| ≤ ‖f‖∞+C
λ0n

and this concludes the proof.
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In what follows, let Pr(x0) denote any minimizer of

min
F (P,x0)=f(x0)

 
Br(x0)

|D2u(y)− P |2 dy,

for r ∈ (0, 1/4). Lemma 2.3 and the triangle inequality readily imply that the
growth of Pr(x0) is controlled in r:

Corollary 2.4. Let f ∈ L∞(B1) and u be a solution to (2). Then there exists
a constant C0 = C0(‖D2u‖W 2,n(B1), ‖f‖L∞(B1), n, λ0) such that

|P2r(x0)− Pr(x0)| ≤ C0 ∀r ∈ (0, 1/8).

Remark 4. We note that (H4) is not needed in the proofs of Lemma 2.3 and
Corollary 2.4.
Next we verify that Pr(x0) is a suitable approximation to D2u(x0).

Lemma 2.5. Let f ∈ L∞(B1) and u be a solution to (2). Then there exists a
constant C1 = C1(K, ‖f‖L∞(B1), n, λ0, λ1, ||u||W 2,n(B1)) such that

sup
x∈Br(x0)

∣∣∣∣u(x)− 1

2
〈Pr(x0)(x− x0), (x− x0)〉

∣∣∣∣ ≤ C1r
2 ∀r ∈ (0, 1/8).

Proof. Assume without loss of generality that F is concave (otherwise, consider
F̃ (M,x) := −F (−M,x) and v = −u) and define

ur,x0
(y) :=

u(ry + x0)

r2
− 1

2
〈Pr(x0)y, y〉,

G(Q) := G(Q, x0) := F (Pr(x0) +Q, x0)− f(x0).

Then, G(0) = 0 and

G(D2ur,x0
(y)) = F (D2u(ry + x0), x0)− f(x0)

= F (D2u(ry + x0), ry + x0)− f(x0) + h(y),

where h(y) := F (D2u(ry + x0), x0) − F (D2u(ry + x0), ry + x0). Thus, ur,x0

solves{
G(D2ur,x0

(y)) = f(ry + x0)− f(x0) + h(y), in B1 \Ar(x0),

G(D2ur,x0
(y)) = F (D2u(ry + x0), ry + x0)− f(x0) + h(y), in Ar(x0).

Next note that if ry+ x0 /∈ Ω, then F (D2u(ry+ x0), ry+ x0) is bounded, so by
letting {

φ(y) := f(ry + x0)− f(x0) in B1 \Ar(x0),

φ(y) := F (D2u(ry + x0), ry + x0)− f(x0) in Ar(x0),

it follows that φ has an L∞ bound depending only on the given data and
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G(D2ur,x0(y)) = φ(y) + h(y) a.e. in B1. (5)

Moreover, ur,x0(y) := ur,x0(y)− (ur,x0)1,0− y · (∇ur,x0)1,0 solves the same equa-
tion. Since

ur,x0
(0) = |∇ur,x0

(0)| = 0,

(recall u(x0) = |∇u(x0)| = 0 by assumption) it follows that

(ur,x0)1,0 = −ur,x0
(0),

(∇ur,x0
)1,0 = −∇ur,x0

(0),

and we may write ur,x0
(y) = ur,x0

(y) − ur,x0
(0) − y · ∇ur,x0

(0). Next we wish
to apply Theorem 2 in [Caf89]. First note that our assumptions on F imply the
required interior a priori estimates for G; moreover, G has no spatial dependence
so it remains to verify the Ln condition of φ + h. Since φ has an L∞ bound
depending only on the given data, we need to verify it solely for h. Indeed, let
s ≤ 1 and note that thanks to (H4),

ˆ
Bs

|h(y)|ndy ≤ (rs)αn
ˆ
Bs

|D2u(ry + x0)|ndy ≤ C||u||W 2,n(B1)s
αn. (6)

Therefore, applying the theorem yields

‖ur,x0
‖L∞(B1/2) = ‖ur,x0

− ur,x0
(0)− y · ∇ur,x0

(0)‖L∞(B1/2)

≤ C(‖ur,x0
‖L∞(B1) + 1), (7)

where C does not depend on r. Moreover, due to the concavity of G (which is
inherited from F ), there is a linear functional L so that L(Q) ≥ G(Q, x0) and
L(0) = 0 (this linear functional depends on x0). In particular,

L(D2ur,x0
(y)) ≥ G(D2ur,x0

(y), x0) = φ(y) + h(y),

a.e. in B1 (recall (5)); this fact together with (6) and Corollary 9.20 in [GT01]
applied to the subsolutions u+

r,x0
and u−r,x0

implies

‖ur,x0
‖L∞(B1) ≤ C‖ur,x0

‖L2(B1) + ‖φ+ h‖Ln(B1)

≤ C‖ur,x0
‖L2(B1) + C(K, ‖f‖L∞(B1), n, λ0, λ1, ‖u‖W 2,n(B1)),

and applying the Poincaré inequality twice yields

‖ur,x0
‖L2(B1) ≤ C‖D2ur,x0

‖L2(B1) = C

 
Br(x0)

|D2u(y)− Pr(x0)|2 dy ≤ C,

where Lemma 2.3 is used in the last inequality. This combined with (7) implies

‖ur,x0‖L∞(B1/2) ≤ C;
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thus,

sup
Br/2(x0)

∣∣∣∣u(x)− 1
2 〈Pr(x0)(x− x0), (x− x0)〉

r2

∣∣∣∣ ≤ C.
The result now follows by replacing r/2 with r and utilizing Corollary 2.4.

Lemma 2.6. Let f ∈ C0(B1) and u be a solution to (2). Then there exists a
constant M = M(K, ‖f‖L∞(B1), n, λ0) such that, for any r ∈ (0, 1/8),

|Ar/2(x0)| ≤ |Ar(x0)|
2n

if |Pr(x0)| > M .

Proof. Let ur,x0(y) := u(ry+x0)
r2 − 1

2 〈Pr(x0)y, y〉 and

G̃(Q, y) := F (Pr(x0) +Q, ry + x0)− f(x0).

Remark 1 below Theorem 8.1 in [CC95] implies the existence of a solution vr,x0

to the equation{
G̃(D2vr,x0

(y), y) = f(ry + x0)− f(x0) in B1,

vr,x0
= ur,x0

on ∂B1;
(8)

set
wr,x0

:= ur,x0
− vr,x0

,

and note that by definition

G̃(D2ur,x0
(y), y) = F (D2u(ry + x0), ry + x0)− f(x0).

Therefore,

G̃(D2ur,x0(y), y)− G̃(D2vr,x0(y), y)

=
(
F (D2u(ry + x0), ry + x0)− f(x0)

)
− (f(ry + x0)− f(x0))

=
(
F (D2u(ry + x0), ry + x0)− f(ry + x0)

)
χAr(x0)

=: φ̃(y)χAr(x0),

where φ̃ ∈ L∞(B1). Combining this information with ((H2)) and the definition
of G̃ yields

P−(D2wr,x0(y)) ≤ G̃(D2ur,x0(y), y)− G̃(D2vr,x0(y), y)

= φ̃(y)χAr(x0) ≤ P+(D2wr,x0
).

Since φ̃ ∈ L∞(B1) with bounds depending only on the given data and Ar(x0) is
relatively closed in B1 (recall that Ω is open), we may apply the ABP estimate
to obtain

‖wr,x0
‖L∞(B1) ≤ C(K, f, n, λ0, λ1)|Ar(x0)|1/n. (9)
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Since (H4) holds, we may combine Remark 3 following Theorem 8.1 in [CC95]
with a standard covering argument to deduce

‖D2vr,x0
‖C0,α(B4/5) ≤ C(‖vr,x0

‖L∞(B4/5) + C);

now by applying Lemma 2.5 and the maximum principle for (8) we obtain

‖vr,x0
‖L∞(B4/5) ≤ ‖vr,x0

‖L∞(∂B1) + 2C0||f ||L∞(B1)

= ‖ur,x0
‖L∞(∂B1) + 2C0||f ||L∞(B1) ≤ C. (10)

In particular, since f ∈ C0(B1), H(M,y) := G̃(D2vr,x0(y) + M,y) + f(x0) −
f(ry + x0) is continuous in y on B4/5 and has the same ellipticity constants as
F (note also that H(0, y) = 0 in B4/5). Moreover, wr,x0

solves the equation

H(D2wr,x0
(y), y) = φ(y)χAr(x0) y ∈ B4/5,

where φ has uniform bounds. The operator H also has interior C1,1 estimates
since it is concave. Thus, by applying Theorem 1 in [Caf89] (cf. Theorem 7.1
in [CC95]) and a standard covering argument (again utilizing (H4)), we obtain
wr,x0 ∈W 2,p(B1/2) for any p > n; selecting p = 2n, it follows that

ˆ
B1/2

|D2wr,x0(y)|2n dy ≤ C(‖wr,x0‖L∞(B3/4) + ‖φχAr(x0)‖L2n(B3/4))
2n

≤ C|Ar(x0)|, (11)

(note that the last inequality follows from (9) and the fact that |Ar(x0)| ≤ |B1|).
Since |D2u| ≤ K a.e. in Ar(x0) and

Pr(x0) = D2u(ry + x0)−D2vr,x0
(y)−D2wr,x0

(y),

by utilizing (10) and (11) we obtain

|Ar(x0) ∩B1/2||Pr(x0)|2n =

ˆ
Ar(x0)∩B1/2

|Pr(x0)|2ndy

=

ˆ
Ar(x0)∩B1/2

|D2u(ry + x0)−D2vr,x0(y)−D2wr,x0(y)|2ndy

≤C
ˆ
Ar(x0)∩B1/2

|D2vr,x0 |2n + |D2wr,x0 |2n + |D2u(ry + x0)|2ndy

≤C(|Ar(x0) ∩B1/2|‖D2vr,x0
‖2nL∞(B1/2) + C|Ar(x0)|+K2n|Ar(x0) ∩B1/2|)

≤C(|Ar(x0) ∩B1/2|+ |Ar(x0)|) ≤ C|Ar(x0)|.

Next note that

Ar/2(x0) = B1\((Ω− x0)/(r/2)) = 2(B1/2\((Ω− x0)/r))

= 2(B1/2 ∩B1\((Ω− x0)/r)) = 2(B1/2 ∩Ar(x0));
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thus, if |Pr(x0)| ≥ (4nC)
1
2n ,

|Ar/2(x0)||Pr(x0)|2n = 2n|Ar(x0) ∩B1/2||Pr(x0)|2n ≤ 2nC|Ar(x0)|

≤ |Pr(x0)|2n

2n
|Ar(x0)|,

which immediately gives the conclusion of the lemma.

In other words, Lemma 2.6 says that the free boundary has a cusp-like
behavior at x0 if |Pr(x0)| is large, see Figure 1. We now have all the ingredients
to prove interior C1,1 regularity of the solution u.

Figure 1: Br\Ω and Br/2\Ω are placed on the same scale and generate Ar(x0)
and Ar/2(x0), respectively. Here, x0 is the tip of a cusp.

Proof of Theorem 2.1. By assumption, |D2u| is bounded a.e. in B1\Ω. There-
fore, consider a point x0 ∈ Ω ∩ B1/2 which is a Lebesgue point for D2u and
where u is twice differentiable (such points differ from Ω by a set of measure
zero). Take M > 0 as in Lemma 2.6. If lim infk→∞ |P2−k(x0)| ≤ 3M , then
Lemma 2.5 implies

|D2u(x0)| ≤ lim inf
k→∞

sup
B

2−k (x0)

2|u|
(2−k)2

≤ 2(C1 + 3M),

(recall that we may assume without loss of generality that u(x0) = |∇u(x0)| =
0). In the case lim infk→∞ P2−k(x0) > 3M , let k0 ≥ 3 be such that |P2−k0−1 | ≤
2M and |P2−k | ≥ 2M for all k ≥ k0 (k0 can be assumed to exist by taking M
bigger if necessary). Then Corollary 2.4 implies |P2−k0 (x0)| ≤ 2M + C0. Now
let

u0(y) := 4k0u(2−k0y + x0)− 1

2
〈P2−k0 (x0)y, y〉

and
F̃ (Q, y) := F (P2−k0 (x0) +Q, 2−k0y + x0)− f(2−k0y + x0);

11



note that F̃ (0, 0) = 0 by the definition of P2−k0 (x0) and u0(y) solves the equation

F̃ (D2u(y), y) = f̃(y) y ∈ B1, (12)

where
f̃(y) := g(y)χA

2−k0 (x0),

and

g(y) := F (D2u(2−k0y + x0), 2−k0y + x0)− f(2−k0y + x0) ∈ L∞(B1),

with uniform bounds. Our goal is to apply Theorem 3 in [Caf89] (cf. Theorem
8.1 in [CC95]) to (12); thus, we verify the required conditions: Lemma 2.6
implies

|A2−k0−j (x0)| ≤ 2−jn|A2−k0 (x0)|, ∀j ≥ 0,

from which it follows that 
Br

|gχA
2−k0 (x0)|n ≤ C

 
Br

|χA
2−k0 (x0)|n ≤ Crn, ∀r ∈ (0, 1/8);

indeed, take j so that 2−j−1 < r ≤ 2−j and let Ar(x0) be denoted by Ar so that
 
Br

|χA
2−k0 (x0)|n ≤

|A2−k0 ∩Br|
2n(−j−1)

= 2n2jn · 2−n|2(A2−k0 ∩Br)|

= 2n2jn · 2−n|2(A2−k0 ∩B1/2 ∩Br)|
= 2n2jn · 2−n|2(A2−k0 ∩B1/2) ∩B2r|
= 2n2jn · 2−n|A2−k0−1 ∩B2r|
≤ · · ·
≤ 2n2jn · 2−jn|A2−k0−j ∩B2jr|
≤ 2n|A2−k0−j | ≤ 2n · 2−jn|A2−k0 | ≤ C22n(2−j−1)n

≤ C22nrn.

We are left with verifying the condition on the oscillation of F̃ . To this aim,
note that one may replace βF̃ (y) by β̃F̃ (y) (see e.g. (8.3) of Theorem 8.1 in
[CC95]). With this in mind, and for P = P2−k0 (x0),

β̃F̃ (y) = sup
Q∈S

∣∣∣F̃ (Q, y)− F̃ (Q, 0)
∣∣∣

|Q|+ 1

= sup
Q∈S

∣∣F (P +Q, y
2k0

+ x0)− f( y
2k0

+ x0)− (F (P +Q, x0)− f(x0))
∣∣

|Q|+ 1

= sup
Q∈S

∣∣F (P +Q, y
2k0

+ x0)− F (P +Q, x0) + (f(x0)− f( y
2k0

+ x0))
∣∣

|Q|+ 1

≤ C|y|α,

12



(the last inequality follows from (H4), the Hölder continuity of f , and the bound-
edness of P ). Thus, the condition on the oscillation of F̃ is verified. Therefore
u0 is C2,α at the origin with the bound

|D2u0(0)| ≤ C

for a constant C. This in turn implies

|D2u(x0)| ≤ |D2u0(0)|+ |P2−k0 (x0)| ≤ C,

and we conclude.

3 Free boundary regularity
The aim in this section is to prove free boundary regularity for (2). In general
the free boundary may develop singularities, see e.g. Schaeffer [Sch77]. Never-
theless, under a uniform thickness assumption and if f ≥ c > 0, then the free
boundary is C1.

3.1 Non-degeneracy and classification of blow-ups
The first step in the free boundary analysis is non-degeneracy (i.e. at least
quadratic growth) of the solution near a free boundary point. In general this
fails, even in the one-dimensional problem u′′ = χ{u′′ 6=0} (see e.g. [FS13a, §3.1]).
However, for {|∇u| 6= 0} ⊂ Ω, non-degeneracy follows from a uniform positivity
assumption on the right hand side: if 0 < c ≤ infx∈B1

f(x), then by letting
v(x) := u(x)− c|x−x0|2

2nλ1
, one may check that v is a subsolution for F in Ω ∩ B1

and apply the argument in [FS13a, Lemma 3.1].

Lemma 3.1 (Non-degeneracy). Suppose 0 < c ≤ infx∈B1
f(x) and let u be a

W 2,n(B1) solution to (2). If {|∇u| 6= 0} ⊂ Ω and x0 ∈ Ω ∩ B1/2, then for any
r > 0 such that Br(x0) b B1,

sup
∂Br(x0)

u ≥ u(x0) +
c

2nλ1
r2.

The previous result immediately implies a linear growth estimate on the gradient
(this is usually referred to as non-degeneracy of the gradient).

Corollary 3.2. Suppose 0 < c ≤ infx∈B1
f(x) and let u be a W 2,n(B1) solution

to (2). If {|∇u| 6= 0} ⊂ Ω and x0 ∈ Ω ∩ B1/2, then for any r > 0 such that
Br(x0) b B1,

sup
Br(x0)

|∇u| ≥ c

4nλ1
r.

Proof. From the non-degeneracy,

sup
∂Br(x0)

u ≥ u(x0) +
c

2nλ1
r2.

13



Therefore there is a point x ∈ ∂Br(x0) such that u(x)− u(x0) ≥ c
4nλ1

r2 . Also,

u(x)− u(x0) ≤ sup
Br(x0)

|∇u||x− x0| = sup
Br(x0)

|∇u|r,

i.e., supBr(x0) |∇u| ≥ c
4nλ1

r.

Non-degeneracy of the gradient and the optimal regularity result of Theorem
2.1 imply the porosity of the free boundary inside B1/4, i.e. there is a 0 < δ < 1
such that every ball Br(x) contains a smaller ball Bδr(y) for which Bδr(y) ⊂
Br(x)\(∂Ω ∩B1/4).

Lemma 3.3 (Porosity of the free boundary). Suppose 0 < c ≤ infx∈B1
f(x)

and let u be a W 2,n(B1) solution to (2). If {|∇u| 6= 0} ⊂ Ω, then ∂Ω ∩B1/4 is
porous.

Proof. Let x0 ∈ ∂Ω∩B1/4 and Br(x0) b B1/2. From the non-degeneracy of the
gradient, there is a point x ∈ Br/2(x0) so that

|∇u(x)| ≥ Cr.

Let C̄ be the constant from Theorem 2.1 and choose 0 < δ ≤ min{ C
2C̄
, 1/2}. If

y ∈ Bδr(x), then

|∇u(y)| ≥ |∇u(x)| − |∇u(y)−∇u(x)| ≥ Cr − ‖D2u‖L∞(B1/2)|x− y|

≥ Cr − ‖D2u‖L∞(B1/2)δr ≥
C

2
r.

In particular, y ∈ Ω and so Bδr(x) ⊂ Br(x0) ∩ Ω ⊂ Br(x0)\(∂Ω ∩B1/4).

A well known consequence of the porosity is the Lebesgue negligibility of the
free boundary, see e.g. [PSU12].

Corollary 3.4. Suppose 0 < c ≤ infx∈B1
f(x) and let u be a W 2,n(B1) solution

to (2). If {|∇u| 6= 0} ⊂ Ω, then ∂Ω has Lebesgue measure zero in B1/4.

Lemma 3.5 (Blow-up). Suppose 0 < c ≤ infx∈B1
f(x) and let u be a W 2,n(B1)

solution to (2), and assume f to be Hölder continuous. If {|∇u| 6= 0} ⊂ Ω, then
for any x0 ∈ ∂Ω(u) ∩B1/4 there is a sequence {rj} such that

urj (y) :=
u(x0 + rjy)− u(x0)

r2
j

→ u0(y)

as rj → 0 in C1,α
loc (Rn), and u0 ∈ C1,1(Rn) solves{

F (D2u(y), x0) = f(x0) a.e. in Ω(u0),

|D2u| ≤ K a.e. in Rn\Ω(u0),

where Ω(u0) := Rn\ lim sup(B1/rj ((−x0)/rj)\Ω(urj )), Ω(urj ) := (Ω − x0)/rj.
Ω(u0). Moreover, {|∇u0| 6= 0} ⊂ Ω(u0).
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Proof. Theorem 2.1 implies u ∈ C1,1(B1/2); since x0 ∈ B1/4, if r > 0 it follows
that ur ∈ C1,1(B1/4r). Let E b Rn and note that since C1,1(E) ↪→ C1,α(E)

compactly for all α ∈ [0, 1), there is a subsequence {urj} converging in C1,α
loc (Rn)

to a function u0 ∈ C1,1(Rn) which is not identically zero by Lemma 3.1. Thus,
|D2u0| is bounded a.e. in Rn\Ω(u0) (in fact, |D2u0| = 0 a.e. there since
|D2urj (y)| = 0 a.e. on {|∇urj | = 0}). Next, let y ∈ Ω(u0) and select δ > 0 such
that Bδ(y0) ⊂ Ω(urj ) for j large enough (by taking a further subsequence, if
necessary); note that urj is C2,α(Bδ(y0)) in this set (by [CC95, Theorem 8.1]).
We can therefore, without loss of generality, assume strong convergence of urj
to u0 in C2(Bδ(y0)). In particular,

F (D2u0(y), x0) = lim
j→∞

F (D2urj (y), x0 + rjy)

= lim
j→∞

f(x0 + rjy) = f(x0), y ∈ Bδ(y0).

To conclude the proof, note that for j large enough, |∇urj | 6= 0 in a neighbor-
hood of a point x where |∇u0(x)| 6= 0, and so it follows that {|∇u0| 6= 0} ⊂
Ω(u0).

Since blow-up solutions are solutions to a free boundary problem on Rn,
one may consider the classification of these global solutions. To this aim, one
introduces

δr(u, x) :=
MD(λ ∩Br(x))

r
,

where λ := B1 \ Ω (recall that MD(E) is the smallest possible distance be-
tween two hyperplanes containing E). Note that δ is well-behaved under scal-
ing and thus with respect to the blow-up procedure: δ1(ur, 0) = δr(u, x), where
ur(y) = (u(x + ry) − u(x))/r2. Now after blow-up, even for general operators,
the operator will solely be a function of the matrix variable and if f is a pos-
itive function bounded away from zero, by letting G(M) := F (M,x0)/f(x0),
the problem of classifying global solutions reduces to the content of [FS13a,
Proposition 3.2].

Proposition 3.6. Suppose 0 < c ≤ infx∈B1 f(x), fix x0 ∈ B1, and let u0 be a
W 2,n(Rn) solution to{

F (D2u(y), x0) = f(x0) a.e. in Ω(u0),

|D2u| ≤ K a.e. in Rn\Ω(u0),

with {|∇u0| 6= 0} ⊂ Ω(u0). If F is convex and there exists ε0 > 0 such that

δr(u, x) ≥ ε0, ∀r > 0, ∀x ∈ ∂Ω(u0),

then u0 is a half-space solution, u0(x) = γx0
[(x · ex0

)+]2/2 + c, where ex0
∈ Sn

and γx0
∈ (1/λ1, 1/λ0) are such that F (γx0

ex0
⊗ ex0

, x0) = f(x0).
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3.2 Directional monotonicity and C1 regularity of the free
boundary

In what follows, two technical monotonicity lemmas will be established and
utilized in proving that the free boundary is C1.

Lemma 3.7. Let u be a W 2,n(B1) solution of{
F (D2u(x), rx) = f(rx) a.e. in B1 ∩ Ω,

|D2u| ≤ K a.e. in B1\Ω,
(13)

and assume f is C0,1, infB1
f > 0, and F is convex in the matrix variable and

satisfies (H1), (H2), and (H4) with α = 1. If {u 6= 0} ⊂ Ω and C0∂eu−u ≥ −ε0
in B1, then

C0∂eu− u ≥ 0

in B1/2 provided
ε0 ≤ (inf

B1

f)/(64nλ1),

and
0 < r ≤ min{‖f‖L∞(B1)/(2C0‖∇f‖L∞(B1) + 2C0C), 1}.

Proof. Let x ∈ Ω and ∂F (M,x) denote the subdifferential of F at the point
(M,x) and note that convexity implies ∂F (M,x) 6= ∅. Consider a measurable
function PM mapping (M,x) to PM (x) ∈ ∂F (M,x). Since u ∈ C2,α

loc (Ω) (see
e.g. [CC95, Theorem 8.1]), we can define the measurable coefficients aij(x) :=

(PD
2u(x)(rx))ij ∈ ∂F (D2u(x), rx). By convexity of F (·, x) and the fact that

F (0, x) ≡ 0, we have

aij(x)
∂iju(x+ he)− ∂iju(x)

h
≤ F (D2u(x+ he), rx)− F (D2u(x), rx)

h
, (14)

aij(x)∂iju(x) = F (0, rx) + aij(x)∂iju ≥ F (D2u(x), rx) = f(rx),

provided x + h ∈ Ω. Note that by (14) and [CCKS96, Theorem 3.8] (uniform
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limits of viscosity solutions are viscosity solutions), we have

aij(x)∂ij∂eu(x) ≤ lim sup
h→0

F (D2u(x+ he), rx)− F (D2u(x), rx)

h

= lim sup
h→0

F (D2u(x+ he), rx)− f(rx)

h

= lim sup
h→0

F (D2u(x+ he), rx)− F (D2u(x+ he), rx+ rhe)

h

+
f(rx+ rhe)− f(rx)

h

= r lim sup
h→0

F (D2u(x+ he), rx)− F (D2u(x+ he), rx+ rhe)

h

+
f(rx+ rhe)− f(rx)

rh

= r(∂ef)(rx)− r(∂x,eF )(D2u(x), rx) a.e.,

where ∂x,e denotes the spatial directional derivative in the direction e. If there
is y0 ∈ B1/2 ∩ Ω such that C0∂eu(y0) − u(y0) < 0, then consider the auxiliary
function

w(x) = C0∂eu(x)− u(x) + c
|x− y0|2

2nλ1
,

where c = infB1
f/2. Note that for r ≤ min{c/(C0‖∇f‖L∞(B1) + C0C), 1},

aij(x)∂ijw(x) ≤ rC0(∂ef)(rx)− rC0(∂x,eF )(D2u(x), rx)− f(rx) + c

≤ rC0‖∇f‖L∞(B1) + rC0C − f(rx) + c ≤ 2c− f(rx) ≤ 0.

Hence w is a supersolution and therefore attains its minimum on the boundary
of B1/4(y0) ∩Ω. However on ∂Ω, w is positive (since both u and ∂eu are zero);
thus, the minimum is attained on ∂B1/4(y0), and this implies

0 > min
B1/4(y0)∩Ω

w ≥ −ε0 +
c

32nλ1
,

a contradiction if ε0 ≤ c/(32nλ1).

Lemma 3.8. Let u be a W 2,n(B1) solution of (13) where F and f are C0,1

in the spatial variable, F is C1 in the matrix variable, and F is convex and
satisfies (H1) - (H2). Assume further that {∇u 6= 0} ⊂ Ω and infB1

f > 0. If
C0∂eu− |∇u|2 ≥ −ε0 in B1 for some C0, ε0 > 0, then

C0∂eu− |∇u|2 ≥ 0

in B1/2 provided that ε0 ≤ µ1 and 0 < r ≤ µ2, where µ1 > 0 and µ2 > 0 are
constants depending on given bounds.
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Proof. By differentiating (13), it follows that

Fij(D
2u(y), ry)∂ij∇u = r∇f(ry)− r∇xF (D2u(y), ry), a.e in Ω.

Since u ∈ C2,α
loc (Ω) (by [CC95, Theorem 8.1]) and the right hand side of the

equation above is in L∞(Ω) (hence, Lp(Ω) for any p > 0), it follows by elliptic
regularity theory that ∇u ∈W 2,p

loc (Ω) for any p <∞ (see e.g. [GT01, Corollary
9.18]). By applying the operator Fij(D2u(y), ry)∂ij to |∇u|2, we obtain

Fij(D
2u(y), ry)∂ij |∇u(y)|2

= 2Fij(D
2u(y), ry)∂ijku(y)∂ku(y) + 2Fij(D

2u(y), ry)∂iku(y)∂jku(y) (15)

= 2r(∇f(ry)−∇xF (D2u(y), ry)) · ∇u(y) + 2Fij(D
2u(y), ry)∂iku(y)∂jku(y)

For differentiable operators, the ellipticity condition can be written as

Fij(D
2u(y), ry)ξiξj ≥ λ0|ξ|2;

thus, (15) yields

Fij(D
2u(y), ry)∂ij |∇u(y)|2 (16)

≥ 2r(∇f(ry)−∇xF (D2u(y), ry)) · ∇u(y) + 2λ0|D2u(y)|2.

Now (H1)-(H2) and the positivity of f imply

0 < c ≤ f(ry) = |F (D2u(y), ry)− F (0, ry)| ≤ 2nλ1|D2u|, (17)

where c := infB1
f . By combining (16) and (17), it follows that

Fij(D
2u(y), ry)∂ij |∇u(y)|2 ≥ 2r(∇f(ry)−∇xF (D2u(y), ry)) · ∇u(y) +

c2λ0

2n2λ2
1

.

The proof now follows as in Lemma 3.7: assume by contradiction that there is
a point y0 ∈ B1/2 ∩ Ω such that C0∂eu(y0)− |∇u(y0)|2 < 0 (outside Ω we have
|∇u| = 0). Let d = c2λ0

4n2λ2
1
and

w(y) = C0∂eu(y)− |∇u(y)|2 + d
|y − y0|2

2nλ1
.

Next note that for r sufficiently small, w is a supersolution of Fij(D2u(y), ry)∂ij .
Indeed,

Fij(D
2u(y), ry)∂ijw

≤ rC0‖∇f‖L∞(B1) + rC0C

− 2r(∇f(ry)−∇xF (D2u(y), ry)) · ∇u(y)− c2λ0

2n2λ2
1

+ d

≤ rC1(u)− c2λ0

2n2λ2
1

+ d ≤ 0,
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where for the last inequality we require r ≤ c2λ0

4n2λ2
1C1

. Therefore w attains a
minimum on the boundary of B1/4(y0)∩Ω. However, on ∂Ω, w is non-negative
since both u and ∂eu are zero, so the minimum has to be attained on ∂B1/4(y0),
and this implies

0 > min
B1/4(y0)∩Ω

w ≥ −ε0 +
d

32nλ1

which is a contradiction if ε0 ≤ d/(32nλ1).

We are now in a position to prove that under a suitable thickness assumption,
the free boundary is C1.

Theorem 3.9. Let u : B1 → R be a W 2,n(B1) solution of (2). Let F be
a convex operator satisfying (H1), (H2), and (H4) with α = 1, and assume
further that f is C0,1. If {u 6= 0} ⊂ Ω and there exists ε > 0 such that

δr(u, x) > ε, ∀r < 1/4, x ∈ ∂Ω ∩Br,

then there exists r0 > 0 depending only on ε and given bounds such that ∂Ω ∩
Br0(x) is a C1-graph.

Proof. Let x ∈ ∂Ω ∩ B1/8 and consider the rescaling ur(y) := u(ry+x)−u(x)
r2 .

By Theorem 2.1 we have a uniform C1,1-estimate with respect to r and can
therefore find a subsequence {urj} converging in C1

loc(Rn) to a global solution
u0, where u0(0) = 0. The thickness assumption implies δr(u, x) > ε for all r > 0,
hence u0(y) = γ ((y·ex)+)2

2 according to Proposition 3.6, where γ ∈ [λ0, λ1] and
ex ∈ ∂B1. Now let 0 < s ≤ 1. Then

∂eu0

s
− u0 ≥ 0

in B1 for any direction e ∈ ∂B1 such that e · ex ≥ s. From the C1-convergence
of {urj} we have

∂eurj
s
− urj ≥ −ε0

in B1 for j ≥ k(s, x) and ε0 as in Lemma 3.7. Therefore urj fulfills the assump-
tions of this lemma and the above inequality can be improved to

∂eurj (y)

s
− urj (y) ≥ 0, y ∈ B1/2. (18)

For s = 1, i.e. e = ex, multiplying (18) by exp(e · y) implies

∂e[exp(−e · y)urj (y)] = exp(−e · y)(∂eurj (y)− urj (y)) ≥ 0.

Integrating this expression yields

exp(−e · y)urj (y)− urj (0)︸ ︷︷ ︸
=0

=

ˆ e·y

0

∂e[exp(−e · z)urj (z)]d(e · z) ≥ 0,
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so urj (y) ≥ 0 in B1/2 and ∂eurj (y) ≥ 0 follows from (18). In particular, we have
shown that if x ∈ ∂Ω∩B1/8 and e · ex ≥ s, then ∂eu(z) ≥ 0 for all z ∈ Brj/2(x),
where rj = rj(s, x). Now

∂Ω ∩B1/16 ⊂
⋃

x∈∂Ω∩B1/16

Brj/2(x),

so by extracting a finite subcover and relabeling the radii, it follows that

∂Ω ∩B1/16 ⊂
N⋃
k=1

Bηk(xk),

where ηk = ηk(xk, s); set η = η(s) := min
k
ηk. Thus, for all x ∈ ∂Ω ∩ B1/16, we

have ∂eu(z) ≥ 0 for all z ∈ Bη(x), where η only depends on s and the given
data (via the C1 convergence of urj ). Therefore, if s0 ∈ (0, 1), by letting r0 :=
η(s0), it follows that the free boundary ∂Ω ∩ Br0(x) is s0-Lipschitz. Moreover,
note that in a small neighborhood of the origin, by picking s sufficiently small,
the Lipschitz constant of the free boundary can be made arbitrarily small (the
neighborhood only depends on η(s)). This shows that the free boundary is C1 at
the origin, and the same reasoning applies to any other point in ∂Ω∩Br0(x).

Remark 5. In view of Lemma 3.8, we can replace the condition {u 6= 0} ⊂ Ω by
{∇u 6= 0} ⊂ Ω in Theorem 3.9 whenever F is C1 in the matrix variable.
Remark 6. The free boundary analysis remains valid for more general operators,
e.g. such as the ones appearing in Corollary 2.2.

4 Parabolic case
In this section we generalize the former results regarding optimal regularity of
the solution as well as C1 regularity of the free boundary to the non-stationary
setting. Since the parabolic case is very similar to the elliptic one, we mostly
outline the proofs. The setup of the problem is as follows.

• Let Qr(X) := Br(x) × (t − r2, t), where X = (x, t). For convenience,
Qr := Qr(0).

• Instead of (2) we consider the following problem,{
H(u(X), X) = f(X) a.e. in Q1 ∩ Ω,

|D2u| ≤ K a.e. in Q1\Ω,
(19)

where H(u(X), X) := F (D2u(X), X)− ∂tu(X), Ω ⊂ Q1 is some unknown
set, and K is a positive constant as before. We still assume F to satisfy
(H1)-(H3) for all X ∈ Q1 and

F (M,x, t)− F (M,y, s) ≤ C|M |(|x− y|α1 + |t− s|α2). (20)

with α1, α2 ∈ (0, 1].
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• We assume f to be at least Hölder continuous in both the spatial and time
coordinates.

• Let Ar(X0) := {(x, t) ∈ Q1 : (rx, r2t) ∈ Qr\Ω}.

• Let D̃2u := (D2
xu,Dtu) denote the parabolic Hessian.

• Let

δr(u,X
0) := inf

t∈[t0−r2,t0+r2]

MD(Projx(A ∩ (Br(x
0)× {t})))

r
,

where MD(E) stands for the minimal diameter, i.e., the smallest distance
between two parallel hyperplanes that trap the set E, and Projx is the
projection on the spatial coordinates.

The main theorems corresponding to Theorem 2.1 and 3.9 are now stated for
the parabolic case; the first giving the optimal regularity of solutions.

Theorem 4.1 (Interior C1,1
x ∩C

0,1
t regularity). Let u : Q1 → R be aW 2,n

x ∩W
1,n
t

solution of (19). Then there is a constant C = C(n, λ0, λ1, ‖u‖∞, ‖f‖∞) > 0
such that

|D̃2u| ≤ C, in Q1/2.

The second theorem gives C1 regularity of the free boundary if we add some
additional assumptions on δr, f and F , as in the elliptic setting.

Theorem 4.2 (C1 regularity of the free boundary). Let u : Q1 → R be a
W 2,n
x ∩W 1,n

t solution of (19), and assume {u 6= 0} ⊂ Ω. Suppose that f is
Lipschitz in (x, t) and f ≥ c > 0. Let F be convex in the matrix variable and
suppose F satisfies (H1), (H2), and (20) with α1 = α2 = 1. Then there exists
an ε > 0 such that if

δr(u,X
0) > ε

uniformly in r and X0 ∈ ∂Ω ∩Qr, then ∂Ω ∩Qr0 is a C1-graph in space-time,
where r0 depends only on ε and the data.

Theorem 4.1 follows from results corresponding to [FS13b, Lemma 2.1 and
Proposition 2.2] which readily generalize to the parabolic setting thanks to our
results in the ellipic case and [FS13b, Remark 6.3]. Indeed, we can show the
inequality

sup
Qr(0)

|u− Pr| ≤ Cr2, r ∈ (0, 1)

for some parabolic polynomials Pr that solve the homogeneous equation

H(Pr, 0) = 0,

a result that is in the same vein as Lemma 2.5. Moreover, the above inequal-
ity together with an argument similar to the proof of Lemma 2.6 imply the
geometric decay of the coincidence sets,

|Ar/2| ≤
|Ar|
2n+1

.
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Theorem 4.1 is then proven in the same way as in the elliptic case.
Regarding the regularity of the free boundary, Lemma 3.1 is easily gen-

eralized since the maximum principle holds in our case as well (see [Wan92,
Corollary 3.20]), and the rest of the results are extended with the following
parabolic blow-up lemma.

Lemma 4.3. Let u be a W 2,n
x ∩W 1,n

t solution to (19). If {u 6= 0} ⊂ Ω, then
for any (x0, t0) ∈ ∂Ω(u) ∩Q1/4 there is a sequence {rj} such that

urj (y, t) :=
u(x0 + rjy, t0 + r2

j t)− u(x0, t0)

r2
j

→ u0(y, t)

locally uniformly as rj → 0, and u0 solves{
F (D2u(y, t), x0, t0)− ∂tu(y, t) = f(x0, t0) a.e. in Ω(u0),

|D̃2u| ≤ K a.e. in Rn\Ω(u0),

where {u0 6= 0} ⊂ Ω(u0).

Proof. By C1,1
x ∩ C0,1

t regularity of u and the fact that u = 0 on ∂Ω, it follows
that the sequence {urj} is uniformly bounded; hence, up to a subsequence,
uj → u0 locally uniformly. Define Ω(u0) to be the limit of the open sets Ωj :=

{(x, t) : (x0 + rjx, t0 + r2
j t) ∈ Ω} (as in the elliptic case), and note that D̃2u

is bounded on the complement of Ω(u0) (since {u 6= 0} ⊂ Ω). Moreover, u0

is not identically zero by non-degeneracy. Next, let (y, t) ∈ Ω(u0) and select
δ > 0 such that Qδ(y, t) ⊂ Ωj for j large enough; note that urj is C2,α

x ∩ C1,α
t

in this set (by the parabolic Evans-Krylov theorem [Kry82]). We can therefore,
without loss of generality, assume C2

x ∩C1
t convergence of urj to u0 in Qδ(y, t).

In particular,

F (D2u0(y, t), x0, t0) = lim
j→∞

(
F (D2urj (y, t), x0 + rjy, t0 + r2

j t)− ∂turj (y, t)
)

= lim
j→∞

f(x0 + rjy, t0 + r2
j t) = f(x0, t0), y ∈ Qδ(y, t).

To conclude the proof, note that for j large enough, urj 6= 0 in a neighborhood
of a point (y, t) where u0(y, t) 6= 0, and so it follows that {u0 6= 0} ⊂ Ω(u0).

Since blow-up solutions are solutions to a free boundary problem on Rn+1, one
may consider the classification of these global solutions just like in the elliptic
case. By letting G(M) := H(M,x0, t0)/f(x0, t0), the problem reduces to the
content of [FS13b, Proposition 3.2].

Proposition 4.4. Fix X0 := (x0, t0). If u0 is a solution to{
H(D2u(y), X0) = f(X0) a.e. in Ω(u0),

|D2u| ≤ K a.e. in Rn\Ω(u0),
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with {u0 6= 0} ⊂ Ω(u0), and there exists ε0 > 0 such that

δr(u, x) ≥ ε0, ∀r > 0, ∀x ∈ ∂Ω(u0),

then u0 is time-independent and of the form u0(x) = γX0
[(x · eX0

)+]2/2, where
eX0
∈ Sn and γX0

∈ (1/λ1, 1/λ0) are such that F (γX0
eX0
⊗ eX0

, X0) = f(X0).

This proposition can, in turn, be used to prove that the time derivative ∂tu
vanishes on the free boundary. The proof follows the same line as [FS13b] except
that Proposition 3.2 is replaced in their proof with Proposition 4.4. The result
is stated in the following lemma.

Lemma 4.5. Let u, f , F and δr be as in Theorem 4.2 and {u 6= 0} ⊂ Ω. Then

lim
Ω3X→∂Ω

∂tu(X) = 0

The parabolic counterpart of Lemma 3.7 follows by replacing w given in that
proof with

C∂eu(X)− u(X) + c̃
|x− x0|2 − (t− t0)

2nλ1 + 1
,

where c̃ := infQ1 f/2; this is where the Lipschitz assumptions on F and f come
into play. With this in mind, the proof of Theorem 4.2 follows as in the elliptic
case.
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