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Abstract— Distributed control problems under some specific
information constraints can be formulated as (possibly infinite
dimensional) convex optimization problems. The underlying
motivation of this work is to develop an understanding of the
optimal decision making architecture for such problems. In this
paper, we particularly focus on the N -player triangular LQG
problems and show that the optimal output feedback controllers
have attractive state space realizations. The optimal controller
can be synthesized using a set of stabilizing solutions to 2N
linearly coupled algebraic Riccati equations, which turn out to
be easily solvable under reasonable assumptions.

NOMENCLATURE

• G(s) =

[
A B
C D

]
:= C(sI − A)−1B + D represents a

proper rational transfer function matrix.
• The space of matrix valued functions G such that ‖G‖ ,√
〈G,G〉 < ∞ is denoted by L2, where 〈G1,G2〉 ,

1
2π

∫∞
−∞ trG∗1(jω)G2(jω)dω. L2 can be written as L2 =

H2⊕H⊥2 , where H2 is the subspace of functions G analytic
in Re(s) > 0. The H2 norm of a function G ∈ H2 can be
computed using the same formula ‖G‖ ,

√
〈G,G〉. The

Hardy space H∞ will be also used in this paper.
• Let In be the n = n1 + · · · + nN dimensional identity
matrix. Denote by Ei the i-th block column of In, and by
Ei the i-th block row of In. We also write E↑i to denote
the first n1 + · · · + ni columns of In, while E↓i is the last
ni+ · · ·+nN columns of In. Similarly, E↑i denotes the first
n1 + · · ·+ni rows of In, while E↓i is the last ni+ · · ·+nN
rows of In. For a general matrix M , shorthand notations
such as M↑i = E↑iM , M↑i = ME↑i, M↑j↑i = E↑iME↑j

will be also used.
• I specifies a sparsity structure of matrices, or matrix-valued
functions. If M has N × N subblocks, M ∈ ILBT means
that M is lower block triangular. If M ∈ I↑i↓i , then M has
nonzero components only in the (·)↑i↓i subblock. If M ∈ Iji ,
only (i, j)-th subblock can be nonzero.
• (X,K) = AREp(A,B, F,H) represents a solution
of algebraic Riccati equation ATX + XA − (XB +
FTH)Ψ−1(XB + FTH)T + FTF = 0 with K =
−Ψ−1(XB+FTH)T where Ψ , HTH . Similarly, (Y,L) =
AREd(A,C,W, V ) represents a solution of AY + Y AT −
(CY + VWT )TΦ−1(CY + VWT ) + WWT = 0 with
L = −(CY + VWT )TΦ−1 where Φ = V V T .
• row{M1, · · · ,Mn} , [M1 · · · Mn], col{M1, · · · ,Mn} ,
[MT

1 · · · MT
n ]T .
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I. INTRODUCTION

It is widely recognized that tractability of distributed con-
trol problems greatly depends on the information structure
underlying the problem. If the information structure is arbi-
trary, the problem can be hopelessly hard as demonstrated
by an iconic example by Witsenhausen in 1968. In contrast,
many tractability results initiated by Ho and Chu [1] suggest
that distributed control problems seem much more accessible
when decision makers form a hierarchy in terms of their
ability to observe and control the physical system. Currently,
a unification via the quadratic invariance (QI) introduced by
[7] is known to capture a wide class of distributed control
problems that can be formulated as (infinite dimensional)
convex optimization problems. Unfortunately, the QI frame-
work does not immediately lead us to an explicit form of the
optimal solution, and as a result, state space realizations of
the optimal controllers remain unknown for many QI optimal
control problems. This paper derives a state space realization
of the solution to the triangular LQG problem, which is a
special case but an important instance of the QI optimal
control problems.

The triangular LQG problem is formulated as follows.
Suppose that the transfer function of the system to be
controlled is given by

G =

[
G11 G12

G21 G22

]
,

 A W B
F 0 H
C V 0

 .
Matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are partitioned
according to n = n1 + · · ·+ nN ,m = m1 + · · ·+mN , p =
p1 + · · · + pN , and A,B,C ∈ ILBT with respect to this
partitioning. The injected noise w, performance output z,
control input u, and observation output y are related by
col{z, y} = Gcol{w, u}. A controller transfer function K ∈
ILBT needs to be designed so that u = Ky minimizes the
H2 norm of the closed loop transfer function from w to z.

Problem 1: Find a state space realization of the optimal
solution Kopt to the problem:

min ‖G11 + G12K(I −KG22)−1G21‖2 (1a)
s.t. K ∈ ILBT and stabilizing. (1b)

Problem 1 can be interpreted as a distributed control problem
under a particular information constraint shown in Fig. 1.
We make some natural assumptions on system matrices
A,B,C, F,H,W and V so that Problem 1 is well-posed.

Assumption 1: 1. For every i ∈ {1, 2, · · · , N},
(Aii, Bii) is stabilizable and H has full column rank.
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Fig. 1. A,B,C ∈ ILBT means that system dynamics propagates only
downward on the chain of local subsystems (defined by Aii, Bii, Cii).
Each row of K ∈ ILBT can be considered as an independent controller,
who controls local subsystem based on the observations of the outputs of
upstream subsystems. Alternatively, each column of K can be seen as an
independent controller, who observes local output and controls downstream
subsystems. Another valid interpretation is to view K ∈ ILBT as a sum
of local controllers Ki ∈ I↑i↓i , who observes upstream subsystems and
controls downstream systems (the above figure).

2.
[
A− jωI B

F H

]
has full column rank for all ω ∈ R.

3. For every i ∈ {1, 2, · · · , N}, (Cii, Aii) is detectable
and V has full row rank.

4.
[
A− jωI W

C V

]
has full row rank for all ω ∈ R.

Due to the quadratic invariance property [7], Problem 1 can
be written as a convex optimization problem by introducing
a particular re-parametrization [9]. It is also straightforward
to see by vectorization [8] that Problem 1 admits a unique
and rational solution in this parameter domain, and hence
that Kopt is also rational. In this paper, we further show that
the optimal controller has a fascinating state space structure,
which can be easily synthesized by solving a set of linearly
coupled Riccati equations. This work extends recent progress
in the understanding of state space solutions to distributed
control problems [2]–[4], [10], [12].

II. SUMMARY OF THE RESULT

Under Assumption 1 and 2 (the second assumption will
be discussed later), a state space model of Kopt can be
constructed. This requires to determine N controller gains
K1, · · · ,KN and N observer gains L1, · · · , LN by finding
a set of stabilizing solutions to algebraic Riccati equations:

(X1,K1) = AREp(A,B, F,H) (2a)

(Xi,Ki) = AREp(A+Li−1C↑i−1, B
↓i,

−H↓i−1Ki−1, H
↓i), i ∈ {2, 3, · · · , N} (2b)

(YN , LN ) = AREd(A,C,W, V ) (2c)

(Yi, Li) = AREd(A+B↓i+1Ki+1, C↑i,

−Li+1V↑i+1, V↑i), i ∈ {1, 2, · · · , N−1}. (2d)

Notice that (2a) and (2c) can be solved independently since
they require problem data A,B,C, F,H,W and V only,
while the remaining 2N − 2 Riccati equations (2b) and (2d)
have dependencies on each other. By carefully looking at
their substructures, we show that unknown variables can
be sequentially determined as shown in Fig. 2. Apparently,

concepts of control and estimation are highly symmetric in
this synthesis.

It is convenient to introduce nN dimensional square
incidence matrices ζ and µ to describe the architecture of
Kopt. Define ζ by dividing it into N × N sub-blocks and
setting its (i, j)-th sub-block to In if i ≥ j and to zero
otherwise. Matrix µ is defined as the inverse of ζ.

Theorem 1: Under Assumption 1 and 2, (2) admits a
unique set of solutions (Xi,Ki), (Yi, Li), i = 1, · · · , N
such that each of them is a stabilizing solution to the
corresponding Riccati equation in (2). Using these solutions,
the optimal controller to Problem 1 can be written as Kopt =[
AK BK
CK 0

]
where AK , BK , CK are defined by

AK =I ⊗A+ diag{L1C↑1, · · · , LNC↑N}
+ ζdiag{B↓1K1, · · · , B↓NKN}µ (3a)

BK =− col{L1E↑1, · · · , LNE↑N} (3b)

CK =row{E↓1K1, · · · , E↓NKN}µ. (3c)

Moreover, the optimal value of Problem 1 can be written as
J2
opt = J2

cnt + J2
dcnt where

J2
cnt = trWTX1W + trΨK1YNK

T
1

J2
dcnt=

N−1∑
j=1

tr(HK1−H↓j+1Kj+1)Yj(HK1−H↓j+1Kj+1)T .

Note that Jcnt can be interpreted as the optimal cost when
the controller is designed without information constraints
(compare with the result of standard H2 control). The price to
pay to impose information constraints as in Fig. 1 is precisely
given by Jdcnt. The optimal controller given in Theorem
1 turns out to be a certainty equivalent controller. That
is, if col{xK1(t), · · · , xKN (t)} is the state of the optimal
controller, then xKi(t) can be interpreted as the least mean
square estimate of x(t) based on the observations of outputs
of upstream subsystems (see Appendix E). Nevertheless, as
Fig. 2 shows, controller and observer gain must be jointly
designed when N ≥ 2. The well-known separation principle
holds only in an exceptional circumstance of N = 1, where
controller and observer gains can be designed separately.

III. COUPLED RICCATI EQUATIONS

Since the proof of optimality of the proposed controller
is closely related to the solvability of the set of Riccati
equations (2), we study its solution procedure in this section.
We introduce the following partitioning of unknown matrices
Xi, Yi,Ki and Li for every i ∈ {1, 2, · · · , N}:

Xi =

[
X̌i X̄i

X̄T
i X̂i

]
, Ki =

[
K̄i K̂i

]
,

Yi =

[
Ŷi Ȳi
Ȳ Ti Y̌i

]
, Li =

[
L̂i
L̄i

]
(4)

where X̂i = (Xi)
↓i
↓i, Ŷi = (Yi)

↑i
↑i, K̂i = KiE

↓i, L̂i =

E↑iLi. In particular, X1 = X̂1,K1 = K̂1 and YN =
ŶN , LN = L̂N . Matrices K̂i and L̂i are further partitioned as



𝐿2,1         𝐿2,2  

𝐿1,1 

𝐿3,1         𝐿3,2          𝐿3,3  

𝐿1,2 𝐿1,3 

𝐿2,3 

𝐾3,3 

𝐾2,1 

𝐾1,1         𝐾1,2         𝐾1,3  

𝐾2,2        𝐾2,3  

𝐾3,1 𝐾3,2 

Fig. 2. This diagram illustrates the order in which controller/observer gains
are determined when N = 3. Suppose Ki,j is the i-th player’s controller
gain acting on his state estimate of xj (i.e., Ki = row{Ki,1,Ki,2,Ki,3}).
Similarly, suppose Li,j is the i-th player’s estimator gain to update his
state estimate of xj (i.e., Li = col{Li,1, Li,2, Li,3}). The solution process
starts by solving (2a) to generate K1,1,K1,2,K1,3. This recursively allows
one to solve for K2,2,K2,3 and then for K3,3. Estimator gains can be also
found by first solving (2c) and then proceed backward on the chain. Finally,
the remaining gains (in the dotted line) is computed at once by solving a
system of linear equations. This procedure is a natural extension of the case
of N = 2 reported in [4].

K̂i = row{K̂a
i , K̂

b
i }, L̂i = col{L̂bi , L̂ai } where K̂a

i = KiE
i

and L̂ai = EiLi. Also introduce

ÂKi , A↓i↓i +B↓i↓iK̂i, Ā
K
i , A↑i−1↓i +B↓i↓iK̄i

ÂLi , A↑i↑i + L̂iC
↑i
↑i , Ā

L
i , A↑i↓i+1 + L̄iC

↑i
↑i

AKL1,0 , A+BK1, A
KL
N+1,N , A+ LNC

AKLi,i−1 , A+B↓iKi + Li−1C↑i−1 for 2 ≤ i ≤ N.

Equation (2b) can be written as

AKLi,i−1
T
Xi +XiA

KL
i,i−1 + Σi = 0 (5a)

KT
i Ψ↓i↓i +XiB

↓i −KT
i−1Ψ↓i↓i−1 = 0 (5b)

where Σi = (H↓iKi−H↓i−1Ki−1)T (H↓iKi−H↓i−1Ki−1)
and (2d) is rearranged as

AKLi+1,iYi + YiA
KL
i+1,i

T
+ Πi = 0 (6a)

Φ↑i↑iL
T
i + C↑iYi − Φ↓i+1

↓i LTi+1 = 0 (6b)

where Πi = (LiV↑i − Li+1V↑i+1)(LiV↑i − Li+1V↑i+1)T .
Now, all unknown variables can be determined by the
following three-step procedure, which also visualized in Fig.
3.

A. Step 1: Sequential solving of Riccati subequations

In this step, sub-matrices indicated by “ ˆ ” in (4) are
determined. Notice that X̂1, K̂1, ŶN , L̂N are directly ob-
tained by solving (2a) and (2c). To compute X̂i, K̂i for
i ∈ {2, 3, · · · , N}, focus on the lower-right (·)↓i↓i sub-block
of (5a) and (·)↓i subblock of (5b). They are by themselves
Riccati equations with respect to (X̂i, K̂i):

(X̂i, K̂i) = AREp(A
↓i
↓i, B

↓i
↓i ,−H

↓i−1K̂b
i−1, H

↓i). (7)

Since the right hand side contains K̂b
i−1, these Riccati

equations need to be solved in the forwarding (ascending)
order on the chain. Similarly, Ŷi, L̂i for i ∈ {1, 2, · · · , N−1}

① ② ③ 
④ 

① ② ③ ④ 

𝐾1 𝐾2 𝐾3 𝐾4 

𝑋1 𝑋2 𝑋3 𝑋4 

① ① 

② ② 

③ ③ 

④ ④ 

𝑌1 

𝑌2 

𝑌3 

𝑌4 

𝐿1 

𝐿2 

𝐿3 

𝐿4 

Fig. 3. Sequential process to determine unknown variables. Step 1: Entries
with dark gray are computed by sequentially solving Riccati subequations.
Step 2 : Entries with light gray are computed at once by solving a linear
system. Step 3: White entries are obtained by solving Lyapunov equations.

can be computed by focusing on the upper-left (·)↑i↑i sub-
block of (6a) and (·)↑i sub-block of (6b). They are Riccati
equations with respect to (Ŷi, L̂i):

(Ŷi, L̂i) = AREd(A
↑i
↑i, C

↑i
↑i ,−L̂

b
i+1V↑i+1, V↑i). (8)

Since the right hand side contains L̂bi+1, they need to be
solved in the backward (descending) order in the chain.

Proposition 1: Under Assumption 1, algebraic Riccati
equations (7) and (8) admit a unique positive semidefinite
solution, which is also stabilizing.

B. Step 2: Solving a linear system

In this step, we compute components with“¯”. By looking
at the upper-right (·)↓i↑i−1 subblock of (5a) and the upper
(·)↑i−1 subblock of (5b), as well as the upper-right (·)↓i+1

↑i
subblock of (6a) and the right (·)↓i+1 subblock of (6b), we
obtain

K̄T
i Ψ↓i↓i + X̄iB

↓i
↓i − row{K̄i−1, K̂

a
i−1}TΨ↓i↓i−1 = 0 (9a)

ÂLi−1
T
X̄i + X̄iÂ

K
i + ĀLi−1

T
X̂i

+ row{K̄i−1, K̂
a
i−1}T (Ψ↓i−1↓i−1K̂

b
i−1 −Ψ↓i↓i−1K̂i) = 0 (9b)

for every i ∈ {2, 3 · · · , N} and

Φ↑i↑iL̄
T
i + C↑i↑i Ȳ

T
i − Φ↑i+1

↑i col{L̂ai+1, L̄i+1}T = 0 (9c)

ÂLi Ȳi + ȲiÂ
K
i+1

T
+ ŶiĀ

K
i+1

T

+ (L̂bi+1Φ↑i+1
↑i+1 − L̂iΦ

↑i+1
↑i )col{L̂ai+1, L̄i+1}T = 0 (9d)

for every i ∈ {1, 2, · · · , N − 1}. Since X̂i, K̂i, Ŷi, L̂i are
computed in the previous step, these are linear equations
with respect to X̄i, K̄i, i ∈ {2, 3, · · · , N} and Ȳi, L̄i, i ∈
{1, 2, · · · , N − 1}. There are precisely the same number of
linear constraints as the number of real unknowns. Unfortu-
nately, we are currently not aware of a theoretical guarantee
for the non-singularity of (9). Hence at this point, we have
to make an additional assumption:

Assumption 2: The linear system (9) with respect to
X̂i, K̂i, i ∈ {2, 3, · · · , N} and Ŷi, L̂i, i ∈ {1, 2, · · · , N − 1}
admit a unique solution.



When N = 2, it is shown in [4] that the linear system (9)
admits a unique solution under Assumption 1 and thus As-
sumption 2 is unnecessary. It must be addressed in the future
whether this generalizes to N > 2. Our numerical studies
indicate that, when problem data is randomly generated to
satisfy Assumption 1, (9) is usually a well-conditioned linear
system.

C. Step 3: Solving Lyapunov equations

Finally, X̌i for i ∈ {2, 3, · · · , N} and Y̌i for i ∈
{1, 2, · · · , N − 1} are computed by looking at (·)↑i−1↑i−1 sub-
block of (5a) and (·)↓i+1

↓i+1 sub-block of (6a).

ÂLi−1
T
X̌i + X̌iÂ

L
i−1 + ĀLi−1

T
X̄T
i + X̄iĀ

L
i−1 − K̄T

i Ψ↓i↓iK̄i

+ row{K̄i−1, K̂
a
i−1}TΨ↓i−1↓i−1row{K̄i−1, K̂

a
i−1} = 0

i ∈ {2, 3, · · · , N} (10a)

ÂKi+1Y̌i + Y̌iÂ
K
i+1

T
+ ĀKi+1Ȳi + Ȳ Ti Ā

K
i+1

T − L̄iΦ↑i↑iL̄
T
i

+ col{L̂ai+1, L̄i+1}Φ↑i+1
↑i+1col{L̂ai+1, L̄i+1}T = 0

i ∈ {1, 2, · · · , N − 1} (10b)

Since all other quantities are known by the previous step,
these are Lyapunov equations with respect to X̌i and Y̌i,
which can be easily solved. Since ÂKi and ÂLi are Hurwitz
stable (guaranteed by Proposition 1), they admit a unique
solution.

Proposition 2: Under Assumption 1 and 2, the set of
algebraic Riccati equations (2) admit a unique tuple of
positive semidefinite solutions Xi, Yi, i ∈ {1, 2, · · · , N}.
Moreover, they are stabilizing solutions.

Proof: It is clear from Theorem 3 that (2a) and
(2c) admit unique positive semidefinite solutions which are
stabilizing. To see why solutions constructed in Step 1, 2
and 3 above are positive semidefinite, notice that under
Assumption 1 and 2, the algorithm produces a unique set of
variables satisfying (5a) and (6a). Furthermore, notice that

AKLi,i−1 =

[
ÂLi−1 0

A↑i−1↓i +B↓i↓iK̄i + L̄i−1C
↑i−1
↑i−1 ÂKi

]
is a stable matrix since its diagonal blocks are stable. Hence,
due to the inertia property of a Lyapunov equation, Xi and
Yi must be positive semidefinite. They are indeed stabilizing
solutions since AKLi,i−1 is a stable matrix.

IV. DERIVATION OF MAIN RESULT

A. Stability

Notice that the closed-loop transfer function is given by

Gcl =

[
Gcl

11 Gcl
12

Gcl
21 Gcl

22

]
=

 A W B
F 0 H
C V 0



,


AK BKC BKV 0
BCK A W B
HCK F 0 H

0 C V 0

 . (11)

S0,1 ⊂ S0,2 ⊂ · · · ⊂ S0,N ⊂ S0,N+1

∪ ∪ ∪ ∪
S1,1 ⊂ S1,2 ⊂ · · · ⊂ S1,N ⊂ S1,N+1

∪ ∪ ∪
S2,2 ⊂ · · · ⊂ S2,N ⊂ S2,N+1

∪ ∪
. . .

...
...

∪ ∪
SN,N ⊂ SN,N+1

Fig. 4. Inclusion relation diagram among subspaces Si,j defined by
(20). For convenience, we also define S0,j , {QE↑jG

cl
21 : Q ∈ H2},

Si,N+1 , {Gcl
12E
↓iQ : Q ∈ H2}, S0,N+1 , H2.

To see that Kopt is a stabilizing controller, we need to verify
that A is a stable matrix. Let ζ̄ be an n(N + 1)-dimensional
square matrix whose (i, j)-th sub-block is In if i ≥ j and is
zero otherwise. Also define µ̄ = ζ̄−1. One can easily check
that a similarity transformation gives

µ̄Aζ̄ =


AKL1,0 ∗ ∗ ∗ ∗

AKL2,1 ∗ ∗ ∗
. . . ∗ ∗

AKLN,N−1 ∗
0 AKLN+1,N

 . (12)

This is a block upper-triangular matrix. Moreover, all diag-
onal blocks are stable matrices as we saw in the proof of
Proposition 2. This shows the stability of A.

B. Optimal Controller Characterization

If Kopt is the optimal solution to Problem 1, then any
perturbation K = Kopt + K′ such that K′ ∈ ILBT only
degrades control performance. Due to the uniqueness of the
rational solution to Problem 1, it is sufficient for us to show
that K′ = 0 is the optimal solution to the modified H2

optimal control problem

min ‖Gcl
11 + Gcl

12K
′(I −Gcl

22K
′)−1Gcl

21‖
s.t. K′ is stabilizing and K′ ∈ ILBT .

Since Gcl
22 ∈ H2∩ILBT , the subspace ILBT is quadratically

invariant under Gcl
22. This means that all stabilizing con-

trollers are parametrized by the structured Youla parameter
Q , −K′(I −Gcl

22K
′)−1 ∈ H∞ ∩ ILBT . Hence, the above

statement is equivalent to that Q = 0 is the optimal solution
to the model matching problem1

min ‖Gcl
11 −Gcl

12QGcl
21‖ (18)

s.t. Q ∈ H2 ∩ ILBT .

Since the non-rectangular constraint ILBT is inconvenient to
work with, we use an alternative characterization of the same
statement using rectangular blocks I↑i↓i , i ∈ {1, 2, · · · , N}.

1The condition Q ∈ H∞ ∩ILBT can be replaced by Q ∈ H2 ∩ILBT

without loss of generality. Recall that under Assumption 1, H has full
column rank, V has full row rank, and Gcl

11 ∈ H2. This means that Q
must be in H2 so that the value of (18) is bounded.



Ki , E↓irow{0, · · · , 0,
i-th block

E↓i+1Ki+1 − E↓iKi, · · · ,
(N−1)-th block

E↓NKN − E↓N−1KN−1,
N -th block

−E↓NKN ,
(N+1)-th block

E↓iKi } (13)

Lj , col{
1st block
L1E↑1, · · · ,

(j−1)-th block
Lj−1E↑j−1,

j-th block
LjE↑j , · · · ,

N -th block
LjE↑j ,

(N+1)-th block
LjE↑j }E↑j (14)

J̃i , row{0, · · · , 0,
(i−1)-th block

I , 0, · · · , 0,
(N+1)-th block
−I }, Ĵj , col{0, · · · , 0,

(j+1)-th block
I , · · · ,

(N+1)-th block
I } (15)

Ui,

[
AKLi,i−1 BUi

CUi
DUi

]
, M−1i ,

[
A B↓i

−Ψ↓i↓i

1
2Ki Ψ↓i↓i

1
2

]
∀i ∈ {1, 2, · · · , N} where BUi

= B↓iΨ↓i↓i
− 1

2 , (16)

CUi
=

{
F +HK1 if i = 1

Ψ↓i−1↓i−1

1
2E↓i−1(E↓iKi−E↓i−1Ki−1) if 2 ≤ i ≤ N

, DUi=

{
HΨ−

1
2 if i = 1

Ψ↓i−1↓i−1

1
2E↓i−1E

↓iΨ↓i↓i
− 1

2 if 2 ≤ i ≤ N.

Vj,

[
AKLj+1,j BVj

CVj
DVj

]
, N−1i ,

 A −LjΦ↑j↑j
1
2

C↑j Φ↑j↑j

1
2

∀j ∈ {1, 2, · · · , N} where CVj
= Φ↑j↑j

− 1
2C↑j , (17)

BVj
=

{
W + LNV if j = N

(LjE↑j−Lj+1E↑j+1)E↑j+1Φ↑j+1
↑j+1

1
2 if 1≤j≤N−1

, DVj
=

{
Φ−

1
2V if i = N

Φ↑j↑j
− 1

2E↑jE
↑j+1Φ↑j+1

↑j+1

1
2 if 1 ≤ i ≤ N − 1.

Proposition 3: Q = 0 is the optimal solution to (18) if
and only if for every i ∈ {1, 2, · · · , N}, Qi = 0 is the
optimal solution to the model matching problem

min ‖Gcl
11 −Gcl

12QiG
cl
21‖ (19)

s.t. Qi ∈ H2 ∩ I↑i↓i .
One approach to find a solution to the model matching

problem (19) is to apply the projection theorem [5]. Define
subspaces Si,j of H2 for 1 ≤ i ≤ j ≤ N by

Si,j , {Gcl
12E

↓iQE↑iG
cl
21 : Q ∈ H2}. (20)

Proposition 3 implies that, in order to infer that Kopt is the
optimal controller, it suffices to prove that Q = 0 is the
minimizer of ‖Gcl

11 −Gcl
12E

↓iQE↑iG
cl
21‖ over Q ∈ H2 for

every i ∈ {1, 2, · · · , N}. Equivalently, it needs to be shown
that πSi,i(G

cl
11) = 0 for every i ∈ {1, 2, · · · , N}, where

πSi,j : H2 → Si,j is the projection operator.

C. Nested Projections

It is clear that the inclusion relations in Fig. 4 hold among
subspaces defined by (20). We are going to exploit this
diagram to find an explicit representation of πSi,j

(Gcl
11).

Recall the following fact:
Theorem 2: (Nested Projections, see e.g., [6]) Let

S1, S2, · · · , SN be subspaces of a Hilbert space such that
SN ⊂ SN−1 ⊂ · · ·S2 ⊂ S1. Then πSN

= πSN
◦ πSN−1

◦
· · · ◦ πS2 ◦ πS1 .
According to Fig. 4, Theorem 2 suggests that πSi,i

can be
computed as, for instance,

πSi,i
= πSi,i

◦πSi,i+1
◦· · ·◦πSi,N

◦πSi−1,N
◦· · ·◦πS1,N

. (21)

Understanding πSi,i
as a composition of stepwise projec-

tions is convenient in the following presentation, since each
projection step can be associated with one of 2N Riccati
equations in (2). To be precise, we consider writing Si,j
using an “orthonormal” basis. Recall that a rational function

U ∈ H∞ is said to be inner if U∗U = I and co-inner if
UU∗ = I . It turns out that each subspace can be written as

Si,j = {U1 · · ·UiM
−1
i QN−1j Vj · · ·VN : Q ∈ H2} (22)

where the explicit form of inner functions U1, · · · ,UN , co-
inner functions V1, · · · ,VN and other necessary quantities
are given in (13)-(17). The above expression is obtained
by repeated applications of a particular type of spectral
factorizations (Lemma 2 in Appendix D). Each application
of the factorization requires a solution to one of the Riccati
equations in (2).

Writing Si,j in the form of (22) makes nested projections
easier. Suppose that the projection of Gcl

11 onto Si,j can be
written in the form of

πSi,j (Gcl
11) = U1 · · ·UiP̃iVj · · ·VN ∈ Si,j

for some P̃i. Then it is easy to check that the subsequent
projection is given by

πSi+1,j
(Gcl

11) = U1 · · ·Ui+1P̃i+1Vj · · ·VN ∈ Si+1,j

where P̃i+1 is chosen to satisfy the optimality condition〈
U∗i+1P̃i − P̃i+1,M

−1
i+1QN−1j

〉
= 0 ∀Q ∈ H2.

Details can be found in Lemma 3 in Appendix D. Also,
notice that every projection generates a “residual term” as

πSi,j(G
cl
11)=πSi+1,j(G

cl
11) + U1· · ·UiR(i,j)→(i+1,j)Vj · · ·VN

πSi,j(G
cl
11)=πSi,j−1(G

cl
11) + U1· · ·UiR(i,j)→(i,j−1)Vj · · ·VN .

The H2 norm of residual terms will be used later to compute
the optimal value of Problem 1. Finally, all the above
operations can be performed at the state space level, as
summarized in Lemma 1.



‖R(i−1,j)→(i,j)‖2 =


trWTX1W if i = 1, j = 1

trΦ↑j↑jL
T
j X1Lj if i = 1, j ≥ 2

tr(Li−1V↑i−1 − LjV↑j)TX1(Li−1V↑i−1 − LjV↑j) if i ≥ 2

(23)

‖R(i,j+1)→(i,j)‖2 =


trFYNF

T if i = N, j = N

trΨ↓i↓iKiYNK
T
i if i ≤ N − 1, j = N

tr(H↓iKi −H↓j+1Kj+1)Yj(H
↓iKi −H↓j+1Kj+1)T if j ≤ N − 1.

(24)

Lemma 1: The projection of Gcl
11 onto any sub-

space Si,j in Fig. 4 is given by πSi,j
(Gcl

11) =
U1U2 · · ·UiP

′
i,jVj · · ·VN−1VN where

P′i,j =

[
A Λj
Γi 0

]
(25)

Γi=

{
F if i = 0

−Ψ↓i↓i

1
2Ki if 1≤ i≤N

,Λj=

{
W if j=N+1

−LjΦ↑j↑j
1
2 if 1≤j≤N

.

Moreover,

R(i−1,j)→(i,j) =

[
AKLi,i−1 −J̃iΛj
CUi

0

]
R(i,j+1)→(i,j) =

[
AKLj+1,j BVj

−ΓiĴj 0

]
.

Proof: See Appendix D.

D. Proof of Optimality

We are now ready to prove that πSi,i(G
cl
11) = 0 for

every i ∈ {1, 2, · · · , N}. Combined with Proposition 3, this
completes the proof of optimality of the proposed controller.

Proof: (of Theorem 1) We have verified the existence
and uniqueness of the stabilizing solution to (2) in Section
III. By Lemma 1, for every i ∈ {1, 2, · · · , N}, we have

P′i,i =

 A −LiΦ↑i↑i
1
2

−Ψ↓i↓i

1
2Ki 0

 .
Apply a state space transformation defined by µ̄ and ζ̄. As
we have observed in (12), µ̄Aζ̄ is an upper block triangular
matrix. Also, it is straightforward to check that all (·)↓i+1

sub-blocks of µ̄LiΦ↑i↑i
1
2 are zero. Furthermore, it is possible

to show that all (·)↑i sub-blocks of Ψ↓i↓i

1
2Kiζ̄ are zero.

Hence P′i,i = 0. Therefore, for every i ∈ {1, 2, · · · , N},
πSi,i

(Gcl
11) = U1U2 · · ·UiP

′
i,iV1 · · ·VN−1VN = 0. By

Proposition 3, this implies that the proposed controller is the
optimal solution to Problem 1.

Since we have shown that Gcl
11 is the optimal closed loop

transfer function, the optimal cost is given by computing
its H2 norm. To obtain more explicit expression, consider a
nested projection πS1,1

= πS1,1
◦ · · · ◦ πS1,N

◦ πS1,N+1
. It is

possible to write

Gcl
11 =πS1,1

(Gcl
11)+R(0,N+1)→(1,N+1)+U1R(1,N+1)→(1,N)

+

N−1∑
j=1

U1R(1,j+1)→(1,j)Vj+1 · · ·VN .

Since πS1,1(Gcl
11) = 0 and all residual terms are orthogonal,

the optimal cost Jopt = ‖Gcl
11‖ can be decomposed as

‖Gcl
11‖2 =‖R(0,N+1)→(1,N+1)‖2 + ‖R(1,N+1)→(1,N)‖2

+

N−1∑
j=1

‖R(1,j+1)→(1,j)‖2.

Each term can be written more explicitly using the fact (23)
(24). This proves J2

opt = J2
cnt + J2

dcnt.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a state-space realization
of the optimal output feedback controller for the N -player
triangular LQG problem. We have derived a set of algebraic
Riccati equations to be solved to construct the optimal
controller. Solvability of Riccati equations, namely non-
singularity of the linear system (9), must be verified in the
future work.
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APPENDIX

A. Quadratic Invariance and Convexity

This section gives a brief review of the notion of Quadratic
Invariance and how an optimal control problem can be
formulated as an infinite dimensional convex optimization
problem. For brevity, our discussion here is rather informal;
for a thorough introduction, readers are referred to [7]. The
H2 optimal control formulated in Problem 1 is a nonconvex
optimization problem respect to K. A natural approach is
to introduce the Youla parametrization, which has been
historically used to convexify centralized control problems.
Youla parameterization is particularly simple if G is stable,
and is given by Q = −K(I−G22K)−1. The inverse in this
expression is guaranteed to exist on the domain of stabilizing
K by the generalized Nyquist criterion [11]. Conversely, the
corresponding controller K can be recovered from Q by
K = −(I−QG22)−1Q. The objective function is expressed
as ‖G11−G12QG21‖2, which is clearly convex with respect
to the new parameter Q. Moreover, the requirement that K is
stabilizing is translated in the new domain as the requirement
that Q is stable (i.e., Q ∈ H∞)2, which is also a convex
constraint. The information constraint K ∈ I, however,
results in a nonconvex constraints on the Q domain, unless
I is quadratically invariant under G22.

Definition 1: (Quadratic Invariance) Let U ,Y be vector
spaces. Suppose G is a linear mapping from U to Y and
I is a set of linear maps from Y to U . Then I is called
quadratically invariant under G if K ∈ I ⇒ KGK ∈ I.
The significance of I being quadratic invariant is that, the
condition K ∈ I can be translated to Q ∈ I on the new
domain, which is a convex constraint3.

Since we are considering triangular LQG problems in this
paper, G22 has a lower block triangular structure (G22 ∈
ILBT ), while the information constraint on the controller
implies that the controller transfer function is also lower
block triangular (K ∈ ILBT ). It is easy to verify that
the space of transfer function matrices with sparsity pattern
ILBT is indeed quadratically invariant under G22. Therefore,
Problem 1 can be recast as the following infinite dimensional
convex optimization problem.

min ‖G11 −G12QG21‖ (26a)
s.t Q ∈ H∞ ∩ ILBT . (26b)

An optimization problem of this form is called the model
matching problem.

2This can be intuitively understood via the internal model principle [11].
3This fact can be understood from the following informal observation: if

K ∈ I and I is QI under G22, the Neumann series expansion gives

Q = −K(I −G22K)−1 = −K−KG22K−K(G22K)2 − · · · .

Since we can inductively show that every term in the last expression belongs
to I, Q ∈ I.

If G22 is not stable, Youla parameter must be constructed
using coprime factors of G22 [13]. In this case, parametriza-
tion of stabilizing controllers subject to the information con-
straint is more involved. Nevertheless, if I is quadratically
invariant under G22, the information constraints can be recast
as linear constraints on the Youla parameter [9]. Therefore,
even in this case, the optimal H2 control problem subject
to information constraints can be reformulated as a convex
optimization problem.

B. Centralized H2 Optimal Control

Assume that A is a Hurwitz matrix and that G11 ∈ H2.
In this case, the optimal solution Q to the H2 model
matching problem (26) must be in H2, since otherwise
‖G11 − G12QG21‖ is unbounded under Assumption 1.
Hence the centralized H2 optimal control problem can be
cast as a simple H2 model matching problem

min ‖G11 −G12QG21‖ (27a)
s.t Q ∈ H2. (27b)

One approach to find a solution to the model matching
problem is to apply the projection theorem [5]. Let H be
a Hilbert space and S be a closed nonempty subspace of
H . If a ∈ H , then there exists an element x0 ∈ S such
that ‖a − x0‖ ≤ ‖a − x‖ for all x ∈ S. Such an element
x0 is called a projection of a onto S, and is denoted by
x0 = πS(a). It can be shown that x0 = πS(a) if and only if
x0 ∈ S and 〈a− x0, x〉 = 0 for all x ∈ S.

In the model matching problem (27), a set S ,
{G12QG21 : Q ∈ H2} defines a closed nonempty subspace
of H2. Hence the optimal solution to (27) can be found by
computing a projection of G11 onto S. To this end, a coprime
factorization technique of rational functions, particularly
the inner-outer factorization, is useful. We first recall the
following facts. Proofs can be found in [14].

Theorem 3: Suppose (A,B) is stabilizable, H has full

column rank, and
[
A− jωI B

F H

]
has full column rank

for all ω ∈ R. Then algebraic Riccati equation (X,K) =
AREp(A,B, F,H) has a unique positive semidefinite solu-
tion. Moreover, it is stabilizing (that is, Acl , A+BK is a
Hurwitz stable matrix).

Theorem 4: (1). (Right Inner-Outer Factorization)

Assume G12 =

[
A B
F H

]
is stabilizable and[

A− jωI B
F H

]
has full column rank for all ω ∈ R.

Then there exists a right coprime factorization G12 =
UM−1 such that U is inner and M is stably invertible.
A particular realization of such factorization is

U =

[
A+BK BΨ−

1
2

F +HK HΨ−
1
2

]
, M−1 =

[
A B

−Ψ
1
2K Ψ

1
2

]
where Ψ = HTH and (X,K) = AREp(A,B, F,H).

(2). (Left Inner-Outer Factorization)



Assume G21 =

[
A W
C V

]
is detectable and[

A− jωI W
C V

]
has full row rank for all ω ∈ R.

Then there exists a left coprime factorization G21 =
N−1V such that V is co-inner and N is stably invert-
ible. A particular realization of such factorization is

V =

[
A+ LC W + LV

Φ−
1
2C Φ−

1
2V

]
, N−1 =

[
A −LΦ

1
2

C Φ
1
2

]
where Φ = V V T and (Y, L) = AREd(A,C,W, V ).

Using U and V, the subspace S can be expresses as
S = {UPV : P ∈ H2}, where P = M−1QN−1 is a new
parameter. Since M and N are stably invertible, requiring
that Q ∈ H2 is equivalent to requiring P ∈ H2.

Suppose the projection of G11 onto S can be
written as UP′V. By the optimality condition
〈G11 −UP′V,UPV〉 = 0 ∀P ∈ H2, one obtains
U∗G11V

∗ − P′ ∈ H⊥2 . Hence it must be that
P′ = πH2

(U∗G11V
∗). Moreover, straightforward state

space manipulations show that

P′ = πH2
(U∗G11V

∗) =

[
A −LΦ

1
2

−Ψ
1
2K 0

]
. (28)

From this result, one can recover the optimal centralized H2

controller.

Kopt =

[
A+BK + LC −L

K 0

]
.

It is also possible to show that the optimal control perfor-
mance is

Jcent = tr(WTXW ) + tr(ΨKYKT ). (29)

C. Proof of Proposition 1

By Theorem 3, (X̂1, K̂1) = AREp(A,B, F,H) has a
unique positive semidefinite solution that is also stabilizing;
in particular A↓1↓1 +B↓1↓1K̂1 is stable. Thus it suffices to show
that if A↓i↓i+B

↓i
↓iK̂i is stable for some i ∈ {1, 2, · · · , N−1},

then the algebraic Riccati equation

(X̂i+1, K̂i+1) = AREp(A
↓i+1
↓i+1, B

↓i+1
↓i+1 ,−H

↓iK̂b
i , H

↓i+1)
(30)

has a unique positive semidefinite solution that is also
stabilizing. Since (A↓i+1

↓i+1, B
↓i+1
↓i+1) is stabilizable by As-

sumption 1, by Theorem 3, the only way that (30) fails
to have a unique positive semidefinite solution is that[
A↓i+1
↓i+1 − jωI B↓i+1

↓i+1

−H↓iK̂b
i H↓i+1

][
z1
z2

]
= 0 for some

[
z1
z2

]
6= 0.

Notice that z1 cannot be zero as this implies z2 is also
zero due to the assumption that H↓i+1 has full column

rank. Introducing z̃1 =

[
0
z1

]
, z̃2 =

[
0
z2

]
, we have

that

[
A↓i↓i − jωI B↓i↓i
−H↓iK̂i H↓i

] [
z̃1
z̃2

]
= 0. Left-multiplied by[

I −B↓i↓i(Ψ
↓i
↓i)
−1H↓i

T
]
, this reduces to jωz̃1 = (A↓i↓i +

B↓i↓iK̂i)z̃1, z̃1 6= 0. However, this contradicts that stability
of A↓i↓i + B↓i↓iK̂i. This shows that (7) has a unique positive
semidefinite and stabilizing solution for all i ∈ {2, · · · , N}.
A similar argument can be applied to (8) as well.

D. Proof of Lemma 1

Lemma 2: (1). For every i ∈ {1, 2, · · · , N}, Ui is an
inner function and Gcl

12E
↓i = U1U2 · · ·UiM

−1
i .

(2). For every j ∈ {1, 2, · · · , N}, Vj is a co-inner function
and E↑jGcl

21 = N−1j VjVj+1 · · ·VN .
Proof: (1). When i = 1,

U1M
−1
1 =

 AKL1,0 −BK1 B
0 A B

F +HK1 −HK1 H


=

 AKL1,0 0 0
0 A B

F +HK1 F H

 = Gcl
12.

From the first to the second expression, a similarity transfor-
mation was applied by multiplying the state space “A” matrix

by
[
I J̃1
0 I

]
from the left and by its inverse from the right.

The fact that K1 is a solution to (2a) is exploited to obtain
“0” at the upper-right corner of the state space “A” matrix.
The last step was obtained by eliminating uncontrollable
states. When i ∈ {2, 3, · · · , N},

UiM
−1
i =

 A
KL
i,i−1 −B↓iKi B↓i

0 A B↓i

CUi −Ψ↓i−1↓i−1

1
2E↓i−1E

↓iKi Ψ↓i−1↓i−1

1
2E↓i−1E

↓i


=

 AKLi,i−1 0 0
0 A B↓i

CUi
−Ψ↓i−1↓i−1

1
2Ki−1 Ψ↓i−1↓i−1

1
2E↓i−1E

↓i


=M−1i−1E↓i−1E

↓i.

From the first to the second expression, a similarity transfor-

mation was applied by multiplying by
[
I J̃i
0 I

]
from the

left and by its inverse from the right. Combining the above
results, one obtains Gcl

12E
↓i = U1U2 · · ·UiM

−1
i . To see

that Ui is inner, notice that

AKLi,i−1
T
Xi +XiA

KL
i,i−1 + CTUi

CUi
= 0

DT
Ui
CUi +BTUi

Xi = 0

follows from (5). Since DT
Ui
DUi = I , by Corollary 13.30 in

[14], Ui is an inner function.
(2). When j = N ,

N−1N VN =

 A −LNC −LNV
0 AKLN+1,N W + LNV

C C V


=

 A 0 W
0 AKLN+1,N W + LNV

C 0 V

 = Gcl
21.

From the first to the second expression, a similarity transfor-
mation was applied by multiplying the state space “A” matrix



by
[
I ĴN
0 I

]
from the left and by its inverse from the

right. The last step was obtained by eliminating unobservable
states. When j ∈ {1, 2, · · · , N − 1},

N−1j Vj =

 A −LjC↑j −LjE↑jE↑j+1Φ↑j+1
↑j+1

1
2

0 AKLj+1,j BVj

C↑j C↑j E↑jE
↑j+1Φ↑j+1

↑j+1

1
2



=

 A 0 −Lj+1Φ↑j+1
↑j+1

1
2

0 AKLj+1,j BVj

C↑j 0 E↑jE
↑j+1Φ↑j+1

↑j+1

1
2


= E↑jE

↑j+1N−1i+1.

From the first to the second expression, a similarity transfor-

mation was applied by multiplying by
[
I Ĵj
0 I

]
from the

left and by its inverse from the right. Combining the above
results, one obtains E↑jGcl

21 = N−1j VjVj+1 · · ·VN . To see
that Vj is co-inner, or equivalently that VT

j is inner, notice
that

AKLj+1,jYj + YjA
KL
j+1,j

T
+BVj

BTVj
= 0

DVj
BTVj

+ CVj
Yj = 0

follows from (6). Since DVj
DT
Vj

= I , Vj is a co-inner
function.

Lemma 3: Let Γi and Λj be given as in Lemma 1, while
Γ and Λ be any matrices. Let 0 ≤ i < j ≤ N + 1.

(1). If F = U1 · · ·UiP̃iVj · · ·VN ∈ Si,j where

P̃i ,

[
A Λ
Γi 0

]
,

then πSi+1,j (F) = U1 · · ·Ui+1P̃i+1Vj · · ·VN .
(2). If F = U1 · · ·UiP̂jVj · · ·VN ∈ Si,j where

P̂j ,

[
A Λj
Γ 0

]
,

then πSi,j−1
(F) = U1 · · ·UiP̂i−1Vj−1 · · ·VN .

Proof: (1). We show that if P̃i is in the assumed form,
then so is P̃i+1. By the optimality condition, πSi+1,j

(F)
satisfies〈
F−πSi+1,j(F),U1· · ·Ui+1M

−1
i+1Qi+1,jN

−1
j Vj · · ·VN

〉
=0

for all Qi+1,j ∈ H2. Hence P̃i+1 must satisfy〈
U∗i+1P̃i − P̃i+1,M

−1
i+1Qi+1,jN

−1
j

〉
= 0 ∀Qi+1,j ∈ H2.

Such P̃i+1 is given by P̃i+1 = πH2(U∗i+1P̃i), since
in this case, the inner product of U∗i+1P̃i − P̃i+1 ∈
H⊥2 and M−1i+1Qi+1,jN

−1
j ∈ H2 is zero. The projection

πH2(U∗i+1P̃i) is computed as follows. For every i ∈

{0, 1, · · · , N − 1},

U∗i+1P̃i =

 −AKLi+1,i
T

CTUi+1
Γi 0

0 A Λ
−BTUi+1

DT
Ui+1

Γi 0


=

 −AKLi+1,i
T

0 ∗
0 A Λ
∗ Γi+1 0


To obtain the last expression, a similarity transformation
is applied to the state space matrices by left-multiplying

by
[
I −Xi+1J̃i+1

0 I

]
and right-multiplying by its inverse.

Notice that the Riccati equation (2a) or (2b) appears on the
upper right block of the state space “A” matrix, and hence
this component is zero. Moreover, since A is stable and
−AKL1,0

T is anti-stable, its projection onto H2 is given by

P̃i+1 = πH2(U∗i+1P̃i) =

[
A Λ

Γi+1 0

]
.

(2). Similarly, we show that if P̂j is in the assumed
form, then so is P̂j−1. From the optimality condition, it
is possible to infer that P̂j−1 = πH2

(P̂jV
∗
j−1). For every

j ∈ {1, 2, · · · , N + 1},

P̂jV
∗
j−1 =

 A ΛjB
T
Vj−1

ΛjD
T
Vj−1

0 −AKLj,j−1
T −CTVj−1

Γ 0 0


=

 A 0 Λj−1

0 −AKLj,j−1
T ∗

Γ ∗ 0

 .
A similarity transformation is applied to the state space

matrices by left-multiplying by
[
I −Ĵj−1Yj−1
0 I

]
and

right-multiplying by its inverse. Since −AKLj,j−1
T is anti-

stable, its projection onto H2 is P̂j−1 = πH2(P̂jV
∗
j−1) =[

A Λj−1
Γ 0

]
.

Proof of Lemma 1 is by induction. When i = 0
and j = N + 1, the identity (25) clearly holds since
P′0,N+1 = Gcl

11. So suppose (25) holds for some (i, j)
such that 0 ≤ i < j ≤ N + 1. By the nested projection,
πSi+1,j

(Gcl
11) = πSi+1,j

(F), where F = πSi,j
(Gcl

11) =
U1 · · ·UiPi,jVj · · ·VN . Applying Lemma 3 (1), we have
that πSi+1,j

(Gcl
11) = U1 · · ·Ui+1Pi+1,jVj · · ·VN . Hence,

we have verified that (25) holds for (i + 1, j). Simi-
larly, by the nested projection, πSi,j−1(Gcl

11) = πSi,j−1(F).
Applying Lemma 3 (2), we have that πSi,j−1

(Gcl
11) =

U1 · · ·UiPi,j−1Vj−1 · · ·VN . Hence, we have verified that
(25) holds for (i, j − 1). This proves that the identity
(25) holds for every subspace in Fig. 4. Finally, state
space expressions for R(i−1,j)→(i,j) = P′i−1,j − UiP

′
i,j

and R(i,j+1)→(i,j) = P′i,j+1 − P′i,jVj are obtained by
straightforward state space manipulations.



E. Certainty Equivalence

We verify that xKi(t) can be interpreted as the least mean
square estimate of x(t) conditioned on the observations of
outputs of upstream subsystems. In other words, if Hyj :
w 7→ y↑j and F : w 7→ x are given, a transfer function Qxj

:
y↑j 7→ xKj defined by the proposed controller minimizes
‖F−QxjHyj‖ over H2. Notice that Hyj = E↑jG

cl
21,

F =

[
A W

row{0, · · · , 0, I} 0

]
,Qxj

=

[
AK BKE

↑j

Ej 0

]
.

By the optimality condition, it suffices to check that
πS0,j

(F) = Qxj
Hyj . Applying Lemma 3 (2) repeatedly,

the LHS becomes πS0,j
(F) = P̂jVj · · ·VN where P̂j =[

A −LjΦ↑j↑j
1
2

row{0, · · · , 0, I} 0

]
, while the RHS is

Qxj
Hyj = Qxj

N−1j Vj · · ·VN

=

[
A −LjΦ↑j↑j

1
2

row{Ej , 0} 0

]
Vj · · ·VN .

To see P̂j = QxjHyj , notice that

P̂j −Qxj
Hyj =

[
A −LjΦ↑j↑j

1
2

row{−Ej , I} 0

]

=

[
µ̄Aζ̄ −µ̄LjΦ↑j↑j

1
2

row{−Ej , I}ζ̄ 0

]
. (31)

The upper right block of (31) has nonzero matrices only
on the first j subblocks, while the first j subblocks of the
lower left block of (31) are all zero matrices. Since µ̄Aζ̄ is
upper-triangular as observed in (12), all controllable states
are not observable and (31) is identically zero. This proves
πS0,j

(F) = Qxj
Hyj .
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