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DECOMPOSING MODULAR TENSOR PRODUCTS:

‘JORDAN PARTITIONS’, THEIR PARTS AND P-PARTS

S. P. GLASBY, CHERYL E. PRAEGER, AND BINZHOU XIA

Abstract. Determining the Jordan canonical form of the tensor product of Jordan
blocks has many applications including to the representation theory of algebraic groups,
and to tilting modules. Although there are several algorithms for computing this decom-
position in literature, it is difficult to predict the output of these algorithms. We call
a decomposition of the form Jr ⊗ Js = Jλ1

⊕ · · · ⊕ Jλb
a ‘Jordan partition’. We prove

several deep results concerning the p-parts of the λi where p is the characteristic of the
underlying field. Our main results include the proof of two conjectures made by McFall
in 1980, and the proof that lcm(r, s) and gcd(λ1, . . . , λb) have equal p-parts. Finally, we
establish some explicit formulas for Jordan partitions when p = 2.

AMS Subject Classification (2010): 15A69, 15A21, 13C05

1. Introduction

Throughout this paper F denotes a field with characteristic p > 0. Given α ∈ F denote
by Jr(α) the r× r Jordan block with eigenvalue α. Hence (αI − Jr(α))

k = 0 holds if and
only if k > r. Given α, β ∈ F and r, s > 1 the Jordan canonical form of the tensor product
Jr(α) ⊗ Js(β) equals Jλ1

(αβ) ⊕ · · · ⊕ Jλb
(αβ) where rs = λ1 + · · · + λb. The partition

(λ1, . . . , λb) of rs is easily described when αβ = 0, see for example [9, Prop. 2.1.2]. When
αβ 6= 0, a simple change of basis shows that the corresponding partition is the same as that
for Jr(1)⊗ Js(1). We denote it by λ(r, s, p) as the Jordan canonical form of Jr(1)⊗ Js(1)
is invariant under field extensions. We call λ(r, s, p) = (λ1, . . . , λb) a ‘Jordan partition’
and always write its parts in non-increasing order λ1 > . . . > λb > 0. It has been long
known that b equals min(r, s), see [13, Lemma 2.1]. Note that λ(r, s, p) = λ(s, r, p) since
Jr(1)⊗ Js(1) is similar to Js(1)⊗ Jr(1).

The partition λ(r, s, p) is well known if char(F ) = 0, or char(F ) = p > r + s − 1. In
these cases, the ith part of λ(r, s, p) is λi = r+s+1−2i, see [16, Corollary 1]. Henceforth,
we will assume that char(F ) = p is an arbitrary prime, possibly satisfying p > r + s− 1.
The p-part of a nonzero integer n, denoted by np, is the largest p-power dividing n.

There is a well-known link between the partition λ(r, s, p) and the modular repre-
sentation theory of a cyclic group Cpn of order pn where max(r, s) 6 pn. There are
precisely pn pairwise nonisomorphic indecomposable FCpn-modules, say V1, . . . , Vpn where
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dim(Vi) = i. In his pioneering work [7], Green studied a ring, now called the modular

representation ring or Green ring, whose elements are F -linear combinations
∑pn

i=1 αi[Vi]
of the isomorphism classes [Vi]. Addition and multiplication are given by the direct sum
and by tensor product, and denoted ⊕ and ⊗. It is conventional to write the module Vi

instead of the isomorphism class [Vi], and to let V0 be a 0-dimensional module. As usual
mV denotes the direct sum of m copies of V where m > 0 is an integer. Thus 0V is just
the zero module, and [V0] = [0V ]. Given positive integers r, s satisfying r, s 6 pn, the
module Vr ⊗ Vs is a sum of indecomposable modules by the Krull-Schmidt theorem. This
gives a Green ring equation

(1) Vr ⊗ Vs = Vλ1
⊕ · · · ⊕ Vλb

where b := min(r, s),

where the parts λi of the partition λ(r, s, p) = (λ1, . . . , λb) are at most pn. It is easy to
convert between the Green ring decomposition (1) and the partition λ(r, s, p), and we
shall do so frequently in this paper.

Given positive integers r and s, let pn be the smallest p-power exceeding max(r, s).
A fundamental question is how to decompose Vr ⊗ Vs as Vλ1

⊕ · · · ⊕ Vλb
. In fact, a

majority of papers addressing Jordan partitions in the literature were concerned with
this decomposition problem, and there are basically two classes of algorithms. One class
of algorithms [10, 12, 14] involves recursive computations to reduce n. Although these
algorithms are similar in spirit, the one proposed by Renaud [14] in 1979 is more convenient
to apply, and we use it repeatedly in Section 2. The other class of algorithms [9, 11, 13, 16]
is related to binomial matrices (matrices of binomial coefficients). Iima and Iwamatsu [9]
presented a novel algorithm which, unlike it predecessors, avoided the computation of
ranks of binomial matrices over Fp, called p-ranks. In 2009, Iima and Iwamatsu [9] showed
that, to compute the parts of λ(r, s, p), it suffices to know whether or not the p-ranks of
certain binomial matrices are full. This reduces the computation dramatically since the
determinants of those binomial matrices can be computed via an explicit formula, and
we can study their p-divisibility using number theory. For complementary introductory
remarks, see [3, §1].

There are, however, relatively few results on the properties of the decomposition, or
the partition in the literature. The following one is due to Green [7], who assumed the λi

to be positive. It is convenient for us to assume that each part is nonnegative.

Proposition 1. [7, (2.5a)] Suppose 1 6 r, s 6 pn. If Vr ⊗ Vs = Vλ1
⊕ · · · ⊕ Vλb

, then

Vpn−r ⊗ Vs = (s− b)Vpn ⊕ Vpn−λb
⊕ · · · ⊕ Vpn−λ1

where1 b = min(r, s).

Proposition 1 can be a viewed as a ‘duality’ result on λ(r, s, p). For more on this duality
and some ‘periodicity’ results as well as other properties, the reader is referred to [3]. In
this paper, the main results are Theorem 2, which was described in the abstract, and
Theorems 4 and 5, which were conjectured by McFall [11, p. 87] using different notation.

1Surprisingly, the fact that b = min(r, s) does not appear in [7]. Its proof is easy, see [3, Lemma 9(a)].
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We also prove in Section 5 some results about the p-parts of λ1, . . . , λb when |r − s| 6 1,
and prove explicit decomposition formulas when p = 2. Some of these later results were
foreshadowed by McFall [10, Theorem 2] who gave an algorithm for computing the Jordan
decomposition when p = 2.

Theorem 2. Suppose Vr ⊗ Vs =
⊕b

i=1 Vλi
where char(F ) = p is prime. Then the p-parts

of lcm(r, s) and gcd(λ1, . . . , λb) are equal. That is, lcm(r, s)p = gcd(λ1, . . . , λb)p.

Notation 3 (Multiplicity). Write Vr ⊗ Vs =
⊕b

i=1 Vλi
as Vr ⊗ Vs =

⊕t

i=1miVµi
where

the multiset {λ1, . . . , λb} has distinct parts µ1 > · · · > µt > 0, which occur with positive

multiplicities m1, . . . , mt, respectively.

If t is much smaller than b, it can be helpful to write
⊕t

i=1miVµi
instead of

⊕b

i=1 Vλi
.

Observe that
∑t

i=1mi = b and
∑t

i=1miµi =
∑b

i=1 λi = rs. We will commonly switch
between the parts µi and the corresponding summand Vµi

with dim(Vµi
) = µi. Since

gcd(λ1, . . . , λb) equals gcd(µ1, . . . , µt) and lcm(r, s)p equals max(rp, sp), we see that

(2) gcd(λ1, . . . , λb)p = gcd(µ1, . . . , µt)p = gcd((µ1)p, . . . , (µt)p) = min((µ1)p, . . . , (µt)p).

Using multiplicities as described in Notation 3, we paraphrase Theorem 2 as follows:

(3) Vr ⊗ Vs =
t
⊕

i=1

miVµi
implies max(rp, sp) = min((µ1)p, . . . , (µt)p).

In 1980, McFall made two conjectures, see p. 87 of [11]. His first conjecture is proved by
Theorem 4 below. His second conjecture is implied by the formula (5) in Theorem 5.

Theorem 4. Suppose that r, s > 1 and Vr ⊗ Vs =
⊕t

i=1miVµi
where the summands are

nonzero and the µi are distinct. If a multiplicity satisfies mi > 1, then µi is divisible by p.

Theorem 5. Suppose that r, s > 1 and Vr⊗Vs =
⊕t

i=1miVµi
as in Notation 3. Then the

multiplicities m1, . . . , mt determine the part sizes µ1 > · · · > µt > 0, and conversely, via

µi = r + s−mi − 2

i−1
∑

j=1

mj for 1 6 i 6 t,(4)

mi = (−1)i−1

[

r + s+ 2

i−1
∑

j=1

µj

]

− µi for 1 6 i 6 t.(5)

These results have several simple consequences. We mention just one. Theorem 4
says p ∤ µ1 implies m1 = 1, and Theorem 5 says m1 = r + s − µ1. Hence p ∤ µ1

implies r+ s 6≡ 1 (mod p). In many fields, theoretical development precedes and informs
algorithmic development. In this field the reverse seems to hold. While algorithms such
as those in [9, 10, 12, 14] are helpful for computing Jordan partitions, predicting the
output for given input of r, s, p is not at all obvious. Our hope is that the patterns in
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Theorems 2, 4, 5 that we prove by appealing to various algorithms may lead, in turn, to
simpler, or more efficient, algorithms for computing Jordan partitions.

The layout of this paper is as follows. Renaud’s decomposition algorithm is reviewed
in Section 2, and it is used to prove Theorems 2 and 4 in Section 3. Section 4 introduces
a different decomposition algorithm by Iima and Iwamatsu, and it is used to prove
Theorem 5. In the final section 5, we establish some new results when |r − s| 6 1.

2. Renaud’s Algorithm

It is convenient to view Vr as a module for all cyclic groups Cpn with pn > r. Renaud’s
algorithm [14] uses induction on n to decompose Vr ⊗ Vs where n is the smallest integer
satisfying max(r, s) < pn and char(F ) = p. The inductive step is achieved by the
somewhat complicated reduction formula in Proposition 6. (The base case when n = 1 is
described in Proposition 8.) Note that the summand V(s0−r0)pn+νj in [14, Theorem 2] is
incorporated as the i = 0 summand on the third line of equation (6).

Proposition 6. [14, Theorem 2] Suppose 1 6 r 6 s < pn+1 where n > 1. Write

r = r0p
n + r1 and s = s0p

n + s1, where r0, s0, r1, s1 > 0 and r1, s1 < pn. Suppose the

decomposition Vr1 ⊗ Vs1 =
⊕ℓ

j=1 njVνj has pn > ν1 > · · · > νℓ > 0 and each nj > 0. Then

Vr ⊗ Vs = cVpn+1 ⊕ |r1 − s1|

d1
⊕

i=1

V(s0−r0+2i)pn ⊕ max(0, r1 − s1)V(s0−r0)pn

⊕ (pn − r1 − s1)

d2
⊕

i=1

V(s0−r0+2i−1)pn(6)

⊕
ℓ
⊕

j=1

nj

(

d1
⊕

i=0

V(s0−r0+2i)pn+νj ⊕
d1
⊕

i=1

V(s0−r0+2i)pn−νj

)

,

where

(c, d1, d2) =

{

(0, r0, r0) if r0 + s0 < p,

(r + s− pn+1, p− s0 − 1, p− s0) if r0 + s0 > p.

Observe that (6) fails to be a decomposition only when the multiplicity pn − r1 − s1 on
the second line of (6) is negative. However, in this case the whole second line cancels with
some terms on the third line; see the remarks following Lemma 7. To see how cancellation
occurs in the Green ring to obtain a decomposition, we need a lemma.

Lemma 7. Suppose r1, s1 are positive integers satisfying r1, s1 6 pn and r1 + s1 > pn.
Then the largest part of λ(r1, s1, p) is p

n, and it occurs with multiplicity r1+s1−pn. That

is, if Vr1 ⊗ Vs1 =
⊕l

j=1 njVνj using Notation 3, then ν1 = pn and n1 = r1 + s1 − pn.
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Proof. By our assumption, pn − r1 < s1 and min(pn − r1, s1) = pn − r1. Suppose that
λ(pn − r1, s1, p) = (λ1, . . . , λpn−r1); equivalently Vpn−r1 ⊗ Vs1 = Vλ1

⊕ · · · ⊕ Vλpn−r1
, where

λ1 > . . . > λpn−r1 > 0. Then by Proposition 1,

Vr1 ⊗ Vs1 = (s1 − pn + r1)Vpn ⊕ Vpn−λpn−r1
⊕ · · · ⊕ Vpn−λ1

.

The largest part, and its multiplicity, can now be determined as pn > pn − λpn−r1 . �

We now establish the way that canceling occurs in (6) when pn − r1 − s1 < 0 in order
to obtain a decomposition (whose multiplicities are, by definition, always nonnegative).
Suppose that pn − r1 − s1 < 0. Then Lemma 7 gives

Vr1 ⊗ Vs1 = (r1 + s1 − pn)Vpn ⊕
l
⊕

j=2

njVνj .

Thus the summand corresponding to j = 1 in the third line of (6) is

(7) (r1 + s1 − pn)

(

d1
⊕

i=0

V(s0−r0+2i)pn+pn ⊕

d1
⊕

i=1

V(s0−r0+2i)pn−pn

)

.

When r0 + s0 < p, we have from Proposition 6 that d2 = d1 and the second line of (6)
may be written as

(pn − r1 − s1)

d2
⊕

i=1

V(s0−r0+2i−1)pn = −(r1 + s1 − pn)

d1
⊕

i=1

V(s0−r0+2i)pn−pn.

This cancels with the second sum in (7). On the other hand, when r0 + s0 > p, we have
d2 = d1 + 1 and the second line of (6) may be written as

(pn − r1 − s1)

d2
⊕

i=1

V(s0−r0+2i−1)pn = −(r1 + s1 − pn)

d1+1
⊕

i=1

V(s0−r0+2i−1)pn

= −(r1 + s1 − pn)
d1
⊕

j=0

V(s0−r0+2j)pn+pn.

This cancels with the first sum in (7). Therefore, after canceling in this way, (6) becomes
a decomposition for Vr ⊗ Vs.

In order to complete Renaud’s inductive reduction in Proposition 6, we must specify
what happens when n = 1. This amounts to knowing how Vr ⊗ Vs decomposes when
1 6 r 6 s < p. Such a decomposition is given in Proposition 8. It can be deduced easily
from [16, Corollary 1, p. 687] and Proposition 1.

Proposition 8. [14, Theorem 1] If 1 6 r 6 s 6 p, then Vr ⊗ Vs decomposes as

(8) Vr ⊗ Vs =

e
⊕

i=1

Vs−r+2i−1 ⊕ (r − e)Vp, where e =

{

r if r + s 6 p,

p− s if r + s > p.
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We will need a version of Proposition 8 which works independent of the relative sizes
of r and s. This is easy when r + s 6 p. In the case r + s > p we have e = p− s in (8).
The subscript s− r+2i− 1 in equation (8) equals 2p− r− s− 2j +1 where j := e− i+1
satisfies 1 6 j 6 e. This establishes the following symmetrised version of (8).

Corollary 9. If 1 6 r 6 p and 1 6 s 6 p, then Vr ⊗ Vs decomposes as

(9) Vr ⊗ Vs =

{

⊕min(r,s)
j=1 Vr+s−2j+1 if r + s 6 p,

(r + s− p)Vp ⊕
⊕p−max(r,s)

j=1 V2p−r−s−2j+1 if r + s > p.

Corollary 9 arises in the context of tilting modules of the special linear group SL(2,Fp)
as we now explain. Brauer and Nesbitt [1] showed that SL(2,Fp) has precisely p non-
isomorphic indecomposable modules over the field Fp, say V ′

1 , . . . , V
′

p where dim(V ′

r ) = r.
Indeed, V ′

r comprises the homogeneous polynomials in Fp[x, y] of degree r−1 and g = ( a b
c d )

acts on V ′

r via xg = ax + by and yg = cx + dy. The restriction of V ′

r to the subgroup
〈( 1 1

0 1 )〉 of SL(2,Fp) gives the familiar module Vr. We thank Martin Liebeck for showing
us how to prove Corollary 9 using tilting modules for SL(2,Fp); see [8].

3. Proofs of Theorems 2 and 4

Suppose that r, s > 1 and Vr⊗Vs = Vλ1
⊕· · ·⊕Vλb

where b = min(r, s). In this section we
will prove two new results concerning the p-parts (λi)p of the λi. We begin by proving that
the p-parts of lcm(r, s) and gcd(λ1, . . . , λb) are equal, i.e. lcm(r, s)p = gcd(λ1, . . . , λb)p. It
is sometimes more convenient to prove max(rp, sp) = min((µ1)p, . . . , (µt)p) by (2).

Proof of Theorem 2. Write Vr ⊗ Vs = Vλ1
⊕ · · · ⊕ Vλb

, and let pn be a p-power satisfying
max(r, s) < pn. Write Vr ⊗ Vs =

⊕t

i=1miVµi
where pn > µ1 > · · · > µt > 0 and each

mi > 0 as in Notation 3. We use induction on n to prove the statement (3) paraphrasing
Theorem 2.

First suppose that n = 1, and hence lcm(r, s)p = 1. Then rp = sp = 1 and hence

p ∤ dim(Vr ⊗ Vs). So if Vr ⊗ Vs =
⊕t

i=1miVµi
, then p ∤ gcd(µ1, . . . , µt)p. This establishes

Theorem 2 when n = 1.

Suppose by induction that Theorem 2 holds for max(r, s) < pn and fixed n > 1. We
now show that it also holds for max(r, s) < pn+1. Without loss of generality, assume
r 6 s < pn+1. Write r = r0p

n + r1 and s = s0p
n + s1 where r0, s0, r1, s1 > 0 and

r1, s1 < pn. Clearly r0 6 s0 < p. The remainder of the proof is divided into four cases.

Case 1. r1 = s1 = 0. Since r 6 s < pn+1, we deduce from r = r0p
n and s = s0p

n

that 1 6 r0 6 s0 < p. Suppose that Vr0 ⊗ Vs0 =
∑l

j=1 njVνj where ν1 > · · · > νℓ > 0

and each nj > 0. It follows by [14, Lemma 2.2] that Vr ⊗ Vs =
∑l

j=1 p
nnjVpnνj . Hence

µj = pnνj and mj = pnnj for each j. Now 1 = max((r0)p, (s0)p) = min((ν1)p, . . . , (νl)p)
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by induction. Multiplying this equation by pn gives

pn = max(rp, sp) = min(pn(ν1)p, . . . , p
n(νl)p) = min((µ1)p, . . . , (µl)p).

This is equivalent to lcm(r, s)p = gcd(λ1, . . . , λb)p, as desired.

Case 2. r1 = 0 and s1 > 0. In this case, lcm(r, s)p = rp = pn since pn divides r and
1 6 r 6 s < pn+1. Since V0 ⊗ Vs1 = V0, the partition λ(r1, s1, p) has no parts, and the
sum on the last line of (6) is empty. Thus Proposition 6 gives

(10) Vr ⊗ Vs = cVpn+1 ⊕ s1

d1
⊕

i=1

V(s0−r0+2i)pn ⊕ (pn − s1)

d2
⊕

i=1

V(s0−r0+2i−1)pn ,

where (c, d1, d2) is defined in Proposition 6. It is clear from (10) that pn divides each
of λ1, . . . , λb, and thus divides gcd(λ1, . . . , λb). The following paragraph shows that
gcd(λ1, . . . , λb)p divides pn.

If s0 = p−1, then (c, d1, d2) = (r+s−pn+1, 0, 1) in Proposition 6 since r0+s0 > 1+s0 = p.

Any sum of the form
⊕0

i=1Wi equals 0, so equation (10) becomes

Vr ⊗ Vs = (r + s− pn+1)Vpn+1 ⊕ (pn − s1)V(p−r0)pn .

Note that r + s − pn+1 > pn + s − pn+1 = s − s0p
n = s1 > 0 and pn − s1 > 0. Hence

gcd(λ1, . . . , λb) divides pn+1 − (p − r0)p
n = r0p

n and so gcd(λ1, . . . , λb)p divides pn. If
s0 6 p − 2, then Proposition 6 shows that d2 > d1 > min(r0, p− s0 − 1) > 1, and hence
gcd(µ1, . . . , µt) divides (s0− r0+2)pn− (s0 − r0+1)pn = pn in light of (10). In summary,
gcd(µ1, . . . , µt)p divides pn in both cases. Thus lcm(r, s)p = gcd(λ1, . . . , λb)p = pn.

Case 3. r1 > 0 and s1 = 0. In this case, lcm(r, s)p = sp = pn since pn divides s and
1 6 r 6 s < pn+1. As above, the decomposition of Vr1 ⊗ V0 = V0 is empty, so the last line
of (6) vanishes. Hence Vr ⊗ Vs equals

(11) cVpn+1 ⊕ r1

d1
⊕

i=1

V(s0−r0+2i)pn ⊕ r1V(s0−r0)pn ⊕ (pn − r1)

d2
⊕

i=1

V(s0−r0+2i−1)pn ,

where (c, d1, d2) is defined in Proposition 6. It is clear from (11) that pn divides each λi and
thus divides gcd(λ1, . . . , λb). The next paragraph shows that gcd(λ1, . . . , λb)p divides pn.

If r0 = 0, then (c, d1, d2) = (0, 0, 0) and (11) gives Vr ⊗ Vs = r1Vs0pn = r1Vs. Hence
gcd(µ1, . . . , µt) = gcd(s) = s. Thus gcd(µ1, . . . , µt)p = sp = pn = lcm(r, s)p, as desired.
Thus we can assume 0 < r0 < p. Then d2 > min(r0, p − s0) > 1, and so gcd(µ1, . . . , µt)
divides (s0−r0+1)pn−(s0−r0)p

n = pn in light of (11). Consequently gcd(µ1, . . . , µt) = pn,
and we conclude that for all values of r0 that lcm(r, s)p = pn = gcd(µ1, . . . , µt)p holds.

Case 4. r1 > 0 and s1 > 0. Here rp = (r1)p and sp = (s1)p, and it follows that

max(rp, sp) = max((r1)p, (s1)p) < pn. Suppose that Vr1 ⊗ Vs1 =
∑l

j=1 njVνj where
pn > ν1 > · · · > νℓ > 0 and each nj > 0. Our inductive hypothesis implies that

min((ν1)p, . . . , (νl)p) = max((r1)p, (s1)p) = max(rp, sp) < pn.
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Assume (νk)p = min((ν1)p, . . . , (νl)p), so (νk)p divides each (νj)p. Since (νk)p < pn,
Proposition 6 implies that (νk)p divides each (µi)p. Moreover by Proposition 6, one of the
µi is equal to (s0 − r0)p

n + νk which has p-part (νk)p. Hence min((µ1)p, . . . , (µt)p) equals
(νk)p and it follows that

max(rp, sp) = min((ν1)p, . . . , (νl)p) = (νk)p = min((µ1)p, . . . , (µt)p).

This is equivalent to lcm(r, s)p = gcd(λ1, . . . , λb)p, as desired. �

We now prove Theorem 4 which states that each part of λ(r, s, p) with multiplicity
greater than 1 must be divisible by p. In other words, if Vr ⊗ Vs =

∑t

i=1miVµi
where

µ1 > · · · > µt > 0 and mi > 0 for each i, then mj > 1 implies p divides µj .

Proof of Theorem 4. Our proof uses induction on n where max(r, s) < pn.

The decomposition when n = 1 is described by (9). The only time that λ(r, s, p) has a
part with multiplicity more than 1 is when r + s− p > 1. In this case the part size is p.
Thus Theorem 4 is true when n = 1.

Next suppose that Theorem 4 is true for max(r, s) < pn and fixed n > 1. We will show
that it also true when pn 6 max(r, s) < pn+1. Without loss of generality, assume r 6 s.
Set r = r0p

n + r1 and s = s0p
n + s1 where r0, s0, r1, s1 > 0 and r1, s1 < pn. Suppose

that Vr1 ⊗ Vs1 =
∑l

j=1 njVνj , where pn > ν1 > · · · > νℓ > 0 and ni > 0 for each i.
By the inductive hypothesis, each νj with nj > 1 is a multiple of p. The part sizes, or
the dimensions of the indecomposable modules, occurring in the first two lines of (6) are
each divisible by p. We show in the next paragraph that the parts occurring in the last
line of (6) are either distinct, or are divisible by p. Once this has been established, the
inductive hypothesis completes the proof of Theorem 4.

The parts in the first sum
⊕ℓ

j=1 nj

⊕d1
i=0 V(s0−r0+2i)pn+νj are distinct for distinct (i, j).

This is so because

(s0 − r0 + 2i)pn + νj = (s0 − r0 + 2i′)pn + νj′ where 0 < νj , νj′ 6 pn

implies νj = νj′ and hence j = j′; and then i = i′ follows. A similar argument shows that

the parts in the second sum
⊕ℓ

j=1 nj

⊕d1
i=1 V(s0−r0+2i)pn−νj are distinct. If a part from the

first sum equals a part from the second sum, then there exist integers i, i′, j, j′ satisfying

(s0 − r0 + 2i)pn + νj = (s0 − r0 + 2i′)pn − νj′.

Hence 2(i′−i)pn = νj+νj′. However, 0 < νj , νj′ 6 pn implies 0 < νj+νj′ 6 2pn and hence
νj+νj′ is divisible by 2pn which is possible only when νj = νj′ = pn. Thus 2(i′−i)pn = 2pn

and i′ − i = 1. Consequently, a part from the first sum equals a part from the second
sum only when the part sizes are divisible by pn (and hence by p). As remarked above,
induction now completes the proof. �
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4. Iima and Iwamatsu’s Algorithm

Assume 1 6 r 6 s throughout this section. For k = 1, . . . , r, define Dk = Dk(r, s)
to be the determinant of the k × k matrix Ak whose (i, j)th entry is

(

r+s−2k
s+i−j−k

)

for

0 6 i, j < k. Given nonnegative integers M and N , the matrix
(

(

M

N+i−j

)

)

06i,j,<k
has

determinant
∏k−1

i=0

(

M+i

N

)

/
(

N+i

N

)

, see [15, p. 355]. Setting M := r + s− 2k and N := s− k
gives the following closed formula

(12) Dk(r, s) =

k−1
∏

i=0

(

r+s−2k+i

s−k

)

(

s−k+i

s−k

) , where 1 6 k 6 r.

Even though the right-hand side of (12) looks like a rational number, Dk(r, s) is an integer
(as it is the determinant of a matrix with integer entries). Set D0(r, s) := 1, and note
that Dr(r, s) = 1. For k = 0, 1, . . . , r, define

(13) δk = δk(r, s, p) =

{

0 if Dk(r, s) ≡ 0 (mod p),

1 if Dk(r, s) 6≡ 0 (mod p).

Thus δk = 1 says that Ak is invertible when viewed as a matrix over Fp. In other words,
δk = 1 says that Ak has full p-rank. Iima and Iwamatsu [9] found a way to construct
λ(r, s, p) from the {0, 1}-sequence δ0(r, s, p), δ1(r, s, p), . . . , δr(r, s, p). This constrains the
number of choices of λ(r, s, p) as described in [3]. Note that δ0 = δr = 1 by our convention
that D0(r, s) = 1 and Dr(r, s) = 1.

For 1 6 k 6 r, if δk = 1, let ℓ(k) be the smallest positive integer such that δk−ℓ(k) = 1.
Note that ℓ(k) is well defined since δ0 = 1, and ℓ(k) 6 k. The following Proposition is
proved by the results in [9] preceding and including Theorem 2.2.9.

Proposition 10. [9, Theorem 2.2.9] Suppose 1 6 r 6 s, and use the above notation for δk
and ℓ(k) for 1 6 k 6 r. Then the parts of the Jordan partition λ(r, s, p) can be computed

via the following recurrence where k decreases from r to 1

λk =

{

r + s− 2k + ℓ(k) if δk = 1,

λk+1 if δk = 0.

The next proposition is a reformulation of Proposition 10 in the language of Green
ring results. While this result essentially appears in [9], its proof is long and somewhat
complicated, so we prefer to give our own proof. Recall the definition (13) of δk.

Proposition 11. [9, Theorem 2.2.9] Suppose 1 6 r 6 s, and all the values of k satisfying

δk(r, s, p) = 1 are 0 = k0 < k1 < · · · < kt = r. Then Vr ⊗ Vs decomposes as

(14) Vr ⊗ Vs =

t
⊕

i=1

(ki − ki−1)Vr+s−ki−ki−1
.
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Proof. Because ki−1 < ki for 1 6 i 6 t, we have

δki−1
= 1, δki−1+1 = δki−1+2 = · · · = δki−1 = 0, and δki = 1.

Then ℓ(ki) = ki−ki−1. Appealing to second case of the recurrence in Proposition 10 gives

λki−1+1 = · · · = λki−1 = λki,

and appealing to the first case of Iima and Iwamatsu’s recurrence gives

λki = r + s− 2ki + ℓ(ki) = r + s− 2ki + (ki − ki−1) = r + s− ki − ki−1.

This proves that Vr⊗Vs =
⊕t

i=1(ki−ki−1)Vr+s−ki−ki−1
. Since 0 = k0 < k1 < · · · < kt = r,

different values of i give different values of r + s − ki − ki−1. Hence (14) is indeed a
decomposition, with distinct parts and positive multiplicities, as claimed. �

It follows from Proposition 11 that the multiplicities mi = ki−ki−1, 1 6 i 6 t, determine
the distinct part sizes µi = r + s− ki − ki−1, 1 6 i 6 t, and conversely. Theorem 5 shows
how µ1, . . . , µt determine m1, . . . , mt via explicit formulas.

Proof of Theorem 5. Our strategy is to prove McFall’s conjecture [11, Conjecture 2] that

(15) m1 = r + s− µ1 and mi = µi−1 − µi −mi−1 for 1 < i 6 t.

A straightforward calculation shows that the formula (5), satisfies this recurrence relation,
and hence that (15) implies the equalities in (5). Rearranging (15) gives a recurrence
relation for computing the µi from the mj , namely

(16) µ1 = r + s−m1 and µi = µi−1 −mi −mi−1 for 1 < i 6 t.

A further simple calculation shows that the formulas (4) are equivalent to the rearranged
recurrence relation (16).

As noted above, Proposition 11 shows that mi = ki − ki−1 and µi = r + s − ki − ki−1

for 1 6 i 6 t. The initial condition of (15) follows from k0 = 0 as

r + s− µ1 = r + s− (r + s− k1 − k0) = k1 + k0 = k1 − k0 = m1.

For 1 < i 6 t, the inductive step of (15) also follows easily as µi−1 − µi −mi−1 equals

(r + s− ki−1 − ki−2)− (r + s− ki − ki−1)− (ki−1 − ki−2) = ki − ki−1 = mi.

This establishes the recurrence relation (15), and thereby proves Theorem 5. �

The p-divisibility of the integers D0(r, s), D1(r, s), . . . , Dr(r, s) plays a central role in
Iima and Iwamatsu’s algorithm. Kummer’s theorem [6] states that the power of a prime p
dividing

(

m

n

)

is the number of ‘carries’ required to add m and n−m in base-p. This can be
used to compute the largest p-power dividing the numerator and denominator of (12). The
following lemma gives a more direct approach, and it has a nice application in Section 5.

Lemma 12. Suppose 1 6 r 6 s, and let Dk(r, s) be as in (12) with D0(r, s) = Dr(r, s) = 1.

(a) If 0 6 k 6 r, then
(

s

s−k

)

Dk+1(r + 1, s+ 1) =
(

r+s−k

s−k

)

Dk(r, s).
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(b) If 0 6 k 6 r − 1, then
(

s

s−k

)

Dk+1(r, s+ 1) =
(

r+s−2k−1
s−k

)

Dk(r, s).

(c) If 0 6 k 6 r − 1, then
(

r+s−k−1
k

)

Dk+1(r, s) =
(

r+s−2k−2
s−k−1

)

Dk(r, s).

Proof. The proof is by direct calculation using (12). Part (a) follows from

Dk+1(r + 1, s+ 1) =
k
∏

i=0

(

r+s−2k+i

s−k

)

(

s−k+i

s−k

) =

(

r+s−k

s−k

)

(

s

s−k

)

k−1
∏

i=0

(

r+s−2k+i

s−k

)

(

s−k+i

s−k

) =

(

r+s−k

s−k

)

(

s

s−k

) Dk(r, s).

The proof of part (b) follows from the formula (12) and the identities
(

m−1
n

)

= m−n
m

(

m

n

)

and
(

m

n

)
∏k−1

i=0
m−n−k+i+1
m−k+i+1

=
(

m−k

n

)

Dk+1(r, s+ 1) =

(

r+s−k−1
s−k

)

(

s

s−k

)

k−1
∏

i=0

(

r+s−2k−1+i

s−k

)

(

s−k+i

s−k

)

=

(

r+s−k−1
s−k

)

(

s

s−k

)

k−1
∏

i=0

(

r+s−2k+i

s−k

)

(r − k + i)
(

s−k+i

s−k

)

(r + s− 2k + i)
=

(

r+s−2k−1
s−k

)

(

s

s−k

) Dk(r, s).

To prove part (c), we use the identity

Dk(r, s) =
k−1
∏

i=0

(r + s− 2k + i)!i!

(s− k + i)!(r − k + i)!
.

We now write Dk+1(r, s) in terms of the above product

Dk+1(r, s) =

(

r + s− 2k − 2

s− k − 1

) k
∏

i=1

(

r+s−2k−2+i

s−k−1

)

(

s−k−1+i

s−k−1

)

=

(

r + s− 2k − 2

s− k − 1

) k
∏

i=1

(r + s− 2k − 2 + i)!i!

(s− k − 1 + i)!(r − k − 1 + i)!

=

(

r + s− 2k − 2

s− k − 1

) k−1
∏

i=0

(r + s− 2k − 1 + i)!(i+ 1)!

(s− k + i)!(r − k + i)!

=

(

r + s− 2k − 2

s− k − 1

) k−1
∏

i=0

(r + s− 2k + i)!i!(i+ 1)

(s− k + i)!(r − k + i)!(r + s− 2k + i)

=

(

r+s−2k−2
s−k−1

)

(

r+s−k−1
k

)

k−1
∏

i=0

(r + s− 2k + i)!i!

(s− k + i)!(r − k + i)!
.

�



12 S.P. GLASBY, CHERYL E. PRAEGER, AND BINZHOU XIA

5. Results for |r − s| at most one

In this section, we prove several results when |r − s| 6 1. First, we determine the
smallest part of λ(r, r, p), and its multiplicity. As usual, we denote the p-part of a nonzero
integer r by rp.

Lucas’ theorem (see [6]) is a useful number-theoretic result for proving Dr−pk(r, r) 6≡ 0

(mod p), or δr−pk(r, r, p) = 1 as in (13). This theorem says that
(

m

n

)

≡
∏

i>0

(

mi

ni

)

(mod p) where m =
∑

i>0mip
i and n =

∑

i>0 nip
i are the base-p expansions of m and

n, respectively. The base-p ‘digits’ mi, ni satisfy 0 6 mi, ni < p. Note that
(

mi

ni

)

= 0 if

mi < ni, and
(

mi

0

)

= 1. Thus the infinite product
∏

i>0

(

mi

ni

)

is finite, as
(

mi

ni

)

= 1 for
sufficiently large i.

Theorem 13. The smallest part of λ(r, r, p) is rp, and it occurs with multiplicity rp.
Using Notation 3 and b = min(r, r) = r, this says that λr = rp = µt and mt = rp.

Proof. Suppose that rp = pk. Then r = apk with ap = 1. By virtue of Proposition 11 (or
by 10), it suffices to show that Dr−j(r, r) ≡ 0 (mod p) for 0 < j < pk and Dr−pk(r, r) 6≡ 0
(mod p), since Dr(r, r) = 1.

Using formula (12) and canceling gives

(17) Dr−pk(r, r) =

(a−1)pk−1
∏

i=0

(

2pk+i

pk

)

(

pk+i

pk

)
=

pk−1
∏

i=0

(

apk+i

pk

)

(

pk+i

pk

)
.

For 0 6 i < pk, Lucas’ theorem shows
(

apk+i

pk

)

≡
(

a

1

)(

i

0

)

≡ a (mod p). The numerator

in (17) is
pk−1
∏

i=0

(

apk+i

pk

)

≡ ap
k

6≡ 0 (mod p). Thus Dr−pk(r, r) 6≡ 0 (mod p), as desired.

[Incidentally, Dr−pk(r, r) ≡ a (mod p) as ap−1 ≡ 1 (mod p) and
(

pk+i

pk

)

≡ 1 (mod p) holds

for 0 6 i 6 pk − 1.]

One way to prove that Dr−j(r, r) ≡ 0 (mod p) is to show that p divides the numerator
of (12) to a higher power than the denominator. This requires stronger results than Lucas’
theorem. (Kummer proved that the power of p dividing

(

m

n

)

is the number of i for which

mi < ni, see [6].) A simpler approach involves using Lemma 12(a). Suppose 0 < j < pk.
Then Lemma 12(a) gives

(18)

(

apk

j

)

Dr−j+1(r + 1, r + 1) =

(

apk + j

j

)

Dr−j(r, r).

Again by Lucas’ theorem,
(

apk

j

)

≡ 0 (mod p) and
(

apk+j

j

)

≡ 1 (mod p), so (18) implies

that Dr−j(r, r) ≡ 0 (mod p). The proof is thus completed. �
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For the rest of this section, we establish a decomposition formula for Vr ⊗ Vs when
|r− s| 6 1 and p = 2. The following proposition shortens the proof of Theorem 15. This
result already appears in [2, Corollary 1], albeit in a slightly less general form.

Proposition 14. Suppose 1 6 r 6 pn and 1 6 s 6 pn. Then

Vpn−r ⊗ Vpn−s = max(pn − r − s, 0)Vpn ⊕ (Vr ⊗ Vs) .

Proof. Let Vr ⊗ Vs = Vλ1
⊕ · · · ⊕ Vλb

where b := min(r, s). Proposition 1 yields

Vpn−r ⊗ Vs = (s− b)Vpn ⊕ Vpn−λb
⊕ · · · ⊕ Vpn−λ1

.

Since s 6 pn and pn − r 6 pn, applying Proposition 1 to Vs ⊗ Vpn−r gives

Vpn−s ⊗ Vpn−r = [(pn − r)−min(pn − r, s)]Vpn ⊕ Vλ1
⊕ · · · ⊕ Vλb

⊕ (s− b)V0.

Replacing the expression in square brackets with max(pn−r−s, 0), and omitting the last
summand gives the desired decomposition of Vpn−r ⊗ Vpn−s. �

Our decompositions for Vr ⊗ Vr and Vr ⊗ Vr+1 when p = 2 depend on a ‘consecutive-

ones-binary-expansion’ which we now define. The binary number (1 · · ·10 · · ·0)2 with m
consecutive ones, and n consecutive zeros, equals 2m+n − 2n. Thus a binary expansion
r =

∑ℓ

i=1

∑ai−1
j=bi

2j with ℓ groups of consecutive ones and a1 > b1 > · · · > aℓ > bℓ > 0

simplifies to r =
∑ℓ

i=1(2
ai − 2bi). We call an alternating sum r =

∑k

i=1(−1)i−12ei, with
decreasing powers of 2 and minimal length, the ‘consecutive-ones-binary-expansion’ of r.
Minimal length implies ek−1 > ek + 1 when k > 1: otherwise 2ek+1 − 2ek can be replaced

by 2ek . Note that r =
∑ℓ

i=1(2
ai −2bi) is the consecutive-ones-binary-expansion if and only

if aℓ > bℓ + 1. For example, 4 = 22, 5 = 23 − 22 + 20, 6 = 23 − 21 are consecutive-ones-
binary-expansions. The partial sums rj =

∑k

i=j+1(−1)i−j−12ei, 0 6 j 6 k, associated

to the consecutive-ones-binary-expansion r =
∑k

i=1(−1)i−12ei satisfy r0 = r, rk = 0,
ri = 2ei+1 − ri+1, and 1 6 ri 6 2ei for 0 6 i < k. Also ei = ⌈log2(ri)⌉ for 1 6 i < k.

The following theorem originally appeared as Theorems 14 and 16 of [4]. We are grateful
to M. J. J. Barry who showed us a simplified proof of Theorem 15, and we thank him for
his permission to include (a modified version of) his proof.

Theorem 15. Suppose char(F ) = 2 and r =
∑k

i=1(−1)i−12ei is the consecutive-ones-

binary-expansion of r where e1 > · · · > ek > 0. Set rj =
∑k

i=j+1(−1)i−j−12ei for 0 6 j 6 k
where rk = 0. Then Vr ⊗ Vr and Vr ⊗ Vr+1 decompose over F as

(19) Vr ⊗ Vr =
k
⊕

i=1

(2ei − 2ri)V2ei and Vr ⊗ Vr+1 =
k
⊕

i=1

(2ei − 2ri + (−1)i−1)V2ei .

In particular, each part of λ(r, r, 2) is a power of 2. Furthermore, parts not equal to 1
have even multiplicities, and 1 has multiplicity at most 1. Also each part of λ(r, r + 1, 2)
is a power of 2 greater than 1.
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Proof. We prove (19) using induction on k. The decomposition for Vr ⊗ Vr holds when

k = 1 by [7, (2.7d)]. Suppose now that k > 1 and Vr1 ⊗Vr1 =
⊕k

i=2(2
ei −2ri)V2ei holds by

induction. Observe that r1 6 2e2 so 2r1 6 2e2+1 6 2e1, and 2e1 − 2r1 > 0. Proposition 14
implies

Vr ⊗ Vr = V2e1−r1 ⊗ V2e1−r1 as r = 2e1 − r1,(20)

= (2e1 − 2r1)V2e1 ⊕ (Vr1 ⊗ Vr1) as 2e1 − 2r1 > 0.

The decomposition for Vr ⊗ Vr+1 holds when k = 0, and when k = 1 by [7, (2.7d)].

Suppose k > 1, and Vr2 ⊗ Vr2+1 =
⊕k

i=3(2
ei − 2ri + (−1)i−1)V2ei is valid by induction. As

above, 2e1 −2r1 > 0 obtains. Moreover, 2e2 −2r2−1 > 0 is true. This is easily seen when
k = 2, it follows from r2 6 2e3 using ek−1 > ek + 1 when k = 3, and for k > 3 it follows
from r2 < 2e3 using e3 + 1 6 e2. Applying the equations r = 2e1 − r1, r1 = 2e2 − r2, and
Proposition 14 twice, now gives

Vr ⊗ Vr+1 = Vr+1 ⊗ Vr

= V2e1−(r1−1) ⊗ V2e1−r1

= (2e1 − 2r1 + 1)V2e1 ⊕ (Vr1−1 ⊗ Vr1)(21)

= (2e1 − 2r1 + 1)V2e1 ⊕ (V2e2−r2−1 ⊗ V2e2−r2)

= (2e1 − 2r1 + 1)V2e1 ⊕ (2e2 − 2r2 − 1)V2e2 ⊕ (Vr2 ⊗ Vr2+1).

Thus (19) follows from (20) and (21) by induction on k. As a by-product we have proved
that the multiplicities in (19) are nonnegative, and (19) is a valid decomposition. �

To illustrate Theorem 15 take r = 5. Then r has consecutive-ones-binary-expansion
5 = 23 − 22 + 20. Substituting r1 = 3, r2 = 1, r3 = 0 into (19) gives

V5 ⊗ V5 = 2V8 ⊕ 2V4 ⊕ V1 and V5 ⊗ V6 = 3V8 ⊕ V4 ⊕ 2V1

over a field of characteristic 2. The novelty of Theorem 15 is the decomposition (19). The
parity of the multiplicities were already known to Gow and Laffey [5, Corollaries 1 and 2].
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