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A UNIFORM STRUCTURE ON SUBGROUPS OF GLn(Fq) AND

ITS APPLICATION TO A CONDITIONAL CONSTRUCTION OF

ARTIN REPRESENTATIONS OF GLn

HENRY H. KIM AND TAKUYA YAMAUCHI

Abstract. Continuing our investigation in [19], where we associated an Artin representation to

a vector-valued real analytic Siegel cusp form of weight (2, 1) under reasonable assumptions, we

associate an Artin representation of GLn to a cuspidal representation of GLn(AQ) with similar

assumptions. A main innovation in this paper is to obtain a uniform structure of subgroups in

GLn(Fq), which enables us to avoid complicated case by case analysis in [19]. We also supplement

[19] by showing that we can associate non-holomorphic Siegel modular forms of weight (2, 1) to

Maass forms for GL2(AQ) and to cuspidal representations of GL2(AK) over imaginary quadratic

fields K.
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1. Introduction

This paper is a continuation of [19], where we associated an irreducible complex Galois rep-

resentation, called Artin representation, ρ : GQ := Gal(Q/Q) −→ GSp4(C), to a vector-valued

real analytic Siegel cusp form of weight (2, 1), under some reasonable assumptions, by generaliz-

ing the result of Deligne and Serre [10] who associated an odd irreducible Artin representation

ρf : GQ −→ GL2(C) to any elliptic cusp form f of weight one. Contrary to the case of holo-

morphic modular forms of weight one, real analytic Siegel cusp forms of weight (2, 1) do not

have algebro-geometric structures, and thus several assumptions are needed to carry out Deligne-

Serre construction. In this paper, we associate an Artin representation to a (unitary) cuspidal

representation of GLn(AQ) with similar assumptions.

More precisely, let π be a (unitary) cuspidal representation of GLn(AQ) with the central

character ω. Let N be the conductor of π so that πp is unramified for p ∤ N . Let {α1(p), ..., αn(p)}
be the Satake parameters for p ∤ N . Let

Hp(T ) := (1− α1(p)T ) · · · (1 − αn(p)T ) = 1− a1(p)T + · · ·+ (−1)nan(p)T
n,

be the Hecke polynomial for p ∤ N . Then

a1(p) = α1(p) + · · · + αn(p), a2(p) =
∑

1≤i<j≤n

αi(p)αj(p), . . . ,

am(p) =
∑

i1<···<im

αi1(p) · · ·αim(p), · · · , an(p) = α1(p) · · ·αn(p) = ω(p).

Let Qπ = Q(am(p),m = 1, ..., n, p ∤ N) be the Hecke field of π. Let K be the Galois closure of

Qπ, and OK be the ring of integers of K.

We assume the following:

(1) (Finiteness of Hecke fields) Qπ is a finite extension of Q, i.e., K is a finite extension of Q;

(2) (Integrality of Hecke polynomials) There exists an integer M > 0 such that Mam(p) ∈ OK

for m = 1, ..., n and p ∤ N ;

(3) (Existence of Galois conjugates) For each σ ∈ Gal(K/Q), σπ is a cuspidal representa-

tion of GLn(AQ) with conductor Nσ such that for p ∤ NNσ, the Satake parameters are

{σ(α1(p)), ..., σ(αn(p))};
(4) Existence of mod ℓ Galois representation attached to π;
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(5) (Rankin-Selberg L-functions) For each m = 1, ..., n, and each σ ∈ Gal(K/Q),

∑

p∤NNσ

|σ(am(p)|2
ps

≤ C2
n,m log

1

s− 1
+O(1), as s → 1+,

where Cn,m =

(
n

m

)
:=

n!

m!(n−m)!
.

These assumptions (1)-(4) are very natural, and are valid for cuspidal representations attached

to elliptic cusp forms of weight one. Note that we assume that the Satake parameters αi(p)’s

themselves are integral. It enables us to show that the Satake parameters take only finitely many

values by Assumption (5) (Proposition 3.1). Recall that in the case of holomorphic Siegel cusp

forms of weight (k1, k2), k1 ≥ k2 ≥ 2, Hecke eigenvalues are algebraic integers, but Satake pa-

rameters are twisted by p−
k1+k2−3

2 . Assumption (5) is also natural. The L-function
∑

p
|σ(am(p)|2

ps

is closely related to the Rankin-Selberg L-function of the exterior m-th power ∧m(σπ). In the

appendix, we describe the relationship, and show that the Langlands functoriality of the exterior

m-th power ∧m(π) as an automorphic representation of GLCn,m(AQ) implies Assumption (5).

Then we prove the following main theorem:

Theorem 1.1 (Main Theorem). Let π satisfy the above five assumptions. Then there exists the

Artin representation ρπ : GQ −→ GLn(C) which is unramified for p ∤ N such that

det(In − ρπ(Frobp)T ) = Hp(T )

for all p ∤ N . Furthermore, ρπ(c)
GLn(C)∼ diag(ǫ1, . . . , ǫn), ǫi ∈ {±1} for the complex conjugate c,

and π∞ ≃ π(ǫ′1, . . . , ǫ
′
n) where ǫ′i =




1, if ǫi = 1

sgn, if ǫi = −1
.

As a corollary, we obtain that the above assumptions on π imply the Ramanujan conjecture

for π, namely, πp is tempered for all p.

The assumptions force π∞ to be a principal series representation of the form π(ǫ′1, . . . , ǫ
′
n).

Naively we hope that this kind of automorphic representation π should satisfy the above as-

sumptions (1)-(5). However, unlike holomorphic modular forms in GL2(AQ) case where one can

use algebraic geometry as Deligne and Serre did, it seems difficult in general GLn case to verify

whether a given π satisfies these strong assumptions. Note that in holomorphic modular forms

in GL2 case, π∞ is a limit of discrete series. But in the case of GLn, n ≥ 3, π∞ is not a limit of

discrete series (cf. [20]).
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One key ingredient in Deligne-Serre construction is to obtain bounds of orders of certain

subgroups of GL2(Fℓn) for any odd prime ℓ. In [10], it was done by classification of semisimple

subgroups of GL2(Fℓn) and case by case analysis. In [19], we carried out the same thing by

using the classification of semisimple subgroups of GSp4(Fℓn) and case by case analysis. A

main innovation in this paper is to prove some structure theorem (see Section 4) for semisimple

subgroups of GLn(Fq) for any finite field Fq by using result of Larsen-Pink [21] combined with

the appendix in [15]. This enables us to generalize Proposition 7.2 of [10] to general linear groups

without explicit forms of subgroups in question at hand. So we can avoid complicated case by

case analysis as we have done in [19]. We remark that this is not at all obvious from the existing

results in the literature (cf. [21] and [26]).

The organization of this paper is as follows. In Section 2, we investigate the infinity type of an

automorphic representation of GLn(AQ) which gives rise to an Artin representation. In Section

3, we apply the Rankin-Selberg method to prove that the number of Satake parameters outside a

certain infinite set of primes is finite. By using the results in Section 4 with the finiteness of Satake

parameters, we bound the size of the image of mod ℓ Galois representations, provided that they

exist. The formulation of the conjecture for the existence of such mod ℓ Galois representations is

given in Section 5. The proof of the main theorem is given in Section 6 following Deligne-Serre.

In Sections 7 and 8, we recall our previous work [19] for the case of GSp4/Q. We discuss a

relation between non-holomorphic Siegel modular forms and holomorphic Siegel modular forms.

After the completion of the previous work, we realized that we do not need to use the unproven

hypothesis on the existence of the weak transfer from GSp4 to GL4 as in [2]. We explain how

to get around this. Finally in Sections 9 and 10, we associate non-holomorphic Siegel modular

forms of weight (2, 1) to automorphic representations of GL2 over imaginary quadratic fields, and

Maass forms for GL2(AQ).

Acknowledgments. We would like to thank R. Guralnick and F. Herzig for helpful discus-

sions. We thank the referee for the careful reading of the paper and many comments.

2. Infinity type of Artin representation

We show that the cuspidal representation π of GLn(AQ) which we are considering has a very

special infinity type π∞.
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Proposition 2.1. Let ρ : GQ −→ GLn(C) be an irreducible continuous Galois representation,

and let π be a cuspidal automorphic representation of GLn(AQ) such that

det(In − ρF (Frobp)T ) = Hp(T )

for all p ∤ N , where N is the conductor of π. Then π∞ is the full induced representation

π(ǫ′1, ..., ǫ
′
n), where ρπ(c)

GLn(C)∼ diag(ǫ1, . . . , ǫn), ǫi ∈ {±1} for the complex conjugate c, and

ǫ′i =




1, if ǫi = 1

sgn, if ǫi = −1
.

Proof. From the assumption, it is clear that L(s, πp) = L(s, ρp) for almost all p. Then by

Proposition A.1 of [25], L(s, πp) = L(s, ρp) for all p, and L(s, π∞) = L(s, ρ∞). Since ρπ(c)
GLn(C)∼

diag(ǫ1, . . . , ǫn), ǫi ∈ {±1} for the complex conjugate c, the Langlands parameter of π∞ is

φ : WR = C× ∪ jC× −→ GLn(C), φ(z) = Id, φ(j) = diag(ǫ1, ..., ǫn),

where ǫi ∈ {±1}. Our result follows from this observation. �

3. Application of the Rankin-Selberg method

We prove that Satake parameters take only finitely many values under Assumptions (1)-(3)

and (5) in the introduction.

Proposition 3.1. Suppose π = ⊗′
pπp is a cuspidal representation of GLn(AQ) with conduc-

tor N which satisfies Assumptions (1)-(3) and (5) in the introduction. Then for any posi-

tive integer η, there exists a set Xη of rational primes such that den.supXη ≤ η, and the set

{(a1(p), ..., an(p)) | p /∈ Xη} is a finite set, or equivalently, {Satake parameters at p | p /∈ Xη} is

finite.

Here den.supXη is defined by

lim sup
s→1+

∑
p∈Xη

p−s

log 1
s−1

.

We also define the Dirichlet density den(Xη) by

lim
s→1+

∑
p∈Xη

p−s

log 1
s−1

.
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Proof. By Assumption (3), for each σ ∈ Gal(K/Q), σπ is a cuspidal representation of GLn(AQ)

with the conductor Nσ such that for p ∤ NNσ, the Satake parameters are {σ(α1(p)), ..., σ(αn(p))}.
Hence for each m = 1, ..., n and each σ, by Assumption (5),

∑

p∤NNσ

|σ(am(p)|2
ps

≤ C2
n,m log

1

s− 1
+O(1), as s → 1+.

Let NK =
∏

σ∈Gal(K/Q)Nσ.

By Assumption (2), there exists an integer M > 0 so that Mam(p) ∈ OK if p ∤ N . For c > 0,

consider two sets:

Y (c) = {a ∈ OK | |σ(a)|2 ≤ c for any σ ∈ Gal(K/Q)},

X(c) = {p | at least one of Mam(p), m = 1, ..., n, does not belong to Y (c), or p|NK}.

Note that since OK is a lattice in K, Y (c) is a finite set for any c > 0. Hence the set

{(Ma1(p), ...,Man(p)) | p /∈ X(c)} is finite, and so the set {(a1(p), ..., an(p)) | p /∈ X(c)} is finite.

Let r = [K : Q]. If p ∈ X(c) and p ∤ NK , there exists m such that |σm(Mam(p))|2 > c for

some σm ∈ Gal(K/Q). Hence

c
∑

p∈X(c)

p−s ≤
n∑

m=1

∑

σ

∑

p∤NK

|σ(Mam(p))|2
ps

+O(1) ≤
(

n∑

m=1

C2
n,m

)
rM2 log

1

s− 1
+O(1), as s → 1+.

Therefore, den.supX(c) ≤ rM2

c

(∑n
m=1 C

2
n,m

)
. Take c such that c ≥ rM2

∑n
m=1 C

2
n,m

η , and let

Xη = X(c). �

4. Bounds for the orders of certain subgroups of GLn(Fq)

Fix a positive integer n ≥ 1. Let q be a power of a rational prime p and Fq be the finite

field with q elements. Let G be a subgroup of GLn(Fq). We say G is semisimple if the natural

action of G on V := F⊕n
q is semisimple or equivalently V is a semisimple G-module. We say G

is an irreducible (resp. absolutely irreducible) subgroup of GLn(Fq) if V (resp. V ⊗Fq Fq) is an

irreducible G-module. As in [10], for positive constants N and η, (0 < η < 1), we introduce the

following property C(η,N) for G:

C(η,N) : there exists a subset H of G such that

{
(i) (1− η)|G| ≤ |H|,
(ii) |{det(1− hT ) ∈ Fq[T ]| h ∈ H}| ≤ N.
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Theorem 4.1. [Theorem 0.2 of [21]] There exists a constant J1(n), depending only on n such

that any finite subgroup G of GLn(Fq) possesses a series G = G0 ⊃ G1 ⊃ G2 ⊃ G3 of subgroups

such that Gi is normal in Gi−1 for each 1 ≤ i ≤ 3 and it satisfies

(1) [G : G1] ≤ J1(n);

(2) G1/G2 is a direct product of finite simple groups of Lie type in characteristic p and the

number of direct factors is bounded uniformly in n;

(3) G2/G3 is abelian of order not divisible by p;

(4) G3 is a p-group.

Remark 4.2. In the above theorem, the boundedness of the number of direct factors is not in

the statement of Theorem 0.2 of [21]. However, it is implicit in the proof of the theorem. It is

important for our purpose.

Theorem 4.3. [Chap. V, Section 19, Th. 7, of [36]] There exists a constant J2(n), depending

only on n such that any solvable subgroup G of GLn(Fq) possesses a normal subgroup N such

that

(1) [G : N ] ≤ J2(n),

(2) N is conjugate to a subgroup of the group of upper triangular matrices in GLn(Fq).

Corollary 4.4. Assume that p > J2(n). Let G be any semisimple, solvable subgroup of GLn(Fq).

If G′ is a normal p-subgroup of G, then G′ is trivial.

Proof. By Theorem 4.3, there exists a normal subgroup N such that [G : N ] < p. Hence the

p-group G′ is a subgroup of N . By Theorem 4.3, N is conjugate to a subgroup of the group of

upper triangular matrices and in particular we may assume that G′ is a subgroup consisting of

unipotent, upper triangular matrices. By Clifford’s theorem [1], p. 17, G′ is semisimple. Hence

G′ = 1. �

Corollary 4.5. Assume that p > J2(n). Let G,G1, G2, G3 be as in Theorem 4.1. Then G3 = 1.

Proof. Since any p-group is solvable, so is G2. Then Corollary 4.4 implies the assertion. �

Theorem 4.6. [cf. Theorem 0.1 of [21]] Let k be an algebraically closed field of characteristic

zero. For every n, there exists a constant J3(n), depending only on n such that any finite subgroup

G of GLn(k) possesses an abelian normal subgroup A such that [G : A] ≤ J3(n).
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Henceforth we fix n ≥ 1 and a positive number C(n) so that

C(n) > max{n+ 3, J1(n), J2(n), J3(n)}.

We will implicitly use the assumption C(n) > n+3 in the proof of Proposition 4.10 later to apply

a result of [14]. (In Theorem B of [14], one needs p ≥ n+ 3, not n− 3. It was pointed out by F.

Herzig.)

The following lemma is easy to prove:

Lemma 4.7. Let G be a subgroup of GLn(Fq), and G′ a subgroup of G. Let [G : G′] < d. Then

if G satisfies C(η,N) for (0 < η < 1/d), then G′ satisfies C(dη,N).

Proof. Set M = [G : G′]. Take a subset H from the first property of C(η,N) for G. Then one

can see that

|H| ≥ (1− η)|G| = (M −Mη)|G′| ≥ (1− dη)|G′|

giving the claim. �

Proposition 4.8. Let G be a semisimple subgroup of GLn(Fq) with the order not divisible by p.

If G satisfies C(η,N) for (0 < η < 1
C(n)), then |G| ≤ B, where B = B(η,N, n) is a constant

depending only on η,N , and n.

Proof. By assumption, we may assume that G is a subgroup of GLn(C). For example, we

apply Schur-Zassenhaus’ theorem (cf. [11], page 829) to the natural projection GLn(W (Fq)) −→
GLn(Fq) where W (Fq) the ring of Witt vectors and then get a lift G to GLn(W (Fq)). Then we

have only to compose this with an embedding GLn(W (Fq)) →֒ GLn(C).

By Theorem 4.6 there exists an abelian normal subgroup A of G such that [G : A] ≤ J3(n). By

Lemma 4.7, A satisfies C(C(n)η,N). We may assume that A is a subgroup consisting of diagonal

matrices in GLn(Fq). Then one has

(1− C(n)η)|A| ≤ |H| ≤ n!N

giving a bound of |A|. Since [G : A] is bounded, so is |G| = [G : A]× |A|. �

Proposition 4.9. Let G be an irreducible subgroup of GLn(Fq). Then the following properties

hold:
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(1) there exists a finite extension field Fqr and an absolutely irreducible subgroup G′ ⊂
GLm(Fqr) with n = rm such that G is isomorphic to G′. Furthermore, for any g ∈ G

and the corresponding g′ ∈ G′ under this isomorphism,

fg(T ) =
∏

σ∈Gal(Fqr/Fq)

fg′(T )
σ,

where fg(T ), fg′(T ) stand for characteristic polynomials of g, g′, resp.

(2) the center of G′ is a cyclic subgroup of F×
qrIm ⊂ GLm(Fqr).

Proof. By Schur’s lemma, the centralizer Z = ZMn(Fq)(G) is a finite division ring. By Wedder-

burn’s theorem, Z is a finite field over Fq, say Fqr , since Z contains FqIn. Since Z× acts on

V := F⊕n
q faithfully, dimFq Fqr = r has to divide n. Put m = n

r . We view V as a Fqr -module.

Then one has a faithful representation G −→ GL(V ) ≃ GLm(Fqr). To be more precise, if we

take a basis {e1, . . . , em} of V as a Fqr -module and a generator α ∈ Fqr over Fq, then a basis

of V is given by {αpiej | 0 ≤ i ≤ r − 1, 1 ≤ j ≤ m}. Denote by G′ the image of G under this

representation. Then G′ is absolutely irreducible since Fqr = Z = ZMn(Fq)(G) = ZMm(Fqr )(G
′).

The last claim follows from the direct calculation in this explicit basis.

For the claim (2), let g be an element in the center Z(G′). Since g commutes with the action

of G′, it belongs to ZMm(Fqr )(G
′)× = F×

qr . �

Let T be the group of all diagonal matrices in GLn(Fq). Let G be a semisimple subgroup of

GLn(Fq). Assume p > C(n). Fix a series of normal subgroups G ⊃ G1 ⊃ G2 ⊃ G3 in Theorem

4.1 for G. By Corollary 4.5, G3 = 1. Assume G1 6= G2 until the end of the proof of the following

proposition.

By Clifford’s theorem, V = F⊕n
q is a semisimpleG1-module. Therefore we have a decomposition

V =
⊕

1≤i≤mWi into irreducible components as a G1-module, where dimFq Wi = niri for each i.

By Proposition 4.9, we may assume that each (G1,Wi) is an absolutely irreducible module over the

field extension Fqri of Fq, and we have a faithful representation πi : G1 −→ GL(Wi) ≃ GLni
(Fqri ).

We denote by G(i) the image of G1 under πi. Then we get an injection

G1 →֒
m∏

i=1

G(i)

which is not necessarily surjective, but we will see this map will be an isomorphism under the

natural quotients. Note that clearly ri < n.

Proposition 4.10. Under the above setting, the following properties hold:
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(1) for each i = 1, ...,m, the center Z(G(i)) is a subgroup of F×
qri idWi

, and G2 is a subgroup

of T so that πi(G2) ⊂ Z(G(i)). Further G2 →֒
∏

1≤i≤m

πi(G2).

(2) For each i = 1, ...,m, there exists a simple and simply connected linear algebraic group

Gi over Fqri realized inside GL(Wi) such that G(i) = Z(G(i))Gi(Fqri ) and Z(Gi(Fqri )) ⊂
Z(G(i)). In particular, the natural map

G1/G2 −→
∏

1≤i≤m

G(i)/Z(G(i)) ≃
∏

1≤i≤m

Gi(Fqri )/Z(Gi(Fqri ))

is isomorphic where each component of the right hand side is a simple Chevalley group

(cf. [22]). Further G1 →֒
∏

1≤i≤m

Z(G(i))Gi(Fqri ) with respect to the decomposition V =

⊕
1≤i≤mWi, and there exist a constant C1(n) depending only on n so that

|G1| ≥ C1(n)
∏

1≤i≤m

|Gi(Fqri )|.

Proof. The first part of (1) follows from Proposition 4.9-(2). Since (G1,Wi) is (absolutely) irre-

ducible, by Clifford’s theorem, Wi|G2 decomposes into isotypical representations of 1-dimensional

representations. Hence πi(G2) are scalar matrices. Hence it clearly commutes with G(i). The

latter claim is clear from the injectivity of G1 →֒
m∏

i=1

G(i).

We now prove the second claim. Let Γ0
i be the group generated by all elements of p-th power

order in G(i). Then by Theorem B of [14] (see also step 1 in the proof of Proposition A.7

of [15]), Γ0
i /Z(Γ0

i ) is a simple Chevalley group. Since Γ0
i is a normal subgroup of G(i), so is

Z(G(i)) · Γ0
i /Z(G(i)) in G(i)/Z(G(i)). However G(i)/Z(G(i)) is by construction (see Theorem 4.1-

(b)), a simple group. Then one has Z(G(i)) ·Γ0
i /Z(G(i)) = G(i)/Z(G(i)). Hence Z(G(i))Γ0

i = G(i).

The surjective map Γ0
i −→ G(i)/Z(G(i)) induces an isomorphism Γ0

i /Z(Γ0
i )

∼−→ G(i)/Z(G(i)).

If an element g ∈ Z(Γ0
i ) does not belong to Z(G(i)), then the previous isomorphism never be

isomorphic, hence it gives a contradiction. Hence one has Z(Γ0
i ) ⊂ Z(G(i)) ⊂ F×

qri idWi
. This

means that the image of Γ0
i under the projective map GL(Wi) −→ PGL(Wi) is Γ0

i /Z(Γ0
i ) and

it is a simple Chevalley group. Then the claim follows by looking for any simple Chevalley

group which appears in this way (see [22]). Therefore there exists a simple and simply connected

algebraic group Gi over Fqri such that G(i) = Z(G(i))Γ0
i = Z(G(i))Gi(Fqri ).
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To prove the last claim, let us consider the following commutative diagram

G1 −−−−→
∏

1≤i≤m

Z(G(i))Gi(Fqri )

π1

y π2

y

G1/G2
∼−−−−→

∏

1≤i≤m

Gi(Fqri )/Z(Gi(Fqri )).

where the top arrow is an injective map which is defined by the decomposition V =
⊕

1≤i≤m

Wi.

Here π1 and π2 stand for natural projections. Then one has

|G1| ≥ C1(n)
∏

1≤i≤m

|Gi(Fqri )|, C1(n) :=
1∏

1≤i≤m

|Z(Gi(Fqri ))|
.

Since Gi is simple and simply connected algebraic group, the cardinality of Z(Gi(Fqri )) is depend-

ing only on the rank of Gi, hence on n. This completes the proof. �

For any subgroup D ⊂ GLn(Fq) and each g ∈ D, we define by MD(g) the number of elements

of D which have the same characteristic polynomial as g and put MD = max
g∈D

{MD(g)}. Note

that for any subgroup A of the center F×
q In, MA·D = MD and MD1 ≤ MD2 for subgroups

D1 ⊂ D2 ⊂ GLn(Fq). This simple observations will be used in the proof of Theorem 4.14 below.

Lemma 4.11. For each i (1 ≤ i ≤ m), let Di be a subgroup of GLni
(Fqri ). We identify the

product D :=
∏

1≤i≤m

Di with the Levi subgroup of the parabolic subgroup P(n1,...,nm) in GLn(Fq)

with respect to the partition n = n1 + · · · + nm. Then there exists a constant C2(n) depending

only on n so that

MD ≤ C2(n)
∏

1≤i≤m

MDi
.

Proof. We will give a very rough estimation for C2(n). For any g = (g1, . . . , gm), fg(T ) =∏

1≤i≤m

fgi(T ). We denote the eigenvalues by α
(1)
1 , . . . , α

(1)
n1 , α

(2)
1 , . . . , α

(2)
n2 , . . . , α

(m)
1 , . . . , α

(m)
nm which

are not necessarily different from each other. Then the number of all permutations which preserve

the type (n1, . . . , nm) is
n!

n1! · · ·nm!
. We may take this as C2(n). �

Proposition 4.12. [Proposition 3.1 of [21] or Lemma 3.5 of [26]] For any connected algebraic

group G over Fq, we have

(
√
q − 1)2dimG ≤ |G(Fq)| ≤ (

√
q + 1)2dimG.



12 HENRY H. KIM AND TAKUYA YAMAUCHI

For connected linear algebraic groups, one has a stronger estimate

(q − 1)dimG ≤ |G(Fq)| ≤ (q + 1)dimG.

Let G be a simple and simply connected algebraic group over a finite field Fq. We follow [8]

for the following proposition.

Proposition 4.13. Let l = rank(G), and let A be a semisimple element in G and C(A) be the

centralizer of A in G(Fq), and d = dimC(A). Then

qd

(q + 1)d
|G(Fq)|

ql
≤ MG(A) ≤

qd

(q − 1)d
|G(Fq)|

ql
.

Proof. Let ∆G(A) be the set of g ∈ G which has the same characteristic polynomial as A so that

MG(A) = |∆G(A)|. Suppose g ∈ ∆G(A). Then g = gsgu with gs semisimple, gu unipotent. Then

det(1− Tgs) = det(1− TA).

Since gs and A are conjugate in G(Fq), they are conjugate in G(Fq) [35]. Over Fq, the algebraic

group C(A) is the centralizer in G(Fp) of A. Since A is semisimple and G is simply connected,

C(A) is a connected reductive group [34]. Since C(A) contains any maximal torus of G(Fp) and

C(A) ⊂ G(Fp), rank(C(A)) = l. By Steinberg [34],

#{unipotent elements in C(A)(Fq)} = qd−l.

Therefore,

MG(A) = #{pairs (gs, gu)| gs is G(Fp)-conjugate to A and gu ∈ (C(gs))u(Fq) }

= qd−l#{gs which is G(Fq)-conjugate to A} = qd−l #G(Fq)

#C(A)(Fq)
.

Since C(A) is connected, by Proposition 4.12, (q − 1)d ≤ #C(A)(Fp) ≤ (q + 1)d. Hence our

assertion follows. �

Here MG(A) ≤ K
|G(Fq)|

ql
for a constant K depending only on dimG.

Theorem 4.14. Let G be a semisimple subgroup of GLn(Fq). Assume that p > C(n). If G

satisfies the property C(η,N) for 0 < η < 1
C(n) , then either |G| or q is bounded by a constant

depending only on n. Hence there exists a constant B = B(η,N, n) depending only on η,N, n

such that |G| ≤ B.
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Proof. Take a series of normal subgroups G ⊃ G1 ⊃ G2 ⊃ G3 in Theorem 4.1. By Corollary 4.5,

G3 = {1}. If G1 = G2, then the claim follows from Proposition 4.8.

Henceforth we assume G1 6= G2. Then by Proposition 4.10, there exists a injective map

G1 −→
∏

1≤i≤m

Z(G(i))Gi(Fqri ), Gi(Fqri ) ⊂ GLni
(Fqri ), 1 ≤ i ≤ m.

Then one has

MG1 ≤ MD, D :=
∏

1≤i≤m

Z(G(i))Gi(Fqri ).

Since G satisfies C(η,N), by Lemma 4.7, G1 satisfies C(C(n)η,N). This means that

(1− C(n)η)|G1| ≤ |H|.

Then applying Proposition 4.13 to D =
∏

1≤i≤m

Z(G(i))Gi(Fqri ), and by Lemma 4.11, one has

(1− C(n)η)C1(n)
∏

1≤i≤m

|Gi(Fqri )| ≤ (1− C(n)η)|G1| ≤ |H| ≤ NMG1

≤ NMD ≤ NC2(n)
∏

1≤i≤m

MZ(G(i))Gi(Fqri )
= NC2(n)

∏

1≤i≤m

MGi(Fqri )

≤ NK(n)C2(n)
∏

1≤i≤m

|Gi(Fqri )|
qrili

with a constant K(n), where li = rankGi. This gives us the bound

q ≤
∏

1≤i≤m

qrili ≤ NK(n)C2(n)

(1− C(n)η)C1(n)
.

Hence the claim follows. �

Corollary 4.15. Let S be an infinite set of rational primes. Suppose for each prime ℓ ∈ S, the

image of a mod ℓ semisimple Galois representation ρℓ : GQ −→ GLn(Fℓ) satisfies C(η,N) for

0 < η <
1

C(n)
. Then there exists a constant A = A(η,N, n) such that |Im ρℓ| ≤ A.

5. Mod ℓ representations

We state the assumption on the existence of mod ℓ representations.

Conjecture 5.1. Let π be a cuspidal representation of GLn(AQ) satisfying Assumptions (1) and

(2) in the introduction, namely, the finiteness of the Hecke field Qπ, and the integrability of the

Hecke polynomial Hp(T ).
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Then for all but finitely many ℓ coprime to N and each finite place λ of Qπ above ℓ with the

residue field Fλ, there exists a continuous semi-simple representation

ρλ : GQ −→ GLn(Fλ)

which is unramified outside of ℓN , so that

det(In − ρλ(Frobp)T ) ≡ Hp(T )mod λ,

for any p ∤ ℓN .

6. Artin representations associated to cuspidal representations

In this section we give a proof of the main theorem (Theorem 1.1). Let π satisfy Assumptions

(1)-(5) in the introduction. Let Σπ be the set of primes ℓ which are excluded in the statement of

Conjecture 5.1 for the existence of mod ℓ representation for π. We denote by Sπ the union of Σπ

and the set of rational primes consisting of primes p so that πp is ramified. Let K be a Galois

closure of Qπ. By assumptions on π, this is a finite extension of Q. Let PK be the set prime

numbers ℓ which splits completely in K. For each ℓ ∈ PK , choose a finite place λℓ of K dividing

ℓ. By Conjecture 5.1, there exists a continuous semi-simple representation

ρℓ : GQ −→ GLn(Fℓ)

which is unramified outside Sπ ∪ {ℓ}, and

det(In − ρℓ(Frobp)T ) ≡ Hp(T )mod λℓ.

By Lemma 6.13 of [10], we may assume that the image of ρℓ takes the values in GLn(Fℓ). Let

Gℓ := Im ρℓ.

Lemma 6.1. For any η, 0 < η < 1, there exists a constant M such that Gℓ satisfies C(η,M) for

every ℓ ∈ PK .

Proof. By Proposition 3.1, if we let M := {Hp(T ) | p 6∈ Xη}, then M is a finite set. Let M := |M|
which will be a desired constant as below. Let us consider the subset of Gℓ defined by

Hℓ := {g ∈ Gℓ | g
Gℓ∼ ρℓ(Frobp) for some p 6∈ Xη}.

By Chebotarev density theorem, one has

1 =
|Hℓ|
|Gℓ|

+ den(Xη) ≤
|Hℓ|
|Gℓ|

+ den.sup(Xη) ≤
|Hℓ|
|Gℓ|

+ η,
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giving (1− η)|Gℓ| ≤ |Hℓ|.
The characteristic polynomial of each element of Hℓ is the reduction of some element of M.

Therefore one has

|{det(In − hT ) | h ∈ Hℓ}| ≤ M.

�

By Lemma 6.1 together with Corollary 4.15, there exists a constant A such that |Gℓ| ≤ A for

any ℓ ∈ PK . Let Y be the set of polynomials
∏n

i=1(1 − αiT ), where αi’s are roots of unity of

order less than A.

If p 6∈ Sπ, for all ℓ ∈ PK with ℓ 6= p, there exists R(T ) ∈ Y such that

Hp(T ) ≡ R(T ) mod λℓ.

Since Y is finite and PL is infinite,

Hp(T ) = R(T ).

Let P ′
K be the set of ℓ ∈ PK such that ℓ > A and for R,S ∈ Y with R 6= S, R 6≡ S mod λℓ. Then

it is easy to see that P ′
K is infinite. For each ℓ ∈ P ′

K , ℓ does not divide |Gℓ|, since ℓ > A ≥ |Gℓ|.
Let πℓ : GLn(Oλℓ

) −→ GLn(Fℓ) be the reduction modulo λ. Applying a profinite version of Schur-

Zassenhaus’ theorem (cf. [28], page 40, Theorem 2.3.15) to π−1(Gℓ) and π−1(Gℓ)∩Ker(π) (note

that the latter group is a Hall subgroup of π−1(Gℓ) in the sense of [28]), there exists a subgroup

H ⊂ π−1(Gℓ) such that π−1(Gℓ) = H · (π−1(Gℓ) ∩ Ker(π)) and H ∩ (π−1(Gℓ) ∩ Ker(π)) = 1.

Then the composition of the inclusion H →֒ π−1(Gℓ) and π induces an isomorphism

H
∼−→ Gℓ = Im ρℓ.

Hence we have a lift ρ′ℓ : GQ −→ GLn(Oλℓ
) of ρℓ. Since the coefficient of ρ′ℓ is of characteristic

zero and its image is finite, for p ∤ Nℓ, one has det(In − ρ′ℓ(Frobp)T ) ∈ Y . On the other hand, we

have

det(In − ρ′ℓ(Frobp)T ) ≡ Hp(T )mod λℓ.

Since ℓ ∈ P ′
K , the above congruence relation implies the equality

det(In − ρ′ℓ(Frobp)T ) = Hp(T ).

for all p ∤ Nℓ. Now we replace ℓ with another prime ℓ′ ∈ P ′
K . Then one has ρ′ℓ′ : GQ −→ GLn(Oλℓ′

)

such that

det(In − ρ′ℓ(Frobp)T ) = det(In − ρ′ℓ′(Frobp)T )
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for all p ∤ Nℓℓ′. By Chebotarev density theorem, one has ρ′ℓ′ ∼ ρ′ℓ and this means that ρ′ℓ is

unramified at ℓ. Hence we have the desired representation

ρπ := ρ′ℓ : GQ −→ GLn(Oλℓ
) →֒ GLn(C),

where the second map comes from a fixed embedding Oλℓ
→֒ C. This representation is indepen-

dent of any choice of such a embedding by Chebotarev density theorem. The infinity type π∞

was determined in Proposition 2.1.

Corollary 6.2. Let π be a cuspidal representation of GLn(AQ) which satisfies Assumptions (1)-

(5) in the introduction. Then πp is tempered for all p.

Proof. By Theorem 1.1, there exists the Artin representation ρπ : GQ −→ GLn(C) such that for

almost all q,

det(In − ρπ(Frobq)T ) = Hq(T ).

This shows that πq is tempered for almost all q.

Suppose πp is non-tempered. We apply Proposition A.1 of [25] to the Rankin-Selberg L-

function L(s, π × π̃): Since L(s, πq × π̃q) = L(s, ρq × ρ̃q) for almost all q, in particular, we have

L(s, πp× π̃p) = L(s, ρp× ρ̃p). Suppose πp is of the form (11.1). Then by (11.2), the left hand side

has a factor L(s − 2r1, η1 × η̃1) which has a pole at s = 2r1 > 0. On the other hand, the right

hand side is holomorphic for Re(s) > 0. Contradiction. Hence πp is tempered for all p. �

7. Non-holomorphic Siegel modular forms and holomorphic Siegel modular

forms via the congruence method

In this section we follow the notation of [19]. Let us first recall the existence of a Galois

representation for any holomorphic Siegel modular form of weight (k1, k2), k1 ≥ k2 ≥ 2, for

GSp4. Thanks to the works of [23], [40] and [39] with the classification of CAP forms ([27], [33],

[32]) and endoscopic representations for GSp4 ([29]), we can associate a Galois representation to

F .

Theorem 7.1. For any prime ℓ, there exists a number field E including QF , such that for

each rational prime ℓ and a finite place λ|ℓ of QF , there exists a continuous representation

ρF,ℓ : GQ −→ GL4(Eλ) which is unramified outside of ℓN so that

det(I4 − ρF,ℓ(Frobp)p
−s)−1 = Lp(s, F ) = Lp(s− k1+k2−3

2 , πF )
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for any p ∤ ℓN . Furthermore, if k1 ≥ k2 ≥ 3 and πF is neither endoscopic nor CAP, then the

image of ρF,ℓ can be taken in GSp4(Eλ).

Let us denote by ρF,ℓ : GQ −→ GL4(F) the reduction modulo λ(λ|ℓ) where F is the residue

field of λ.

Let f be an elliptic newform of weight one which is neither of dihedral nor of tetrahedral type.

Then this gives rise to a unique Artin representation ρf : GQ −→ GL2(C). Since the image is

finite, we can take a finite extension K of Q so that Im(ρf ) ⊂ GL2(O) where O is the ring of

integers of K. Then taking the reduction modulo a prime ideal above a rational prime ℓ, we

obtain a mod ℓ representation ρf,ℓ : GQ −→ GL2(F).

By Theorem 10.1 of [19], there exists a real analytic Siegel modular form F of weight (2, 1)

with eigenvalues − 5

12
(resp. 0) for ∆1 (resp. ∆2) (see [19] for ∆i) such that πF ∼ Sym3(πf ). By

using this, we obtain a mod ℓ representation πF,ℓ : GQ −→ GL4(F) for F .

On the other hand, by multiplying Hasse invariant of weight ℓ− 1, we obtain an eigenform g

of weight 1 + a(p − 1) for any positive integer a such that g is congruent to f modulo ℓ hence

ρg,ℓ ≃ ρf,ℓ. By using symmetric cube lift and generic transfer from GSp4 to GL4, one can show

the existence of a holomorphic Siegel cusp form G of weight (k1, k2) = (2a(ℓ−1)+2, a(ℓ−1)+1)

such that ρG,ℓ = Sym3(ρg,ℓ). From this one concludes that there exist a non-holomorphic Siegel

modular form F of weight (2, 1) and a holomorphic Siegel modular form G of weight (2a(ℓ− 1)+

2, a(ℓ− 1) + 1) such that

ρF,ℓ ≃ ρG,ℓ.

We denote by this property F ≡ G mod ℓ provided if the existence of and mod ℓ representations

of F and G is guaranteed.

We can also construct such F and G by using endoscopic lift from a pair (f1, f2), πf1 6≃ πf2 of

elliptic newform of weight one whose central characters are same as follows. By using theta lift

(cf [29]) and Section 5 of [19], there exists a a real analytic Siegel modular form of weight (2, 1) as

above such that ρF,ℓ ≃ ρf1 ⊕ ρf2 . By multiplying Hasse invariant again, one has a pair of elliptic

modular forms (g1, g2), πg1 6≃ πg2 of elliptic newform g1 (resp. g2) of weight r1 = 1 + a(ℓ − 1)

(resp. r2 = 1 + b(ℓ− 1)) with the same central character. Then by using theta lift (cf [29]), one

can construct a holomorphic Siegel cusp form G of weight (k1, k2) = ( (ℓ−1)(a+b)
2 +1, (ℓ−1)(a−b)

2 +2)

such that ρF,ℓ ≃ ρg1,ℓ ⊕ ρg2,ℓ. Taking reduction modulo ℓ, one concludes F ≡ G mod ℓ.

For such F (and G), the mod ℓ representation ρF,ℓ has a remarkable property that ρF,ℓ is

unramified at ℓ. In case elliptic newform, this property characterizes a weight ℓ form so that it



18 HENRY H. KIM AND TAKUYA YAMAUCHI

comes from a weight one form by multiplying Hasse invariant of weight ℓ − 1. This principle is

discussed in Proposition 2.7 of [12] which plays an important role for proving Serre conjecture.

So this gives rise to the following natural question:

Question 7.2. Let G be a holomorphic Siegel cusp form of weight (k1, k2) so that k1 − 1 and

k2 − 2 are both divided by ℓ − 1, where ℓ is a rational prime. Assume that ρG,ℓ is unramified

at ℓ. Can one associate a non-holomorphic Siegel cusp form F of weight (2, 1) with a mod ℓ

representation such that F ≡ G mod ℓ?

8. Supplement to our paper [19]

In [19], we used Arthur’s conjectural result on the correspondence between cuspidal represen-

tations of GSp4 and GL4 [2]. It depends on the stabilization of the trace formula, which is not

proved yet. In this section, we explain how to get around this by using the transfer from Sp4 to

GL5 in [3]. The result depends on the twisted fundamental lemma which may have been resolved

by now.

Let π = πF be the cuspidal representation of GSp4(AQ) attached to the Siegel cusp form

F of weight (2, 1). We showed in [19] that πF is not a CAP representation. Let π′ be one of

components of π|Sp4(A). Then it is a cuspidal representation of Sp4(AQ). By [3], π′ corresponds

to an automorphic representation Π5 of GL5. Since π′ is not a CAP representation, Π5 is either

cuspidal or an isobaric representation.

By using the descent construction [13], we can find a globally generic cuspidal representation

τ ′ of Sp4(AQ) which is in the same L-packet as π′. Now let τ be a globally generic cuspidal

representation of GSp4(AQ) such that τ ′ occurs in the restriction τ |Sp4(A). By [4], we have a

functorial lift Π of τ as an automorphic representation of GL4. This Π is the transfer of π. We

can see easily that ∧2(Π) = Π5 ⊗ ωπ ⊞ ωπ, i.e., Π5 is the transfer of π to GL5 corresponding to

the L-group homomorphism GSp4(C) −→ GL5(C). Hence we do not need the exterior square

lift of Π in [18] in order to obtain Π5.

9. Non-holomorphic Siegel cusp forms of weight (2, 1) attached to cusp forms on

imaginary quadratic fields

In this section, as a supplement to our paper [19], we use the idea of [6] to construct a non-

holomorphic Siegel cusp form of weight (2, 1) attached to Maass forms for GL2/Q and cuspidal

representations of GL2 over imaginary quadratic fields. This idea was used by Harris, Soudry,
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and Taylor [16] to construct holomorphic Siegel cusp forms from certain modular forms over

imaginary quadratic fields.

Let K = Q[
√
−D] be an imaginary quadratic field. Let Gal(K/Q) = {1, θ}, and ωK/Q be the

quadratic character attached to K/Q i.e., ωK/Q(p) = (−D
p ).

Let G = RK/QGL2 be the quasi-split group obtained by the restriction of scalars. Then

LG = (GL2(C) × GL2(C)) ⋊ Gal(K/Q), and G(A) = GL2(AK). Let π = π∞ ⊗ ⊗′
pπp be a

cuspidal representation of G(A). Here π∞ is a unitary representation of GL2(C). If p splits in

K into (v1, v2), then πp = πv1 ⊗ πv2 . We make the following assumption on π.

Assumption 9.1. ωπ factors through NK/Q, i.e, ωπ = ω ◦NK/Q with a grössencharacter ω.

The automorphic induction corresponds to the L-group homomorphism

IQK : LG −→ GL(C2⊕C2) ≃ GL4(C), IQK(g, g′; 1)(x⊕y) = g(x)⊕g′(y), IQK(1, 1; θ)(x⊕y) = y⊕x.

Let IQKπ be the automorphic induction. It is automorphic representation of GL4/Q, and it is

not cuspidal if and only if π ≃ π ◦ θ. In that case, π is a base change of a cuspidal representation

π0 of GL2(AQ), and IQKπ = π0 ⊞ (π0 ⊗ ωK/Q).

The Asai lift corresponds to the L-group homomorphism

As : LG −→ GL(C2⊗C2) ≃ GL4(C), As(g, g′; 1)(x⊗y) = g(x)⊗g′(y), As(1, 1; θ)(x⊗y) = y⊗x.

If ρ : GK −→ GL2(C), we have [17]

∧2(IndQK(ρ)) = (As(ρ) ⊗ ωK/Q)⊕ IndQK(det ρ).

Hence if ρ corresponds to π, det(ρ) corresponds to ωπ. If π satisfies Assumption 9.1, IQK ωπ =

ω ⊕ ωωK/Q. Hence we can L(s,∧2(IQK) ⊗ χ−1) with χ = ω or ωωK/Q, has a pole at s = 1, and

IQKπ descends to a cuspidal representation of GSp4(AQ) with the central character χ (cf. [5]).

Let π∞ = π(1, 1). Then the Langlands’ parameter of π∞ is

φ : WC = C× −→ (GL2(C)×GL2(C))⋊Gal(K/Q), φ(z) = (I, I; θ).

So the Langlands’ parameter of IQK(π∞) is

φ : WR −→ GL4(C), φ(z) = Id, φ(j) =

(
0 I2

I2 0

)
.



20 HENRY H. KIM AND TAKUYA YAMAUCHI

Here if P = 1
2




1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 1



,

P−1

(
0 I2

I2 0

)
P = diag(1,−1,−1, 1), tP

(
0 I2

−I2 0

)
P = −1

2

(
0 I2

−I2 0

)
.

So

(
0 I2

I2 0

)
is conjugate to diag(1,−1,−1, 1) in GSp4(C), and up to conjugacy, we have

φ : WR −→ GSp4(C), φ(z) = Id, φ(j) = diag(1,−1,−1, 1).

Then φ is the Langlands’ parameter for IndGSp4
B 1⊗ sgn⊗ sgn, and as in [19], we can show that

there exists a Siegel cusp form F of weight (2,1) corresponding to IQKπ. We have proved

Theorem 9.1. Let π be a cuspidal representation of GL2(AK), K = Q[
√
−D] which satisfies

Assumption 9.1, and π∞ = π(1, 1). Then there exists a non-holomorphic Siegel cusp form F of

weight (2, 1) such that L(s, πF ) = L(s, π).

10. Non-holomorphic Siegel cusp forms of weight (2, 1) attached to Maass forms

over Q

Let π be a cuspidal representation of GL2(AQ) such that π∞ = π(1, 1), i.e., Maass cusp form.

The Langlands parameter of π∞ is

φ : WR −→ GL2(C), φ(z) = I2, φ(j) = I2.

Let BC(π) be the base change to K = Q[
√
−D], and consider

Π = IQK(BC(π)) = π ⊞ (π ⊗ ωK/Q).

Then Π descends to a generic cuspidal representation τ of GSp4(AQ) (cf. [5]). The Langlands

parameter of Π∞ is

φ : WR −→ GL4(C), φ(z) = Id, φ(j) = diag(1, 1,−1,−1).
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Then we can show easily that for s2 =




1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0



, which is the Weyl group element

corresponding to the long simple root,

s−1
2 diag(1, 1,−1,−1)s2 = diag(1,−1,−1, 1).

Hence diag(1, 1,−1,−1) and diag(1,−1,−1, 1) are conjugate in GSp4(C), and up to conjugacy,

we have

φ : WR −→ GSp4(C), φ(z) = Id, φ(j) = diag(1,−1,−1, 1).

Since φ is the Langlands’ parameter for IndGSp4
B 1⊗ sgn⊗ sgn, as in [19], we can show that there

exists a Siegel cusp form F of weight (2,1) corresponding to IQK(BC(π)). We have proved

Theorem 10.1. Let π be a cuspidal representation of GL2(AQ) such that π∞ = π(1, 1). Then

there exists a non-holomorphic Siegel cusp form F of weight (2, 1) such that L(s, πF ) = L(s, π)L(s, π⊗
ωK/Q).

11. Appendix

Let π = ⊗′
pπp be a cuspidal representation of GLn(AQ) with conductor N . We show that the

Langlands functoriality of the exterior m-th power ∧m(π) as an automorphic representation of

GLCn,m(AQ) implies Assumption (5).

First, recall the following fact on the local L-factors of the ramified places: Let Π = ⊗′
pΠp be

a cuspidal representation of GLM (AQ). Then for each prime p, Πp is unitary and generic. Recall

that a non-tempered, unitary and generic representation of GLN (Qp) can be written as a full

induced representation

(11.1) Ind η1|det |r1 ⊗ · · · ⊗ ηk|det |rk ⊗ η0 ⊗ ηk|det |−rk ⊗ · · · ⊗ η1|det |−r1 ,

where η1, ..., ηk are unitary square-integrable representations of GLn1(Qp), ..., GLnk
(Qp), resp.

and η0 is a tempered representation of GLn0(Qp) such that n0 + n1 + · · · + nk = M , and 0 <
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rk ≤ · · · ≤ r1 ≤ 1
2 − 1

M2+1
([38]). (See [24] for the bound.) Then by [31],

L(s,Πp) = L(s, η0)
k∏

i=1

L(s± ri, ηi),

L(s,Πp × Π̃p) =
k∏

i,j=1

L(s± ri ± rj , ηi × η̃j)
k∏

i=1

L(s± ri, ηi × η̃0)L(s± ri, η0 × η̃i).(11.2)

Note that for any i, j, L(s, ηi) and L(s, ηi × η̃j) are holomorphic for Re(s) > 0.

For 1 ≤ m ≤ n, let ∧m : GLn(C) −→ GLCn,m(C) be the exterior m-th power, and let

L(s, π,∧m) =
∞∑

n=1

λm(n)

ns

be the exterior m-th power L-function. Then it is easy to see that, for a prime p ∤ N ,

λm(p) = am(p), for all m = 1, ..., n.

For each p, by the local Langlands’ correspondence, ∧m(πp) is a well-defined representation of

GLCn,m(Qp): Let φp : WQp ×SL2(C) −→ GLn(C) be the parametrization of πp. Then we have a

map ∧m(φp) : WQp ×SL2(C) −→ GLCn,m(C). Then ∧m(πp) is the representation of GLCn,m(Qp),

corresponding to ∧m(φp). Let ∧m(π) = ⊗′
p∧m (πp). It is an irreducible admissible representation

of GLCn,m(AQ).

Conjecture 11.1. (Langlands functoriality conjecture) The exterior m-th power Πm = ∧m(π)

is an automorphic representation of GLCn,m(AQ).

Since ∧m(π) = ∧n−mπ̃⊗ω, it is enough to consider it for m ≤ [n2 ]. If n ≤ 3, it is trivial. When

n = 4, it is proved in [18].

Suppose Πm is an automorphic representation of GLCn,m(AQ). Consider the Rankin-Selberg

L-function L(s,Πm × Π̃m).

Proposition 11.2. There exists a holomorphic function g(s) near s = 1 such that

logL(s,Πm × Π̃m) =
∑

p∤N

|am(p)|2
ps

+ g(s),

and if s > 1,
∑

p∤N

|am(p)|2
ps

≤ C2
n,m log

1

s− 1
+O(1), as s → 1+.
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Proof. Let rm = Cn,m, and L(s,Πm) =
∏

p∤N

rm∏

i=1

(1−βi(p)p
−s)−1

∏

p|N

Lp(s), where Lp(s) is a ramified

factor as in (11.2). Then logL(s,Πm) =

∞∑

l=1

∑

p∤N

b(pl)

lpls
+ g′(s), where for p ∤ N , b(pl) = β1(p)

l +

· · · + βrm(p)
l. Hence b(p) = am(p) for p ∤ N . Here g′(s) is a holomorphic function for Re(s) > 1

2

by (11.2) and the fact that the local factors are non-vanishing. Then we can easily see that

logL(s,Πm × Π̃m) =
∞∑

l=1

∑

p∤N

|b(pl)|2
lpls

+ g′′(s) =
∑

p∤N

|am(p)|2
ps

+
∞∑

l=2

∑

p∤N

|b(pl)|2
lpls

+ g′′(s),

where g′′(s) is a holomorphic function for Re(s) > 1− 2
r2m+1

by (11.2).

Now we show that
∞∑

l=2

∑

p∤N

|b(pl)|2
lpls

converges for Re(s) > 1 − 2
r2
[n2 ]

+1
. By the classification of

spherical unitary generic representation of GLn(Qp) [37], if p ∤ N , α1(p), ..., αn(p) is of the form

u1p
a1 , u2p

a2 , ..., ukpp
akp , ukp+1, ..., ukp+k′p , ukpp

−akp , ..., u1p
−a1 ,

where ui ∈ C and |ui| = 1 for all i, and 0 < akp ≤ · · · ≤ a1 ≤ 1
2 − 1

n2+1
. Now let S0 be the set

of primes where πp is tempered, and for 0 < k ≤ [n2 ], let Sk be the set of primes where kp = k.

Then

∞∑

l=2

∑

p∈S0

|b(pl)|2
lpls

converges for Re(s) > 1
2 .

Now for each 0 < k ≤ [n2 ], consider
∞∑

l=2

∑

p∈Sk

|b(pl)|2
lpls

. Recall that am(p) =
∑

i1<···<im
αi1(p) · · ·αim(p).

Hence |b(pl)| ≪ pl(a1+···+am), where we let ai = 0 if i > k. Also we have |ak(p)| ≫ pa1+···+ak .

Therefore,

|b(pl)| ≪ |ak(p)|l.

By assumption, ∧kπ is an automorphic representation of GLrk/Q. Hence by [24], |ak(p)| ≤
rkp

1
2
− 1

r2
k
+1 . Hence

∑

p∈Sk

|b(pl)|2
lpls

≪
∑

p∈Sk

|ak(p)|2

p
lRe(s)−l+1+ 2(l−1)

r2
k
+1

.

Since ∧kπ is automorphic, by considering the Rankin-Selberg L-function L(s,∧kπ × ∧̃kπ), we

have
∑

p |ak(p)|2 ≪ x. Hence by partial summation,

∑

p∈Sk

|ak(p)|2

p
lRe(s)−l+1+ 2(l−1)

r2
k
+1

≪ 2
−lRe(s)+l− 2(l−1)

r2
k
+1 .
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Now
∞∑

l=2

2
−lRe(s)+l− 2(l−1)

r2
k
+1 converges for Re(s) > 1− 2

r2
k
+1

. Hence our result follows.

Now L(s,Πm×Π̃m) has a pole at s = 1, of order at least 1, and at most r2m. Also L(s,Πm×Π̃m)

is zero free for Re(s) > 1− c
(1+|t|)n for some constant c > 0 (for example, [7]). Hence as s → 1+,

logL(s,Πm × Π̃m) ≤ r2m log
1

s− 1
+O(1).

This completes the proof. �

The above proof shows the following. (A different proof was given in [9].)

Corollary 11.3. Let logL(s, π) =

∞∑

l=1

∑

p∤N

a(pl)

lpls
+ g(s), where a(pl) = α1(p)

l + · · · + αn(p)
l for

p ∤ N , and g(s) is a holomorphic function for Re(s) > 1
2 . Then the functoriality of ∧mπ for all

m implies Hypothesis H in [31], namely, for each l ≥ 2,

∑

p∤N

|a(pl)|2(log p)2
pl

converges.
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