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Abstract

We study protected nodes inm-ary search trees, by putting them in context of gen-
eralised Pólya urns. We show that the number of two-protected nodes (the nodes that
are neither leaves nor parents of leaves) in a random ternary search tree is asymptot-
ically normal. The methods apply in principle to m-ary search trees with larger m
as well, although the size of the matrices used in the calculations grow rapidly with
m; we conjecture that the method yields an asymptotically normal distribution for all
m ≤ 26.

The one-protected nodes, and their complement, i.e., the leaves, are easier to ana-
lyze. By using a simpler Pólya urn (that is similar to the one that has earlier been used
to study the total number of nodes in m-ary search trees), we prove normal limit laws
for the number of one-protected nodes and the number of leaves for all m ≤ 26.

Keywords: Random trees, Pólya urns, Normal limit laws, M -ary search trees.
MSC 2010 subject classifications: Primary 60C05; secondary 05C05, 60F05, 68P05.

1 Introduction

There are many recent studies of so-called protected nodes in various classes of random
trees, see e.g. [1, 3, 6, 8, 11, 18, 19]. A node is protected (more precisely, two-protected) if
it is not a leaf and none of its children is a leaf.

In this paper we consider the number of protected nodes in m-ary search trees (see
Section 1.1.2 for definitions), by putting them in context of generalised Pólya urns. The
following result is our main theorem. We let d→ denote convergence in distribution and
denote a normal distribution by N (µ, σ2).

Theorem 1.1. Let Zn be the number of protected nodes in a ternary search tree with n keys.
Then

Zn − 57
700n√
n

d−→ N
(

0,
1692302314867

43692253605000

)
.
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For a binary search tree, we obtain by the same method a new proof of the following
result, which earlier has been obtained by different methods, first by Mahmoud and Ward
[18] (using generating functions), and later in [11] (using fringe trees).

Theorem 1.2. Let Yn be the number of protected nodes in a binary search tree. Then

Yn − 11
30n√
n

d−→ N
(

0,
29

225

)
.

Remark 1.3. Theorems 1.1 and 1.2 imply that E(Zn)
n → 57

700 and E(Yn)
n → 11

30 . Recall
that necessary and sufficient conditions for L1 convergence of a sequence (Xn) of random
variables, are that Xn

p→ X (where
p→ denotes convergence in probability) and that the

sequence (Xn) is uniformly integrable. Note that Theorems 1.1 and 1.2 imply Zn
n

p→ 57
700

and Yn
n

p→ 11
30 , respectively, since if a sequence of random variables converges in distribution

to a constant it also converges in probability to that constant. Since 0 ≤ Zn
n ≤ 1 and 0 ≤

Yn
n ≤ 1, uniformly integrability for the sequences (Zn

n ) and (Ynn ) obviously holds. Hence,
(Zn
n ) and (Ynn ) converge in L1 to 57

700 and 11
30 , respectively; in particular, E(Zn)

n → 57
700 and

E(Yn)
n → 11

30 .
We conjecture that also the variances (and higher moments) converge in Theorems 1.1

and 1.2.

The methods apply to larger m too, at least in principle, see Sections 1.1.3 and 5.
Similarly, we may consider the one-protected nodes, i.e. the non-leaves. These are

easier to analyze than the two-protected nodes and using a minor variation of a Pólya urn
earlier used to study the total number of nodes [15, 12, 16], we prove in Sections 4 and 5.2
normal limit laws for the number of one-protected nodes and the number of leaves in an
m-ary search tree for all m ≤ 26.

1.1 Protected nodes in m-ary search trees described as generalised Pólya urns

1.1.1 A generalised Pólya urn

A (generalised) Pólya urn process is defined as follows, see e.g. [12] or [16]. There are balls
of q types (or colours) 1, . . . , q, and for each n a random vector Xn = (Xn,1, . . . , Xn,q) ,
where Xn,i is the number of balls of type i in the urn at time n. The urn starts with a given
vector X0. For each type i, there is an activity (or weight) ai ≥ 0 and a random vector
ξi = (ξi1, . . . , ξiq). The urn evolves according to a Markov process. At each time n ≥ 1,
one ball is drawn at random from the urn, with the probability of any ball proportional to
its activity. Thus, the drawn ball has type i with probability aiXn−1,i∑

j ajXn−1,j
. If the drawn ball

has type i, it is replaced together with ∆X
(i)
n,j balls of type j, j = 1, . . . , n, where the

vector ∆X
(i)
n = (∆X

(i)
n,1, . . . ,∆X

(i)
n,q) has the same distribution as ξi and is independent of

everything else that has happened so far. (We allow ∆X
(i)
n,i = −1, which means that the

drawn ball is not replaced.) We let A denote the q × q matrix

A = (aj E ξji)qi,j=1. (1.1)

The matrix A with its eigenvalues and eigenvectors is central for proving limit theorems.
The basic assumptions in [12] are the following. We say that a type i is dominating if

every other type j may appear at some time in an urn started with a single ball of type i.
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(A1) ξij ≥ 0 for j 6= i (i.e., balls of other types than the drawn ball are never removed);
ξii ≥ −1.

(A2) E(ξ2ij) <∞ for all i, j ∈ {1, . . . , q}.

(A3) The largest eigenvalue λ1 of A is positive.

(A4) The largest eigenvalue λ1 is simple.

(A5) There exists a dominating type i with X0i > 0, i.e., we start with at least one ball of
a dominating type.

(A6) λ1 is an eigenvalue of the submatrix of A given by the dominating types.

Furthermore, [12] says that the process becomes essentially extinct if at some time there are
no balls of any dominating type left. We will also use the following simlifying assumption.

(A7) With probability 1, the urn never becomes essentially extinct.

In the Pólya urns used in this paper, it is easily seen (from the definitions using trees)
that every type with non-zero activity is dominating. If we remove rows and columns cor-
responding to the types with activity 0 from A, then the removed columns are identically 0,
so the set of non-zero eigenvalues of A is not changed. The remaining matrix is irreducible,
and using the Perron–Frobenius theorem, it is easy to verify all conditions (A1)–(A6), see
[12, Lemma 2.1]. Furthermore, in our urns there will always be a ball of positive activity,
so essential extinction is impossible.

Before stating the results that we use, we need some notation. With a vector v we mean
a column vector, and we write v′ for a row vector. We denote the transpose of a matrix A as
A′. By an eigenvector of A we mean a right eigenvector, a left eigenvector is the same as an
eigenvector of the matrix A′. If u and v are vectors then u′v is a scalar while uv′ is a q × q
matrix. We also use the notation u · v for u′v. We let λ1 denote the largest eigenvalue. Let
a = (a1, . . . , aq) denote the (column) vector of activities, and let u1 and v1 denote left and
right eigenvectors of A corresponding to the largest eigenvector λ1, i.e., vectors satisfying

u′1A = λ1u
′
1, Av1 = λ1v1.

We assume that v1 and u1 are normalized such that

a · v1 = a′v1 = v′1a = 1, u1 · v1 = u′1v1 = v′1u1 = 1, (1.2)

see [12, equations (2.2)–(2.3)]. We write v1 = (v11, . . . , v1q).
We define

Pλ1 = v1u
′
1,

and PI = Iq − Pλ1 , where Iq is the q × q identity matrix. (Thus Pλ1 is a one-dimensional
projection onto the eigenspace corresponding to λ1, such thatPλ1 commutes with the matrix
A, see [12, equation (2.2)]). We define the matrices

Bi := E(ξiξ
′
i) (1.3)

B :=

q∑
i=1

v1iaiBi (1.4)

ΣI :=

∫ ∞
0

PIe
sABesA

′
P ′Ie
−λ1sds, (1.5)
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where we recall that etA =
∑∞

j=0 t
jAj/j!.

It is proved in [12] that, under assumptions (A1)–(A7), Xn is asymptotically normal if
Reλ ≤ λ1/2 for each eigenvalue λ 6= λ1; more precisely, if Reλ < λ1/2 for each such

λ, then n−1/2(Xn − nµ)
d→ N (0,Σ) for some µ and Σ. The asymptotic covariance matrix

Σ may be calculated in different ways; we use the following results from [12], which apply
under different additional assumptions.

Theorem 1.4 ([12, Theorem 3.22 and Lemma 5.4]). Assume (A1)–(A7) and that we have
normalized as in (1.2). Also assume that Reλ < λ1/2 for each eigenvalue λ 6= λ1. Suppose
that a · E(ξi) = m for some m > 0 and every i. Then, as n→∞,

n−1/2(Xn − nµ)
d→ N (0,Σ),

with µ = λ1v1 and covariance matrix Σ equal to mΣI , with ΣI as in (1.5).

Theorem 1.5 ([12, Theorem 3.22 and Lemma 5.3]). Assume (A1)–(A7), and that we have
normalized as in (1.2). Also assume that Reλ < λ1/2 for each eigenvalue λ 6= λ1. If
the matrix A is diagonalisable, and {ui}qi=1 and {vi}qi=1 are dual bases of left and right
eigenvectors, respectively, i.e., uiA = λiui, Avi = λivi and ui · vj = δij (where δij is the
Kronecker delta, and the λi, i = 1, . . . , q, do not have to be distinct). Then, as n→∞,

n−1/2(Xn − nµ)
d→ N (0,Σ),

with µ = λ1v1 and covariance matrix Σ equal to

Σ =

q∑
j,k=2

u′jBuk

λ1 − λj − λk
vjv
′
k, (1.6)

with the matrix B as in (1.4).

1.1.2 M -ary search trees

We recall the definition of m-ary search trees, see e.g. [14] or [7]. An m-ary search tree,
where m ≥ 2, is constructed recursively from a sequence of n keys (numbers). We assume
that the keys are i.i.d. uniform random numbers in [0, 1]. (Only the order of the keys matter,
so alternatively, we may assume that the keys form a uniformly random permutation of
{1, . . . , n}.) Each node may contain up to m− 1 keys. We start with a tree containing just
an empty root. The first m − 1 keys are put in the root, and are placed in increasing order
from left to right; they divide the set of real numbers intom intervals J1, . . . , Jm. When the
root is full (after the first m− 1 keys are added), it gets m children that are initially empty,
and each further key is passed to one of the children depending on which interval it belongs
to; a key in Ji is passed to the i:th child. (The binary search tree is the simplest case where
keys are passed to the left or right child depending on whether it is larger or smaller than the
key in the root.) The procedure repeats recursively in the subtrees until all keys are added
to the tree.

Nodes that contain at least one key are called internal, while empty nodes are called
external. We regard the m-ary search tree as consisting only of the internal nodes; the
external nodes are places for potential additions, and are useful when discussing the tree
(e.g. below), but are not really part of the tree. Thus, a leaf is an internal node that has no
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internal children, but it may have external children. (It will have external children if it is
full, but not otherwise.) Similarly, a protected node is an internal node that is not a leaf, and
has no child that is a leaf. (It may have external nodes as children.)

We say that a node with i ≤ m− 2 keys has i+ 1 gaps, while a full node has no gaps.
It is easily seen that a m-ary search tree with n keys has n + 1 gaps; the gaps correspond
to the intervals of real numbers between the keys (and ±∞), and a new key has the same
probability 1/(n+1) of belonging to any of the gaps. Thus the evolution of them-ary search
tree may be described by choosing a gap uniformly at random at each step. Equivalently,
the probability that the next key is added to a node is proportional to the number of gaps at
that node.

Pólya urns have been used in some earlier studies, e.g. [15, 12], to describe the number
of nodes in m-ary search trees containing i keys where 0 ≤ i ≤ m − 1; then a node
containing i keys is called a node of type i and thus the generalised Pólya urn hasm different
types. It has been shown that for this process, when m ≤ 26 the number of different types
has an asymptotic multivariate normal distribution, but this does not hold for larger m.
(Since the condition Reλ < λ1/2 for λ 6= λ1 on the eigenvalues of the matrix A in (1.1)
holds only if m ≤ 26.) Since the number of nodes in the whole tree is a linear combination
of these numbers, this implies in particular that the distribution of the random number of
nodes in an m-ary search tree containing n keys is asymptotically normal for m ≤ 26. In
this Pólya urn, with one ball representing each node, the activity of a ball is the number of
gaps, i.e., i+ 1 for a ball of type i ≤ m− 2, and 0 for a ball of type m− 1.

Alternatively, see [12], we can use a Pólya urn where each ball represents a gap; thus a
node with i keys corresponds to i+ 1 balls for 0 ≤ i ≤ m− 2, and these balls are all given
type i. (Full nodes are ignored.) This is thus an urn with m− 1 types, all with activities 1.

1.1.3 Protected nodes and generalised Pólya urns

We will see that it is possible to use a generalised Pólya urn also to study protected nodes
in an m-ary search tree, although the urn consists of quite a few different types.

Description of the Types in the Pólya urn. Given an m-ary search tree T with n keys
together with its external nodes, erase all edges that connect two internal non-leaves. This
yields a forest of small trees, where (assuming n ≥ m) each tree has a root that is a non-
leaf in T while all other nodes are leaves or external nodes in T . We regard these small
trees as the balls in our generalised Pólya urn. The type of a ball (tree) is the type of the
tree as an unordered tree, i.e., up to permutations of the children. The type of a tree in the
urn is thus described by the numbers ki, i = 0, . . . ,m− 1, of children of the root with i
keys; each of these children is an external node (i = 0) or a leaf (i ≥ 1), and it has itself
children only when i = m − 1 when it has m external children; thus the type is uniquely
determined by k0, . . . , km−1, and we can label the type by (k0, . . . , km−1). Since the root
of any of the small trees has m children (including external ones) in the original tree T ,
we have

∑m−1
i=0 ki ≤ m, (with the remainder m−

∑m−1
i=0 ki equal to the number of erased

edges to children in the original tree T that are non-leaves). Furthermore, the case k0 = m
is excluded, since the root of the small tree is a non-leaf in T . The total number of types
is thus one less than the number of compositions of m into m + 1 non-negative parts, i.e.,(
2m
m

)
− 1.

The activity in the Pólya urn of one of these types is the number of gaps that it contains.
The root has no gaps, so a tree with type (k0, . . . , km−1) has activity

∑m−1
i=0 (i + 1)ki.
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Type 1 Type 2 Type 3 Type 4 Type 5

Figure 1: The different types characterizing protected and unprotected nodes in binary
search trees. Type 4 and type 5 are the only ones that include protected nodes.

Moreover, if we add a new key to a leaf, it is still a leaf, so in the Pólya urn, this corresponds
to replacing a tree by another tree where we have increased by 1 the number of keys of one
of the children of the root. The same holds if we add a key to an external node that is a child
of the root. However, if we add a key to an external node that is a child of a leaf, then that
leaf becomes a non-leaf, so the edge from it to the root is erased and the tree is split into
two (one of which always has the type (m − 1, 1, 0, . . . , 0)). See Section 2 for examples.
Note that in general, a small tree may be transformed in several different ways when we
add a new key, depending on which gap it goes into. Hence, the additions ξi in the Pólya
urn will be random.

A protected node in T is a non-leaf, and is therefore a root in one of the small trees.
Moreover, it must not have any child that is a leaf, so all its children are external nodes.
Thus, the number of protected nodes in T equals the number of balls in the urn that have
types (k0, 0, . . . , 0) with 0 ≤ k0 ≤ m− 1.

2 Protected nodes in binary search trees and Pólya urns

In this section we demonstrate the technique of using the Pólya urn defined above to study
the number of protected nodes, by applying it to the simplest case m = 2, the binary search
tree. This gives us a new proof of Theorem 1.2; for earlier proofs, see [18] and [11].

For a binary tree, the number of types in the Pólya urn defined above is
(
4
2

)
− 1 =

5. We show the different types in Figure 1, with a numbering that will be used below.
(For convenience we omit the external nodes in the figures. We use dotted lines for edges
attached to external nodes.) With our characterization of the types in Section 1.1.3, the
types i ∈ {1, . . . , 5} correspond to (0, 2), (1, 1), (0, 1), (1, 0) and (0, 0), respectively.

In a binary search tree, each leaf contains one key, so it has two external children,
whereas other internal nodes have either 1 or 0 external children. There is one gap at each
external node, and no gaps at any internal node. As explained in Section 1.1.2, each gap
(i.e. external node) has activity 1.

When a ball is drawn from the urn (i.e., a new key is added to the tree), as explained
in general in Section 1.1.3, a key is either added to an external node that is a child of the
root (we return a ball of another type), or to an external node that is a child of a leaf (we
return two balls). Figures 2–5 show the transitions in the Pólya urn when a ball of type i for
i ∈ {1, 2, 3, 4, 5} is drawn (where the types are shown in Figure 1), so that the drawn ball is
replaced by a new set of balls. (As said above, this set could depend on which of the nodes
in the drawn type the key is added to, see Figure 3.) The activities of the different types
depend on their number of gaps; the total activities for the types 1, 2, 3, 4, 5 are 4, 3, 2, 1, 0,
respectively; thus a = (4, 3, 2, 1, 0)′.
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Type 1

+

Figure 2: Adding a key to type 1.

Type 2

1/3 2/3 +

Figure 3: Adding a key to type 2.
Type 3

+

Figure 4: Adding a key to
type 3

Type 4

Figure 5: Adding a
key to type 4

From the transitions that are shown in Figures 2–5, we easily obtain the matrix A =
(aj E ξji)5i,j=1 in (2.1).

A =


−4 1 0 0 0

4 −1 2 0 0
4 0 −2 1 0
0 2 0 −1 0
0 0 2 0 0

 (2.1)

To do the matrix operations in this paper we use Mathematica, but one could alternatively
use e.g. Maple.

The eigenvalues of A are 1, 0,−2,−3,−4. Corresponding right eigenvectors of A are:

1

30


1
5
3
5
6

 ,


0
0
0
0
1

 ,
1

3


1
2
−3
−4

3

 ,
1

2


1
1
−3
−1

2

 ,
1

5


1
0
−2

0
1

 , (2.2)

and corresponding left eigenvectors of A are:
4
3
2
1
0

 ,


−1
−1

0
0
1

 ,


2
0
1
−1

0

 ,


−4

1
−2

1
0

 ,


11
−3

3
−1

0

 . (2.3)

Since the eigenvalues for the matrix A are distinct it follows automatically that ui · vj = 0
for i 6= j. Note that we have scaled the eigenvectors so that ui · vi = 1 and (1.2) hold. Note
also that u1 is equal to the activity vector a. This is a consequence of the fact that the total
activity always increases by 1 when we draw a ball from the urn, and thus a · E ξi = 1 for
each i, see [12, Lemma 5.4].

It is easy to see that we can apply Theorem 1.5 for this generalised Pólya urn. Note
that it is obvious that the matrix A is diagonalisable since all eigenvalues are simple. From
Theorem 1.5 we obtain that Xn = (Xn1, Xn2, Xn3, Xn4, Xn5), where Xni is the number
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of balls of type i (in our case the number of trees that correspond to type i in our forest),
has asymptotically a multivariate normal distribution. Let Yn be equal to the number of
protected nodes in the binary search tree with n nodes. Since type 4 and type 5 each
contains exactly one protected node, while the other types contain no protected nodes,

Yn = Xn4 +Xn5.

Thus, Theorem 1.5 implies that

n−1/2(Yn − nµY )
d→ N (0, σ2Y ) (2.4)

with parameters µY = µ4 + µ5 and

σ2Y = σ4,4 + σ4,5 + σ5,4 + σ5,5. (2.5)

Since λ1 = 1, Theorem 1.5 implies, using v1 in (2.2), that

µY = µ4 + µ5 =
5

30
+

6

30
=

11

30
. (2.6)

Thus, to show Theorem 1.2 it remains to calculate the sum in (2.5).
To calculate the matrix B in (1.4) we need to calculate Bi = E(ξiξ

′
i) in (1.3). In all

cases except for B2 these are deterministic and equal to ξiξ′i. We only show how to obtain
B2 (since the other cases are simpler). As shown in Figure 3 when adding a key to type
2 we can either add it to the leaf or to the external node. In case we add it to the external
node (which happens with probability 1/3) a node of type 2 is replaced by a node of type 1;
this change corresponds to the column vector (1,−1, 0, 0, 0)′. If the key is instead added to
the leaf (which happens with probability 2/3) a node of type 2 is replaced by another node
of type 2 (the change of type 2 is 0) and a node of type 4; this change corresponds to the
column vector (0, 0, 0, 1, 0)′. Hence

B2 = 1
3 · (1,−1, 0, 0, 0)′(1,−1, 0, 0, 0) + 2

3 · (0, 0, 0, 1, 0)′(0, 0, 0, 1, 0)

=



1
3 −1

3 0 0 0

−1
3

1
3 0 0 0

0 0 0 0 0

0 0 0 2
3 0

0 0 0 0 0


. (2.7)

By calculating the Bi’s we obtain the matrix B in (1.4) as

B =



3
10 − 3

10 − 2
15 0 0

− 3
10

1
2 − 1

15 0 1
5

− 2
15 − 1

15
1
2 −1

6 −1
5

0 0 −1
6

1
2 0

0 1
5 −1

5 0 1
5


. (2.8)
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From (1.6) in Theorem 1.5 it follows that the covariance matrix Σ for the asymptotic
multivariate normal distribution of Xn = (Xn1, Xn2, Xn3, Xn4, Xn5), is given by

Σ =



43
1575 − 67

2520 − 113
12600 − 29

2520
1

1400

− 67
2520

23
420 − 1

42 − 13
1260

71
2520

− 113
12600 − 1

42
443
6300 − 1

30 − 59
1800

− 29
2520 − 13

1260 − 1
30

181
1260 − 11

504

1
1400

71
2520 − 59

1800 − 11
504

13
450


. (2.9)

Thus, it follows that

σ2Y = σ4,4 + σ4,5 + σ5,4 + σ5,5 =
181

1260
+

13

450
− 2 · 11

504
=

29

225
. (2.10)

Thus, the proof of Theorem 1.2 is completed.

3 Protected nodes in ternary search trees and Pólya urns

We now proceed by analyzing the number of protected nodes in ternary search trees, by
using the Pólya urn in Section 1.1.3 (described for general m-ary search trees ) when m =
3. The 19 different types we get are shown in Figure 6 (with a numbering that will be
used below). From our characterization of the types in Section 1.1.3, for example type 2
corresponds to (0,1,2). Note that type 17, type 18 and type 19 contain one protected node
each, while the other types contain no protected nodes.

To determine the matrix A we proceed (as for the binary search tree) to find the transi-
tions when a ball (in our case one of the 19 trees in our forest) of type i is chosen. Figure
7 illustrates the different situations for how a new key could be added to a ball (a tree) of
type 2. All the other cases are similar, and we leave these cases as an exercise to the reader.
From the different transitions for changing a node of type i we get the matrix A for ternary
search trees in Figure 8. The example in Figure 7 gives the second column of A. The tree
of type 2 has activity 8. If it is drawn, and the new key is added to the node with only one
key which happens with probability 2

8 , then a tree of type 2 is replaced with a tree of type
1. If the new key is instead added to one of the nodes containing two keys which happens
with probability 6

8 , then the tree of type 2 is replaced by a tree of type 8 and one tree of type
13. Thus, the second column of the matrix A for the ternary search tree is given by

8 · (28 ,−1, 0, 0, 0, 0, 0, 68 , 0, 0, 0, 0,
6
8 , 0, 0, 0, 0, 0, 0)′.

In this way we obtain A in Figure 8.
The activities of the different types are given by the vector

a = (9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 1, 0)′.

These correspond to the number of gaps for the different types. The eigenvalues of the
matrix A are

1, 0,−2,−3,−3,−4,−4,−4,−4,−5,−5,−5,−6,−6,−6,−7,−7,−8,−9.
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Type 1 Type 2 Type 3 Type 4 Type 5

Type 6 Type 7 Type 8 Type 9 Type 10

Type 11 Type 12 Type 13 Type 14 Type 15 Type 16

Type 17 Type 18 Type 19

Figure 6: The different types characterizing protected and unprotected nodes in ternary
search trees. Type 17, type 18 and type 19 are the only ones that include protected nodes.

The eigenspace belonging to the eigenvalue −4 (which has algebraic multiplicity 4) has
dimension 3. Since the dimension of the eigenspace belonging to the eigenvalue −4 is
not equal to the algebraic multiplicity, the matrix A is not diagonalisable. (However, all
other eigenspaces have full dimension.) Hence, we can not apply Theorem 1.5. However,
Theorem 1.4 can be applied since a ·E(ξi) = 1 for each i (this follows since we always add
exactly one key when a tree of type i is chosen).

From Theorem 1.4 we obtain that the vector Xn = (Xn1, . . . , Xn19), where Xni are
the number of balls of type i (in our case the number of trees that correspond to type i in
our forest obtained from the ternary search tree), has asymptotically a multivariate normal
distribution. Let Zn be the number of protected nodes in the ternary search tree with n
nodes. Since type 17, type 18 and type 19 each contains exactly one protected node, while
the other types contain no protected nodes,

Zn = Xn17 +Xn18 +Xn19. (3.1)

Thus, Theorem 1.4 implies that

n−1/2(Zn − nµZ)
d→ N (0, σ2Z), (3.2)

with parameters
µZ = µ17 + µ18 + µ19

10



+

Type 2

1/4 3/4

Figure 7: The two possibilities for adding a key to a node in a tree of type 2 of a ternary
search tree.

A =



−9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −8 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −7 0 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 −6 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −6 0 4 2 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 −5 0 0 4 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −5 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −5 0 0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0 −4 0 0 0 1 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 −4 0 0 2 0 0 0 0
9 6 3 6 0 6 3 3 0 3 0 3 −4 3 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0 0 0 0 −3 0 2 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 −3 0 2 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −2 0 1 0
0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0


Figure 8: The transition matrix A for the Pólya urn defined in Section 1.1.3 in the case of
the ternary search tree.

and, writing Σ = (σi,j)
19
i,j=1,

σ2Z =
19∑
i=17

19∑
j=17

σi,j . (3.3)

Using the normalization in (1.2), we see that

v1 =
1

2100
· (1, 5, 9, 9, 6, 7, 36, 20, 42, 42, 15, 30, 126, 28, 48, 35, 42, 45, 84)′ (3.4)

and that
u1 = (9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 1, 0)′.

(As in the binary case, u1 = a since a · E ξi = 1 for each i, see [12, Lemma 5.4].) Since
λ1 = 1, Theorem 1.4 and (3.4) yield

µZ = µ17 + µ18 + µ19 =
42

2100
+

45

2100
+

84

2100
=

57

700
. (3.5)

11



Thus, to show Theorem 1.1 it remains to calculate the sum in (3.3).
Since we want to determine the matrix ΣI in (1.5) we need to determine the matrices

PI and B. We have PI = I19 − v1u′1, which is a 19 × 19 matrix that is shown in (A.1) in
the appendix. To calculate the matrix B in (1.4) we need to calculate Bi = E(ξiξ

′
i) in (1.3).

We only describe how to get B2 since the other cases are analogous. From Figure 7 (and
the explanation of that figure above) it is easy to see that

B2 = 1
4 · b1b

′
1 + 3

4 · b2b
′
2, where,

b1 = (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ and

b2 = (0,−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)′.

Note that B2 is a 19× 19 matrix. The matrix B is shown in (A.2) in the appendix. Now we
can use Mathematica to evaluate the integral in (1.5), which yields Σ1. Finally, Σ = Σ1 by
Theorem 1.4 with m = 1. This matrix is given last in the appendix.

By (3.1) and (3.3), we only need the submatrix

Σp =


σ17,17 σ17,18 σ17,19

σ18,17 σ18,18 σ18,19

σ19,17 σ19,18 σ19,19

 =


156031
8085000 − 826069

1387386000
3453169

15030015000

− 826069
1387386000

2222557
118918800 −

439517549
87603516000

3453169
15030015000 −

439517549
87603516000

142536826
12384425625

 . (3.6)

Summing the σi,j in (3.6), which is equivalent to calculating (1, 1, 1)Σp(1, 1, 1)′, we find

σ2Z =

19∑
i=17

19∑
j=17

σi,j =
1692302314867

43692253605000
,

which completes the proof of Theorem 1.1.

4 Leaves in ternary search trees

Recall that a leaf is an internal node without internal children, i.e., a node that contains at
least one key and has no children except possibly external ones. The proof of Theorem 1.1
yields also the following theorem. (The corresponding result for a binary search tree was
considered already by Devroye [5] using two different methods, one of them a Pólya urn as
here.)

Theorem 4.1. Let Ln be the number of leaves in a ternary search tree. Then,

Ln − 3
10n√
n

d−→ N
(

0,
89

2100

)
.

First proof. Counting the number of leaves (of the original ternary search tree) in each type
in Figure 6, we see that the number of leaves in a subtree of type i, i = 1, . . . , 19, is given
by the vector

` = (3, 3, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0)′. (4.1)

12



Figure 9: An
external node
which is not a
child of a leaf.

Figure 10:
A leaf con-
taining one
key.

Figure 11:
A leaf con-
taining two
keys and its
three external
children.

Figure 12: An
internal node
with two keys
which is not a
leaf.

Figure 13: The different types characterizing leaves and non-leaves in ternary search trees.

Hence, Ln = ` · Xn. By the proof of Theorem 1.1, the vector Xn has asymptotically a
multivariate normal distribution, and it follows that

n−1/2(Ln − nµL)
d→ N (0, σ2L) (4.2)

with, using (3.4) and (4.1),

µL = ` · v1 =
3

10
, (4.3)

and, using the covariance matrix Σ shown in the appendix,

σ2L = `′Σ ` =
89

2100
. (4.4)

However, it is also possible to show Theorem 4.1 using a much simpler Pólya urn pro-
cess, where we only need to consider four different types. We again chop up the ternary
search tree into small subtrees, now using the following types of subtrees.

Type 1 is an external node which is not a child of a leaf. Type 2 is a node containing one
key. Type 3 is a leaf containing two keys together with its three external children. Type 4 is
an internal node containing two keys which is not a leaf (i.e., it has less than three external
children). The types are shown in Figure 13. Note that all nodes in the ternary search tree
belong to exactly one such subtree.

A ball of type 1 has activity 1; when it is drawn it is replaced by one ball of type 2. A
ball of type 2 has activity 2; when it is drawn it is replaced by one ball of type 3. A ball of
type 3 has activity 3; when it is drawn it is replaced by one ball of type 2, two balls of type
1 and one ball of type 4. A ball of type 4 has activity 0 and is thus never drawn. The types
that contain leaves are type 2 and type 3.

To simplify we can study another urn using the gaps as balls. Type 1 has one gap, type
2 has two gaps, type 3 has three gaps and type 4 has 0 gaps. We label each gap with the
type it belongs to; thus the gaps have only the three types 1–3. The gaps evolve as an urn
with three types, with all activities 1 and the matrix A in (1.1) given by−1 0 2

2 −2 2
0 3 −3

 . (4.5)
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Since we consider the gaps (with activity 1) it is obvious that all columns add to 1 (since we
always add one ball to the urn). The eigenvalues of A are 1,−3,−4. Theorem 1.5 shows
that (Xn1, Xn2, Xn3) has asymptotically a multivariate normal distribution, where Xni is
the number of balls of type i in the Pólya urn, i.e., the number of gaps of type i. Note
that the number of subtrees of Types 1–3 thus is (Xn1, Xn2/2, Xn3/3), which thus also is
asymptotically multivariate normal.

Since the number of leaves Ln = Xn2/2+Xn3/3, it follows that Ln has asymptotically
a normal distribution (4.2).

To find the parameters µL and σ2L, we note that right eigenvectors of A corresponding
to the eigenvalues 1,−3,−4 are:

1

10

3
4
3

 ,
1

2

−1
0
1

 ,
1

5

−2
−1

3

 , (4.6)

and corresponding left eigenvectors of A are:1
1
1

 ,

−3
3
−1

 ,

 2
−3

2

 . (4.7)

Note that we have scaled the eigenvectors so that ui · vj = δij and (1.2) holds. We have
a = (1, 1, 1)′. Since type 2 has two gaps and one leaf and type 3 has three gaps and one
leaf, it follows that

µL = µ2 + µ3 =
1

10
(3, 4, 3) ·

(
0,

1

2
,
1

3

)
=

3

10
,

corresponding to (4.3). By calculating B, we get from Theorem 1.5, that the covariance
matrix Σ is given by 

479
2100 − 7

150 −127
700

− 7
150

32
75 −19

50

−127
700 −19

50
393
700

 . (4.8)

We thus obtain

σ2L =
(
0, 12 ,

1
3

)
479
2100 − 7

150 −127
700

− 7
150

32
75 −19

50

−127
700 −19

50
393
700




0

1
2

1
3

 =
89

2100
(4.9)

(corresponding to (4.4)), which completes the proof of Theorem 4.1 with the simpler Pólya
urn model.

The fact that we have obtained the asymptotic variance in Theorem 4.1 in two different
ways, where one uses Σ in Section 3 and the appendix, is also a partial verification of the
computer calculations yielding Σ.
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5 Higher m

5.1 The Pólya urn defined in Section 1.1.3

The Pólya urn defined in Section 1.1.3 can be used for any given m, although the size of
the matrices used in the calculations grow rapidly with m. (For m = 4 we have 69 types;
for m = 10 we would have 184755.) However, the central condition Reλ < λ1/2 is not
satisfied for large m. We do not know any general formula for the eigenvalues of the matrix
A, but some of them are given as follows.

Lemma 5.1. Let m ≥ 2. Then every root of the polynomial

φm(λ) :=

m−1∏
i=1

(λ+ i)−m! (5.1)

is an eigenvalue of the matrix A for the Pólya urn in Section 1.1.3.

Proof. Let Vin be the number of nodes containing exactly i keys (thus V0n is the number
of external nodes), and consider the vector Wn = (W1,n, . . . ,Wm−1,n) where Wi,n =
iVi−1,n; thus Wi,n is the total number of gaps at nodes with i gaps. The random vector Wn

can also be described by a Pólya urn, see e.g., [12, Example 7.8] and [16, Section 8.1.3];
we denote the activity vector and the matrix (1.1) for this urn by aW = (1, . . . , 1)′ andAW .
This means that the expected change of the two vectors when a new key is added are given
by

E(Xn+1 −Xn | Xn) =
AXn

a ·Xn
=
AXn

n+ 1
, (5.2)

E(Wn+1 −Wn |Wn) =
AWWn

aW ·Wn
=
AWWn

n+ 1
. (5.3)

Furthermore, the vectorXn determines the number of nodes with different numbers of keys,
so there is a linear map Wn = TXn. Consequently, by (5.2)–(5.3), for any Xn,

TAXn = (n+ 1)T E(Xn+1 −Xn | Xn) = (n+ 1)E(Wn+1 −Wn | Xn) = AWWn

= AWTXn,

and thus TA = AWT .
The (m − 1) × (m − 1) matrix AW is constructed as follows. Let ai,i = −i for

i ∈ {1, . . . ,m − 1}, ai,i−1 = i for i ∈ {2, . . . ,m}, a1,m−1 = m and all other elements
ai,j = 0. I.e.,

AW =



−1 0 0 . . . 0 m
2 −2 0 . . . 0 0
0 3 −3 . . . 0 0
0 0 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . m− 1 −(m− 1)


. (5.4)

As is well-known, the matrixAW has characteristic polynomial φm(λ), see e.g., [12, Exam-
ple 7.8] or [16, Section 8.1.3]. In particular, 0 is not an eigenvalue so AW is non-singular.
The column vectors of AW are in the range of T , and thus T is onto.
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Suppose that λ is a root of φm(λ) = 0. Then λ is an eigenvalue of AW and thus there
exists a left eigenvector u with u′AW = λu′. Consequently,

u′TA = u′AWT = λu′T, (5.5)

so (u′T )′ = T ′u is a left eigenvector ofA. Since T is onto, T ′ is injective and thus T ′u 6= 0.
This shows that λ is an eigenvalue of A too.

Recall that λ1 = 1 for the matrix A, since the total activity increases by 1 at each
step. Let λ1, λ2, . . . , λm−1 be the roots of (5.1) in order of decreasing real parts. It is well-
known that λ1 = 1 and, moreover, that Reλ2 ≤ 1/2 if and only ifm ≤ 26, see [17] and [9].
Consequently, if m ≥ 27, then Lemma 5.1 shows that A has an eigenvalue λ = λ2 6= λ1
with Reλ2 > 1/2, and then Xn is not asymptotically normal. (See [12] for general results
suggesting this, and [4] for a rigorous proof in the present case, showing that the total
number of internal nodes is not asymptotically normal.) Furthermore, if α := Reλ2 >
1/2, then (Xn − EXn)/nα is stochastically bounded, but has no limit in distribution (the
distribution oscillates), see [4, 2, 12].

Some exceptional linear combinations of the variables Xni are asymptotically normal
also in such cases [12], but we conjecture that for any m ≥ 27, the number of protected
nodes is not one of these exceptional cases and that it has the same non-normal behaviour
as just described for the number of internal nodes.

On the other hand, if m ≤ 26, although A has a much larger dimension that AW , and
thus presumably many more eigenvalues, we conjecture that all additional eigenvalues also
have Reλ < 1/2, so that Theorem 1.4 applies showing that the number of protected vertices
is asymptotically normal, with asymptotic variance linear in n, just as for m = 2 and 3 in
Theorems 1.2 and 1.1. (This conjecture has been verified for m ≤ 6 by Heimbürger [10].)

5.2 One-protected nodes and leaves in m-ary search trees.

As mentioned in Section 1, the number of one-protected nodes and the number of leaves
(the complement of the one-protected nodes) are easier to analyze than the two-protected
nodes, and we prove normal limit laws for all m-ary search trees where m ≤ 26. In these
cases we can use a Pólya urn that is similar to the Pólya urn that has earlier been used to
study the total number of internal nodes in an m-ary search tree, see e.g. Mahmoud [15]
and [16, Section 8.1.3] or [12, Example 7.8].

We can generalise the study of the number of leaves in ternary search tree in Section 4
to arbitrary m ≥ 2. (For m = 2, there are minor modifications in the formulas below; we
leave these to the reader. As mentioned above, the case m = 2 was considered by Devroye
[5].) We have in general m + 1 types, defined in analogy with Figure 13: Type 1 is as
before, Type i with 2 ≤ i ≤ m − 1 is a leaf with i − 1 keys, Type m is a leaf with m − 1
keys together with its m external children, and Type m+ 1 is an internal non-leaf.

Let V ′i,n = Vi,n be the number of nodes containing exactly i keys for i ∈ {1, . . . ,m−2};
let V ′0,n be the number of nodes containing 0 keys (external nodes) that are not children of
leaves; let V ′m,n be the number of nodes containing m − 1 keys that are leaves (i.e., they
have only external children); finally, let V ′m+1,n be the number of internal nodes that are
not leaves (all containing m − 1 keys). We consider again another, slightly simpler, urn
with the balls representing the gaps, giving them types 1, . . . ,m, and consider the vector
W ′n = (W ′1,n, . . . ,W

′
m,n) where W ′i,n = iV ′i−1,n is the total number of gaps of type i.
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The random vector W ′n can be described by a Pólya urn, with all activities 1. We denote the
m×mmatrix (1.1) for this urn byAL. It is a minor modification of the matrixAW described
in Section 5.1, see (5.4); the entries of AL are given by ai,i = −i for i ∈ {1, . . . ,m},
ai,i−1 = i for i ∈ {2, . . . ,m}, a1,m = m− 1, a2,m = 2, and all other entries ai,j = 0. I.e.,

AL =



−1 0 0 . . . 0 0 m− 1
2 −2 0 . . . 0 0 2
0 3 −3 . . . 0 0 0
0 0 4 . . . 0 0 0
...

...
...

...
. . .

...
...

0 0 0 . . . m− 1 −(m− 1) 0
0 0 0 . . . 0 m −m


. (5.6)

We can easily calculate the characteristic polynomial of AL and find that it is

φLm(λ) = (m+ λ)φm(λ), (5.7)

where φm(λ) is the characteristic polynomial of AW in (5.1). Thus, AL has the same
eigenvalues as A, plus the additional eigenvalue λ = −m. Since φm has only simple roots
[14, Section 3.3], and −m is not one of them, also φLm has only simple roots. Hence, AL
has m distinct eigenvalues, and is thus diagonalisable.

The largest eigenvalue of AL is λ1 = 1 (as for A) and this eigenvalue corresponds to
the right and left eigenvectors

v1 =
1

Hm − 1



m−1
2(m+1)

1
3
1
4
...
1

m−1
1
m
1

m+1


, u1 =



1
1
1
...
1
1
1


, (5.8)

where we have normalized so that (1.2) holds (Hm denotes the mth harmonic number).
Let Lm,n be the number of leaves in an m-ary search tree with n keys. Then

Lm,n =

m−1∑
i=1

V ′i,n =

m∑
k=2

1

k
W ′k,n. (5.9)

Theorem 5.2. Suppose that 3 ≤ m ≤ 26. Let Ln be the number of leaves in an m-ary
search tree. Then,

Ln − µL,mn√
n

d−→ N
(
0, σ2L,m

)
, (5.10)

where

µL,m =
1

Hm − 1
·
m∑
k=2

1

k(k + 1)
=

1

Hm − 1
· m− 1

2(m+ 1)
, (5.11)

and σ2L,m can be evaluated as

σ2L,m =

m∑
i,j=2

σij
ij

(5.12)

where (σij)
m
i,j=1 is given by (1.6).
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Proof. As said above, for m ≤ 26, Reλ < λ1/2 = 1/2 for all eigenvalues λ 6= λ1 of A,
and thus also of AL. Furthermore, A is diagonalisable. Hence, Theorem 1.5 applies and
shows asymptotic normality of W ′n. The result follows by (5.9), using v1 in (5.8).

Remark 5.3. Theorem 5.2 implies that E(Ln)
n → µL,m, by the same argument as in Remark

1.3.

For m ≥ 27, we expect the same non-normal asymptotic behaviour as for the number
of internal nodes [4, 2], see Section 5.1.

For the one-protected nodes we can use the first Pólya urn described above for the
leaves, with m + 1 types. For the leaves we could simplify by considering the gaps and
use a Pólya urn with m types, with all activities 1. However, now we also need to consider
type m+ 1, which has 0 gaps. So in the analysis of the one-protected nodes we use the urn
with m + 1 different types (as explained in the beginning of this subsection) where types
i ∈ {1, . . . ,m} have activities 1, 2, . . . ,m and type m+ 1 has activity 0. In this Pólya urn,
the one-protected nodes correspond to type m + 1. All other types correspond to leaves
or external nodes. Theorem 1.5 implies the following result (the proof is analogous to the
proof of Theorem 5.2).

Theorem 5.4. Suppose that 3 ≤ m ≤ 26. Let Qn be the number of one-protected nodes in
an m-ary search tree. Then,

Qn − µQ,mn√
n

d−→ N
(
0, σ2Q,m

)
, (5.13)

where
µQ,m =

1

Hm − 1
· 1

(m+ 1)
, (5.14)

and σ2Q,m can be evaluated as
σ2Q,m = σm+1,m+1 (5.15)

where (σij)
m+1
i,j=1 is given by (1.6).

This urn can also be used to study the number of leaves, giving another proof of Theo-
rem 5.2. (Note that σij refers to different urns and thus has different meanings in Theorems
5.2 and 5.4.) Moreover, we can study Ln and Qn together and obtain joint asymptotic
normality for m ≤ 26; the covariance σLQ,m of the limit variables in (5.10) and (5.13)
equals

∑m
i=1 σi,m+1 with (σij)

m+1
i,j=1 as in Theorem 5.4. In particular, this implies the well-

known asymptotic normality of the total number of internal nodes In = Ln +Qn, see e.g.
[17, 14, 13, 4, 15, 9, 16].

Example 5.5. For a binary search tree (m = 2), a straightforward calculation of the covari-
ance matrix Σ = (σij)

3
i,j=1 in Theorem 5.4 yields

Σ =


8
45 − 4

45
4
45

− 4
45

2
45 − 2

45

4
45 − 2

45
2
45

 . (5.16)
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Hence

σ2L,2 = (0, 1, 0) Σ (0, 1, 0)′ = σ22 =
2

45
, (5.17)

as shown by Devroye [5]. Similarly, σ2Q,2 = σ33 = 2
45 and σLQ,2 = σ23 = − 2

45 . (We have
σ2L,2 = σ2Q,2 = −σLQ,2 since the total number of internal nodes Ln + Qn = In = n is
deterministic when m = 2.)

Example 5.6. For a ternary search tree (m = 3), similarly (cf. (4.8) for the corresponding
urn using the gaps as in Theorem 5.2)

Σ =


479
2100 − 7

300 − 127
2100

101
1400

− 7
300

8
75 − 19

300
1

100

− 127
2100 − 19

300
131
2100 − 43

1400

101
1400

1
100 − 43

1400
9

350

 . (5.18)

Hence, cf. (4.4) and (4.9),

σ2L,3 = (0, 1, 1, 0) Σ (0, 1, 1, 0)′ =
89

2100
, (5.19)

σ2Q,3 = (0, 0, 0, 1) Σ (0, 0, 0, 1)′ =
9

350
, (5.20)

σLQ,3 = (0, 1, 1, 0) Σ (0, 0, 0, 1)′ = − 29

1400
. (5.21)

We also obtain the corresponding asymptotic variance (0, 1, 1, 1) Σ (0, 1, 1, 1)′ = σ2L,3 +

σ2Q,3 + 2σLQ,3 = 2
75 for the number of internal nodes Ln +Qn, as found by Mahmoud and

Pittel [17].

Acknowledgements: We would like to thank Hosam M. Mahmoud and Mark D. Ward
for valuable discussions.
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A Appendix

PI =



697
700

− 2
525

− 1
300

− 1
300

− 1
350

− 1
350

− 1
350
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