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String geometry vs. spin geometry on loop spaces

Konrad Waldorf

Abstract

We introduce various versions of spin structures on free loop spaces of smooth manifolds, based
on a classical notion due to Killingback, and additionally coupled to two relations between loops:
thin homotopies and loop fusion. The central result of this article is an equivalence between these
enhanced versions of spin structures on the loop space and string structures on the manifold itself.
The equivalence exists in two settings: in a purely topological one and a in geometrical one that
includes spin connections and string connections. Our results provide a consistent, functorial,
one-to-one dictionary between string geometry and spin geometry on loop spaces.
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1 Introduction

One perspective to classical two-dimensional field theories on a Riemannian manifold M, also known
as sigma models, is to regard them as one-dimensional field theories on the free loop space LM: the
points of LM are the “closed strings” in M. For example, if we want to understand the coupling of
strings to gauge fields, this perspective makes us study principal bundles with connections over LM.
And if we want to understand fermions, it lets us ask for spin structures on loop spaces.

In order to study fermions on an oriented, n-dimensional Riemannian manifold, one has to lift the
structure group of the frame bundle of M from SO(n) to a covering group that admits appropriate
unitary representations, Spin(n). Analogous steps on the loop space require, in the first place, to
choose an orientation: a reduction of the structure group of LM, namely LSO(n), to the connected
component of the identity, LSpin(n), see [Ati85] [McI.92]. Such a reduction can, for instance, be induced
from a spin structure on M. In the next step, one observes that LSpin(n) has no appropriate unitary
representations. It only has projective ones, i.e. representations of its universal central extension,

—~

1 — U(1) — LSpin(n) — LSpin(n) — 1. (1.1)

Thus, we require a lift of the structure group of LM from LSpin(n) to this central extension; such a
lift is called a spin structure on LM [Kil87]. We remark that an important difference to ordinary spin
structures is that the central subgroup of the extension (L)) is the continuous group U(1) instead of
the discrete group Z/2Z. One effect of this difference is that it is non-trivial to lift a given connection
on the frame bundle of LM to a connection on the lifted bundle, a spin connection [CP98|. Every spin
structure on LM admits a spin connection [Man02], but there might be non-equivalent choices.

Deficits of the loop space theory

Returning to the attempt to understand the coupling of strings to gauge fields via, say, principal U(1)-
bundles with connection over loop spaces, one soon encounters the problem that not all aspects of the
two-dimensional theory can be described in terms of such bundles. For example, if two strings join in
form of a pair of pants, there is no sensible way to describe the gauge field coupling of this process
solely in terms of a bundle over LM . This deficit of the loop space theory has lead to the development
of B-fields, structure defined on the manifold itself that fulfills all requirements for a gauge field for
strings. Nowadays it is well understood that a B-field is a U(1)-gerbe with connection [Gaw88, Bry93].
The relation between gerbes over M and bundles over LM can be understood on a cohomological level
in terms of a transgression homomorphism

7:H"(M,7) — H""Y(LM,Z), (1.2)

which for n = 3 takes the Dixmier-Douady class of a gerbe over M to the first Chern class of a principal
U(1)-bundle over LM. Various differential-geometric versions of the transgression homomorphism have
been developed that also include connections on both sides [GRO2| Wall0]. A general fact is
that transgression is not injective; this loss of information explains precisely the above-mentioned
deficit of the loop space theory for gauge fields.

A similar phenomenon has been observed for geometric spin structures on loop spaces, i.e. spin
structures with spin connections. For the consistency of the fermionic theory (a version of the super-
symmetric sigma model) it is necessary to trivialize a certain Pfaffian line bundle over the mapping
spaces of closed spin surfaces into M [Fre87, [FM06]. A spin structure on the loop space only provides
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such trivializations over the mapping space of genus one surfaces. In order to remedy this deficit
(among other issues) Stolz and Teichner have proposed a notion of a geometric string structure on
M, consisting of a string structure and a string connection [ST04]. Spin manifolds that admit such
structures are called string manifolds; they are characterized by the vanishing of the first fractional
Pontryagin class %pl (M). The proof that a geometric string structure indeed provides trivializations
of the Pfaffian line bundle over mapping spaces of arbitrary surfaces was provided later by Bunke
[Bun1d] based on a gerbe-theoretical formulation of geometric string structures introduced in [WalT3].
Additionally, that formulation allows to define a transgression procedure for geometric string struc-
tures on M, analogous to the homomorphism ([2]), that results in spin structures on LM [Wala]. This
transgression procedure is again afflicted with a loss of information [PW8§|, explaining the limitation
of the loop space theory to genus one surfaces.

We remark that several other aspects are not yet understood, neither in terms of spin geometry
on LM nor in terms of string geometry on M. Examples are the Dirac operator on LM postulated
by Witten [Wit86], or the Hohn-Stolz conjecture [Sto96]. The quest for methods to attack problems
like these is the motivation for studying relations between geometry on M and geometry on LM. The
purpose of the present article is to contribute a new instance of such relations: an equivalence between
(geometric) string structures on M and a version of (geometric) spin structures on LM.

Thin homotopy and loop fusion

We return to the above-mentioned transgression of gerbes (with connection) over M to principal
U(1)-bundles (with connection) over LM, suffering from a loss of information. It turns out that one
can equip U(1)-bundles over loop spaces with additional structures, in such a way that an inverse of
transgression can be defined, and an equivalence between gerbes over M and versions of U(1)-bundles
over LM is achieved; see [Wall2b, [Walb, [Wal12c] or [KMal for an alternative approach. The
relevant additional structures couple U(1)-bundles over LM to two operations that only exist in loop
spaces (rather than in general manifolds): thin homotopies and loop fusion. Roughly speaking, thin

o) Z

) A homotopy between loops, ) Two loops with a common
regarded as a tube. segment.

homotopies are homotopies between loops that have “zero area” when regarded as tubes in M as
shown in Figure (a). The relevance of thin homotopies has been noticed in axiomatic approaches to
the parallel transport of connections on bundles and gerbes [Bar91l [SW09]. A thin structure on a
principal U(1)-bundle P over LM is a way to identify consistently the fibres of P over thin homotopic
loops. A connection on P is called superficial, if such a thin structure can be induced by parallel
transport along a thin homotopy (independently of the choice of the thin homotopy).

The second operation, loop fusion, joins two loops along a common segment, see Figure (b). A
fusion product on a principal U(1)-bundle P over LM is a structure that lifts loop fusion to the
fibres of P. These additional structures furnish a category FusBun(LM) of principal U(1)-bundles
over LM equipped with fusion products and thin structures, and another category FusBun“~(LM) of
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principal U(1)-bundles over LM equipped with fusion products and superficial connections. These two
categories are “loop space duals” of the bicategories Grb (M) of gerbes over M and GrbY (M) of gerbes
with connection over M, respectively. These dualities can be expressed in terms of a commutative
diagram

FusBun“(LM) ———h1GrbY (M)

(1.3)

hFusBun™ LM) ——h;Grb(M)

of monoidal categories and functors, in which the horizontal arrows are equivalences and the vertical
arrows describe the passage from the setting “with connections” to the one “without connections”.
The symbol h; stands for the truncation of a bicategory down to a category and the symbol h stands
for the homotopy category (where bundle morphisms become identified if they are homotopic). The
horizontal functors in the diagram are called regression as they are inverse to transgression; we refer
to [Wall2d] for a more detailed exposition.

The equivalence on top of the diagram explains how the deficit of the loop space theory of gauge
fields for strings has to be compensated, namely by the addition of a fusion product and the requirement
that the connection be superficial. Indeed, a fusion product provides exactly the structure needed in
order to account for the joining of two strings in form of a pair of pants, see the discussion in [Walbl
Section 5.3].

Results of the present article

In the present article we discuss an equivalence between the string geometry on M and versions of
spin geometry on the loop space LM . The first part of this article is concerned with determining how
exactly these versions have to be defined, and the second part is concerned with the proof that they
serve their purpose and yield the claimed equivalence.

We introduce two versions of spin structures on loop spaces: a category Spinjﬁfs(LM ) of thin fusion

spin structures (Definition BI.5) and another category Spinjv‘*f

J(LM) of superficial geometric fusion
spin structures (Definition [ T.0). As the terminology suggests, our strategy is to equip Killingback’s
original spin structures with structures that have already proved themselves: fusion products, thin

structures, and superficial connections. The main issue is to connect these structures correctly to

action of the central extension LSpin(n) on the spin structure. Therefore, we start the first part of
the present article by revisiting loop group geometry through transgression of multiplicative gerbes,
bringing fusion products, thin structures, and superficial connections in context with central extensions
of loop groups.

The categories Spinﬁ’;(LM ) and Spinyzf;(LM ) are related, respectively, to the bicategories String (M)
and StringY (M) of string structures and geometric string structures introduced in [Wall3] as bicategory
of trivializations of the Chern-Simons 2-gerbe. The relation is established by regression functors that
are inverse to the above-mentioned transgression procedure for geometric string structures. The main
result of this article is the following.



Theorem A. Let M be a connected spin manifold of dimension n = 3 or n > 4. There is a
commutative diagram of categories and functors,

Spinyqu;(LM) ——— h;String (M)

hSpin}u}fs(LM) ——— h; String(M).
If M is string, all categories in the diagram are mon-empty, and the following results hold:

(i) The horizontal functors are equivalences of categories, and the vertical functors are essentially
surjective.

(i) The diagram is a torsor over the diagram (I.3) in the sense that each category is a torsor over
the monoidal category in the corresponding corner of (I.3), and each functor is equivariant along
the corresponding functor in (I.3).

If M is not string, then all four categories in the diagram are empty.

Here, a category is a torsor over a monoidal category if it is a module for that monoidal category
and the action is free and transitive in a sense explained later.

We spell out explicitly what Theorem [A] implies upon passing to isomorphism classes of objects, an
operation that we denote by the symbol hy. The set hoString(M) can be identified with a set StrCl(M)
of string classes [Red06), Wall3|; these can easily be described as cohomology classes £ € H3(F M, Z)
on the total space of the spin-oriented frame bundle FM of M that restrict over each fibre to a
generator of H?(Spin(n), Z) = Z. We introduce an analogous description of geometric string structures
in terms of differential cohomology, which we call differential string classes (Definition G31). A
differential string class is a differential cohomology class é € ICI3(F M), subject to a condition in the
differential cohomology of FM x Spin(n) that involves a certain 2-form known from classical Chern-
Simons theory. We prove that the set StrCIV(M) of differential string classes can be identified with
the set hoStringV(M) of isomorphism classes of geometric string structures (Theorem [63.3). Under
these identifications, Theorem [Al implies the following statement.

Corollary B. Let M be a connected string manifold of dimension n = 3 or n > 4. There is a
commutative diagram

hoSpiny(LM) —— StrCI¥(M)

hoSpin i (LM) ——— StrCl(M).

The map in the first row is an equivariant bijection between torsors over the differential cohomology
group fI3(M ), and the map in the second row is an equivariant bijection between torsors over the
ordinary cohomology group H3(M,Z). Moreover, the vertical maps are surjective and equivariant along
the projection H? (M) — H3(M,Z). In particular, the fibres of the vertical maps are torsors over the
group Q*(M)/QZ (M) of 2-forms modulo closed 2-forms with integral periods.

The last statement follows because the group Q*(M)/Q2 ,(M) is precisely the kernel of the pro-
jection H3(M) —= H*(M) from differential to ordinary cohomology.
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Summarizing, either in the categorical or in the set-theoretical setting, we provide a consistent
dictionary between string geometry and spin geometry on loop spaces. We remark that in a first
approximation of such an equivalence, Witten proposed to impose that spin structures be equivariant
under the rotation action of U(1) on LM [Wit86]. In a previous article [Wala] I have considered a
version of spin structures with fusion products (but without thin structures), and proved that such spin
structures exist if and only if M is a string manifold. Recently, Kottke and Melrose introduced a version
of spin structures that combines fusion products and equivariance under a group of reparameterizations
of S (including rotations) [KMa]. This version achieved, on the level of equivalence classes, a bijection
with the set of string classes. The results of the present article improve that bijection in two aspects:
we upgrade it to an equivalence of categories and amend it by a second equivalence in the setting “with
connections”.

Method of proof and organization of the paper

For the proof of Theorem [A] we will collect various partial results throughout this article; in the final
Section [§] we summarize these and show that the theorem is fully proved. The main tool in the proof
is lifting gerbe theory over the loop space, which allows us to split the work into two parts. The
first part (Sections 2] [B H) is to reformulate spin structures and all additional structures in terms
of trivializations of the spin lifting gerbe over LM (Proposition and Corollary EE2.12)). This
reformulation is based on work of Murray [Mur96], Gomi [Gom03|, and previous work [Walal. A
crucial new aspect we encounter here is that the standard theory for connections on lifting gerbes
must be refined in a certain way in order to take thin homotopies into account (Proposition [.2.7]).

The second part (Sections Bl [B [) is concerned with the problem to tailor the bicategories
StringV(M) and String(M) of (geometric) string structures into a form that allows a direct appli-
cation of the duality between gerbes and bundles over loop spaces. The resulting loop space structure
can then be identified with exactly those trivializations of the spin lifting gerbe that we identified in
the first part as reformulations of the categories Spinfﬁs(LM ) and Spinjv;fs(LM ), see Theorems and
[C4 The tailoring of the bicategories involves a general decategorification procedure for trivializations
of bundle 2-gerbes. A key result that we prove is that in case of the Chern-Simons 2-gerbe, this
decategorification procedure is an equivalence of categories (Theorems 531 and [6.2.2]).

Acknowledgements. This work is supported by the DFG network “String Geometry” (project code
594335), and by the Erwin-Schrodinger Institute for Mathematical Physics in Vienna.

2 Loop group geometry via multiplicative gerbes

In this section we explore the geometry of central extensions of the loop group LG of a Lie group G
via multiplicative bundle gerbes over G. The goal is to construct models for central extensions with
specific additional structures: superficial connections, thin structures, and fusion products. The results
of this section will be applied in the sequel to G = Spin(n).



2.1 Transgression and central extensions

We use the theory of bundle gerbes (with structure group U(1)) and connections on those. Intro-

ductions can be found in [Mur96] Mur10, Wal07]. We denote by Grb(X) and GrbV(X) the
bicategories of bundle gerbes and bundle gerbes with connection over a smooth manifold X, respec-
tively. The 1-morphisms are called (connection-preserving) isomorphisms, and the 2-morphisms are
called (connection-preserving) transformations. The operation of “forgetting the connection” is a
surjective, but neither full nor faithful 2-functor

GroY(X) — Grb(X). (2.1.1)

Let G be a Lie group with Lie algebra g, and let (—, —) be a symmetric invariant bilinear form on
g. There is a canonical, left-invariant closed 3-form H € 23(G) whose value at the identity is given by
H(X,Y,Z)=(X,[Y,Z]). In terms of the left-invariant Maurer-Cartan form 6 on G it is given by

H:%(@/\[@/\@D. (2.1.2)

We fix a bundle gerbe G over GG with connection of curvature H. Such a bundle gerbe exists if and only if
H has integral periods, in which case H represents the Dixmier-Douady class DD(G) € H*(G, Z) in real
cohomology. Different choices of possible bundle gerbes with connection (up to connection-preserving
isomorphisms) are parameterized by H*(G, U(1)).

Example 2.1.1. Suppose G is compact, simple and simply-connected, for example, G = Spin(n) for
n=3orn >4. Then, (—, —) is a multiple of the Killing form, and it can be normalized such that H
has integral periods and represents a generator v € H3(G,Z) = Z. We have H?(G,U(1)) = 0. Thus,
there exists a (up to connection-preserving isomorphisms) unique bundle gerbe G with connection of
curvature H. Its Dixmier-Douady class is the generator 7. This bundle gerbe G is called the basic gerbe
over G, and it will be denoted by Gpas. There exist Lie-theoretical models for Gy,s [GRO2, [Mei02].

The double group G? carries a canonical 2-form
p = (prif A prf) € Q*(G?), (2.1.3)

with 6, 6 the left- and right-invariant Maurer-Cartan forms on G, respectively. Let
m, pry, pry: G? —= G denote the multiplication and the two projections, respectively. Then

priH +prsH =m*H +dp (2.1.4)

as 3-forms on G%. We have four maps pry,, prag, Moz, mia : G2 —= G2, where pry, and pry; project
to the indexed components, and mos and mio multiply the indexed components. Then,

Prasp + Mysp = Prizp + misp. (2.1.5)

We may re-interpret Equations (ZI14]) and @2I5) by considering the simplicial manifold BG, see
[Wall0]. Denoting by A : Q*(G97!) — Q*(GY) the alternating sum over the pullbacks along the face

maps, Equations (2I.4) and ([2I.5) become

AH=dp and Ap=0. (2.1.6)

A bundle gerbe G with connection of curvature H can be seen as a lift from a differential form
setting to a cohomological setting. A corresponding lift of equations 2I.4) and 215 is called a

-7 -



multiplicative structure on G. We recall that 2-forms are connections on trivial gerbes; thus, we have a
bundle gerbe Z,, over G? — it has vanishing Dixmier-Douady class and curvature dp. A multiplicative
structure on G consists of a connection-preserving isomorphism

M :priGpryg — m*'GRI,
of bundle gerbes over G2, and of a connection-preserving transformation

* * * pr;z./\/[@id * *
prlg ® prgg ® pr3g —— prlgg ® pr3g ®Ipr’1‘2p

=
/

pr1G @ prizd @ Lpu,p

id®prs, M o mi, Mid

M, Mgid G128 @ Lps
between isomorphisms over G2, where pa is either side of (ZL5]). The transformation « has to satisfy
a pentagon axiom over G*. Multiplicative bundles gerbes (without connections) have been introduced

in [CIM7T05], the theory of connections is developed in [Wall().

The quadruple (H, p,0,0) is a degree 4 chain in the de Rham complex of the simplicial manifold
BG@. Closedness of H together with Equations ([Z21.06]) show that it is a cocycle, and thus represents an
element in H*(BG, R). Multiplicative bundle gerbes with connection relative to the differential forms
H and p exist if and only if that class is integral. Different choices are parameterized by H?(BG, U(1)),

see [Wall(, Proposition 2.4].

Example 2.1.2. If G is compact and simple, then H?*(BG,U(1)) = 0, so that multiplicative gerbes
with connection are (up to connection-preserving isomorphisms compatible with the multiplicative
structure) uniquely determined by H and p, hence by (—,—). If G is in addition simply connected,
every bundle gerbe with connection of curvature H admits a multiplicative structure relative to the
2-form p [Wall(, Example 1.5]. In particular, the basic gerbe Gp,s over a compact, simple and simply-
connected Lie group has a unique multiplicative structure. Based on explicit models for the basic
gerbe over such groups, it is possible to construct this unique multiplicative structure [Wall2al.

In the following we continue with a fixed multiplicative bundle gerbe G with connection over a
general Lie group G, relative to the differential forms H and p of Equations (21.2) and 2I13).

For every smooth manifold X, there is a transgression functor
h GroY(X) — Bun(LX):G — T (2.1.7)

with target the category of Fréchet principal U(1)-bundles over the free loop space LX = C>(S*, X).
The category h;GrbY(X) is obtained from the bicategory GrbV(X) by identifying 2-isomorphic isomor-
phisms.

Transgression for gerbes has first been defined by Gawedzki in terms of cocycles for Deligne coho-
mology [Gaw88|, and by Gawedzki-Reis for bundle gerbes [GR02]. Brylinski has defined transgression
in terms of Dixmier-Douady sheaves of categories [Bry93]. The functor (ZI7) that we use here is
defined in [WalT0]. It is monoidal with respect to the tensor product of bundle gerbes and principal
U(1)-bundles, it is natural with respect to smooth maps f: X — X’ between smooth manifolds and
the induced maps Lf: LX — LX' between their loop spaces, and it sends trivial bundle gerbes Z,
to canonically trivializable bundles. Furthermore, it satisfies

() = —7(DD(G)) (2.1.8)
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for all bundle gerbes G with connection over X, where c¢; denotes the first Chern class of a principal
U(1)-bundle, and 7 is the transgression homomorphism (L2), see [Wall()].

Applying the transgression functor to the bundle gerbe G over G, we obtain a Fréchet principal U(1)-
bundle 95 over the loop group LG. Because transgression is functorial and monoidal, the multiplicative
structure M on G transgresses to a bundle isomorphism

pri T @ prs Ty m Tg © 1, = m* Ty

over LGX LG, inducing a binary operation on the total space .75 that covers the group structure of LG.
The mere existence of the associator « for the multiplicative structure M implies the commutativity
of a diagram in the category hyGrbY(G?), which implies under transgression the associativity of the
binary operation J,.

Theorem 2.1.3 ([Wall0l Theorem 3.1.7]). The associative binary operation Ip equips Jg with the
structure of a Fréchet Lie group, making up a central extension

11— U(l) — 95 — LG — 1.

Example 2.1.4. Consider again a compact, simple and simply-connected Lie group G, equipped with
the basic gerbe Gpqs and its unique multiplicative structure. We get from Equation (21.8)

1(ZGya.) = =T(DD(Gpas)) = =7(7)-
This means that .75, is the universal central extension of LG, see [PS80].

In the following two subsections we discuss additional structures on the central extension .75, .,
which we find by analyzing the image of the transgression functor 7.

2.2 Connections and splittings

The principal U(1)-bundles in the image of the transgression functor .7 of ([ZI7) are canonically
equipped with connections [Bry93]. In other words, transgression is actually a functor

T i GrbY(X) — Bun" (LX) (2.2.1)
to the category of Fréchet principal U(1)-bundles with connection. It satisfies
curv(Jg) = —ta(curv(G)), (2.2.2)

where 1q is the differential form counterpart of the transgression homomorphism (2)):

1o Q(X) — Q" NLX):w > ev'w; (2.2.3)
S1
it integrates the pullback of a differential form along the evaluation map ev : S* x LX — X over the
factor St. If w € Q?(X) is a 2-form, and Z,, is the associated trivial bundle gerbe with connection, then
the above-mentioned canonical trivialization of 77, has covariant derivative 7o (w) € Q' (LX) [Wallll
Lemma 3.6].

We continue the analysis of the central extension Zg of LG obtained by transgression of a multi-
plicative bundle gerbe G over a Lie group G with connection relative to the differential forms H and
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p. As we have now lifted the transgression functor 7 to the category of bundles with connection, it
follows that the central extension 75 has a connection.

In the following we denote the central extension by E\é, and we denote the connection by v €
Ql(fé) According to Equation [Z222) it has curvature curv(v) = —7q(H). For us, the most
important feature of the connection v is that it is not strictly compatible with the group structure of
LG. Indeed, looking again at the transgression of the isomorphism M, but now in the setting with
connections, we obtain a connection-preserving bundle isomorphism

priJg ©prsJg

m* I @ I, =m TG Le,,

where I, is the trivial U(1)-bundle over LG equipped with the connection 1-form €, := 7q(p) €
QLG x LG). In terms of the connection 1-form v and the group structure defined by the underlying
bundle morphism, this can be expressed as

V7 (Xl) + vz, (Xg) = V7 7y (%1)22 + X17~'1) + €V|7—17-,—2 (Xl,Xg) (224)

for elements 71,72 € LG projecting to loops 71,7 € LG, and tangent vectors X; € T;.ILG and
X, e TTZLG projecting to X1 € T, LG and X» € T, LG, respectively. The 1-form €, can be computed
explicitly from the given 2-form p of (2I3),

€ulry . (X1, X2) = {<7’1 19, 71(2), XQ(Z)TQ(Z)71> - <7'1(z)71X1( ), 0.72(2)T2 >} dz.

(2.2.5)
Here, and in the following, we regard a tangent vector X € T LG as a section of TG along 7, i.e. as a
smooth map X : S* — TG such that X (z) € T}y G, see [PSRE].

In general, a connection on a central extension induces a splitting of the Lie algebra extension

T D=

0 R Lg Lg 0, (2.2.6)

i.e. a linear map s Lg — EE; such that p, o s = idry. Indeed, the connection v determines a
horizontal subspace HY LG - T1LG such that p,: H{’fé — Lg is an isomorphism. For X € Lg we
let s(X) € HY LG be its preimage under p. An equivalent definition that uses the connection 1-form
v directly is to first choose any lift X € Lg of X and then define s(X) = X — v(X).

Given the splitting s determined by the connection v one can define the map

Z:LGxLg— R , Z(r,X):=Ad ' (s(X)) — s(Ad; ' (X)).

Lemma 2.2.1. Z(7,X) = 2/ (176, X).
S1

Proof. We express Z in terms of the error 1-form ¢, of the connection v. Consider 7 € LG and X € fg
projecting to 7 € LG and X € Lg, respectively. Then,

Z(1,X) = Ad: ' (s(X)) — s(Ad;1(X)) = 71X —v(X))7 — 7 X7 + (771 X7)
= (X)) +v(F1X7) @223 —e]1,7(X,0) — €] ,-1.,(0, X 7).

With ([Z235) we see that these two terms are equal and add up to the claimed formula. O
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The formula

= | 26 ¥) = [50), 500)] - s((X, V)
0

defines a 2-cocycle w for the Lie algebra cohomology of Lg with coefficients in the trivial module R,
and classifies the Lie algebra extension. From Lemma 2Z.2.]] we get the following.

w(X,Y)

Lemma 2.2.2. w(X,Y) = 2/ (X,dY).
Sl
Up to the prefactor (which can always be absorbed into the normalization of the bilinear form
(—,—)) this is the standard cocycle on the loop algebra, see [PS86], Section 4.2]. Note that the cocycle
w is not invariant; instead it satisfies [Gom03, Lemma 5.8 (b)]

w(AdZHX), AdZH(Y)) = w(X,Y) + Z(7,[X,Y]). (2.2.7)

It is well-known that a given splitting s of a Lie algebra extension ([2:2.6) induces, conversely, a
connection vs on the central extension LG, given by the formula

vy =0 —s(p*0) € O (LG),

where 6 stands for the left-invariant Maurer-Cartan form on LG. Its curvature is given by —sw(0A0) €
O%(LG), see e.g. [Gom03l Lemma 5.4]. We will later have to compare the original connection v with
the connection vy determined by s and hence indirectly by v. For this purpose, we consider the 1-form
B € Q' (LG) given by the formula

1
B (X) ::/O <T(Z)718ZT(Z),T(Z)ilX(Z)> dz
for re LG and X € T, LG.

Lemma 2.2.3. The connection vs is obtained by shifting the connection v by 3, i.e. vs =v+ 5. In
particular, the curvatures obey the following relation:

- %w(@ A0) = curv(v) +dg. (2.2.8)

Proof. For a tangent vector X € T;m we obtain from the definitions of the connection v, and
the splitting s that v,(X) = v(7~'X). Using the multiplicativity law (224) for the connection v,
we get v(71X) = v(X) — €],-1.,(0,X). Looking at the explicit expression ([ZZH), we see that
_6V|T*1,T(O7X) :ﬁT(X) O

The connection v on LG has an interesting property which distinguishes it from other connections
on E\é, in particular from the connection vg. The property is that v is superficial. In order to explain
this, we fix the following notation: if 7 € LLX is a loop in the loop space of a smooth manifold X,
then by 7V : S1 x S1 — X we denote the “adjoint” map defined by 7V (z1, 22) := 7(21)(22). We use
the following terminology: a map f : X — Y between smooth manifolds is said to be of rank k if its
differential d f, has at most rank k for all x € X. The map f is called thin, if it is of rank dim(X) — 1.

Definition 2.2.4 ([Walbl Definition 2.2.1]). A connection v on a Fréchet principal U(1)-bundle over
the loop space LX of a smooth manifold X is called superficial, if the following two conditions are
satisfied:

(i) The holonomy of a loop T € LLX wvanishes if 7V thin.
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(i1) Two loops 7,7 € LLX have the same holonomy, if 7 and 7"V are thin homotopic.

By [Walbl Corollary 4.3.3] all connections in the image of the transgression functor (Z2J]) are
superficial. This comes from the fact that the holonomy of such connections can be expressed in terms
of the surface holonomy of the bundle gerbe G via the formula

Hol, (1) = Holg(1").

The surface holonomy of a connection on a gerbe has the two properties (i) and (ii).

2.3 Thin structures and fusion

In this article, the most important aspect of superficial connections is that they induce thin structures,
a kind of equivariance with respect to thin homotopies. We use diffeological spaces as an auxiliary
tool. In short, a diffeological space is a set X with specified plots: maps ¢: U — X defined on open
subsets U C R™, n > 0. There are full and faithful functors

Man“— Frech“— Diff

that realize smooth manifolds and Fréchet manifolds as diffeological spaces with plots given by all
smooth maps ¢: U — X from all open subsets U C R"” for all n. In almost all aspects relevant for
this article, diffeological spaces behave exactly as smooth manifolds — there are just more of them. For
example, differential forms, principal bundles, and connections can be defined on diffeological spaces
in a manner consistent with above inclusions, see [Wal12D)].

If X is a smooth manifold, we denote by LX2, C LX x LX the set consisting of pairs (71, 72) of

thin homotopic loops, i.e. there exists a homotopy h : [0,1] x S* — X of rank one. The set LX2
carries a natural diffeology [Wall2d, Section 3.1].

Definition 2.3.1 ([Wall2d, Definition 3.1.1]). A thin homotopy equivariant structure on a Fréchet
principal U(1)-bundle P over LX is a smooth bundle isomorphism

d:priP — pr;P

over LX?2, that satisfies the cocycle condition dry +, © dry 7, = dy, 75 for any triple (11, 72,73) of thin

homotopic loops.

A bundle morphism ¢ : P, — P between bundles with thin homotopy equivariant structures dy
and dy is called thin, if the diagram

pri¢g

prify prilfs

dlt Ldz (2.3.1)

* *
pry Py —>pr*@ pro P
2

2

thin

of bundle morphisms over LX; is commutative.

Now suppose P is equipped with a superficial connection w. Property (i) implies that the parallel
transport of w along a path v : [0,1] — LX between two loops (1, 72) € LX?2, is independent of the
choice of the path (provided it is chosen so that v is thin). Thus, we have a well-defined map

dz _ P, — Py,

T1,7T2
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The maps d¥, ., form a thin homotopy equivariant structure [Wall2¢, Lemma 3.1.5]. A thin homotopy
equivariant structure d is called a thin structure, if there is a superficial connection w with d = d“.

Summarizing, a thin structure on a bundle P over a loop space LX is a consistent way of identifying
its fibres over thin homotopic loops. As orientation-preserving diffeomorphisms of S' induce thin
homotopies (Diff *(S1) is connected), we have the following.

Proposition 2.3.2 ([Wall2d, Proposition 3.1.2]). A thin structure on a Fréchet principal U(1)-bundle
P over LX determines a Diff *(S*)-equivariant structure on P.

We continue to discuss the central extension LG obtained by transgression of a multiplicative
bundle gerbe over G with connection relative to the forms H and p given by (21.2) and (2ZI3). Since
the connection v on LG is superficial, the central extension LG is equipped with a thin structure d”.

Proposition 2.3.3. The thin structure d¥ is multiplicative in the sense that
dZO'YO;Tl'Yl(T ) _d:() Tl( ) d’l;oﬂl(~)

Jor all (t0,%0), (11,71)) € L(G x G)2,. and all 7,5 € LG projecting to 7o and ~o, respectively.

Proof. We consider the connection-preserving bundle morphism

priJg ©prsIg

m*%®%p = m*%(g]:fu’

that describes the relation between the group structure of LG and the superficial connection v. Now
we pass from superficial connections to thin structures, and observe that the thin structure on the
trivial bundle I, is the trivial one. This comes simply from the fact that the parallel transport of the
connection €, = 7o(p) along a path v € P(G x G) can be expressed as an integral of the 2-form p over
~V. If 4V is of rank one, that integral vanishes; see [Wall2d, Proposition 3.1.8] for the full argument.
Thus,

pri T @ prs T m* T

is a thin bundle morphism over L(G x G)2 . Now, diagram (Z3.) evaluated over the point
((70,70), (T1,71)) € L(G x G)2 . gives the claimed identity. O

We remark that ((70,70), (11,71)) € L(G x G)2, means that there exists a thin path (7,7) in
L(G x G) connecting (79, 70) with (71,71). It is necessary, but not sufficient, that the paths 7, v, and
77 in LG are separately thin.

Finally, we come to another additional structure on the central extension LG: a fusion product.
By PX we denote the set of paths in a smooth manifold X with “sitting instants”, i.e. smooth maps
~: [0,1] — X that are locally constant near the endpoints. Due to the sitting instants, PX is not
a Fréchet manifold, but still a nice diffeological space, with plots ¢ : U — PX those maps whose
adjoints ¢¥ : U x [0,1] — X are smooth. We denote by PX*] the k-fold fibre product of PX over
the evaluation map ev: PX — X x X, i.e. the diffeological space of k-tuples of paths with a common
initial point and a common end point. Due to the sitting instants, we have a well-defined and smooth
map

u: PX® —~ LX: (’71,’72) — 2 %71,
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where x denotes the path concatenation, and 7 denotes the reversed path; see [Wall2bl Section 2] for
a more detailed discussion. For ij € {12,23,13}, we denote by U;; the composition of U with the
projection pr;; : PXBl —~ px[l

Definition 2.3.4 ([Walbl Definition 2.1.3]). A fusion product on a Fréchet principal U(1)-bundle P
over the loop space LX of a smooth manifold X is a smooth bundle morphism

AU PRQUIP — U3P
over PXP that is associative in the sense that
AA(p3s @ p23) @ p12) = A(pas @ A(p23 @ p12))
for all pij € Py,u,; and all (y1,72,73,71) € pxH,

A morphism ¢ : P, — P, between principal U(1)-bundles over LX equipped with fusion products
A1 and Ag, respectively, is called fusion-preserving if the diagram

A
UbsPL@U, Pl — = U%,P

U 330U Iz@t [UTNP

USs Po@UTo Py Ul P

A2

of bundle morphisms over PX is commutative.

If P is equipped with a fusion product A, then a connection v is called fusive, if the following
conditions are satisfied:

(i) The fusion product A is a connection-preserving bundle morphism over PX 31,

ii e rotation an angle of 7 is an orientation-preserving diffeomorphism o and induces
ii) Th ion by gle of 7 i ientati ing diff hi f S' and ind
a diffeomorphism r, : LX —= LX. The Diff ¥ (S')-equivariant structure of Proposition 2:3.2]
provides a lift r¢" : P — P. We demand that the condition

AT (p12) @18 (pas)) = 12 (A(pas @ p12))

is satisfied for all p1g € Py, Uy, P23 € Pyyunqg, and (y1,72) € PX2,

In [Walb] a category FusBun“¥(LX) is considered with objects the principal U(1)-bundles over
LX equipped with fusion products and superficial fusive connections, and morphisms the fusion-
preserving, connection-preserving bundle morphisms. By a construction performed in [Walbl Section
4.2], the transgression functor (ZZT]) lifts into this category:

T GV (X) — FusBun“(LX). (2.3.2)
Before we return to the central extension fé, we relate fusion products to thin structures.

Definition 2.3.5. Let P be a principal U(1)-bundle P over LX with a fusion product . A thin
structure d on P is called fusive with respect to X, if there exists a superficial fusive connection v on

P such that d = d".
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In particular, the fusion product A is a thin bundle morphism with respect to a fusive thin structure.
In [Wall2d] a category hFusBun'"(LX) is considered with objects the principal U(1)-bundles over LX
equipped with fusion products and fusive thin structures, and morphisms the homotopy classes of
fusion-preserving, thin bundle morphisms.

The two categories FusBun“*(LX ) and hFusBun'™(LX) are loop space analogues of the categories
h1GrbY(X) and h;Grb(X) of bundle gerbes with and without connections over X, respectively. The
procedure of inducing a thin structure from a superficial connection (and projecting to the homotopy
class of a morphism) defines a functor

FusBun“(LX) —= hFusBun'"(LX);

it is the loop space analogue of the 2-functor (Z11]) that passes from gerbes with connection to gerbes
without connections. These analogies are the content of the following theorem, which is the main

result of the series of articles [Wal12D, [Walbl [Wal12d).

Theorem 2.3.6. Let X be a connected smooth manifold. There is a strictly commutative diagram

FusBun¥(LX) ——h1Grb¥(X)

| |

hFusBun™(LX) ——=h;Grb(X)

of monoidal categories and functors, natural in X , whose horizontal functors are monoidal equivalences
of categories.

The functor in the first row of the diagram is inverse to the transgression functor .7 of ([2.3.2]),
i.e. the two functors form an equivalence of categories. The functor in the second row is essentially
surjective, full and faithful, but has no canonical inverse functor. The two functors are called regression

[Walbl, Section 5].

Let us now return to the discussion of the central extension LG defined by transgression of a
multiplicative bundle gerbe G over G. According to above discussion, LG is equipped with a fusion
product, which we denote by A\g. The connection v on LG and the induced thin structure d” are fusive.
Since transgression is a functor, the multiplication Z is fusion-preserving. This can be rephrased as
follows.

Lemma 2.3.7. The fusion product on LG is multiplicative in the sense that

A(p23 @ p12) - M(phz @ Pla) = MPazPhs @ p1apia) (2.3.3)

for all elements pij,p’ij e LG projecting to loops ~v; U ~y; and ~U vj’-, respectively, for all
(717’72573)7 (Vivﬂyéa’%’;) € PG[B]

We have now listed all additional structures and properties of the central extension LG that arise
from our approach using the transgression multiplicative bundle gerbes, and that we need in the

following. In [Wald we show how “transgressive” central extensions can be characterized by fusion
products and thin structures.
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3 Thin fusion spin structures

In Section Bl we first recall the definition of spin structures on loop spaces following Killingback [KiI87].
Based upon this definition we develop the notion of thin fusion spin structures, which constitute our
loop space analogue for string structures. In Section we prepare one part of the proof of this
analogy: we provide a lifting gerbe formulation for thin fusion spin structures.

3.1 Versions of spin structures on loop spaces

Let M be a spin manifold of dimension n = 3 or n > 4, so that Spin(n) is compact, simple and
simply-connected. We denote by m : FM — M the spin-oriented frame bundle of M, which is a
Spin(n)-principal bundle over M. Since Spin(n) is connected, LFM is a principal LSpin(n)-bundle
over LM.

Definition 3.1.1 ([Kil87]). A spin structure on LM is a lift of the structure group of the looped frame
bundle LEM from LSpin(n) to the universal central extension LSpin(n).

e~

Thus, a spin structure on LM is a pair (8,0) of a Fréchet principal LSpin(n)-bundle 8 over LM
together with a smooth map ¢ : § — LF M such that the diagram

T

oXp o LM

/

LFM x LSpin(n) —— LEFM

—~—

8§ x LSpin(n) ———— = §

is commutative. A morphism between spin structures (81,01) and (82,02) is a bundle morphism
@ : 8 —= 89 such that o7 = 02 0o 9. Spin structures on LM form a category that we denote by
Spin(LM). It is a module for the monoidal category Bun (LM) of Fréchet principal U(1)-bundles over
LM, under an action functor

Bun (LM) x Spin(LM) — Spin(LM) : (K, (8,0)) — K ®(8,0). (3.1.1)

Here, K ® (8, 0) is the spin structure with the LSpin(n)-bundle K ® 8 := (K x p8)/ U(1) over LM,
and the map (k,s) — o(s) to LEM. By Corollary B:ZZ2 proved below, the action B exhibits
Spin(LM) as a torsor over Bun (LM) in the sense that the associated functor

Bun (LM) x Spin(LM) — Spin(LM) x Spin(LM) : (K, (8,0)) +— (K ®(8,0),(8,0))

is an equivalence of categories.

The notion of a spin structure in the sense of Definition BIT] suffers from the fact that there are
manifolds that are not string manifolds but whose loop space admits spin structures [PW8§|. The plan
we follow in this article is to add additional conditions/structure to spin structures on loop spaces, in
order to better reflect string structures on the base manifold.

If (8,0) is a spin structure, then o : § — LFM is a principal U(1)-bundle under the U(1)-

—~—

action obtained by restriction of the LSpin(n)-action. We use the notation Ts for explicit reference
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to this principal U(1)-bundle. Any morphism ¢ : § — 8’ between spin structures is a morphism
¢ : Ts —= Ts/ between the associated principal U(1)-bundles. Under the action (BIT]) we have

Tkes = Lt*K @ Ts. (3.1.2)

Definition 3.1.2 ([Walal, Definition 3.6]). A fusion product on a spin structure (8,0) is a fusion

product A\g on Ts such that the LSpin(n)-action on 8 is fusion-preserving:

As(tas - Y23 D ti2 - F12) = As(taz @ t12) - Agy.,. (F23 @ F12),

for all t1a,te3 € 8 and H12,7923 € LSpin(n) such that the fusion products are defined. A morphism
v : 8 —= 8 between spin structures with fusion products is called fusion-preserving if the associated

morphism ¢ : Ts —= Ts: is fusion-preserving.

Spin structures with fusion products form a category that we denote by Sping.s(LM ). Similar
to the action functor (BT, the category Sping.s(LM) carries an action of the monoidal category
FusBun (LM) of Fréchet principal U(1)-bundles with fusion products, under which (3I.2)) holds as an
equation of bundles with fusion products.

The main result of the paper [Walal was that a spin manifold M is a string manifold if and only
if its loop space LM admits a spin structure with fusion product. Next we explain how to add
thin structures into the picture in order to improve that result. We recall that the central extension

LSpin(n) is equipped with a thin structure d” induced from the superficial connection v.

Definition 3.1.3. A thin structure on a spin structure (8,0) is a thin structure d on Ts such that

dTl"Y17T2"72 (t : ’7) = dTl;TQ (t) : dzl,yg (’7)

for all ((11,m), (12,72)) € L(FM x Spin(n))?,, all t € Ts projecting to T, and all ¥ € LSpin(n)

projecting y1. A thin spin structure is a spin structure together with a thin structure. A morphism
between thin spin structures is a morphism p: 8 —= 8’ between spin structures such that the induced

morphism ¢ : Ts —= Tg/ is thin.

In this definition it is relevant to observe that ((11,71), (2,72)) € L(FM x Spin(n))?, implies that
(r1,72) € LEME,,, (71,72) € LSpin(n)7,,, and (11 - 71,72 - 72) € LF M}

thin*

Thin spin structures form a category that we denote by Spin'®(LM). Based on the action functor
(1), it carries an action of the monoidal category Bun'*(LM) of Fréchet principal U(1)-bundles
with thin structures, under which (3I.2) is an equality of bundles with thin structures.

Proposition 3.1.4. A thin structure on a spin structure (8,0) on LM determines a Diff+(S*)-

equivariant structure on the principal LSpin(n)-bundle 8 over LM, such that the map o : 8§ — LFM
is Diff T (S1)-equivariant.

Proof. We note that LFM is obviously Diff (S*)-equivariant as a LSpin(n)-bundle over LM, since
Diff +(S*) acts on LFM. By Proposition 3.2 the thin structure on Ty lifts this action to S. O

Thin structures and fusion products for spin structures combine in the following way.

Definition 3.1.5. A thin fusion spin structure on LM is a spin structure (8,0) with a fusion product
A in the sense of Definition [T and a thin structure d in the sense of Definition [31.3, such that d
1s fusive with respect to X\ in the sense of Definition [2.3.5.
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Particular care has to be taken with the correct notion of morphisms between thin fusion spin
structures. If X is a smooth manifold, a fusion map f : LX — U(1) is a smooth map with the
following properties:

(i) If 7,7’ € LX are thin homotopic loops, then f(7) = f(7').
(1) If (v1,72,73) € PXP, then f(y1 U 72) - f(32U 73) = f(m U 7).

A fusion homotopy is a smooth map h : [0,1] x LX — U(1) such that h; : LX — U(1) is a fusion
map for all ¢ € [0, 1].

Definition 3.1.6. Let (8,0, A, d) and (8',0", X ,d") be thin fusion spin structures. A morphism is a
smooth map ¢ : 8§ —= 8§ satisfying the following conditions:

(i) o' o = o; in particular, ¢ covers the identity on LM.

(i1) ¢ is equivariant with respect to the U(1)-actions on 8 and 8, i.e. it induces a morphism
p: Ts — Ts/ between U(1)-bundles over LFM.

(iii) The bundle morphism ¢ : Ts — Ts/ is fusion-preserving and thin.

(iv) ¢ 1is fusion-homotopy-equivariant with respect to the LSpin(n)-action, i.e. there exists a fusion
homotopy h : [0,1] x LFM x LSpin(n) — U(1) with hg = 1 and

o(t-7)-ha(B,7) =p(t) - 7 (3.1.3)

for all t € 8 and 7 € LSpin(n) over 5 € LEM and T € LSpin(n), respectively.

Definitions [3.1.5] and [B.1.6] result in a category of thin fusion spin structures which we denote by

Spm}u’fs(LM). It carries an action of the monoidal category FusBun!"(LM).

In the end, the category that is equivalent to the category of string structures on M is the homotopy
category hSpinﬁ}S(LM ), i.e. two morphisms ¢g, 1 : § —= 8 become identified if there is a smooth
map h : [0,1] x § — 8 with hg = ¢o, h1 = ¢1, and h; is a morphism between thin fusion spin
structures for all ¢ € [0, 1]. The homotopy category hSpin}u}fs(LM ) inherits an action of the homotopy
category hFusBun™(LM). As a consequence of Theorem [[4] this action exhibits hSpin " (LM) as a
torsor over hFusBun'"(LM).

3.2 Lifting theory for spin structures

As any lifting problem, spin structures on loop spaces can be described by a bundle gerbe, the spin
lifting gerbe Srpr [CCMO98|. We refer to [Walal, Section 4.1] for a detailed treatment. In short, the spin
lifting gerbe Sy s is the following bundle gerbe over LM:

(i) it has the surjective submersion Lw : LFM — LM.

(ii) over the 2-fold fibre product LFM!?! it carries the Fréchet principal U(1)-bundle

—~—

P := L§* LSpin(n),

where ¢ : FM?) — Spin(n) is the “difference map” defined by p’ - §(p,p’) = p.
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(iii) over the 3-fold fibre product LFMP! it has the bundle gerbe product

p: progP@pripP —= prigP : (B2, 83, 723) ® (B1, B2, T12)) = (B1, B3, a3 - T12)

e~

defined from the group structure of LSpin(n).

The purpose of the lifting bundle gerbe is to provide a reformulation of spin structures in terms
of trivializations of Spas. A trivialization of Spys is by definition a pair 7 = (T, k) consisting of a
principal U(1)-bundle T over LF'M and a bundle isomorphism

k: prs7T @ P — priT
over LE M such that the diagram

* * * pro; Riid *
pr31 @ progP @ prig P ————— pryT @ pri, P

id®uj Lprfz K

pr3T @ pris P priT

*
prlsn

of bundle morphisms over LFM!!

(T’, k') is a bundle isomorphism ¢ : T'—= T” such that the diagram

is commutative. A morphism between trivializations (T, k) and

pr;T ® P —" = priT

prévt Lpri‘w

prsT’ @ P priT’

’
K

is commutative. Trivializations of Sy,ys form a category Triv(Sras), which is a module for the monoidal
category Bun (LM) of Fréchet principal U(1)-bundles over LM under the action functor

Bun (LM) x Triv(Spar) — Triv(Spm) « (K, T) — K& T. (3.2.1)

Here, the trivialization K ® 7 consists of the principal U(1)-bundle L7#*K ® T' over LF M and of the
bundle isomorphism id ® . The action [B2ZT]) exhibits Triv(Spar) as a torsor over Bun (LM). For a
spin structure (8, o) we have a bundle isomorphism

ks 1 pryls @ P — priTs : (f2,t) ® (B, B2, T) = (B1,t-T)

—_~—

over LFMP, where t - 7 is the LSpin(n)-action on 8. Tt is easy to see that (Ts, ks) is a trivialization
of the spin lifting gerbe Spps. A morphism ¢ : § —= 8’ between spin structures induces a morphism
¢ : Ts —= Ts: between bundles over LF M, which is in fact a morphism (Ts, ks) — (Ts/, ks) between
trivializations. As a consequence of a general theorem of Murray about lifting gerbes [Mur96] we obtain
the following result; also see [Wala, Theorem 4.1.3].

Proposition 3.2.1. The assignment (8,0) > (Ts, ks) establishes an equivalence of categories:

Spin(LM) = { Trivializations of the spin } '

lifting gerbe Spar
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Formula ([B.1.2) shows that the equivalence of Proposition [3.2.1] is equivariant under the actions
BII) and BZI) of Bun (LM). In particular, we obtain the following consequence.

Corollary 3.2.2. The category Spin(LM) of spin structures on LM is a torsor over the monoidal
category Bun (LM).

The fusion product Ag,,. of the central extension LSpin(n) pulls back along the map LJ to a fusion
product Ap := Ld*Ag,,. on the U(1)-bundle P of the lifting gerbe Spas. The bundle gerbe product p
of S is fusion-preserving according to Lemma 237

Suppose T = (T, k) is a trivialization of Srps. A fusion product A on T is called compatible if the
bundle morphism & is fusion-preserving (with respect to the fusion product Ap on P). A morphism
@ : T1 —= T2 between two trivializations with fusion products is called fusion-preserving, if it is
fusion-preserving as a bundle morphism ¢ : 77 — Tb.

Proposition 3.2.3 ([Walal Corollary 4.4.8]). The assignment (8,0,\) —= (Ts, ks, \) establishes an
equivalence of categories:

Trivializations of the spin
Spinpus(LM) = lifting gerbe Spar with
compatible fusion products

Next we include thin structures into the lifting-gerbe description. The thin structure d” on the

central extension LSpin(n) pulls back along the map Lé to a thin structure dp on the U(1)-bundle
P of the lifting gerbe Spar. Suppose T = (T, k) is a trivialization of Sgps. A thin structure d on T
is called compatible, if k is a thin bundle morphism (with respect to the thin structure dp on P). A
morphism ¢ : T3 — T3 between trivializations with thin structures is called thin, if it is thin as a
morphism ¢ : T} — Ts.

Proposition 3.2.4. The assignment (8,0,d) —= (Ts, ks, d) establishes an equivalence of categories:

Spinth(LM) ~ { Trivializations of Spar with } .

compatible thin structures

Proof. Based on the equivalence of Proposition B.2.I] we observe that the structure on the objects
on both hand sides is the same, namely a thin structure d on the U(1)-bundle 7' = Ts. It remains to
check that the conditions are the same. For the trivialization, the condition is that the diagram

T K

priT ® pri P pril

pryT @ pry P ——— pryT’
pPryK

over L(FM®P)2 = L(FM xSpin(n))?2, is commutative. We recall the relation s(t®7) = t -7 between

thin thin
—~—

k and the principal LSpin(n)-action on T. Under this relation, the commutativity of the diagram is
equivalent to the following equation:

dit-7) =drt®7) =kr(d(t)®dp(T)) = d(t) - dp(7).
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This is precisely the condition of Definition [3.1.3] For the morphisms, we have on both sides the same
condition, namely that ¢ : Ty — T5 is thin with respect to the thin structures on 77 and T5. ]

Finally, we combine fusion products and thin structures on trivializations in the following definition.

Definition 3.2.5.
(i) A thin fusion trivialization of the spin lifting gerbe Sy is a trivialization T = (T, k) with a

fusion product X on T compatible with Ap and a thin structure d on T that is fusive with respect
to A and compatible with dp.

(ii) A morphism between thin fusion trivializations (T,k,\,d) and (T',k',N,d") is a fusion-
preserving, thin bundle morphism p: T —= T', such that the diagram

prsl'® P —r > priT

préwt Lprw

pr3T’ @ P priT’

commutes in the homotopy category hFusBun™(LEFM!?).

The condition that the diagram in (ii) commutes in hFusBun®(LFM?)), i.e. up to homotopy
through thin, fusion-preserving bundle morphisms means, explicitly, that there is a smooth map

H:[0,1] x prsTs ® P — priTg (3.2.2)

such that Hy : priTs ® P — priT¢ is a thin, fusion-preserving bundle morphism for all ¢ € [0, 1] and
we have Hy = prip ok and Hy = £’ o priep.

The category of thin fusion trivializations is denoted by Triv ;173 (Srar). Based on the action functor
(20D, it is straightforward to see that it is a module over the monoidal category FusBun(LM).

Proposition 3.2.6. The assignment (8,0, A\, d) —= (Ts, ks, \,d) establishes an equivalence of cate-
gories:
Spinfi(LM) = Triv . (Spar).

Moreover, it is equivariant with respect to the FusBun'™(LM)-actions on both categories.

Proof. Based on the equivalence of Proposition[B.2.1] and its extension to fusion products (Proposition
B23) and thin structures (Proposition[B.24)) it remains to notice, on the level of objects, that the com-
patibility condition between fusion product and thin structure is the same on both sides. Concerning
the morphisms, we first observe that we have, in both categories, thin, fusion-preserving morphisms
¢ : Ts — Ts/ between U(1)-bundles over LFM. It remains to check that the commutativity in
hFusBun'™(LFMPl) of (ii) of Definition BZHis equivalent to (iv) of Definition In order to see
this, we notice that the existence of the map H in (BZ2) is equivalent to the existence of a fusion
homotopy
h:[0,1]x LEMP — U(1)

with hg = 1 and

hy - (prig o k) = K oprip (3.2.3)
Now, under the correspondence (k(t ® 7) = t - 7) between the bundle morphisms £ and &’ with the
LSpin(n)-action on 8 and §', respectively, (B:23) is precisely Equation (B3] in Definition B.T.6 O
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4 Superficial spin connections

In Section FLTl we study the notion of a spin connection introduced by Coquereaux and Pilch [CP9§],
and circumstances under which they induce thin spin structures. We couple spin connections to fusion
products and introduce the notion of a superficial geometric fusion spin structure. In Section we
develop the corresponding lifting gerbe theory.

4.1 Spin connections on loop spaces

In the following we denote by g the Lie algebra of Spin(n). The Levi-Cevita connection on M induces
a connection A € QY(FM,g) on the spin-oriented frame bundle FM. One can define a 1-form
AeQYLFM, Lg) by

Al (X)(2) = AlT(Z)(X(Z))v

where 7€ LEM and X € T,LFM. Tt is straightforward to check that A is a connection on LFM.

Definition 4.1.1 ([CP98]). Let (8,0) be a spin structure on LM. A spin_connection on (8,0) is a
connection € € 91(8,133) on 8 such that p.(Q) = o* A, where p, : lf;é — Lg is the projection in the
Lie algebra extension.

A triple (8, 0,) consisting of a spin structure and a spin connection is called a geometric spin struc-
ture on LM. Geometric spin structures form a category Spin¥(LM ) whose morphisms are connection-
preserving morphisms between spin structures. This category is a module for the monoidal category
BunY(LM) of Fréchet principal U(1)-bundles over LM with connection, in terms of an action functor

Bun™ (LM) x SpinY(LM) — Spin"(LM) (4.1.1)

lifting the action BII) of Bun (LM) on Spin(LM) to a setting with connections. If K is a principal
U(1)-bundle over LM with connection n € Q'(K), and (8, 0,() is a geometric spin structure, then a
spin connection on the spin structure K ® 8§ = (K x p8)/ U(1) is defined by the 1-form

n®Q = prin+pr3Q € Q' (K x L18)

that descends to a connection on K ® 8.

We introduce a notion of scalar curvature of a spin connection. For this purpose, we need the
splitting s: Lg — Lg described in Section [Z.2] as the horizontal lift with respect to the connection v,
as well as the associated map Z of Lemma 221l Further, we need a reduction of LE'M adapted to s,
i.e. a map

r: LFM x Lg — R

that is linear in the second argument and satisfies
r(r -y, AdS N (X)) = (1, X) — Z(v,X) (4.1.2)

for all 7 € LFM, X € Lg and v € LSpin(n). Such a reduction can be defined using the connection A
on FM, by setting [Gom03, Proposition 6.2]

r(r,X) :=-2 /Sl (T"A, X)) . (4.1.3)
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In order to define the announced scalar curvature we produce the auxiliary map

R:8$xLg— R:(8,X) > X — s(p.(X)) +r(c(8), p(X)).

Then we define a 2-form v € Q?(8) by the formula ¥:(X,Y) := R(t,curv(Q):(X,Y)) where t € § and
X, Y € T;8. The scalar curvature is now defined as follows.

Lemma 4.1.2. There is a unique 2-form scurv(2) € Q?(LM) such that Lr*scurv(€2) = 1.
Proof. We show that ¢ descends. Using [@.I1.2) it is straightforward to show that

R(ty,Ad; (X)) = R(t, X)

for all t €8, v € LSpin(n), and X e fg On the other hand, the curvature satisfies

prycurv(Q) = Ady ! (pricurv(Q))

e~ e~

over 8P, where § : 812l — LSpin(n) is the difference map of the principal LSpin(n)-bundle 8. This
shows that prit = prit over 812 O

We will see (Theorems B.2.T1] and [(3]) that under the correspondence between geometric string
structures on M and geometric spin structures on LM, the scalar curvature is (minus) the transgression
of the 3-form K € Q3(M) associated to a geometric string structure (see Theorem [EI13) ().

Let (8,0,Q) be a geometric spin structure on LM, and let Ts be the associated principal U(1)-
bundle over LEM. We consider the 1-form ¢ € Q' (LFM) defined by

G (X) i=r(r, A (X)) (4.1.4)
forre LFM and X € T.LF M.
Lemma 4.1.3. For every v € R, the formula
wQ,z 1= Q- S(U*A) + ga*c S Ql(Tg)

defines a connection on Ts, of curvature

curv(wg ;) = Lr*scurv(Q) — %w(A A A) —r(curv(A)) + ;d{.

Proof. It suffices to prove that wq o is a connection, which is a standard calculation. The connection
wq,. is then obtained by shifting the connection wq o by the 1-form (. In order to compute the
curvature of wq ¢ we use the definition of the scalar curvature and obtain:

dwg,p = dQ —s(0*dA) = Lr*scurv(Q) — %[Q A Q]+ s(ps(curv(Q))) — s(c*dA) — r (o, p« (curv(2)))
Then we use that Q — s(c*A) = Q — s(p.Q) €R, so that
0=[Q—s(*A)AQ—5(c"A)] = [QA Q]+ [s(c*A) A s(c*A)] — 2[Q A s(c* A)]

= [ Q] - [s(o* A) A s(o™ A))].
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This yields the claimed result. g

We recall that a morphism between geometric spin structures (8,0,9Q) and (8',0,Q) is an iso-

morphism f : § — §' of LSpin(n)-bundles over LM such that © = f*’ and o’ o f = o Tt follows
that wo, = ffwq » for all x € R, i.e. the induced isomorphism f : Ts — Ts/ of U(1)-bundles
is connection-preserving for all connections wq ;. Further, we find under the action [@II]) of the
monoidal category Bun(LM) on the category Spin¥(LM) of geometric spin structures the formula
Wheo,e = L' + wa s

The following result explains which connection of the one-parameter family wq , should be used.

Proposition 4.1.4. Let (8,0,9Q) be a geometric spin structure. Suppose the connection wq , is su-
perficial for a parameter x € R, and let d“2= be the associated thin structure on Ts. Then, the pair
(8,0,d*) is a thin spin structure if and only if x = 1.

We prepare the proof of this proposition with three lemmata.

Lemma 4.1.5. Suppose wq , is superficial. Then, (8,0,d“®=) is a thin spin structure if and only if
the following holds: for (y1,72) : [0,1] — LFM? a thin path, 32 a wq,z-horizontal lift of o, 6a
v-horizontal lift of the path 6 defined by 6(t) := 6(71(t),12(t)), we have for 41 =4 -0

/ WO,z € 7.
ﬁ/

Proof. (8,0,d¥?=) is a thin spin structure if and only condition of Definition is satisfied:

QoG ey (B 7) = A5, () - df, 5, (7)

—_~—

for all ((71,p1), (12,2)) € L(FM x Spin(n))?,, all t € Ts projecting to 71, and all 7 € LSpin(n)

thin?

projecting 3. We denote by pt§ and pt;),?’z the parallel transport maps associated to the connections

v on LSpin(n) and wq , on Ty, along the paths 0, v1, and 7, respectively. Then, above condition is
equivalent to the assertion that

ptye(t - 7) = ptig= (t) - pts(7) (4.1.5)

holds for all thin paths (v1,72) : [0,1] — LFM!? with difference path & := Ld(v1,72), elements ¢ €

e~

projecting to v1(0) and 7 € LSpin(n) projecting to §(0). We note that
ptye(t-7) =H1(1) - exp (27‘(1/ w527m>
gl

for all lifts 4, of 4, with 51(0) = ¢ - 7. For horizontal lifts 75 with 3,(0) = ¢ and 6 with §(0) = 7 we
have ptas* (t) = J2(1) and pt4(7) = 6(1). With these formulas, @IT) is equivalent to the assertion

that
exp <27Ti/ CLJQ@) =1
’?

for every thin path (vy1,72), difference ¢, horizontal lifts 42 and 8, and 5y 1= o - 6. O
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The following straightforward calculation only uses property (£I12) of the reduction r and the
defining property of the connection A.

Lemma 4.1.6. The 1-form ( satisfies the identity

(AQ)r 7y (X1, X2) = —1(12, Y6 1) + Z(6, Ay (X2)) + Z(5, Y5 1),
where (11,79) € LFMP, X, € T,,LFM, Xy € T,,LFM, § € LSpin(n) is defined by the formula
0(2) :=0(m1(2),m2(2)), and Y € TsLSpin(n) is defined by Y (z) := dé(X1(z2), Xa2(2)).

Now we are prepared for the following key calculation.

Lemma 4.1.7. Let (y1,72) : [0,1] — LFEM!? be a path with § : [0,1] — LSpin(n) defined by

5(t) := 0(71(t),72(t)). Assume that 5o is a we,.-horizontal lift of v, and that & is a v-horizontal lift

of 6. Then, 1 := 2 - 0 is a lift of v1, and

2—-z
2

1—=x

woe(071(t) = —; Z(8(t), 2:3(1)5(t) 1) +

Z(6(), A@ry2(1))) + 57(12(0), 28()3(0) ).

Proof. The assumptions of horizontality mean that

wat(02(t)) =0 and  v(90(¢)) =0 (4.1.6)
for all ¢ € [0,1]. The relation wg, = Q — s(0*A) + £6*( from the definition of wq , shows:

A3} (Q0%(1) = Adg) (s(0" AD2(1) +war(0F2(1) = 5¢@2()  (4L7)

E1D ) 4-

=<

(s(A@2(1)) = 3¢(Oa (1)
), A@72(1))) + s(Adg(h (A1) = 502 (1)).

1
5(t
= Z((t

e~

That €2 is a LSpin(n)-connection implies then the following:
Q1) = Adj, (A0F1)) + (1) T ad(D) (4.1.8)

BED 20(), A@2(1) + s(Ad5s (A1) = S¢@2 () + 3(1) 1 aid (1),

The definition of the splitting s from the connection v implies:

X = s(pa(X)) = (g7 X) B2 1y (X) — ]2, (0, X). (4.1.9)

Now we put the pieces together and obtain:

wo.0 (0 (1))
= Q0M() = (0" A0 (1) + 50" @A 1)
B 2000, A0 (1)) + s(Ad5 (A1)
~5C(@n2(0) +3(6) 7 9,8(t) — s(A@m (1) + 3@ (1))
= —s(8()70i3(6) +3(6) 1 3(8) + Z(6(2), A(Orra(t)) + FAC(On (1), Brra(t))
D 050 03(0) = sy 1 500 (0 (1)) + Z(5(8), A@2(0) + 5 A7 (1), B (1)

BED 501,600, 00(0) + Z(8(8), A1) + 5 AC@ (6), Da(t).
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With Lemma [4.1.6] this simplifies to

2—x

Z(5(t), A0(1)))

x

= 250, 93(0)5() ) + 5r(2(8). A5H3(H) ).

wa.z (V1) = —€ulsy-1,500) (0, 0:d(t)) +

Substituting explicit expressions, we get $Z(5(t), :5(t)5(t)™") = —€uls(t)-1,6(1)(0,00(t)); this yields
the claimed formula. 0

Now we are in position to prove Proposition[.14] and start with the “if”-part. Suppose wgq 1 is super-
ficial. According to LemmaHL LA, it suffices to prove that for all thin paths (y1,72) : [0,1] — LFM!?,
all horizontal lifts 55 of 42 and 0 of § we get wa,1(0¢71(t)) = 0 for 4y 1= Aa - 6 and all t € [0,1]. By
Lemma [£1.7] this is given by

w1 (B (1) = 5 2(5(0), A@a(0) + 5r(1a(0), 51)3(1) ).

Explicitly, this is

1
wQ,l(atﬁ/l (t)) = /0 { <826v(t7 Z)(Sv(tv Z)_17 A(atVE/(tv Z))>_<A(82’7;/ (t7 2))7 8t6v(t7 2)5\/ (t7 Z)_l> } dz.

The assumption that (y1,72)" : [0,1] x S* — FM[?l is a rank one map implies that for every (¢, z)
there exist «, 8 € R, not both equal to zero, such that

aat(’717'72)v(t7 z) = 5az(71,72)v(f= 2)

in TFM © TFM, ie. «ady(t,z) = B0y (t,z) and adyy (t,z) = BI.7vy (t,2z). These imply
adpdV (t,z) = B0,0V(t,2). Assuming either o # 0 or 8 # 0, one can see by inspection that the
integrand in above formula vanishes identically for every (¢, z). O

We are left with the proof of the “only if”-part of Proposition T4l We assume x # 1 and produce
a counterexample, i.e. appropriate paths for which the integral in Lemma does not vanish. Let
~2 be the constant path at a constant loop at a point p € FM, i.e. v2(t)(z) := p. Let ¢ be a thin path
in LSpin(n), to be specified later. Then, with ; := 75 - § we have a thin path (y1,72) in LEM?. We
compute the quantity wq , (971 (t)) of Lemma LTl The second term in the formula of Lemma 1.7
Z(5(t), A(Oyy2(t))), vanishes since o is constant and Z is linear in the second argument. Likewise, the
third term vanishes, using the definition (£I3]) of the reduction r and again that -, is constant: For

the first term, however, we have
1
Z(5(t),0:8(t)6(t) 1) = 2/ <8z5v(t,z)év(t,z)_1,8t5v(t,z)év(t,z)_1>dz. (4.1.10)
0

Now we construct a specific thin path §. Let 7 € LSpin(n) be a non-constant loop, and let 6(¢)(z) :=
7(2e2™1), the full rotation of the loop 7. Note that

0.0V (t,2) = 0.7(2e®™") = 9,6V (t, 2),

i.e. ¢V is thin and the linear dependence is expressed by constant coefficients. Thus, the integrand
in (@ILI0) is quadratic, hence non-negative, and even positive at at least one z € S* point as 7 is
non-constant. Thus therefore,

Y = Z((S(t),at(s(t)(s(t)il) > 0
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for all t € [0, 1]. It follows that

1 e
/ Wo,r = / W, (071 (t))dt = 5 / yy dt,
bl 0 0

which is non-zero as x # 1. Note that one can scale this quantity continuously down to zero with a
parameter 0 < € < 1, by simply letting all paths end at € instead at 1. In particular, it can be arranged

exp <27ri/ wQ,m) # 1.
ﬁ/

Due to Proposition .14 we promptly set wq := wgq,1 as the connection of our choice on Ts. Note

to be not an integer, hence

O

that this is a non-standard choice, other treatments of geometric lifting problems choose wq o — e.g.

[Gom03, Walll].

Definition 4.1.8. A spin connection  on 8 is called superficial, if the connection wq on Ts is
superficial. A geometric spin structure with superficial spin connection is called a superficial geometric

spin structure.

Together with the connection-preserving isomorphisms between spin structures, superficial geome-
tric spin structures form a category that we denote by Spin“¥(LM). Due to Proposition T4 we
obtain a functor

Spin“ (LM) — Spin'™(LM) : (8,0,9) +— (8,0,d*?).
This functor guarantees the consistency of the various versions of spin structures upon passing from
the setting with connections to the setting without connections.

Definition 4.1.9. A superficial geometric fusion spin structure on LM is a spin structure (8,0)

together with a fusion product X\ and a superficial spin connection 2, such that wq is fusive with
respect to \.

Morphisms between superficial geometric fusion spin structures are connection-preserving, fusion-
preserving morphisms of spin structures. Superficial geometric fusion spin structures form a category
that we denote by Spiani(LM ). This category is our loop space formulation of the category of geometric
string structures. The action (A1) of the monoidal category Bun" (LM ) on geometric spin structures
extends to an action

FusBun“#(LM) x Spin%;(LM) — Spmlvfffs(LM).

We will see (Corollary 2.T2 and Theorem [[3]) that this action exhibits Spinyzf;(LM ) as a torsor over
FusBun¥(LM).

It is clear from the construction that the passage from the setting with connections to the setting
without connections also works in the presence of fusion products, i.e. we have a functor

Spiny(LM) —= Spinfl(LM) : (8,0,\,Q) > (8,0, \,d*). (4.1.11)
On the level of morphisms, this functor produces honest morphisms f : § — 8’ between LS/I:;i\rjn)—
bundles; these form a subset of the morphisms of Spinﬁ’;(LM ) defined in Definition that is
characterized by the condition that the fusion homotopy in (iv) of that definition is constant. In
particular, the functor (IIT]) is not full — just as one would expect it from the passage from a setting
with connections to a setting without connections.
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4.2 Lifting theory for spin connections

We equip the spin lifting gerbe Spps with a connection. We recall that P := Lo*LSpin(n) is the
principal U(1)-bundle of Sz over LEMZ. Tt is equipped with the pullback connection Ld*v, but
the bundle gerbe product p is not connection-preserving for the connection v. Indeed, we have seen
in Section that

prog Lo v + priyLo*y = prisLé"v + Lije,. (4.2.1)

We now modify the connection Ld*v such that p becomes connection-preserving. For this purpose,
we consider the 1-form Z(L§, pryA) € Q' (LFMP!) and the sum

£:=Lo"B + Z (Lo, pryA) e Q1 (LFME)), (4.2.2)
where (3 is the 1-form defined in Lemma 2.2.3] Under the simplicial operator
A = pry; + priy — priz : QUFMP) — F(FMP)
we obtain the following result.
Lemma 4.2.1. A{ = —Ldje,.
Proof. We make two calculations. First we calculate AS := prif + pri3 — m*B € QY(LG?), using

that dms, -, (X1, X2) = X179 + 71 X2. The result is

(Aﬁ)ﬁ T Xl,Xg / { 7'1 8 7'1 ) X2(Z)T2_1(Z)> —<(‘9ZT2(Z)T2(Z)71, ( ) 1X1 >}d2

For the second calculation we use the notation d;; := L(7;, 7;), in which 13 = d23912 holds, and obtain

1
(AZ(L(S, pI’;A))Th-,—Z)TS(Xl,XQ,X3) = 2/ <6Z512(Z)512(2)_1,523(2)_13/23(2»dZ,
0

where Ya3 := dLJ(X2, X3). We have the relation A o L* = Lé5 o A which implements the fact that
0 is a chain map between simplicial manifolds. Putting the two calculations together and identifying
the result under (ZZ4]) we obtain the claimed result. O

We also need to calculate the derivative of the 1-form &.
Lemma 4.2.2. d¢ = —3L5*w(0 A 0) — Lé*curv(v) + Z (L3, pridA) + w(L6*0 A Adp 5 (pr3A)).
Proof. We have [Gom03| Lemma 5.8 (a)]
Z(Ls,pryA) = Z(L6, prydA) — w(L5*0 A Ad; 4 (priA)).
With Lemma 2.2.3] we obtain the claimed formula. O

In the following we consider the 1-form £ — %AC € QY (FMP), with ¢ the 1-form defined at the
beginning of Section 1]

Lemma 4.2.3. The 1-form £ — %AC e QY LFMP) is a superficial fusion form, i.e. a superficial fusive
connection on the trivial bundle with respect to the trivial fusion product.
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Proof. This can be verified directly; however, we show in Lemma that £ — $A( is in the image
of the transgression homomorphism Z2.3t such forms are automatically superficial [Wall2d, Lemma
3.1.7] and fusion [Wall2d, Proposition 3.2.3]. O

e~

We consider on P = Ld*LSpin(n) the connection
. 1

Proposition 4.2.4. The connection Xspin has the following properties:
(i) It makes the bundle gerbe product . connection-preserving.

(i) It is superficial, and the induced thin structure on P coincides with the one induced by the original

connection: dXsvin = dp = dL07v.

(111) It is a fusive connection with respect to the fusion product \p = Lé*\ on P.

Proof. (i) holds because the correction term satisfies
1 *
A - §AC) = A¢ = —Lése,,

by Lemma [L.2T] and so cancels the error in the multiplicativity of v. (ii) and (iii) hold because of
Lemma 23 We regard P (equipped with the fusion product Ap and connection Xspin) as the tensor
product of P (equipped with Ap and the superficial fusive connection Lé*v) and the trivial bundle
(equipped with the trivial fusion product and the superficial fusive connection ¢ — $A(). Since the
conditions of being superficial and fusion are preserved under the tensor product, Xspin is superficial
and fusion. The same argument works for thin structures instead of connections. Here, the thin
structure d €~ 2¢ is the trivial one [Wall2d, Proposition 3.1.8], so that dX=in = qL3"v, O

It remains to find a curving adapted to the connection Xspin, i.e. a 2-form Bgpi, on LEM such
that ABgpin = curv(Xspin)-

Proposition 4.2.5. The 2-form

1 1
Bgpin = gw(A A A) +r(curv(A)) — §d< e 2(LFMP)
is a curving for the connection Xspin .

Proof. With Lemmata and the curvature of xspin Is:
1 - - 1
curv(Xspin) = —§L(5*w(6‘ AO) + Z(L5,prydA) + w(Ls*0 A Adj; (pryA)) — §Ad§.

In order to calculate ABpip, we compute with 2.27) and @I2) the formulas

Aw(ANA) = —Z(L5, [prsAApryA]) — 2w(Ad; ;s (pryA) A L6*0) — w(L8*0 A L5*0)
Ar(curv(A)) = Z(L6,curv(priA))
These show the required identity ABgpin = curv(Xspin)- O
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It is worthwhile to compare the connection (Xspin, Bspin) 00 Sz with another connection devel-
oped by Gomi [Gom03] for general lifting gerbes (not only for loop group extensions). That connection
takes as input data just the splitting s of the Lie algebra extension and the reduction r adapted to s.
It is defined by

XGo = L6 vs + Z (Lo, pryA) € QY(P),

where vy is the connection on LSpin(n) determined by s. The corresponding curving is given by

Bgo = %w([l A A) + r(curv(A)) € Q*(LFM).

Since connections on bundle gerbes form an affine space [Mur96], we obtain the following.

Lemma 4.2.6. The assignment

T

X
= (Xas Ba) i= (Xao = 5AC Bao — 5d0)

is a one-parameter family of connections on the spin lifting gerbe Spar, which contains the connection
of Gomi at x = 0 and the connection (Xspin, Bspin) at © = 1.

We recall from Section that spin structures on LM correspond to trivializations of the spin
lifting gerbe Sy, ps, under the assignment of sending a spin structure (8, o) to the trivialization (Ts, )
consisting of the principal U(1)-bundle Ts over LFM, and of the bundle isomorphism kg : priTs ®
P — priTs defined by ks(t®q) :=t-¢q. To Gomi’s connection on the spin lifting gerbe, and to the
connection wg o on Ts applies a general lifting theorem, see [Gom03] and [Wallll Theorem 2.2], which
in the present situation has the following form.

Proposition 4.2.7. The assignment (8,0,Q) —= (Ts, ks, wq,0) induces an equivalence of categories:

Trivializations of Spar with
SpinY(LM) = { connection compatible with
(XGou BGO)

We recall that a connection on a trivialization 7 = (T, k) is a connection w on T, and it is called
compatible with a connection (x, B) on the lifting gerbe if x is connection-preserving. The curving
B is used in order to associate to each compatible connection on 7 a covariant derivative: a 2-form
p1 € Q?(LM) uniquely determined by the condition that L7*pr = curv(w) + B.

Together with Lemma [.1.3] we deduce the following result.

Corollary 4.2.8. Under the equivalence of Proposition[.2.7, the scalar curvature of a geometric spin
connection corresponds to the covariant derivative of a trivialization, i.e.

Lr*scurv(Q)) = curv(wa,0) + Bego-

Trivializations with compatible connections together with the connection-preserving isomorphisms
between trivializations form a category, which is, analogously to [B2.I]) a torsor over the monoidal
category Bun“ (LM) of principal U(1)-bundles with connection over LM. The equivalence of Propo-
sition 2.7 is equivariant with respect to the Bun" (LM )-actions on both categories; in particular, we
have the following consequence.

Corollary 4.2.9. The category SpinY(LM) is a torsor over the monoidal category BunY(LM) of
principal U(1)-bundles with connection over LM .
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We want to generalize the equivalence of Proposition 2.7 to a version for the connection wq , for
all x € R, and so in particular to the case z = 1. In order to do so, we have the following result.

Lemma 4.2.10. The assignment (T, k,w) = (T, k,w + 5C) induces an equivalence of categories:

Trivializations of Sy with Trivializations of Sy
connection compatible with » = with connection
(x0, Bo) compatible with (X, Bz)

Moreover, the equivalence is equivariant with respect to the BunY (LM )-actions, and it preserves the
covariant derivative of trivializations.

Proof. It is enough to show that the given functor is well-defined for all = € R; it is then invertible by
the functor associated to —x. For well-definedness it suffices to show that the given isomorphism & is
connection-preserving for the shifted connections. Indeed, in

k:pralT @ P — priT

we shift on the right hand side by $pri¢ and on the left hand side by §pr5¢ — §A( = $pri(; thus, &
is connection-preserving.

The equivariance under the Bun" (LM )-actions follows directly from the definitions. If p is the
covariant derivative of (T, k,w) with respect to By, i.e. Ln*p = curv(w) + By, then the covariant
derivative of (T, k,w + §¢) with respect to By = By — §d( is the same p, since

Ln*p = curv(w) + By = curv(w + g() - gd( + By = curv(w + g@) + B:.
U

From Proposition[f.2.7land Lemma[Z.2Z.T0 we obtain for each z € R an equivalence between geometric
spin structures on LM and trivializations of the spin lifting gerbe equipped with the connection
(Xz, Bz). In particular, we have for x = 1:

Theorem 4.2.11. The assignment (8,0,Q) — (Ts, ks,wq) induces an equivalence of categories
Trivializations of Sy with
SpinY(LM) = connection compatible with
(Xs;m'n; Bspin)

This equivalence is equivariant for the Bun (LM )-actions, and the scalar curvature of a geometric
spin structure corresponds to the covariant derivative of the trivialization.

Definition of superficial spin connections shows that the equivalence of Theorem [£L2.11] ex-
changes superficial spin connections 2 with trivializations of Sy s whose connection wq is superficial.
Likewise, Definition [£.1.9] of geometric fusion spin structures shows that the equivalence persists in the
setting with fusion products, where it becomes the following result.

Corollary 4.2.12. The assignment (8,0, \, Q) = (Ts, ks, A\, wq) induces an equivalence of categories,

Fusion trivializations of Spar with
Spinjv;g(LM ) = superficial fusive connection
compatible with (Xspin, Bspin)

This equivalence is equivariant under the action of the monoidal category FusBun“~(LM).
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To close, we observe by inspection that the passage from a setting with connections to a setting
without connections is consistent with the lifting theory, i.e. with Proposition B.2.6] and Corollary
E2T2): there is a commutative diagram of categories and functors

Fusion trivializations of Sy s with
Spiani(LM ) ——— superficial fusive connection

compatible with (Xspin, Bspin)
(4.2.4)

Spinfl(LM) Triv fi (Sear),

with the horizontal functors equivalences of categories.

5 String structures and decategorification

String structures as defined in [Wall3] form a bicategory. The main point of this section is to introduce
several decategorified versions of this bicategory of string structures, which are tailored into a form
that allows a direct application of the duality between gerbes and U(1)-bundles over loop spaces, see
Section

5.1 String structures as trivializations

The idea behind string structures as defined in [Wall3] is to realize the class $p1 (M) € H*(M, Z) using
bundle 2-gerbes.

Definition 5.1.1 ([Ste04], Definition 5.3]). A bundle 2-gerbe over a smooth manifold M is a surjective
submersion w: Y —= M together with a bundle gerbe P over Y2, an isomorphism

M : pris P @pri, P — prisP
of bundle gerbes over YIB! and a transformation

5o M®id
pr, P @ prygP @ priyP — s prs,P @ pri, P

e / ® / prisa M

pri, P @ prizP pri,P

PrigsM
over YW that satisfies a pentagon axiom.

The isomorphism M is called the bundle 2-gerbe product and the transformation p is called the
associator. The pentagon axiom implies the cocycle condition for a certain degree three Cech cocycle
on M with values in U(1), which defines — via the exponential sequence — a class

CC(G) e HY (M, Z);

see Proposition 7.2] for the details.
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We recall from [CIMT05| the construction of the Chern-Simons 2-gerbe CS,7, whose characteristic
class is CC(CSar) = 2p1(M). It uses the basic gerbe Gyqs over Spin(n), together with its multiplicative
structure (M, ) described in Section[ZIl Here we first ignore the connections — they become relevant

in Section [6I] The Chern-Simons 2-gerbe CSj; consists of the following structure:

e Its surjective submersion is the frame bundle 7 : FM — M.

e Its bundle gerbe P over FMP is P := §*Gyqs, where 6 : FM? — Spin(n) is the difference map

(ie. p"-0(p,p') = p).

e Its bundle 2-gerbe product is

M’ =65 M : pris P @prisP — prisP,

where 0, : FMPB — Spin(n)? is defined by (p”,p’) - 62(p, 2, 0") = (¥, p).

e Its associator is p := 65, where d3 : F.M (4 —= Spin(n) is defined analogously. The pentagon

axiom for « implies the pentagon axiom for .

More detailed discussions of the Chern-Simons 2-gerbe are given in [CIMT05] NWT3].

Definition 5.1.2 ([Ste04, Definition 11.1]). A trivialization of a bundle 2-gerbe G as in Definition

[5 711 is a bundle gerbe S over'Y, together with an isomorphism
A:prsS®@P — priS
of bundle gerbes over Y2 and a connection-preserving transformation

»a ARid
PrS @ priyP @ priyP —— > prjS @ pri, P

a4¢%¢ priy A
/

priS ® prisP pris$

id®@M

*

prigA

over YB! that is compatible with the associator p in the sense of Figure .

*
prTzSU% Xﬂid@ Pr3s,0)
* *
priz, o0 i(\ /)r”l‘%cr oid
P ——

ido (u®id)

Figure 1: The compatibility condition between the associator p of a bundle
2-gerbe and the transformation o of a trivialization. It is an equation of

transformations over Y4,
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The characteristic class CC(G) € H*(M,Z) of G vanishes if and only if G admits a trivialization
[Ste04, Proposition 11.2]. In particular, the Chern-Simons 2-gerbe CS); has trivializations if and only
if M is a string manifold. This is the motivation for the following definition.

Definition 5.1.3 ([Wall3| Definition 1.1.5]). A string structure on M is a trivialization T of CSyy.

The main problem with establishing a relation between string structures and loop space geometry
via the transgression and regression functors of Section [2 is that these functors are defined on the
truncated categories h1GrbY(X) and h;Grb(X) of bundle gerbes and not on the full bicategories. This
problem is solved in the next subsections by reformulating the notion of trivializations of bundle
2-gerbes internal to these truncated categories.

5.2 Decategorification of trivializations

In this section G is a general bundle 2-gerbe over M, composed of the same structure as in Definition
BT According to [Wall3l Lemma 2.2.4], trivializations of G form a bicategory, which we denote by
Triv(G). We recall how the 1-morphisms and 2-morphisms are defined.

Given trivializations T = (S, A,0) and T" = (§', A’,0’) of G, a I-morphism B : T — T’ in Triv(G)
is an isomorphism B : S — &’ between bundle gerbes over Y together with a transformation

PrES®P — > priS
/
id®pr§l3t 3 7 s (5.2.1)

7

pr;S’ @ P — pris’

over Y2 that is compatible with the transformations o and ¢’ in the sense of the pentagon diagram
shown in Figure If By = (B1,51) and By = (B, 82) are 1-morphisms between T and T, a 2-

*
prisf % Xpréaﬁ
* *
ido o\ /r’ oid
> %

prigfoid

Figure 2: The compatibility between the transformations o and ¢’ of two
trivializations T and T’ and the transformation £ of a 1-morphism B = (B, 3)
between T and T’. It is an equation of transformations over Y3,

morphism is a transformation ¢ : B; => B, that is compatible with the transformations 51 and fs in
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such a way that the diagram
priBio A LNy (priBi ®id)

pr;gaoid“ “ido(pr;ga@id) (5.2.2)

priBzo A = A’ o (priBa ®id)
2

(2]

of transformations over Y'“! is commutative.

The bicategory Triv(G) is a module over the monoidal bicategory Grb (M) in terms of an action
2-functor
Grb (M) @ Triv(G) — Triv(G) : (K,T) +— K®T, (5.2.3)

For a trivialization T = (S, A, o) and a bundle gerbe K over M, the trivialization K®T is given by the
bundle gerbe 7*K ® S, the isomorphism id ® A and the transformation id ® . We recall the following
result.

Lemma 5.2.1 ([Wall3, Lemma 2.2.5]). The action [5.23) exhibits the bicategory Triv(G) as a torsor
over the monoidal bicategory Grb(M).

There are two methods to produce a category from the bicategory Triv(G) of trivializations of a
bundle 2-gerbe. The first method is to take the truncation h;7riv(G), whose objects are those of
Triv(G), and whose morphisms are 2-isomorphism classes of 1-morphisms in Triv(G).

The second method is to consider the truncated presheaf of categories h1Grb and then formally
repeat the definition of trivializations in that ambient category. This gives a category which we denote
by t1Triv(G). An object in t,7riv(G) is a pair (S, [A]) of a bundle gerbe S over Y and an equivalence
class of isomorphisms

A:pr;sS@P — priS,

such that there exists a transformation o as in (GII). Note that it is not required that o makes the
diagram of Figure [l commutative. A morphism (S, [A1]) — (S22, [Az]) in t1Triv(G) is an equivalence
class [B] of isomorphisms B : S — Sz such that there exists a transformation 8 as in (.2]). Note
that it is not required that 5 makes the diagram of Figure 2l commutative.

The two categories of trivializations are related by a functor
t1 :hlmU(G) — tlﬁiv(G).

Indeed, an object in h; 7riv(G) is just an object (S,.A, o) in Triv(G), and the functor sets t1(S, A, o) :=
(S,[A]). A morphism in hy 7riv(G) is a 2-isomorphism class [(B, 8)] of 1-morphisms, and the construc-
tions above show that t1([(B, 8)]) := [B] is well-defined.

We recall that Triv(G) is a torsor over Grb (M), see Lemma B2l By purely formal reasons, it
follows that hy 7riv(G) is a torsor over hyGrb (M ). There is a similar action of hyGrb (M) on t, Triv(G),
i.e. a functor

h1Grb (M) x t1Triv(G) — t1Triv(G) (5.2.4)

that exhibits t; 7riv(G) as a module category over the monoidal category hiGrb (M). On objects, it is
given by (K, (S, [A])) — (7*K®S8, [A®id]), and on morphisms it is given by ([], [B]) = [7*T 2B].
The functor t; is obviously hyGrb (M)-equivariant.
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Next we produce three sets from the bicategory Triv(G) of trivializations. The first is the set
hoTriv(G) of isomorphism classes of trivializations of G. The second is the set hg(t1 7riv(G)) of isomor-
phism classes of objects in t1 7riv(G). The third is the set t2Triv(G) obtained by formally repeating the
definition of a trivialization ambient to the presheaf hoGrb. In detail, an element of t27riv(G) is an iso-
morphism class [S] of bundle gerbes S over Y, such that there exists an isomorphism priS®@P 2 priS
over Y2,

The three sets of trivializations are related by maps

hoTriv(G) —2Y hy (£, Trivn(G)) —2> to Triv(G),

where hgt; is the map induced by the functor t; on isomorphism classes, and ty sends an element
[(S,[A])] to [S]. Again by purely formal reasons, ho7riv(G) is a torsor over the group hoGrb (M).
Further, the group hoGrb (M) acts on ho(t1 7riv(G)), and hoty is equivariant. Finally, we have an action
of hoGrb (M) on toTriv(G), defined by ([K], [S]) + [7*K ® S], for which the map t is equivariant.

5.3 From string structures to string classes

We now have the following versions of string structures:

(a) a bicategory of string structures, String(M) = Triv(CSyy),

(b) two categories of string structures, hyString(M) and Stringi; (M) = t1Triv(CSys), related by a
functor
t1 : Wy String(M) — String, (M),

(c) three sets of string structures, namely hoString(M ), hoString: (M) and Stringo (M) :=t2 Triv(CSyy),
related by maps

hoString (M) —22 hoString, (M) —2= Stringo(M).

Additionally, there is a fourth set consisting of so-called string classes. A string class on M is a class
¢ € H3(FM,Z) that restricts on each fibre to the generator v € H3(Spin(n),Z). We denote the set of
string classes on M by StrCl(M). We have a map

ts @ Stringo(M) — StrCl(M) : [S] —= DD(S).

This map is well-defined: indeed, for a point p € FM we have the map ¢, : Spin(n) — FM
defined by ¢,(9) := pg, implementing the “restriction to the fibre of p”. We have another map
jp: Spin(n) —= FMP! defined by j,(g) := (pg,p). Recall that an element [S] in Stringo(M) is rep-
resented by a bundle gerbe S over F'M that admits an isomorphism priS ® §*Gpas = priS. Pullback
along jj, followed by taking the Dixmier-Douady class yields v = DD(Gpas) = ¢;,DD(S). Thus, DD(S)
is a string class.

The set StrCl(M) of string classes carries an action of H?(M, Z) via pullback to FM and addition,
and under the identification hoGrb (M) = H3(M,Z) the map t3 is equivariant.

Theorem 5.3.1. The functor

tl : hlStrmg(M) — Strmgl(M)
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is an equivalence of categories; in particular, it is an equivariant functor between hyGrb(M)-torsors.
The maps

hoString(M) —°" o hoString: (M) —2— Stringo(M) —=—> StrCl(M)
are all bijections; in particular, they are equivariant maps between H3 (M, Z)-torsors.

The proof is split into a couple of lemmata. We start with the following Serre spectral sequence
calculation.

Lemma 5.3.2. Let m: P — M be a principal G-bundle over M, for G a compact, simple, simply-
connected Lie group. Let A be an abelian group. For k = 0,1,2 the pullback map

7 H¥(M, A) — HF(P, A)

is an isomorphism. Let p € P be a point and i, : G — P : g — pg. Then, the sequence

0 —— H3(M, A) ——=H3(P, A) —> H¥(G, A) —= H'(M, 4)
1s exact, where tr is the “transgression” homomorphism of the Serre spectral sequence.

In case of G = Spin(n) and A = Z, the transgression homomorphism ¢r of the Serre spectral
sequence sends the generator v € H*(Spin(n), Z) to the class 2p, (M) € H*(M,Z). Thus, we obtain the
following result about string classes.

Corollary 5.3.3 ([Red06, Proposition 6.1.5]). Let M be a spin manifold.
(i) String classes exist if and only if M is a string manifold.

(ii) The set of string classes StrCl(M) is a torsor over H3(M,Z).

Now we are in position to contribute first partial results to the proof of Theorem [£.3.1]
Lemma 5.3.4. The maps ts and to o hoty are bijections.

Proof. If M is not string, then hoString(M) and StrCl(M) are empty. Hence Stringo(M) is also empty,
and both maps in the claim are maps between empty sets, hence bijections. If M is string, hoString (M)
and StrCl(M) are non-empty. Then hoString(M) and StrCl(M) are both torsors over H?(M,Z) by
Lemma [£.2.7] and Corollary (£.3.3] and the over all composition t3 o to o hgt; is an equivariant map
between torsors over the same group, hence a bijection. In particular, ts is surjective. The definition
of t3 shows immediately that it is also injective. Hence, t3 and t2 o hot; are bijections. O

Lemma 5.3.5. Let m: P —= M be a principal G-bundle over M, for G a compact, simple, simply-
connected Lie group. We denote by PW the k-fold fibre product of P with itself over M, and by
i : P —= M the projection. Then,

7 HP(M, A) — HP(PWH A)

is an isomorphism for all k € N, p=10,1,2, and A =R, Z,U(1).
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Proof. Since P is a principal G-bundle, we have diffeomorphisms

Pk - P[k] — Px Gk_l : (plu"'upk) — (plué(p17p2)76(p17p3)7"'76(p17pk))

with 7opr; 0@ = . The projection pry: PxG*F~! — P induces an isomorphism in the cohomology
with coefficients in A = R,Z and in degrees p = 0, 1,2 via the Kiinneth formula (using that R and Z
have no torsion) and the 2-connectedness of G. For A = U(1) the same statement holds due to the
exactness of the exponential sequence and the five lemma. The bundle projection 7 : Y — M induces
an isomorphism in cohomology in degrees p = 0, 1,2 according to Lemma O

Lemma 5.3.6. Suppose that F is a presheaf of abelian groups over smooth manifolds, and
m: Y — M is a surjective submersion. We denote by m, : YI¥ — M the projection, and by
A F(YHY — F(YF+HU) the Cech coboundary operator. Then,

Aot = ﬂ'ZJrl k even
0 k odd.

Proof. For a € F(M) and 3 = mja we have 9;3 = 0;m;a = 7 ;. Now the claim is proved by
counting the number of terms in the alternating sum. O

Applying Lemma 536 to the presheaf F = HP(—,Z), we obtain the following.

Corollary 5.3.7. Let m : P —= M be a principal G-bundle over M, for G a compact, simple, simply-
connected Lie group. Then, for p=0,1,2,

A HP(PV“],Z) s HP(P[k+1],Z)
1s an isomorphism if k is even, and the zero map if k is odd.
Now we finish the proof of Theorem (.31l with the following two lemmata.
Lemma 5.3.8. The map to : hoString: (M) — Stringo(M) is a bijection.

Proof. By Lemma 534 it is surjective; hence it remains to prove injectivity. Suppose (S1,[A41]) and
(82, [A2]) are objects in String; (M) such that there images under to are equal, i.e. there exists an
isomorphism B : §; — Ss. We have to construct a transformation

B:priBo Al = Ay o (priB®id)

over Y2 see (X)), so that B = (B, 8) is an isomorphism in String; (M). A priori, the two isomor-
phisms priBo A; and Ay o (pr3B ®id) are not 2-isomorphic. We recall that the category Hom(G, H)
of isomorphisms between two fixed bundle gerbes G and H over an arbitrary smooth manifold X is a
torsor over the monoidal category Bun (X) of principal U(1)-bundles over X, under an action functor

Bun(X) x Hom(G, H) — Hom(G,H) : (B, A) —= B® A, (5.3.1)

see [CIMO02]. In our situation, this means that there exists a principal U(1)-bundle B over Y2 such
that with A := B® Ay we do have a transformation

B:priBoA; = A, o (pryB®id).
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The bundle B has a first Chern class ¢;(B) € H*(YP,Z). We claim that ¢;(B) = 0, meaning that
Al 22 Ay and f is the claimed transformation; thus, to is injective.

Indeed, since (81, [A1]) and (Sz, [As2]) are objects in String: (M) = t1Triv(G), there exist transfor-
mations o1, o9 making diagram (B.II]) commutative. One can paste together o1 and § and produce
the following transformation:

pras AL®id
priS; @ prisP @ pri, P e

pr3Sz @ pri, P

v} BRidgid

1d®prss 8
prsBRid
pris A1®id

priS1 @ prizP @ priyP pr;S1 @ prisP

idoM Mgid prigAs prisAb

* * *
pr3S; @ prizP priaAs > priSi

pri Beid

priSe @ prizP

*
- pry So
priz A,

Using the relation Ay = B ® Ay and using that the action (B3.]) commutes with composition, this
transformation induces another transformation

(prizds o (prsgds ©1d)) © (pri, B & prig B@prizBY) = prizds o (id@ M)
with BY the dual bundle. On the other hand, o5 is a transformation
09 : prisAs o (prisAs ®id) => priz Az o (id@ M)

It follows that pri, B®pris B®prisBY must be trivializable, i.e. Acy(B) = 0. By Corollary 537 this
means c¢;(B) = 0. O

Lemma 5.3.9. The functor t1 is an equivalence of categories.

Proof. We know already that hot; is a bijection. This implies that t; is essentially surjective, and it im-
plies that for two objects Ty = (S1,A1,01) and Ty = (Sa, A2, 02) the Hom-sets Homy,, s (cs,y,) (T1, T2)
and Homy, v (cs,y,) (81(T1), t1(T2)) are either both empty or both non-empty. It remains to show that
t1 induces in the non-empty case a bijection between these sets. We have already seen that t; is
equivariant with respect to the hyGrb (M )-action, namely the one induced from (E2Z3]), and the action
(EZF). Over the objects (Z,Z) and (Ty, T2) these induce actions of the group

%mhlgrb (M) (I, I) = ho’HO’ITLgTb (M) (I, I) = hoBun (M)

on the sets }[Omhl'Fz’v(CSM)(Tla TQ) and %mtlﬁv(CSM)(tl(Tl)v tl(Tg)), respectively. By Lemma m
the first set is even a torsor under this action. We prove that the second is also a torsor, so that t; is
an equivariant map between torsors, hence a bijection.

We recall that the elements of Homy, iv(cs,,)(t1(T1),t1(T2)) are equivalence classes [B] of iso-
morphisms B : §§ — Sz such that there exists a transformation § as in (B2ZI). The action of
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[K] € hoBun (M) sends [B] to [r*K @ B]. This action is free because 7* : H?(M,Z) — H?*(FM,Z) is
an isomorphism by Lemma If B and B’ are both isomorphisms from &; to Sz, then by (@31
there exists a principal U(1)-bundle P on FM such that B’ = B ® P. But again, since 7* is an
isomorphism, P 2 7*K for some K in Bun(M). Hence the action is transitive. O

6 String connections and decategorification

This section is the analogue of Section[Hlin the setting with connections. We first recall the definition of
string connections and geometric string structures on the basis of [Wall3]. Geometric string structures
form a bicategory, of which we discuss various decategorified versions. At the end of a sequence of
decategorification we naturally find the notion of a differential string class.

6.1 String connections as connections on trivializations

The Levi-Cevita connection on M lifts to a spin connection A on FM; in turn it defines a connection
on the Chern-Simons 2-gerbe CSj; [Wall3| Theorem 1.2.1]. In the following we recall this construction.
We suppose first that G is a bundle 2-gerbe over a smooth manifold M as in Definition B.1.1]

Definition 6.1.1. A connection on G is a 3-form C € Q3(Y) and a connection on the bundle gerbe P
such that
pryC — priC = curv(P), (6.1.1)

and the bundle 2-gerbe product M as well as the associator j are connection-preserving.

The 3-form C' is called the curving of the connection. In case of the Chern-Simons 2-gerbe, the
announced connection is constructed using the connection A on F'M and the connection on the basic
bundle gerbe Gpqs described in Section 2.1k

e The curving is the Chern-Simons 3-form CS(A) € Q3(FM) associated to A,
CS(A) = (ANdA) + % (AN[ANA], (6.1.2)

where (—, —) is the same symmetric invariant bilinear form on the Lie algebra g of Spin(n) that
was used to fix the curvature of the basic gerbe Gy in Section 211

e The connection on the bundle gerbe P = §*Gpqs over FM? is given by the connection on 6*Gpqs
shifted by the 2-form
w:= (60 ApriA) e Q}(FMP), (6.1.3)

i.e. we have P = 0*Gpqs ® Z,, as bundle gerbes with connection. The well-known identity
CS(prsA) =CS(priA) + 6" H + dw (6.1.4)
for the Chern-Simons 3-form implies the condition (EIT]) for the curving.
e We recall that the isomorphism

M :priGpryg — m*'GRI,
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from the multiplicative structure on G, is connection-preserving. Under pullback with do :
FMP! — Spin(n)?, the 2-form p satisfies

Prisw = 03p + prisw + prazw. (6.1.5)
This permits to define a connection-preserving bundle 2-gerbe product M’ by

55 M®id
pri;P @ pripP = 63 (priG @ pr3G) @ Lovp w50 ——> 05m*G @ Tpes o = PrisP-

e The connection-preserving transformation « from the multiplicative structure on Gp.s gives a
connection-preserving associator.

If a bundle 2-gerbe G is equipped with a connection, and T = (S, A, o) is a trivialization of G,
then a compatible connection on T is a connection on the bundle gerbe S such that the isomorphism
A and the transformation ¢ are connection-preserving.

Definition 6.1.2 ([Wall3| Definition 1.2.2]). Let T be a string structure on M. A string connection
on T is a compatible connection on T. A geometric string structure on M is a pair of a string structure

on M and a string connection.

Geometric string structures form a bicategory StringY (M) := TrivV(CSys), with 1-morphisms and
2-morphisms defined exactly as in the setting without connections, just that all occurring isomorphisms
and transformations are connection-preserving [Wall3] Remark 6.1.1]. We recall the following results
about string connections for later reference.

Theorem 6.1.3 ([Wall3| Theorems 1.3.4 and 1.3.3]).
(i) Every string structure admits a string connection.

(ii) For every geometric string structure T = (S, A, o), there ezists a unique 5-form K € Q3(M) such
that m* K = CS(A) + curv(S).

6.2 Decategorified string connections

Just like in the setting without connections, we may consider various truncations of the bicategory
TrivY(G) for a general bundle 2-gerbe G with connection. So we have categories hy 7rivV(G) and
t17rivY(G) and a functor

tY i TrivY(G) — t, TrivV(G).

Further we have three sets ho7rivV(G), hot1 TrivV(G) and toTrivV(G), and maps

h[)tlv

Lo Triv¥(G) —s b (t1 TrivV(G)) —2> to TrivV(G).

The passage from the setting with connections to the one without connections is attended by
a 2-functor F» : TrivV(G) — Triv(G), a functor Fy : t;TrivY(G) — t;Triv(G), and a map
Fo: t2TrivY(G) —= toTriv(G). Tt is fully consistent with the various functors and maps introduced
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above, in the sense that the diagrams

hlﬁivV(G) — tlﬁivV(G) homUV(G) — hotlmUV(G) — tg%‘i’l)v(@)

thZL jFl hOFZL LhoFl LFO (6.2.1)

hlmU(G) S tlﬁiv(G) ho%‘i’l)(G) — hotlmU(G) —_— tg%‘i’l)(@)
of functors and maps, respectively, are commutative.

We have again various actions. The bicategory TrivV(G) is a torsor for the monoidal bicategory
GrbV(M) of bundle gerbes with connection over M [Wall3, Lemma 2.2.5]. As before, a bundle gerbe K
with connection over M acts on a trivialization T = (S, A, o) with compatible connection by sending
it to (MK ®S,id® A, id® o). Correspondingly, the category hy TrivV(G) is a torsor category over the
monoidal category hiGrbY(M), and the set ho7rivV(G) is a torsor over the group hoGrbY(M).

In the same natural way, the monoidal category hyGrbY(M) acts on the category t; 7rivV(G) such
that the functor tY is equivariant, and the group hoGrbY(M) acts on the set toTrivY(G) such that the
map ty is equivariant.

Now we specialize to the case of the Chern-Simons 2-gerbe G = CS,;, and discuss the bicat-
egory StringV(M) = TrivV(CSys) of geometric string structures, the two categories hyString™ (M)
and Stringy (M) := t;Triv¥(CSys) of geometric string structures, and the three sets hoStringY (M),
hoStringy (M), and String) (M) := t2TrivY(CSys) of geometric string structures. We first note the fol-
lowing result about the passage from the setting with connections to the setting without connections.
Proposition 6.2.1.

(i) The 2-functor Fy : Stringy (M) — String(M) is essentially surjective.
(ii) The functor Fy: Stringy (M) — String; (M) is essentially surjective.
(i) The map Fy: Stringy (M) —= Stringo(M) is surjective.
Proof. (i) is Theorem [E.1.3] (). It follows that the functor hy F is essentially surjective, and that the

map hoF» is surjective. Then, () and (i) follow from the commutativity of the diagrams (G.2.I]) and
Theorem (311 O

Next we present the main theorem of this section, which is the analogue of Theorem (.31l in the
setting with connections.

Theorem 6.2.2. The functor
tY : hyStringV (M) — Stringy (M)

is an equivalence of categories; in particular, it is an equivariant functor between hiGrbY(M)-torsors.
The map
ty : hoStringy (M) — Stringy (M)

18 a bijection; in particular, it is an equivariant map between ﬁ3(M )-torsors.

Here, H™ (M) stands for the differential cohomology of M. We recall from that the degree
n differential cohomology of a smooth manifold X is a group H"(X) that fits into the exact sequences

0 — Q1 (X) —= Q" H(X) —= H"(X) —= H"(X,Z) —= 0
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and
R

0 ——=H""1(X,U(1)) —= H"(X) —= Q7 ,(X) —=0,
in which QF, ;(X) denotes the closed n-forms on X with integral periods. Bundle gerbes with connec-
tion are classified by degree three differential cohomology in terms of a differential Dixmier-Douady
class DD : hoGrbY(X) — H3(X); the map ¢ : H*(X) — H3(X,Z) corresponds to projecting to the
underlying (non-differential) Dixmier-Douady class, the map R : H3(X) — Q2 (X)) corresponds to
taking the curvature, and the map a: Q2(X) — H3(X) corresponds to taking the trivial bundle gerbe
1, associated to a 2-form p.

In the remainder of this section we prove Theorem [6.2.2] see Lemmata [6.2.5] and [6.2.6 below. First
we generalize one aspect of the Serre spectral sequence calculation of Lemma [(.3.2] from ordinary
cohomology to differential cohomology.

Lemma 6.2.3. The pullback 7 : H¥(M) — H3(FM) is injective.

Proof. Let 5 € fl3(M) We show that 7 # 0 implies 77 # 0. Indeed, if the underlying class
n = c(f) € H3(M,Z) is non-zero, than 7*n # 0 because of Lemma [5.3.2) and so is 7*7) # 0. If n = 0,
then = a(p) for a 2-form p € Q?(M). Since 7 is a surjective submersion, 7* is injective. Thus,
if 1 is not closed, then 7*p is also not closed and 7*7) = a(7*u) must be non-trivial. It remains to
discuss the case that p is closed but its class is not integral. Then, 7*u is also closed. By Lemma
BE32 7 : H3(M,Z) — H?(FM,Z) is an isomorphism, so since y is not integral, 7*u is not integral.
Hence 7*7) is non-trivial. 0

Corollary 6.2.4. The actions of H*(M) = hoGrbV (M) on hoStringY(M) and Stringy (M) are free.

Proof. These actions are defined by pullback (injective by Lemma [6.23]) and then addition in the
group H3(FM). a

Now we are in position to prove the first part of Theorem [6.2.7
Lemma 6.2.5. The functor tY : hiStringY (M) — StringY (M) is an equivalence.

Proof. Part I of the proof is to show that tY is essentially surjective. We consider an object
(S,[A]) in Stringy (M) = t;TrivY(CSys), i.e. S is a bundle gerbe with connection over FM, and
A:priS®@P — priS is a connection-preserving l-isomorphism such that there exists a connection-
preserving transformation o as in (&I.1]). A priori, o does not satisfy the compatibility condition with
the associator p of CSyy, see Figure [l We show that it yet does, using the assumption that it is
connection-preserving. The error in the commutativity of the diagram of Figure [I] is a smooth map
e: FM™ — U(1). Since both p and ¢ are connection-preserving, € is locally constant. Since M is
connected, FM and all fibre products FM!¥ are connected, in particular FM®. Thus, € is constant.
From the pentagon axiom for p over FMDP! it follows that Ae = 1. Since Ae has five terms, which
are all equal as € is constant, this implies ¢ = 1. Thus, o automatically satisfies the compatibility
condition, (S,.A, ) is a geometric string structure, and a preimage of (S, [A]) under tY. Hence, tY is
essentially surjective.

Part II of the proof is to show that tY is full and faithful. First of all, we note that the map hoty’
is equivariant under free actions and defined on a torsor, and thus injective. We have just proved
that it also is surjective; hence, hot} is a bijection. Now we proceed similar to the proof of Lemma
539 That hoty is a bijection implies that for two objects T1 = (S1,.A1,01) and Ty = (Sa, Az, 02)
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of hyString¥(M) the Hom-sets Homu, springv(ar)(T1, T2) and HOM String ¥ (1) (tY (Ty),tY (T2)) are either
both empty or both non-empty. It remains to show that t) induces in the non-empty case a bijection
between these sets.

The action of the monoidal bicategory Bun (X) on the category of homomorphisms between two
fixed bundle gerbes over X, see [B.3.1] has a counterpart in the setting with connections, namely an
action

Bun¥(X) x Hom¥ (G, H) —= Hom" (G, H) (6.2.2)

of the monoidal category of principal U(1)-bundles with flat connections on the category of connection
preserving isomorphisms between G and H, and connection-preserving transformations. This action
exhibits again Hom" (G, H) as a torsor over Bun“o(X).

The functor t} is equivariant with respect to the h;GrbY (M )-actions. Over the objects (Zy,Zy) and
(T, T3) these induce actions of the group

Hom, grue(an) (Zo, Zo) = hoHomgv(an (Zo, To) = hoBun°(M)

on the sets Homy,, springv(ar) (T1, T2) and Homgyigv(ary (t1(T1), t1(T2)), respectively. The first set is a
torsor under this action. We prove that the second is also a torsor, so that tY is an equivariant map
between torsors, hence a bijection.

We recall that the elements of Homsyngv(ar)(t1(T1),t1(T2)) are equivalence classes [B] of
connection-preserving isomorphisms B : & —= &3 such that there exists a connection-preserving
transformation § as in (B.2.1). The action of [K] € hoBun“o(M) =2 H' (M, U(1)) sends [B] to [7* K®B].
This action is free because 7* : HY(M, U(1)) — HY(FM,U(1)) is an isomorphism by Lemma
If B and B’ are both connection-preserving isomorphisms from &; to Sa, then by ([6.2:2)) there exists
a flat principal U(1)-bundle P on FM such that B’ = B® P. But again, since 7* is an isomorphism,

=~ 7*K for some K in Bun“°(M). Hence the action is transitive. O

The second part of Theorem [6.2.2]is proved by the following lemma.
Lemma 6.2.6. The map t3 : hoStringy (M) —= Stringy (M) is a bijection.

Proof. ty is equivariant with respect to free actions and is defined on a torsor. Hence it is injective.
Now we prove that it is surjective. Consider an element in Stringy (M), represented by a bundle gerbe
S with connection over F'M that admits a connection-preserving isomorphism A : priS®P — priS.
The existence of a connection-preserving transformation o as in (G.I1]) is obstructed by a flat principal
U(1)-bundle A over Yl i.e. there exists a connection-preserving transformation

o: (prigAo (prisA®id)) ® A => prizAo (id @ M).

Since flat principal U(1)-bundles are classified by H'(X,U(1)), we infer from Lemma that this
bundle is the pullback of a flat bundle A’ over M along 73: Yl — M. Now we consider A’ := Azms A’,
which is another connection-preserving isomorphism A": priS ® P — priS. Then, ¢ induces the
required transformation for A’. This means that (S, [A]) is an object in Stringy (M) = t1TrivY (CSy)
with t3 (S, [A]) = [S]. O

6.3 Differential string classes

With Theorem [6.2.2] proved in the previous subsection we are well prepared to introduce an analog of
string classes in the setting with connections — we call it differential string classes. Like string classes,

,44,



differential string classes have the advantage to be based solely on differential cohomology theory, and
no bundle gerbe theory is needed.

We let 4:= Bﬁ(gl,as) € H?3(Spin(n)) denote the differential cohomology class of the basic gerbe, with
underlying class v € H3(Spin(n),Z). As explained in Section Bl this class is uniquely determined by
just the 3-form H. We let & := a(w) € H3(FM?!) denote the differential cohomology class associated
to the 2-form w of (GIL3).

Definition 6.3.1. Let M be a spin manifold with spin-oriented frame bundle FM. A differential
string class is a class & € H3 (FM) such that the condition

prié + 6*4 4+ & = prié (6.3.1)
over FMUP is satisfied, where pry,pry FMP — FM are the two projections, and
§: FMP — Spin(n) is the difference map (i.e. p'-(p,p’) = p).

We denote by StrCIY(M) the set of differential string classes. Condition (6.3.0]) implies

4 = i€ € H3(Spin(n)) (6.3.2)
for all p € FM and i, : Spin(n) — FM : g +— pg the inclusion of the fibre of p. Indeed, for
jp : Spin(n) — FMP: g — (pg, p) we have

Jaw = ja (0" 0 ApriA) = (0 Ay A) = (O A 0) = 0.

Further we have j:0*4 = 4 and j;prEé =0 and j;pr*{é = L;é and so the pullback of (G31) is (632).

Under the projection c : fl3(X ) — H3*(X,Z) from differential to ordinary cohomology, condition
([632) becomes the condition for string classes. In other words, ¢ induces a well-defined map

c: StrClY(M) — StrCl(M)
from differential string classes to ordinary string classes.

Remark 6.3.2. Above considerations raise the question of whether we could replace the defining

condition (B30 by condition ([B3.2). However, this is not the case. In order to see this, let £ be a
differential string class. Let u € Q*(M) and f € C>°(FM,R) satisfy the following assumptions:

e /i is closed and non-zero at at least one point x € M.

e df is non-zero at a point p € FM in the fibre over z, and df = 0 at another point p’ € FM in
the same fibre.

Such p, f clearly exist. We consider the class ¢ = a(e) € H3(FM) associated to the 2-form e:= f-7*p €
Q2(FM). We have de = df An*u+ f-7*du = df Am*pu. This is non-zero at the point p, in particular,
e is not closed and € # 0 € H3(FM). We show that &' := £ + ¢ satisfies ([£3.2) but is not a differential
string class. Firstly, we have iye = iy f - iym*p = 0, since 7 o i), is constant. Thus, i, = z;é = 7.
Secondly, we have d(prie —prie) = d(pri f —prs f) - pr*u, which is non-zero at the point (p, p’) € FM?2.
In particular, prié # prié € H3(F M), Thus, condition B3] is not satisfied.

We have an action of H3(M) on the set StrCI¥(M) of differential string classes, defined by
(1), &) = 77+ &. Under the projection to ordinary string classes, it covers the action of H3(M,Z) on
StrCl(M). The differential Dixmier-Douady class gives a H?(M)-equivariant map

StringY (M) — StrCI¥(M) : [S] —= DD(S).
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This map is a bijection, because DD is a bijection and the conditions on both sides are the same.
Thus, we may identify the set of differential string classes with the set Stringy (M) introduced in the
previous section. With this identification, Theorem applies to differential string classes, and we
obtain the following result.

Theorem 6.3.3.

(i) The set StrCIY(M) of differential string classes is non-empty if and only if M is a string manifold;
in this case it is a torsor over H3(M).

(i) The map -
hoString (M) —= StrCI¥(M) : (S, A, o) —= DD(S)

s a ﬁg(M)—equivariant bijection between isomorphism classes of geometric string structures and
differential string classes.

(iii) The projection from differential string classes to ordinary string classes,
StrClY (M) — StrCl(M), (6.3.3)
is surjective and its fibres are torsors over O*(M)/QZ; ,(M).

() For every differential string class & there exists a unique 3-form K € Q3(M) such that 7K =

CS(A) + R(&) as 3-forms over FM.

Proof. By Theorem @ and Corollary @), M is a string manifold if and only
if it admits geometric string structures. By Theorem we have H?(M)-equivariant bi-
jections hoStringV(M) = Stringy(M) = StrCIY(M); this shows (i) and (ii). The projection
StrCl¥(M) — StrCI(M) is a map from a H?(M)-torsor to a H?(M, Z)-torsor, and equivariant along
the projection ¢: H*(M) —= H*(M,Z). This projection is surjective and has kernel Q*(M)/QZ ,(M);
this shows (iii). Assertion (iv) is Theorem [6.1.3 (). O

7 Transgression of string geometry

In [Walal Section 5.2] and [NW13] we have described transgression for bundle 2-gerbes G with con-
nections and with loopable surjective submersions, i.e. surjective submersions 7 : Y — M for which
Lm: LP — LM is again a surjective submersion. Suppose G is such a bundle 2-gerbe over M, with
loopable surjective submersion 7: Y —= M, a curving 3-form C' € Q3(Y), over Y2l a bundle gerbe
P with connection, and over Y3 a connection-preserving bundle 2-gerbe product M with associator
t. Then, the bundle gerbe 7 over LM with connection and internal fusion product is given as fol-
lows: the surjective submersion is Lw : LY — LM, the curving is —7q(C) € Q*(LY), the principal
U(1)-bundle with connection and fusion product over LY ?l is 75, and the connection-preserving,
fusion-preserving bundle gerbe product over LY Bl is Fy4.

Theorem 7.1. The transgression of the Chern-Simons 2-gerbe CSyy is canonically isomorphic to the
spin lifting gerbe Spar as bundle gerbes with connections and internal fusion products, where Sy is
equipped with the connection (Xspin, Bspin) constructed in Section[{.3
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Proof. The bare isomorphism has been constructed in [NWT3| Proposition 6.2.1], and in [Walal
Proposition 5.2.3] it is proved that it is fusion-preserving. We only have to prove that it is connection-
preserving, and for this purpose we have to recall the construction.

We start by noticing that both bundle gerbes, Jts,, and Spas, have the same surjective submer-
sion Lm : LFM — LM. The curving of Jts,, is —m(CS(A)), and the curving of Spas is Bspin
from Proposition These two 2-forms on LFM coincide [CP98, Eq. 24]. The bundle gerbe
Tes,, has over LEMP! the principal U(1)-bundle Zp, where P := 6*Gpes ® I, equipped with a
connection vp and an internal fusion product Ap induced/f@n transgression. The bundle gerbe Sy s
has over LFMP! the principal U(1)-bundle P = L&*LSpin(n) = L§*Jg,,., equipped with the fu-
sion product Ld*)Ag,,. and the connection xspi, defined in (@23). Naturality of transgression and
the canonical connection-preserving, fusion-preserving bundle isomorphism 77, = I, provide a
connection-preserving, fusion-preserving isomorphism

Ip = L6* Tg,,, @ T1, = L6 Tg,,, @1 ().

In the first place, this is an isomorphism
Ip =P (7.1)

between the principal U(1)-bundles of the two bundle gerbes. It commutes with the bundle gerbe
products ([NW13| Proposition 6.2.1]) and so we have completed the construction of an isomorphism
Ttsy = Spm- Moreover, the isomorphism (7)) is fusion-preserving for the fusion product Ap on the
left and Ld*Ag,,, on the right, as I, is equipped with the trivial fusion product. Finally, it is
connection-preserving for the connection vp on the left and Lé*v + 7q(w) on the right: we show below
in Lemma the equality

mo(w) =§ — %AC

of 2-forms on LEM? where ¢ and ¢ are defined in [@I4) and [@EZZ), respectively. This shows that
L§*v + 1a(w) = Xspin- Thus, (TI)) is connection-preserving. O

Lemma 7.2. The transgression of the 2-form w € Q*(P?) of (@13) is

To(w) =& - %AC,
with & and ¢ the differential forms defined in [({-134]) and ([§-2-3), respectively.
Proof. We use the reformulation
w = (6*0 ApriA) = ("0 Apr;A) .

Then, we calculate for tangent vectors Xy € T, LP, Xo € T, LP, and their differences 6 := Ld(11,72) €
LG and Y := dLé(X1, Xs) € T5LG:

TQ(W)(7y,m2) (X1, X2)
1
= /Ow(n(z),rz(z))((azﬁ(z)aasz(Z))a(X1(2)7X2(Z)))d2
= [ B8 A (ae) dz = [ (VT A 0ma(a))

1
(5 - iAC)lleTz(le*Xb)a
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where the last step is obtained using Lemma (.16l 0

We are now in position to provide the second half of the main result of this article, an equivalence
between string structures in M and trivializations of the spin lifting gerbe.

Theorem 7.3. Let M be a connected spin manifold. Then, transgression and regression functors
induce an equivalence of categories,
Fusion trivializations of Sy with
Stringlv(M ) & superficial fusive connection
compatible with (X spin, Bspin)
This equivalence is equivariant with respect to the action of h1GrbY(M) on the left hand side and
the action of FusBun“*(LM) on the right hand side, under the equivalence between these monoidal

categories. Moreover, if K € Q3(M) is the 3-form associated to a geometric string structure by Theorem
@), and p € Q*(LM) is the covariant derivative of the corresponding trivialization of Spar, then

TQ(K) = —p.

Proof. The purpose of the category Stringy(M) introduced in Section was that its definition
is purely in terms of the presheaf hiGrbY: its objects are pairs (S, [A]) consisting of an object S in
h1GrbY(FM) and a morphism
[A] : pr;S®@P — priS

of hyGrbY(FMP]) such that an equality of morphisms of hiGrbV(F M) holds, namely (ELI). Like-
wise, the morphisms of StringY(M) are morphisms [B] : & — &' of hiGrbV(FMP) such that an
equality of morphisms of h;GrbV(FMBl) holds, namely (G2). Now, we recall from Theorem
that transgression and regression form an equivalence

hyGrbV(X) = FusBun“(LX)
that is natural in X and monoidal. Hence, Stringy(M) is equivalent to the following category:
e An object is a pair (T, k) of an object T in FusBun“*(LFM) and a morphism
Kk:praT ® Ip — priT
in FusBun“(LEFM!?) such that the equality

progk®id

priT" ® prs Ip @ priy Ip pr3 T @ priy Ip

id®Tpq L [pr’bn

praT @ pris Ip priT

prizK
of morphisms of FusBun“*(LF M) holds.
e A morphism is a morphism ¢ : T — T’ in FusBun¥*(LF M), such that the equality
pr3T @ Tp ——priT
préwt Lpr’{so
pr3T’ ® Ip — priT’

of morphisms in FusBun“(LF M) holds.
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This is precisely the category of fusion trivializations of Jrs,, with superficial fusive connection com-
patible with (vp,7q(CS(A))), the connection on the transgression of the Chern-Simons 2-gerbe. The
connection-preserving, fusion-preserving isomorphism of Theorem [l identifies this category with the
claimed one.

The equivariance under the h; GrbY(M)-actions follows immediately from the definitions. Suppose
K € Q3(M) is the 3-form associated to a string structure (S, [A]), i.e. 7*K = CS(A) + curv(S), then
To(K) satisfies

Lr*1q(K) = 10(CS(A)) + ma(curv(S)) = —Bgpin — curv(Js),

see [CP98, Eq. 24] and [22.2). Thus, —7q(K) is the covariant derivative of (Js, T4). O

Now we come to the correspondence between string structures and trivializations of the spin lifting
gerbe in the setting without connections.

Theorem 7.4. Let M be a connected spin manifold. Then, regression induces an equivalence

between the homotopy category of thin fusion trivializations of the spin lifting gerbe Sy and the
category of string structures on LM . This equivalence is equivariant with respect to the action of
hFusBun™(LM) on the left hand side and the action of hiGrb(M) on the right hand side, along the

equivalence between the two monoidal categories.

Proof. We proceed as in the proof of Theorem [(:3] now using the equivalence
hFusBun'™(LX) 2 h1Grb(X)

established by the regression functor %, which is natural in X, monoidal, and depends on the choice of
a point = € X. Choosing a point p € FM (and then using the point (p, ..., p) € FM¥ in all higher fibre
products) we find an equivalence K : C — String; (M), where C stands for the following category:

e An object is a pair (T, k) of an object T in hFusBun'*(LFM) and a morphism
k:pral @ Ip — priT
in hFusBun™(LF M) such that the equality
T, k®id
prT ® pris Ip @ priy Ip T

1dRT s L [pr’{yﬂ (7.2)

pr3T @ priz Ip

pry;T ® priy, Ip

pr;T

prigk
of morphisms of hFusBun™(LF M) holds.

e A morphism is a morphism ¢ : T —= T’ in hFusBun™(LFM?), such that the equality

pr3T ®@ Ip —"—priT

prSw[ [pr’{sa (7.3)

pr3T’ ® Ip — pryT’

of morphisms in hFusBun(LFMPl) holds.
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The connection-preserving, fusion-preserving isomorphism between J¢s,, and S induces an equiv-
alence between C and a category C’ obtained from C by replacing 7p by the principal U(1)-bundle P
of Spar and I by the bundle gerbe product p of Sppy.

Now we go into the details of the category 77"1'1);“}; (Spar) of thin fusion trivializations of the spin
lifting gerbe, as introduced in Definition The category C’ receives a functor

K': 7’7“2’0}38(8[‘1\/[) —
defined in the following natural way:

e It takes a thin fusion trivialization (7, k,\,d) and sends it to the pair composed of the ob-
ject (T,\,d) in FusBun™(FM) and of the homotopy class of s, which is a morphism in
hFusBun'™(LF MP) making diagram () commutative.

e A morphism ¢ between thin fusion trivializations (T, k, A, d) and (T”, k', N, d’) is sent to its ho-
motopy class, which is a morphism in hFusBun(LFM). The condition, i.e. the commutativity
of diagram (Z3)), is exactly the same as in Definition B2

We obtain a commutative diagram of categories and functors,

Fusion trivializations of Sz o -
with compatible superficial e Stringy (M)
fusive connection

L A (7.4)

K
Since the functor F} is essentially surjective (Proposition (@), and the functor on the top is an
equivalence (Theorem [[3)), it follows that K’ is essentially surjective. It is also full: suppose ¢ is a
morphism in C'. Tt is represented by a fusion-preserving, thin bundle morphism ¢ : T —= T’ such
that diagram (T3)) is commutative in hFusBun®(LFM?!). This means that the representative ¢ is a
morphism in 77“2'1);1}25 (Spar)-

However, the functor K’ is not faithful. This problem is solved by passing to the homotopy category
of thin fusion trivializations, h’ﬁiv;ﬂs (Spar). We note that the functor K’ is well-defined on the
homotopy category, i.e. it induces a functor hK’ making the diagram

mvﬁ’;(SLM) LC’

hK'

h%iv;l}}s (SLM)

strictly commutative. Indeed, a morphism on the left is a class [¢] of morphisms between thin fusion
trivializations, in which two morphisms ¢ and ¢; are identified, if there exists a homotopy through
morphisms of 77"1'1;.;[; (Sear). Such a homotopy is, in particular, a homotopy through fusion-preserving,
thin bundle morphisms. Thus, hK'([¢]) := [¢] is well-defined.

As the projection W‘iv}u}fs (Spav) — hW‘iv}u}fs (Srar) is surjective, we deduce from the fact that K’
is essentially surjective and full, that hK’ is essentially surjective and full, too. It remains to show
that hK’ is faithful. Suppose o and ¢; are morphisms in Triv ;7]}5 (Srar), such that they are equal in
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C’. That is, there exists a homotopy h between @g = hg and ¢ = hy through fusion-preserving, thin
bundle morphisms h; : T —= T, identifying ¢o and o1 in hFusBun'*(LFM). We show that the same
homotopy h is a homotopy through morphisms in 7riv ;775 (Seam), ie. the diagram

K

prsl’'® P

prs hﬂ@idt lpr’l‘ht (75)

pr3T’ @ P ——— priT’
K

pr;T

commutes in hFusBun™(LFMP)) for all t € [0, 1]. Indeed, as ¢y and ¢; are morphisms in 7?“21);35 (Scar)
the diagram commutes for t = 0 (and ¢ = 1). That is, there is a homotopy H between pripg o s = Hy
and £’ o (pripo®id) = H; through fusion-preserving, thin bundle morphisms Hy : pr37T®@ P — priT.
Now we have the following homotopies:

1. from prih; o k to prigo o K, namely s = prihy_s 0k
2. from pripp o k to k' o (priwe ®id), namely s — Hy
3. from £’ o (pripo ®@id) to k' o (prih; ®id), namely s — &’ o (prihg ®id)

These can be concatenated to a smooth homotopy showing that diagram (T3 is commutative in
hFusBun™(LFM). O

8 Proof of Theorem [Al

The various functors we have introduced form the commutative diagram of Theorem [Al

Fusion trivializations

Spin(Larf BRSO e e 1 B String (M) R String (1)

superficial connection
l Fy hy F»

Homotopy category of

thin fusion
» Stringy (M String(M).
rop. trivializations of the e i )mh 15tring(M)

spin lifting gerbe Spas

hSpinﬁ’;(LM 1)’

The separate diagrams have been discussed in Section 2] see ([L24]), in Section [1 see (T4), and in
Section [6.2] see (G22Z]). The arrows are labelled with references to those statements where we have
proved that they are equivalences of categories and have the claimed equivariance properties.

If M is not a string manifold, String(M) is empty. Thus, all categories in above diagram must be
empty since they have functors to hy String(M). Now suppose M is a string manifold. Then, String(M)
is non-empty. Since the functor F is essentially surjective by Theorem @), StringV(M) is non-
empty, too, and so are all other categories in the diagram. It also follows that all vertical functors in
the diagram are essentially surjective.
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