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String geometry vs. spin geometry on loop spaces

Konrad Waldorf

Abstract

We introduce various versions of spin structures on free loop spaces of smooth manifolds, based

on a classical notion due to Killingback, and additionally coupled to two relations between loops:

thin homotopies and loop fusion. The central result of this article is an equivalence between these

enhanced versions of spin structures on the loop space and string structures on the manifold itself.

The equivalence exists in two settings: in a purely topological one and a in geometrical one that

includes spin connections and string connections. Our results provide a consistent, functorial,

one-to-one dictionary between string geometry and spin geometry on loop spaces.
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1 Introduction

One perspective to classical two-dimensional field theories on a Riemannian manifold M , also known

as sigma models, is to regard them as one-dimensional field theories on the free loop space LM : the

points of LM are the “closed strings” in M . For example, if we want to understand the coupling of

strings to gauge fields, this perspective makes us study principal bundles with connections over LM .

And if we want to understand fermions, it lets us ask for spin structures on loop spaces.

In order to study fermions on an oriented, n-dimensional Riemannian manifold, one has to lift the

structure group of the frame bundle of M from SO(n) to a covering group that admits appropriate

unitary representations, Spin(n). Analogous steps on the loop space require, in the first place, to

choose an orientation: a reduction of the structure group of LM , namely LSO(n), to the connected

component of the identity, LSpin(n), see [Ati85, McL92]. Such a reduction can, for instance, be induced

from a spin structure on M . In the next step, one observes that LSpin(n) has no appropriate unitary

representations. It only has projective ones, i.e. representations of its universal central extension,

1 // U(1) // ˜LSpin(n) // LSpin(n) // 1. (1.1)

Thus, we require a lift of the structure group of LM from LSpin(n) to this central extension; such a

lift is called a spin structure on LM [Kil87]. We remark that an important difference to ordinary spin

structures is that the central subgroup of the extension (1.1) is the continuous group U(1) instead of

the discrete group Z/2Z. One effect of this difference is that it is non-trivial to lift a given connection

on the frame bundle of LM to a connection on the lifted bundle, a spin connection [CP98]. Every spin

structure on LM admits a spin connection [Man02], but there might be non-equivalent choices.

Deficits of the loop space theory

Returning to the attempt to understand the coupling of strings to gauge fields via, say, principal U(1)-

bundles with connection over loop spaces, one soon encounters the problem that not all aspects of the

two-dimensional theory can be described in terms of such bundles. For example, if two strings join in

form of a pair of pants, there is no sensible way to describe the gauge field coupling of this process

solely in terms of a bundle over LM . This deficit of the loop space theory has lead to the development

of B-fields , structure defined on the manifold itself that fulfills all requirements for a gauge field for

strings. Nowadays it is well understood that a B-field is a U(1)-gerbe with connection [Gaw88, Bry93].

The relation between gerbes overM and bundles over LM can be understood on a cohomological level

in terms of a transgression homomorphism

τ : Hn(M,Z) // Hn−1(LM,Z), (1.2)

which for n = 3 takes the Dixmier-Douady class of a gerbe overM to the first Chern class of a principal

U(1)-bundle over LM . Various differential-geometric versions of the transgression homomorphism have

been developed that also include connections on both sides [Bry93, GR02, Wal10]. A general fact is

that transgression is not injective; this loss of information explains precisely the above-mentioned

deficit of the loop space theory for gauge fields.

A similar phenomenon has been observed for geometric spin structures on loop spaces, i.e. spin

structures with spin connections. For the consistency of the fermionic theory (a version of the super-

symmetric sigma model) it is necessary to trivialize a certain Pfaffian line bundle over the mapping

spaces of closed spin surfaces into M [Fre87, FM06]. A spin structure on the loop space only provides
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such trivializations over the mapping space of genus one surfaces. In order to remedy this deficit

(among other issues) Stolz and Teichner have proposed a notion of a geometric string structure on

M , consisting of a string structure and a string connection [ST04]. Spin manifolds that admit such

structures are called string manifolds ; they are characterized by the vanishing of the first fractional

Pontryagin class 1
2p1(M). The proof that a geometric string structure indeed provides trivializations

of the Pfaffian line bundle over mapping spaces of arbitrary surfaces was provided later by Bunke

[Bun11] based on a gerbe-theoretical formulation of geometric string structures introduced in [Wal13].

Additionally, that formulation allows to define a transgression procedure for geometric string struc-

tures onM , analogous to the homomorphism (1.2), that results in spin structures on LM [Wala]. This

transgression procedure is again afflicted with a loss of information [PW88], explaining the limitation

of the loop space theory to genus one surfaces.

We remark that several other aspects are not yet understood, neither in terms of spin geometry

on LM nor in terms of string geometry on M . Examples are the Dirac operator on LM postulated

by Witten [Wit86], or the Höhn-Stolz conjecture [Sto96]. The quest for methods to attack problems

like these is the motivation for studying relations between geometry on M and geometry on LM . The

purpose of the present article is to contribute a new instance of such relations: an equivalence between

(geometric) string structures on M and a version of (geometric) spin structures on LM .

Thin homotopy and loop fusion

We return to the above-mentioned transgression of gerbes (with connection) over M to principal

U(1)-bundles (with connection) over LM , suffering from a loss of information. It turns out that one

can equip U(1)-bundles over loop spaces with additional structures, in such a way that an inverse of

transgression can be defined, and an equivalence between gerbes over M and versions of U(1)-bundles

over LM is achieved; see [Wal12b, Walb, Wal12c] or [KMa, KMb] for an alternative approach. The

relevant additional structures couple U(1)-bundles over LM to two operations that only exist in loop

spaces (rather than in general manifolds): thin homotopies and loop fusion. Roughly speaking, thin

(a) A homotopy between loops,

regarded as a tube.

(b) Two loops with a common

segment.

homotopies are homotopies between loops that have “zero area” when regarded as tubes in M as

shown in Figure (a). The relevance of thin homotopies has been noticed in axiomatic approaches to

the parallel transport of connections on bundles and gerbes [Bar91, SW09]. A thin structure on a

principal U(1)-bundle P over LM is a way to identify consistently the fibres of P over thin homotopic

loops. A connection on P is called superficial , if such a thin structure can be induced by parallel

transport along a thin homotopy (independently of the choice of the thin homotopy).

The second operation, loop fusion, joins two loops along a common segment, see Figure (b). A

fusion product on a principal U(1)-bundle P over LM is a structure that lifts loop fusion to the

fibres of P . These additional structures furnish a category FusBunth(LM) of principal U(1)-bundles

over LM equipped with fusion products and thin structures, and another category FusBun∇sf(LM) of
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principal U(1)-bundles over LM equipped with fusion products and superficial connections. These two

categories are “loop space duals” of the bicategories Grb (M) of gerbes over M and Grb∇(M) of gerbes

with connection over M , respectively. These dualities can be expressed in terms of a commutative

diagram

FusBun∇sf(LM) //

��

h1Grb
∇(M)

��
hFusBunth(LM) // h1Grb (M)

(1.3)

of monoidal categories and functors, in which the horizontal arrows are equivalences and the vertical

arrows describe the passage from the setting “with connections” to the one “without connections”.

The symbol h1 stands for the truncation of a bicategory down to a category and the symbol h stands

for the homotopy category (where bundle morphisms become identified if they are homotopic). The

horizontal functors in the diagram are called regression as they are inverse to transgression; we refer

to [Wal12c] for a more detailed exposition.

The equivalence on top of the diagram explains how the deficit of the loop space theory of gauge

fields for strings has to be compensated, namely by the addition of a fusion product and the requirement

that the connection be superficial. Indeed, a fusion product provides exactly the structure needed in

order to account for the joining of two strings in form of a pair of pants, see the discussion in [Walb,

Section 5.3].

Results of the present article

In the present article we discuss an equivalence between the string geometry on M and versions of

spin geometry on the loop space LM . The first part of this article is concerned with determining how

exactly these versions have to be defined, and the second part is concerned with the proof that they

serve their purpose and yield the claimed equivalence.

We introduce two versions of spin structures on loop spaces: a category Spin th
fus(LM) of thin fusion

spin structures (Definition 3.1.5) and another category Spin
∇sf

fus(LM) of superficial geometric fusion

spin structures (Definition 4.1.9). As the terminology suggests, our strategy is to equip Killingback’s

original spin structures with structures that have already proved themselves: fusion products, thin

structures, and superficial connections. The main issue is to connect these structures correctly to

action of the central extension ˜LSpin(n) on the spin structure. Therefore, we start the first part of

the present article by revisiting loop group geometry through transgression of multiplicative gerbes,

bringing fusion products, thin structures, and superficial connections in context with central extensions

of loop groups.

The categories Spin th
fus(LM) and Spin

∇sf

fus(LM) are related, respectively, to the bicategories String(M)

and String∇(M) of string structures and geometric string structures introduced in [Wal13] as bicategory

of trivializations of the Chern-Simons 2-gerbe. The relation is established by regression functors that

are inverse to the above-mentioned transgression procedure for geometric string structures. The main

result of this article is the following.
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Theorem A. Let M be a connected spin manifold of dimension n = 3 or n > 4. There is a

commutative diagram of categories and functors,

Spin
∇sf

fus(LM) //

��

h1String
∇(M)

��
hSpin th

fus(LM) // h1String(M).

If M is string, all categories in the diagram are non-empty, and the following results hold:

(i) The horizontal functors are equivalences of categories, and the vertical functors are essentially

surjective.

(ii) The diagram is a torsor over the diagram (1.3) in the sense that each category is a torsor over

the monoidal category in the corresponding corner of (1.3), and each functor is equivariant along

the corresponding functor in (1.3).

If M is not string, then all four categories in the diagram are empty.

Here, a category is a torsor over a monoidal category if it is a module for that monoidal category

and the action is free and transitive in a sense explained later.

We spell out explicitly what Theorem A implies upon passing to isomorphism classes of objects, an

operation that we denote by the symbol h0. The set h0String(M) can be identified with a set StrCl(M)

of string classes [Red06, Wal13]; these can easily be described as cohomology classes ξ ∈ H3(FM,Z)

on the total space of the spin-oriented frame bundle FM of M that restrict over each fibre to a

generator of H3(Spin(n),Z) ∼= Z. We introduce an analogous description of geometric string structures

in terms of differential cohomology, which we call differential string classes (Definition 6.3.1). A

differential string class is a differential cohomology class ξ̂ ∈ Ĥ3(FM), subject to a condition in the

differential cohomology of FM × Spin(n) that involves a certain 2-form known from classical Chern-

Simons theory. We prove that the set StrCl∇(M) of differential string classes can be identified with

the set h0String
∇(M) of isomorphism classes of geometric string structures (Theorem 6.3.3). Under

these identifications, Theorem A implies the following statement.

Corollary B. Let M be a connected string manifold of dimension n = 3 or n > 4. There is a

commutative diagram

h0Spin
∇sf

fus(LM) //

��

StrCl∇(M)

��
h0Spin

th
fus(LM) // StrCl(M).

The map in the first row is an equivariant bijection between torsors over the differential cohomology

group Ĥ3(M), and the map in the second row is an equivariant bijection between torsors over the

ordinary cohomology group H3(M,Z). Moreover, the vertical maps are surjective and equivariant along

the projection Ĥ3(M) // H3(M,Z). In particular, the fibres of the vertical maps are torsors over the

group Ω2(M)/Ω2
cl,Z(M) of 2-forms modulo closed 2-forms with integral periods.

The last statement follows because the group Ω2(M)/Ω2
cl,Z(M) is precisely the kernel of the pro-

jection Ĥ3(M) // H3(M) from differential to ordinary cohomology.
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Summarizing, either in the categorical or in the set-theoretical setting, we provide a consistent

dictionary between string geometry and spin geometry on loop spaces. We remark that in a first

approximation of such an equivalence, Witten proposed to impose that spin structures be equivariant

under the rotation action of U(1) on LM [Wit86]. In a previous article [Wala] I have considered a

version of spin structures with fusion products (but without thin structures), and proved that such spin

structures exist if and only ifM is a string manifold. Recently, Kottke and Melrose introduced a version

of spin structures that combines fusion products and equivariance under a group of reparameterizations

of S1 (including rotations) [KMa]. This version achieved, on the level of equivalence classes, a bijection

with the set of string classes. The results of the present article improve that bijection in two aspects:

we upgrade it to an equivalence of categories and amend it by a second equivalence in the setting “with

connections”.

Method of proof and organization of the paper

For the proof of Theorem A we will collect various partial results throughout this article; in the final

Section 8 we summarize these and show that the theorem is fully proved. The main tool in the proof

is lifting gerbe theory over the loop space, which allows us to split the work into two parts. The

first part (Sections 2, 3, 4) is to reformulate spin structures and all additional structures in terms

of trivializations of the spin lifting gerbe over LM (Proposition 3.2.6 and Corollary 4.2.12). This

reformulation is based on work of Murray [Mur96], Gomi [Gom03], and previous work [Wala]. A

crucial new aspect we encounter here is that the standard theory for connections on lifting gerbes

must be refined in a certain way in order to take thin homotopies into account (Proposition 4.2.4).

The second part (Sections 5, 6, 7) is concerned with the problem to tailor the bicategories

String∇(M) and String(M) of (geometric) string structures into a form that allows a direct appli-

cation of the duality between gerbes and bundles over loop spaces. The resulting loop space structure

can then be identified with exactly those trivializations of the spin lifting gerbe that we identified in

the first part as reformulations of the categories Spin th
fus(LM) and Spin

∇sf

fus(LM), see Theorems 7.3 and

7.4. The tailoring of the bicategories involves a general decategorification procedure for trivializations

of bundle 2-gerbes. A key result that we prove is that in case of the Chern-Simons 2-gerbe, this

decategorification procedure is an equivalence of categories (Theorems 5.3.1 and 6.2.2).

Acknowledgements. This work is supported by the DFG network “String Geometry” (project code

594335), and by the Erwin-Schrödinger Institute for Mathematical Physics in Vienna.

2 Loop group geometry via multiplicative gerbes

In this section we explore the geometry of central extensions of the loop group LG of a Lie group G

via multiplicative bundle gerbes over G. The goal is to construct models for central extensions with

specific additional structures: superficial connections, thin structures, and fusion products. The results

of this section will be applied in the sequel to G = Spin(n).
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2.1 Transgression and central extensions

We use the theory of bundle gerbes (with structure group U(1)) and connections on those. Intro-

ductions can be found in [Mur96, CJM02, Mur10, Wal07]. We denote by Grb (X) and Grb∇(X) the

bicategories of bundle gerbes and bundle gerbes with connection over a smooth manifold X , respec-

tively. The 1-morphisms are called (connection-preserving) isomorphisms , and the 2-morphisms are

called (connection-preserving) transformations . The operation of “forgetting the connection” is a

surjective, but neither full nor faithful 2-functor

Grb∇(X) // Grb (X). (2.1.1)

Let G be a Lie group with Lie algebra g, and let 〈−,−〉 be a symmetric invariant bilinear form on

g. There is a canonical, left-invariant closed 3-form H ∈Ω3(G) whose value at the identity is given by

H1(X,Y, Z) = 〈X, [Y, Z]〉. In terms of the left-invariant Maurer-Cartan form θ on G it is given by

H =
1

6
〈θ ∧ [θ ∧ θ]〉 . (2.1.2)

We fix a bundle gerbe G overG with connection of curvatureH . Such a bundle gerbe exists if and only if

H has integral periods, in which case H represents the Dixmier-Douady class DD(G)∈H3(G,Z) in real

cohomology. Different choices of possible bundle gerbes with connection (up to connection-preserving

isomorphisms) are parameterized by H2(G,U(1)).

Example 2.1.1. Suppose G is compact, simple and simply-connected, for example, G = Spin(n) for

n = 3 or n > 4. Then, 〈−,−〉 is a multiple of the Killing form, and it can be normalized such that H

has integral periods and represents a generator γ ∈ H3(G,Z) ∼= Z. We have H2(G,U(1)) = 0. Thus,

there exists a (up to connection-preserving isomorphisms) unique bundle gerbe G with connection of

curvature H . Its Dixmier-Douady class is the generator γ. This bundle gerbe G is called the basic gerbe

over G, and it will be denoted by Gbas. There exist Lie-theoretical models for Gbas [GR02, Mei02].

The double group G2 carries a canonical 2-form

ρ :=
〈
pr∗1θ ∧ pr∗2θ̄

〉
∈Ω2(G2), (2.1.3)

with θ, θ̄ the left- and right-invariant Maurer-Cartan forms on G, respectively. Let

m, pr1, pr2 : G
2 // G denote the multiplication and the two projections, respectively. Then

pr∗1H + pr∗2H = m∗H + dρ (2.1.4)

as 3-forms on G2. We have four maps pr12, pr23,m23,m12 : G3 // G2, where pr12 and pr23 project

to the indexed components, and m23 and m12 multiply the indexed components. Then,

pr∗23ρ+m∗
23ρ = pr∗12ρ+m∗

12ρ. (2.1.5)

We may re-interpret Equations (2.1.4) and (2.1.5) by considering the simplicial manifold BG, see

[Wal10]. Denoting by ∆ : Ω∗(Gq−1) // Ω∗(Gq) the alternating sum over the pullbacks along the face

maps, Equations (2.1.4) and (2.1.5) become

∆H = dρ and ∆ρ = 0. (2.1.6)

A bundle gerbe G with connection of curvature H can be seen as a lift from a differential form

setting to a cohomological setting. A corresponding lift of equations (2.1.4) and (2.1.5) is called a
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multiplicative structure on G. We recall that 2-forms are connections on trivial gerbes; thus, we have a

bundle gerbe Iρ over G2 – it has vanishing Dixmier-Douady class and curvature dρ. A multiplicative

structure on G consists of a connection-preserving isomorphism

M : pr∗1G ⊗pr∗2G // m∗G ⊗Iρ

of bundle gerbes over G2, and of a connection-preserving transformation

pr∗1G ⊗pr∗2G ⊗pr∗3G
pr∗

12
M⊗id

//

id⊗pr∗
23

M

��

pr∗12G ⊗pr∗3G ⊗Ipr∗
12

ρ

m∗

12
M⊗id

��

α ✐✐✐✐
✐✐✐

✐
✐✐✐

✐✐✐✐
✐

px ✐✐✐✐
✐✐✐✐

✐
✐✐✐✐

✐✐✐✐
✐

pr∗1G ⊗pr∗23G ⊗Ipr∗
23

ρ
m∗

23
M⊗id

// G123 ⊗Iρ∆

between isomorphisms over G3, where ρ∆ is either side of (2.1.5). The transformation α has to satisfy

a pentagon axiom over G4. Multiplicative bundles gerbes (without connections) have been introduced

in [CJM+05], the theory of connections is developed in [Wal10].

The quadruple (H, ρ, 0, 0) is a degree 4 chain in the de Rham complex of the simplicial manifold

BG. Closedness of H together with Equations (2.1.6) show that it is a cocycle, and thus represents an

element in H4(BG,R). Multiplicative bundle gerbes with connection relative to the differential forms

H and ρ exist if and only if that class is integral. Different choices are parameterized by H3(BG,U(1)),

see [Wal10, Proposition 2.4].

Example 2.1.2. If G is compact and simple, then H3(BG,U(1)) = 0, so that multiplicative gerbes

with connection are (up to connection-preserving isomorphisms compatible with the multiplicative

structure) uniquely determined by H and ρ, hence by 〈−,−〉. If G is in addition simply connected,

every bundle gerbe with connection of curvature H admits a multiplicative structure relative to the

2-form ρ [Wal10, Example 1.5]. In particular, the basic gerbe Gbas over a compact, simple and simply-

connected Lie group has a unique multiplicative structure. Based on explicit models for the basic

gerbe over such groups, it is possible to construct this unique multiplicative structure [Wal12a].

In the following we continue with a fixed multiplicative bundle gerbe G with connection over a

general Lie group G, relative to the differential forms H and ρ of Equations (2.1.2) and (2.1.3).

For every smooth manifold X , there is a transgression functor

h1Grb
∇(X) // Bun(LX) : G

✤ // TG (2.1.7)

with target the category of Fréchet principal U(1)-bundles over the free loop space LX =C∞(S1, X).

The category h1Grb
∇(X) is obtained from the bicategory Grb∇(X) by identifying 2-isomorphic isomor-

phisms.

Transgression for gerbes has first been defined by Gawȩdzki in terms of cocycles for Deligne coho-

mology [Gaw88], and by Gawȩdzki-Reis for bundle gerbes [GR02]. Brylinski has defined transgression

in terms of Dixmier-Douady sheaves of categories [Bry93]. The functor (2.1.7) that we use here is

defined in [Wal10]. It is monoidal with respect to the tensor product of bundle gerbes and principal

U(1)-bundles, it is natural with respect to smooth maps f : X // X ′ between smooth manifolds and

the induced maps Lf : LX // LX ′ between their loop spaces, and it sends trivial bundle gerbes Iρ
to canonically trivializable bundles. Furthermore, it satisfies

c1(TG) = −τ(DD(G)) (2.1.8)
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for all bundle gerbes G with connection over X , where c1 denotes the first Chern class of a principal

U(1)-bundle, and τ is the transgression homomorphism (1.2), see [Wal10].

Applying the transgression functor to the bundle gerbe G overG, we obtain a Fréchet principal U(1)-

bundle TG over the loop group LG. Because transgression is functorial and monoidal, the multiplicative

structure M on G transgresses to a bundle isomorphism

pr∗1TG ⊗pr∗2TG

TM // m∗TG ⊗TIρ
∼= m∗TG

over LG×LG, inducing a binary operation on the total space TG that covers the group structure of LG.

The mere existence of the associator α for the multiplicative structure M implies the commutativity

of a diagram in the category h1Grb
∇(G3), which implies under transgression the associativity of the

binary operation TM.

Theorem 2.1.3 ([Wal10, Theorem 3.1.7]). The associative binary operation TM equips TG with the

structure of a Fréchet Lie group, making up a central extension

1 // U(1) // TG
// LG // 1.

Example 2.1.4. Consider again a compact, simple and simply-connected Lie group G, equipped with

the basic gerbe Gbas and its unique multiplicative structure. We get from Equation (2.1.8)

c1(TGbas
) = −τ(DD(Gbas)) = −τ(γ).

This means that TGbas
is the universal central extension of LG, see [PS86].

In the following two subsections we discuss additional structures on the central extension TGbas
,

which we find by analyzing the image of the transgression functor T .

2.2 Connections and splittings

The principal U(1)-bundles in the image of the transgression functor T of (2.1.7) are canonically

equipped with connections [Bry93]. In other words, transgression is actually a functor

T : h1Grb
∇(X) // Bun∇(LX) (2.2.1)

to the category of Fréchet principal U(1)-bundles with connection. It satisfies

curv(TG) = −τΩ(curv(G)), (2.2.2)

where τΩ is the differential form counterpart of the transgression homomorphism (1.2):

τΩ : Ωn(X) // Ωn−1(LX) : ω
✤ //

∫

S1

ev∗ω; (2.2.3)

it integrates the pullback of a differential form along the evaluation map ev : S1×LX // X over the

factor S1. If ω∈Ω2(X) is a 2-form, and Iω is the associated trivial bundle gerbe with connection, then

the above-mentioned canonical trivialization of TIω
has covariant derivative τΩ(ω) ∈Ω1(LX) [Wal11,

Lemma 3.6].

We continue the analysis of the central extension TG of LG obtained by transgression of a multi-

plicative bundle gerbe G over a Lie group G with connection relative to the differential forms H and
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ρ. As we have now lifted the transgression functor T to the category of bundles with connection, it

follows that the central extension TG has a connection.

In the following we denote the central extension by L̃G, and we denote the connection by ν ∈

Ω1(L̃G). According to Equation (2.2.2) it has curvature curv(ν) = −τΩ(H). For us, the most

important feature of the connection ν is that it is not strictly compatible with the group structure of

L̃G. Indeed, looking again at the transgression of the isomorphism M, but now in the setting with

connections, we obtain a connection-preserving bundle isomorphism

pr∗1TG ⊗pr∗2TG

TM // m∗TG ⊗TIρ
∼= m∗TG ⊗ Iǫν ,

where Iǫν is the trivial U(1)-bundle over LG equipped with the connection 1-form ǫν := τΩ(ρ) ∈

Ω1(LG×LG). In terms of the connection 1-form ν and the group structure defined by the underlying

bundle morphism, this can be expressed as

ντ̃1(X̃1) + ντ̃2(X̃2) = ντ̃1τ̃2(τ̃1X̃2 + X̃1τ̃1) + ǫν |τ1,τ2(X1, X2) (2.2.4)

for elements τ̃1, τ̃2 ∈ L̃G projecting to loops τ1, τ2 ∈ LG, and tangent vectors X̃1 ∈ Tτ̃1L̃G and

X̃2 ∈ Tτ̃2L̃G projecting to X1 ∈ Tτ1LG and X2 ∈ Tτ2LG, respectively. The 1-form ǫν can be computed

explicitly from the given 2-form ρ of (2.1.3),

ǫν |τ1,τ2(X1, X2) =

∫

S1

{〈
τ1(z)

−1∂zτ1(z), X2(z)τ2(z)
−1

〉
−
〈
τ1(z)

−1X1(z), ∂zτ2(z)τ2(z)
−1

〉}
dz.

(2.2.5)

Here, and in the following, we regard a tangent vector X ∈ TτLG as a section of TG along τ , i.e. as a

smooth map X : S1 // TG such that X(z) ∈ Tτ(z)G, see [PS86].

In general, a connection on a central extension induces a splitting of the Lie algebra extension

0 // R // L̃g
p∗ // Lg // 0, (2.2.6)

i.e. a linear map s : Lg // L̃g such that p∗ ◦ s = idLg. Indeed, the connection ν determines a

horizontal subspace Hν
1 L̃G ⊆ T1L̃G such that p∗ : H

ν
1 L̃G // Lg is an isomorphism. For X ∈ Lg we

let s(X) ∈Hν
1 L̃G be its preimage under p∗. An equivalent definition that uses the connection 1-form

ν directly is to first choose any lift X̃ ∈ L̃g of X and then define s(X) := X̃ − ν(X̃).

Given the splitting s determined by the connection ν one can define the map

Z : LG×Lg // R , Z(τ,X) := Ad−1
τ (s(X))− s(Ad−1

τ (X)).

Lemma 2.2.1. Z(τ,X) = 2

∫

S1

〈
τ∗θ̄, X

〉
.

Proof. We express Z in terms of the error 1-form ǫν of the connection ν. Consider τ̃ ∈ L̃G and X̃ ∈ L̃g

projecting to τ ∈ LG and X ∈Lg, respectively. Then,

Z(τ,X) = Ad−1
τ̃ (s(X))− s(Ad−1

τ (X)) = τ̃−1(X̃ − ν(X̃))τ̃ − τ̃−1X̃τ̃ + ν(τ̃−1X̃τ̃ )

= −ν(X̃) + ν(τ̃−1X̃τ̃)
(2.2.4)
= −ǫν |1,τ (X, 0)− ǫν |τ−1,τ (0, Xτ).

With (2.2.5) we see that these two terms are equal and add up to the claimed formula. �
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The formula

ω(X,Y ) :=
d

dt

∣∣∣∣
0

Z(e−tX , Y ) = [s(X), s(Y )]− s([X,Y ])

defines a 2-cocycle ω for the Lie algebra cohomology of Lg with coefficients in the trivial module R,

and classifies the Lie algebra extension. From Lemma 2.2.1 we get the following.

Lemma 2.2.2. ω(X,Y ) = 2

∫

S1

〈X, dY 〉.

Up to the prefactor (which can always be absorbed into the normalization of the bilinear form

〈−,−〉) this is the standard cocycle on the loop algebra, see [PS86, Section 4.2]. Note that the cocycle

ω is not invariant; instead it satisfies [Gom03, Lemma 5.8 (b)]

ω(Ad−1
τ (X),Ad−1

τ (Y )) = ω(X,Y ) + Z(τ, [X,Y ]). (2.2.7)

It is well-known that a given splitting s of a Lie algebra extension (2.2.6) induces, conversely, a

connection νs on the central extension L̃G, given by the formula

νs = θ̃ − s (p∗θ) ∈Ω1(L̃G),

where θ̃ stands for the left-invariant Maurer-Cartan form on L̃G. Its curvature is given by − 1
2ω(θ∧θ)∈

Ω2(LG), see e.g. [Gom03, Lemma 5.4]. We will later have to compare the original connection ν with

the connection νs determined by s and hence indirectly by ν. For this purpose, we consider the 1-form

β ∈Ω1(LG) given by the formula

βτ (X) :=

∫ 1

0

〈
τ(z)−1∂zτ(z), τ(z)

−1X(z)
〉
dz

for τ ∈ LG and X ∈ TτLG.

Lemma 2.2.3. The connection νs is obtained by shifting the connection ν by β, i.e. νs = ν + β. In

particular, the curvatures obey the following relation:

−
1

2
ω(θ ∧ θ) = curv(ν) + dβ. (2.2.8)

Proof. For a tangent vector X̃ ∈ Tτ̃ L̃G we obtain from the definitions of the connection νs and

the splitting s that νs(X̃) = ν(τ̃−1X̃). Using the multiplicativity law (2.2.4) for the connection ν,

we get ν(τ̃−1X̃) = ν(X̃) − ǫν |τ−1,τ (0, X). Looking at the explicit expression (2.2.5), we see that

−ǫν|τ−1,τ (0, X) = βτ (X). �

The connection ν on L̃G has an interesting property which distinguishes it from other connections

on L̃G, in particular from the connection νs. The property is that ν is superficial . In order to explain

this, we fix the following notation: if τ ∈ LLX is a loop in the loop space of a smooth manifold X ,

then by τ∨ : S1 × S1 // X we denote the “adjoint” map defined by τ∨(z1, z2) := τ(z1)(z2). We use

the following terminology: a map f : X // Y between smooth manifolds is said to be of rank k if its

differential dfx has at most rank k for all x∈X . The map f is called thin, if it is of rank dim(X)− 1.

Definition 2.2.4 ([Walb, Definition 2.2.1]). A connection ν on a Fréchet principal U(1)-bundle over

the loop space LX of a smooth manifold X is called superficial, if the following two conditions are

satisfied:

(i) The holonomy of a loop τ ∈ LLX vanishes if τ∨ thin.
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(ii) Two loops τ, τ ′ ∈ LLX have the same holonomy, if τ∨ and τ ′∨ are thin homotopic.

By [Walb, Corollary 4.3.3] all connections in the image of the transgression functor (2.2.1) are

superficial. This comes from the fact that the holonomy of such connections can be expressed in terms

of the surface holonomy of the bundle gerbe G via the formula

Holν(τ) = HolG(τ
∨).

The surface holonomy of a connection on a gerbe has the two properties (i) and (ii).

2.3 Thin structures and fusion

In this article, the most important aspect of superficial connections is that they induce thin structures ,

a kind of equivariance with respect to thin homotopies. We use diffeological spaces as an auxiliary

tool. In short, a diffeological space is a set X with specified plots : maps c : U // X defined on open

subsets U ⊆ Rn, n ≥ 0. There are full and faithful functors

Man �
�

// Frech �
�

// Diff

that realize smooth manifolds and Fréchet manifolds as diffeological spaces with plots given by all

smooth maps c : U // X from all open subsets U ⊆ Rn for all n. In almost all aspects relevant for

this article, diffeological spaces behave exactly as smooth manifolds – there are just more of them. For

example, differential forms, principal bundles, and connections can be defined on diffeological spaces

in a manner consistent with above inclusions, see [Wal12b].

If X is a smooth manifold, we denote by LX2
thin

⊆ LX ×LX the set consisting of pairs (τ1, τ2) of

thin homotopic loops, i.e. there exists a homotopy h : [0, 1]× S1 // X of rank one. The set LX2
thin

carries a natural diffeology [Wal12c, Section 3.1].

Definition 2.3.1 ([Wal12c, Definition 3.1.1]). A thin homotopy equivariant structure on a Fréchet

principal U(1)-bundle P over LX is a smooth bundle isomorphism

d : pr∗1P // pr∗2P

over LX2
thin

that satisfies the cocycle condition dτ2,τ3 ◦ dτ1,τ2 = dτ1,τ3 for any triple (τ1, τ2, τ3) of thin

homotopic loops.

A bundle morphism ϕ : P1
// P2 between bundles with thin homotopy equivariant structures d1

and d2 is called thin, if the diagram

pr∗1P1

d1

��

pr∗
1
ϕ

// pr∗1P2

d2

��
pr∗2P1

pr∗
2
ϕ

// pr∗2P2

(2.3.1)

of bundle morphisms over LX2
thin

is commutative.

Now suppose P is equipped with a superficial connection ω. Property (i) implies that the parallel

transport of ω along a path γ : [0, 1] // LX between two loops (τ1, τ2) ∈LX
2
thin

is independent of the

choice of the path (provided it is chosen so that γ∨ is thin). Thus, we have a well-defined map

dωτ1,τ2 : Pτ1
// Pτ2 .
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The maps dωτ1,τ2 form a thin homotopy equivariant structure [Wal12c, Lemma 3.1.5]. A thin homotopy

equivariant structure d is called a thin structure, if there is a superficial connection ω with d = dω.

Summarizing, a thin structure on a bundle P over a loop space LX is a consistent way of identifying

its fibres over thin homotopic loops. As orientation-preserving diffeomorphisms of S1 induce thin

homotopies (Diff+(S1) is connected), we have the following.

Proposition 2.3.2 ([Wal12c, Proposition 3.1.2]). A thin structure on a Fréchet principal U(1)-bundle

P over LX determines a Diff+(S1)-equivariant structure on P .

We continue to discuss the central extension L̃G obtained by transgression of a multiplicative

bundle gerbe over G with connection relative to the forms H and ρ given by (2.1.2) and (2.1.3). Since

the connection ν on L̃G is superficial, the central extension L̃G is equipped with a thin structure dν .

Proposition 2.3.3. The thin structure dν is multiplicative in the sense that

dντ0γ0,τ1γ1
(τ̃ · γ̃) = dντ0,τ1(τ̃ ) · d

ν
γ0,γ1

(γ̃)

for all ((τ0, γ0), (τ1, γ1)) ∈ L(G×G)2
thin

and all τ̃ , γ̃ ∈ L̃G projecting to τ0 and γ0, respectively.

Proof. We consider the connection-preserving bundle morphism

pr∗1TG ⊗pr∗2TG

TM // m∗TG ⊗TIρ
= m∗TG ⊗ Iǫν ,

that describes the relation between the group structure of L̃G and the superficial connection ν. Now

we pass from superficial connections to thin structures, and observe that the thin structure on the

trivial bundle Iǫν is the trivial one. This comes simply from the fact that the parallel transport of the

connection ǫν = τΩ(ρ) along a path γ ∈ P (G×G) can be expressed as an integral of the 2-form ρ over

γ∨. If γ∨ is of rank one, that integral vanishes; see [Wal12c, Proposition 3.1.8] for the full argument.

Thus,

pr∗1TG ⊗pr∗2TG

TM // m∗TG

is a thin bundle morphism over L(G × G)2
thin

. Now, diagram (2.3.1) evaluated over the point

((τ0, γ0), (τ1, γ1)) ∈ L(G×G)2
thin

gives the claimed identity. �

We remark that ((τ0, γ0), (τ1, γ1)) ∈ L(G × G)2
thin

means that there exists a thin path (τ, γ) in

L(G×G) connecting (τ0, γ0) with (τ1, γ1). It is necessary, but not sufficient, that the paths τ , γ, and

τγ in LG are separately thin.

Finally, we come to another additional structure on the central extension L̃G: a fusion product .

By PX we denote the set of paths in a smooth manifold X with “sitting instants”, i.e. smooth maps

γ : [0, 1] // X that are locally constant near the endpoints. Due to the sitting instants, PX is not

a Fréchet manifold, but still a nice diffeological space, with plots c : U // PX those maps whose

adjoints c∨ : U × [0, 1] // X are smooth. We denote by PX [k] the k-fold fibre product of PX over

the evaluation map ev: PX // X×X , i.e. the diffeological space of k-tuples of paths with a common

initial point and a common end point. Due to the sitting instants, we have a well-defined and smooth

map

∪ : PX [2] // LX : (γ1, γ2)
✤ // γ2 ⋆ γ1,
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where ⋆ denotes the path concatenation, and γ denotes the reversed path; see [Wal12b, Section 2] for

a more detailed discussion. For ij ∈ {12, 23, 13}, we denote by ∪ ij the composition of ∪ with the

projection prij : PX
[3] // PX [2].

Definition 2.3.4 ([Walb, Definition 2.1.3]). A fusion product on a Fréchet principal U(1)-bundle P

over the loop space LX of a smooth manifold X is a smooth bundle morphism

λ : ∪ ∗
23P ⊗∪ ∗

12P // ∪ ∗
13P

over PX [3] that is associative in the sense that

λ(λ(p34 ⊗ p23)⊗ p12) = λ(p34 ⊗λ(p23 ⊗ p12))

for all pij ∈ Pγi∪ γj
and all (γ1, γ2, γ3, γ4) ∈ PX

[4].

A morphism ϕ : P1
// P2 between principal U(1)-bundles over LX equipped with fusion products

λ1 and λ2, respectively, is called fusion-preserving if the diagram

∪ ∗
23P1 ⊗∪ ∗

12P1
λ1 //

∪
∗

23
ϕ⊗∪

∗

12
ϕ

��

∪ ∗
13P

∪
∗

13
ϕ

��
∪ ∗

23P2 ⊗∪ ∗
12P2

λ2

// ∪ ∗
13P2

of bundle morphisms over PX [3] is commutative.

If P is equipped with a fusion product λ, then a connection ν is called fusive, if the following

conditions are satisfied:

(i) The fusion product λ is a connection-preserving bundle morphism over PX [3].

(ii) The rotation by an angle of π is an orientation-preserving diffeomorphism of S1 and induces

a diffeomorphism rπ : LX // LX . The Diff+(S1)-equivariant structure of Proposition 2.3.2

provides a lift rd
ν

π : P // P . We demand that the condition

λ(rd
ν

π (p12)⊗ rd
ν

π (p23)) = rd
ν

π (λ(p23 ⊗ p12))

is satisfied for all p12 ∈ Pγ1∪ γ2
, p23 ∈ Pγ2∪ γ3

, and (γ1, γ2) ∈ PX
[2].

In [Walb] a category FusBun∇sf(LX) is considered with objects the principal U(1)-bundles over

LX equipped with fusion products and superficial fusive connections, and morphisms the fusion-

preserving, connection-preserving bundle morphisms. By a construction performed in [Walb, Section

4.2], the transgression functor (2.2.1) lifts into this category:

T : h1Grb
∇(X) // FusBun∇sf(LX). (2.3.2)

Before we return to the central extension L̃G, we relate fusion products to thin structures.

Definition 2.3.5. Let P be a principal U(1)-bundle P over LX with a fusion product λ. A thin

structure d on P is called fusive with respect to λ, if there exists a superficial fusive connection ν on

P such that d = dν .
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In particular, the fusion product λ is a thin bundle morphism with respect to a fusive thin structure.

In [Wal12c] a category hFusBunth(LX) is considered with objects the principal U(1)-bundles over LX

equipped with fusion products and fusive thin structures, and morphisms the homotopy classes of

fusion-preserving, thin bundle morphisms.

The two categories FusBun∇sf(LX) and hFusBunth(LX) are loop space analogues of the categories

h1Grb
∇(X) and h1Grb (X) of bundle gerbes with and without connections over X , respectively. The

procedure of inducing a thin structure from a superficial connection (and projecting to the homotopy

class of a morphism) defines a functor

FusBun∇sf(LX) // hFusBunth(LX);

it is the loop space analogue of the 2-functor (2.1.1) that passes from gerbes with connection to gerbes

without connections. These analogies are the content of the following theorem, which is the main

result of the series of articles [Wal12b, Walb, Wal12c].

Theorem 2.3.6. Let X be a connected smooth manifold. There is a strictly commutative diagram

FusBun∇sf(LX)

��

// h1Grb
∇(X)

��
hFusBunth(LX) // h1Grb (X)

of monoidal categories and functors, natural in X, whose horizontal functors are monoidal equivalences

of categories.

The functor in the first row of the diagram is inverse to the transgression functor T of (2.3.2),

i.e. the two functors form an equivalence of categories. The functor in the second row is essentially

surjective, full and faithful, but has no canonical inverse functor. The two functors are called regression

[Walb, Section 5].

Let us now return to the discussion of the central extension L̃G defined by transgression of a

multiplicative bundle gerbe G over G. According to above discussion, L̃G is equipped with a fusion

product, which we denote by λG . The connection ν on L̃G and the induced thin structure dν are fusive.

Since transgression is a functor, the multiplication TM is fusion-preserving. This can be rephrased as

follows.

Lemma 2.3.7. The fusion product on L̃G is multiplicative in the sense that

λ(p23 ⊗ p12) · λ(p
′
23 ⊗ p′12) = λ(p23p

′
23 ⊗ p12p

′
12) (2.3.3)

for all elements pij , p
′
ij ∈ L̃G projecting to loops γi ∪ γj and γ′i ∪ γ′j, respectively, for all

(γ1, γ2, γ3), (γ
′
1, γ

′
2, γ

′
3) ∈ PG

[3].

We have now listed all additional structures and properties of the central extension L̃G that arise

from our approach using the transgression multiplicative bundle gerbes, and that we need in the

following. In [Walc] we show how “transgressive” central extensions can be characterized by fusion

products and thin structures.
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3 Thin fusion spin structures

In Section 3.1 we first recall the definition of spin structures on loop spaces following Killingback [Kil87].

Based upon this definition we develop the notion of thin fusion spin structures, which constitute our

loop space analogue for string structures. In Section 3.2 we prepare one part of the proof of this

analogy: we provide a lifting gerbe formulation for thin fusion spin structures.

3.1 Versions of spin structures on loop spaces

Let M be a spin manifold of dimension n = 3 or n > 4, so that Spin(n) is compact, simple and

simply-connected. We denote by π : FM // M the spin-oriented frame bundle of M , which is a

Spin(n)-principal bundle over M . Since Spin(n) is connected, LFM is a principal LSpin(n)-bundle

over LM .

Definition 3.1.1 ([Kil87]). A spin structure on LM is a lift of the structure group of the looped frame

bundle LFM from LSpin(n) to the universal central extension ˜LSpin(n).

Thus, a spin structure on LM is a pair (S, σ) of a Fréchet principal ˜LSpin(n)-bundle S over LM

together with a smooth map σ : S // LFM such that the diagram

S× ˜LSpin(n)

σ×p

��

// S

σ

��

''❖❖
❖❖

❖❖
❖❖

❖

LM

LFM ×LSpin(n) // LFM

77♥♥♥♥♥♥♥

is commutative. A morphism between spin structures (S1, σ1) and (S2, σ2) is a bundle morphism

ϕ : S1 // S2 such that σ1 = σ2 ◦ ϕ. Spin structures on LM form a category that we denote by

Spin(LM). It is a module for the monoidal category Bun(LM) of Fréchet principal U(1)-bundles over

LM , under an action functor

Bun(LM)×Spin(LM) // Spin(LM) : (K, (S, σ)) ✤ // K⊗ (S, σ). (3.1.1)

Here, K⊗ (S, σ) is the spin structure with the ˜LSpin(n)-bundle K⊗ S := (K ×LMS)/U(1) over LM ,

and the map (k, s) ✤ // σ(s) to LFM . By Corollary 3.2.2 proved below, the action (3.1.1) exhibits

Spin(LM) as a torsor over Bun(LM) in the sense that the associated functor

Bun(LM)×Spin(LM) // Spin(LM)×Spin(LM) : (K, (S, σ)) ✤ // (K⊗ (S, σ), (S, σ))

is an equivalence of categories.

The notion of a spin structure in the sense of Definition 3.1.1 suffers from the fact that there are

manifolds that are not string manifolds but whose loop space admits spin structures [PW88]. The plan

we follow in this article is to add additional conditions/structure to spin structures on loop spaces, in

order to better reflect string structures on the base manifold.

If (S, σ) is a spin structure, then σ : S // LFM is a principal U(1)-bundle under the U(1)-

action obtained by restriction of the ˜LSpin(n)-action. We use the notation TS for explicit reference
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to this principal U(1)-bundle. Any morphism ϕ : S // S′ between spin structures is a morphism

ϕ : TS // TS′ between the associated principal U(1)-bundles. Under the action (3.1.1) we have

TK⊗S = Lπ∗K⊗TS. (3.1.2)

Definition 3.1.2 ([Wala, Definition 3.6]). A fusion product on a spin structure (S, σ) is a fusion

product λS on TS such that the ˜LSpin(n)-action on S is fusion-preserving:

λS(t23 · γ̃23 ⊗ t12 · γ̃12) = λS(t23 ⊗ t12) · λGbas
(γ̃23 ⊗ γ̃12),

for all t12, t23 ∈ S and γ̃12, γ̃23 ∈ ˜LSpin(n) such that the fusion products are defined. A morphism

ϕ : S // S′ between spin structures with fusion products is called fusion-preserving if the associated

morphism ϕ : TS // TS′ is fusion-preserving.

Spin structures with fusion products form a category that we denote by Spinfus(LM). Similar

to the action functor (3.1.1), the category Spinfus(LM) carries an action of the monoidal category

FusBun(LM) of Fréchet principal U(1)-bundles with fusion products, under which (3.1.2) holds as an

equation of bundles with fusion products.

The main result of the paper [Wala] was that a spin manifold M is a string manifold if and only

if its loop space LM admits a spin structure with fusion product. Next we explain how to add

thin structures into the picture in order to improve that result. We recall that the central extension
˜LSpin(n) is equipped with a thin structure dν induced from the superficial connection ν.

Definition 3.1.3. A thin structure on a spin structure (S, σ) is a thin structure d on TS such that

dτ1·γ1,τ2·γ2
(t · γ̃) = dτ1,τ2(t) · d

ν
γ1,γ2

(γ̃).

for all ((τ1, γ1), (τ2, γ2)) ∈ L(FM × Spin(n))2
thin

, all t ∈ TS projecting to τ1, and all γ̃ ∈ ˜LSpin(n)

projecting γ1. A thin spin structure is a spin structure together with a thin structure. A morphism

between thin spin structures is a morphism ϕ: S // S′ between spin structures such that the induced

morphism ϕ : TS // TS′ is thin.

In this definition it is relevant to observe that ((τ1, γ1), (τ2, γ2)) ∈L(FM×Spin(n))2
thin

implies that

(τ1, τ2) ∈ LFM
2
thin

, (γ1, γ2) ∈ LSpin(n)
2
thin

, and (τ1 · γ1, τ2 · γ2) ∈LFM
2
thin

.

Thin spin structures form a category that we denote by Spinth(LM). Based on the action functor

(3.1.1), it carries an action of the monoidal category Bunth(LM) of Fréchet principal U(1)-bundles

with thin structures, under which (3.1.2) is an equality of bundles with thin structures.

Proposition 3.1.4. A thin structure on a spin structure (S, σ) on LM determines a Diff+(S1)-

equivariant structure on the principal ˜LSpin(n)-bundle S over LM , such that the map σ : S // LFM

is Diff+(S1)-equivariant.

Proof. We note that LFM is obviously Diff(S1)-equivariant as a LSpin(n)-bundle over LM , since

Diff+(S1) acts on LFM . By Proposition 2.3.2, the thin structure on TS lifts this action to S. �

Thin structures and fusion products for spin structures combine in the following way.

Definition 3.1.5. A thin fusion spin structure on LM is a spin structure (S, σ) with a fusion product

λ in the sense of Definition 3.1.2 and a thin structure d in the sense of Definition 3.1.3, such that d

is fusive with respect to λ in the sense of Definition 2.3.5.
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Particular care has to be taken with the correct notion of morphisms between thin fusion spin

structures. If X is a smooth manifold, a fusion map f : LX // U(1) is a smooth map with the

following properties:

(i) If τ, τ ′ ∈ LX are thin homotopic loops, then f(τ) = f(τ ′).

(ii) If (γ1, γ2, γ3) ∈ PX
[3], then f(γ1 ∪ γ2) · f(γ2 ∪ γ3) = f(γ1 ∪ γ3).

A fusion homotopy is a smooth map h : [0, 1]×LX // U(1) such that ht : LX // U(1) is a fusion

map for all t ∈ [0, 1].

Definition 3.1.6. Let (S, σ, λ, d) and (S′, σ′, λ′, d′) be thin fusion spin structures. A morphism is a

smooth map ϕ : S // S′ satisfying the following conditions:

(i) σ′ ◦ ϕ = σ; in particular, ϕ covers the identity on LM .

(ii) ϕ is equivariant with respect to the U(1)-actions on S and S
′, i.e. it induces a morphism

ϕ: TS // TS′ between U(1)-bundles over LFM .

(iii) The bundle morphism ϕ : TS // TS′ is fusion-preserving and thin.

(iv) ϕ is fusion-homotopy-equivariant with respect to the ˜LSpin(n)-action, i.e. there exists a fusion

homotopy h : [0, 1]×LFM ×LSpin(n) // U(1) with h0 = 1 and

ϕ(t · τ̃ ) · h1(β, τ) = ϕ(t) · τ̃ (3.1.3)

for all t ∈ S and τ̃ ∈ ˜LSpin(n) over β ∈ LFM and τ ∈ LSpin(n), respectively.

Definitions 3.1.5 and 3.1.6 result in a category of thin fusion spin structures which we denote by

Spin th
fus(LM). It carries an action of the monoidal category FusBunth(LM).

In the end, the category that is equivalent to the category of string structures onM is the homotopy

category hSpin th
fus(LM), i.e. two morphisms ϕ0, ϕ1 : S // S′ become identified if there is a smooth

map h : [0, 1] × S // S′ with h0 = ϕ0, h1 = ϕ1, and ht is a morphism between thin fusion spin

structures for all t ∈ [0, 1]. The homotopy category hSpin th
fus(LM) inherits an action of the homotopy

category hFusBunth(LM). As a consequence of Theorem 7.4, this action exhibits hSpin th
fus(LM) as a

torsor over hFusBunth(LM).

3.2 Lifting theory for spin structures

As any lifting problem, spin structures on loop spaces can be described by a bundle gerbe, the spin

lifting gerbe SLM [CCM98]. We refer to [Wala, Section 4.1] for a detailed treatment. In short, the spin

lifting gerbe SLM is the following bundle gerbe over LM :

(i) it has the surjective submersion Lπ : LFM // LM .

(ii) over the 2-fold fibre product LFM [2] it carries the Fréchet principal U(1)-bundle

P := Lδ∗ ˜LSpin(n),

where δ : FM [2] // Spin(n) is the “difference map” defined by p′ · δ(p, p′) = p.
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(iii) over the 3-fold fibre product LFM [3] it has the bundle gerbe product

µ : pr∗23P ⊗pr∗12P
// pr∗13P : ((β2, β3, τ̃23)⊗ (β1, β2, τ̃12))

✤ // (β1, β3, τ̃23 · τ̃12)

defined from the group structure of ˜LSpin(n).

The purpose of the lifting bundle gerbe is to provide a reformulation of spin structures in terms

of trivializations of SLM . A trivialization of SLM is by definition a pair T = (T, κ) consisting of a

principal U(1)-bundle T over LFM and a bundle isomorphism

κ: pr∗2T ⊗P // pr∗1T

over LFM [2] such that the diagram

pr∗3T ⊗pr∗23P ⊗pr∗12P
pr∗

23
κ⊗id

//

id⊗µ

��

pr∗2T ⊗pr∗12P

pr∗
12

κ

��
pr∗3T ⊗pr∗13P pr∗

13
κ

// pr∗1T

of bundle morphisms over LFM [3] is commutative. A morphism between trivializations (T, κ) and

(T ′, κ′) is a bundle isomorphism ϕ : T // T ′ such that the diagram

pr∗2T ⊗P
κ //

pr∗
2
ϕ

��

pr∗1T

pr∗
1
ϕ

��
pr∗2T

′⊗P
κ′

// pr∗1T
′

is commutative. Trivializations of SLM form a category Triv(SLM ), which is a module for the monoidal

category Bun(LM) of Fréchet principal U(1)-bundles over LM under the action functor

Bun(LM)×Triv(SLM ) // Triv(SLM ) : (K, T ) ✤ // K ⊗T . (3.2.1)

Here, the trivialization K ⊗T consists of the principal U(1)-bundle Lπ∗K ⊗T over LFM and of the

bundle isomorphism id⊗ κ. The action (3.2.1) exhibits Triv(SLM ) as a torsor over Bun(LM). For a

spin structure (S, σ) we have a bundle isomorphism

κS : pr∗2TS⊗P // pr∗1TS : (β2, t)⊗ (β1, β2, τ̃ )
✤ // (β1, t · τ̃ )

over LFM [2], where t · τ̃ is the ˜LSpin(n)-action on S. It is easy to see that (TS, κS) is a trivialization

of the spin lifting gerbe SLM . A morphism ϕ : S // S′ between spin structures induces a morphism

ϕ : TS // TS′ between bundles over LFM , which is in fact a morphism (TS, κS) // (TS′ , κS′) between

trivializations. As a consequence of a general theorem of Murray about lifting gerbes [Mur96] we obtain

the following result; also see [Wala, Theorem 4.1.3].

Proposition 3.2.1. The assignment (S, σ)
✤ // (TS, κS) establishes an equivalence of categories:

Spin(LM) ∼=

{
Trivializations of the spin

lifting gerbe SLM

}
.
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Formula (3.1.2) shows that the equivalence of Proposition 3.2.1 is equivariant under the actions

(3.1.1) and (3.2.1) of Bun(LM). In particular, we obtain the following consequence.

Corollary 3.2.2. The category Spin(LM) of spin structures on LM is a torsor over the monoidal

category Bun(LM).

The fusion product λGbas
of the central extension ˜LSpin(n) pulls back along the map Lδ to a fusion

product λP := Lδ∗λGbas
on the U(1)-bundle P of the lifting gerbe SLM . The bundle gerbe product µ

of SLM is fusion-preserving according to Lemma 2.3.7.

Suppose T = (T, κ) is a trivialization of SLM . A fusion product λ on T is called compatible if the

bundle morphism κ is fusion-preserving (with respect to the fusion product λP on P ). A morphism

ϕ : T1 // T2 between two trivializations with fusion products is called fusion-preserving, if it is

fusion-preserving as a bundle morphism ϕ : T1 // T2.

Proposition 3.2.3 ([Wala, Corollary 4.4.8]). The assignment (S, σ, λ)
✤ // (TS, κS, λ) establishes an

equivalence of categories:

Spinfus(LM) ∼=





Trivializations of the spin

lifting gerbe SLM with

compatible fusion products



 .

Next we include thin structures into the lifting-gerbe description. The thin structure dν on the

central extension ˜LSpin(n) pulls back along the map Lδ to a thin structure dP on the U(1)-bundle

P of the lifting gerbe SLM . Suppose T = (T, κ) is a trivialization of SLM . A thin structure d on T

is called compatible, if κ is a thin bundle morphism (with respect to the thin structure dP on P ). A

morphism ϕ : T1 // T2 between trivializations with thin structures is called thin, if it is thin as a

morphism ϕ : T1 // T2.

Proposition 3.2.4. The assignment (S, σ, d)
✤ // (TS, κS, d) establishes an equivalence of categories:

Spinth(LM) ∼=

{
Trivializations of SLM with

compatible thin structures

}
.

Proof. Based on the equivalence of Proposition 3.2.1, we observe that the structure on the objects

on both hand sides is the same, namely a thin structure d on the U(1)-bundle T = TS. It remains to

check that the conditions are the same. For the trivialization, the condition is that the diagram

pr∗1T ⊗pr∗1P
pr∗

1
κ

//

d⊗dP

��

pr∗1T

d

��
pr∗2T ⊗pr∗2P pr∗

2
κ

// pr∗2T

over L(FM [2])2
thin

= L(FM×Spin(n))2
thin

is commutative. We recall the relation κ(t⊗τ̃ ) = t · τ̃ between

κ and the principal ˜LSpin(n)-action on T . Under this relation, the commutativity of the diagram is

equivalent to the following equation:

d(t · τ̃ ) = d(κ(t⊗ τ̃) = κ(d(t)⊗ dP (τ̃ )) = d(t) · dP (τ̃ ).
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This is precisely the condition of Definition 3.1.3. For the morphisms, we have on both sides the same

condition, namely that ϕ : T1 // T2 is thin with respect to the thin structures on T1 and T2. �

Finally, we combine fusion products and thin structures on trivializations in the following definition.

Definition 3.2.5.

(i) A thin fusion trivialization of the spin lifting gerbe SLM is a trivialization T = (T, κ) with a

fusion product λ on T compatible with λP and a thin structure d on T that is fusive with respect

to λ and compatible with dP .

(ii) A morphism between thin fusion trivializations (T, κ, λ, d) and (T ′, κ′, λ′, d′) is a fusion-

preserving, thin bundle morphism ϕ: T // T ′, such that the diagram

pr∗2T ⊗P
κ //

pr∗
2
ϕ

��

pr∗1T

pr∗
1
ϕ

��
pr∗2T

′⊗P
κ′

// pr∗1T
′

commutes in the homotopy category hFusBunth(LFM [2]).

The condition that the diagram in (ii) commutes in hFusBunth(LFM [2]), i.e. up to homotopy

through thin, fusion-preserving bundle morphisms means, explicitly, that there is a smooth map

H : [0, 1]×pr∗2TS⊗P // pr∗1T
′
S (3.2.2)

such that Ht : pr
∗
2TS⊗P // pr∗1T

′
S
is a thin, fusion-preserving bundle morphism for all t ∈ [0, 1] and

we have H0 = pr∗1ϕ ◦ κ and H1 = κ′ ◦ pr∗2ϕ.

The category of thin fusion trivializations is denoted by Triv th
fus(SLM ). Based on the action functor

(3.2.1), it is straightforward to see that it is a module over the monoidal category FusBunth(LM).

Proposition 3.2.6. The assignment (S, σ, λ, d)
✤ // (TS, κS, λ, d) establishes an equivalence of cate-

gories:

Spin th
fus(LM) ∼= Triv th

fus(SLM ).

Moreover, it is equivariant with respect to the FusBunth(LM)-actions on both categories.

Proof. Based on the equivalence of Proposition 3.2.1 and its extension to fusion products (Proposition

3.2.3) and thin structures (Proposition 3.2.4) it remains to notice, on the level of objects, that the com-

patibility condition between fusion product and thin structure is the same on both sides. Concerning

the morphisms, we first observe that we have, in both categories, thin, fusion-preserving morphisms

ϕ : TS // TS′ between U(1)-bundles over LFM . It remains to check that the commutativity in

hFusBunth(LFM [2]) of (ii) of Definition 3.2.5 is equivalent to (iv) of Definition 3.1.6. In order to see

this, we notice that the existence of the map H in (3.2.2) is equivalent to the existence of a fusion

homotopy

h : [0, 1]×LFM [2] // U(1)

with h0 = 1 and

h1 · (pr
∗
1ϕ ◦ κ) = κ′ ◦ pr∗2ϕ (3.2.3)

Now, under the correspondence (κ(t ⊗ τ̃ ) = t · τ̃ ) between the bundle morphisms κ and κ′ with the
˜LSpin(n)-action on S and S

′, respectively, (3.2.3) is precisely Equation (3.1.3) in Definition 3.1.6. �
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4 Superficial spin connections

In Section 4.1 we study the notion of a spin connection introduced by Coquereaux and Pilch [CP98],

and circumstances under which they induce thin spin structures. We couple spin connections to fusion

products and introduce the notion of a superficial geometric fusion spin structure. In Section 4.2 we

develop the corresponding lifting gerbe theory.

4.1 Spin connections on loop spaces

In the following we denote by g the Lie algebra of Spin(n). The Levi-Cevita connection on M induces

a connection A ∈ Ω1(FM, g) on the spin-oriented frame bundle FM . One can define a 1-form

Ā ∈Ω1(LFM,Lg) by

Ā|τ (X)(z) := A|τ(z)(X(z)),

where τ ∈ LFM and X ∈ TτLFM . It is straightforward to check that Ā is a connection on LFM .

Definition 4.1.1 ([CP98]). Let (S, σ) be a spin structure on LM . A spin connection on (S, σ) is a

connection Ω ∈ Ω1(S, L̃g) on S such that p∗(Ω) = σ∗Ā, where p∗ : L̃g // Lg is the projection in the

Lie algebra extension.

A triple (S, σ,Ω) consisting of a spin structure and a spin connection is called a geometric spin struc-

ture on LM . Geometric spin structures form a category Spin∇(LM) whose morphisms are connection-

preserving morphisms between spin structures. This category is a module for the monoidal category

Bun∇(LM) of Fréchet principal U(1)-bundles over LM with connection, in terms of an action functor

Bun∇(LM)×Spin∇(LM) // Spin∇(LM) (4.1.1)

lifting the action (3.1.1) of Bun(LM) on Spin(LM) to a setting with connections. If K is a principal

U(1)-bundle over LM with connection η ∈ Ω1(K), and (S, σ,Ω) is a geometric spin structure, then a

spin connection on the spin structure K⊗S = (K ×LMS)/U(1) is defined by the 1-form

η⊗Ω := pr∗1η + pr∗2Ω ∈Ω1(K×LMS)

that descends to a connection on K⊗S.

We introduce a notion of scalar curvature of a spin connection. For this purpose, we need the

splitting s: Lg // L̃g described in Section 2.2 as the horizontal lift with respect to the connection ν,

as well as the associated map Z of Lemma 2.2.1. Further, we need a reduction of LFM adapted to s,

i.e. a map

r : LFM ×Lg // R

that is linear in the second argument and satisfies

r(τ · γ,Ad−1
γ (X)) = r(τ,X)− Z(γ,X) (4.1.2)

for all τ ∈ LFM , X ∈ Lg and γ ∈ LSpin(n). Such a reduction can be defined using the connection A

on FM , by setting [Gom03, Proposition 6.2]

r(τ,X) := −2

∫

S1

〈τ∗A,X〉 . (4.1.3)
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In order to define the announced scalar curvature we produce the auxiliary map

R : S× L̃g // R : (β, X̂)
✤ // X̂ − s(p∗(X̂)) + r(σ(β), p∗(X̂)).

Then we define a 2-form ψ ∈ Ω2(S) by the formula ψt(X,Y ) := R(t, curv(Ω)t(X,Y )) where t ∈ S and

X,Y ∈ TtS. The scalar curvature is now defined as follows.

Lemma 4.1.2. There is a unique 2-form scurv(Ω) ∈ Ω2(LM) such that Lπ∗scurv(Ω) = ψ.

Proof. We show that ψ descends. Using (4.1.2) it is straightforward to show that

R(tγ,Ad−1
γ (X̂)) = R(t, X̂)

for all t ∈ S, γ ∈ ˜LSpin(n), and X̂ ∈ L̃g. On the other hand, the curvature satisfies

pr∗2curv(Ω) = Ad−1
δ (pr∗1curv(Ω))

over S[2], where δ : S[2] // ˜LSpin(n) is the difference map of the principal ˜LSpin(n)-bundle S. This

shows that pr∗2ψ = pr∗1ψ over S[2]. �

We will see (Theorems 4.2.11 and 7.3) that under the correspondence between geometric string

structures onM and geometric spin structures on LM , the scalar curvature is (minus) the transgression

of the 3-form K ∈Ω3(M) associated to a geometric string structure (see Theorem (6.1.3) (ii)).

Let (S, σ,Ω) be a geometric spin structure on LM , and let TS be the associated principal U(1)-

bundle over LFM . We consider the 1-form ζ ∈Ω1(LFM) defined by

ζτ (X) := r(τ, Āτ (X)) (4.1.4)

for τ ∈ LFM and X ∈ TτLFM .

Lemma 4.1.3. For every x ∈ R, the formula

ωΩ,x := Ω− s(σ∗Ā) +
x

2
σ∗ζ ∈ Ω1(TS)

defines a connection on TS, of curvature

curv(ωΩ,x) = Lπ∗scurv(Ω)−
1

2
ω(Ā ∧ Ā)− r(curv(Ā)) +

x

2
dζ.

Proof. It suffices to prove that ωΩ,0 is a connection, which is a standard calculation. The connection

ωΩ,x is then obtained by shifting the connection ωΩ,0 by the 1-form x
2 ζ. In order to compute the

curvature of ωΩ,0 we use the definition of the scalar curvature and obtain:

dωΩ,0 = dΩ− s(σ∗dĀ) = Lπ∗scurv(Ω)−
1

2
[Ω∧Ω]+ s(p∗(curv(Ω)))− s(σ∗dĀ)− r(σ, p∗(curv(Ω)))

Then we use that Ω− s(σ∗Ā) = Ω− s(p∗Ω) ∈R, so that

0 = [Ω− s(σ∗Ā) ∧ Ω− s(σ∗Ā)] = [Ω ∧ Ω] + [s(σ∗Ā) ∧ s(σ∗Ā)]− 2[Ω ∧ s(σ∗Ā)]

= [Ω ∧ Ω]− [s(σ∗Ā) ∧ s(σ∗Ā)].
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This yields the claimed result. �

We recall that a morphism between geometric spin structures (S, σ,Ω) and (S′, σ′,Ω′) is an iso-

morphism f : S // S′ of ˜LSpin(n)-bundles over LM such that Ω = f∗Ω′ and σ′ ◦ f = σ. It follows

that ωΩ,x = f∗ωΩ′,x for all x ∈ R, i.e. the induced isomorphism f : TS // TS′ of U(1)-bundles

is connection-preserving for all connections ωΩ,x. Further, we find under the action (4.1.1) of the

monoidal category Bun∇(LM) on the category Spin∇(LM) of geometric spin structures the formula

ωη⊗Ω,x = Lπ∗η + ωΩ,x.

The following result explains which connection of the one-parameter family ωΩ,x should be used.

Proposition 4.1.4. Let (S, σ,Ω) be a geometric spin structure. Suppose the connection ωΩ,x is su-

perficial for a parameter x ∈ R, and let dωΩ,x be the associated thin structure on TS. Then, the pair

(S, σ, dωx) is a thin spin structure if and only if x = 1.

We prepare the proof of this proposition with three lemmata.

Lemma 4.1.5. Suppose ωΩ,x is superficial. Then, (S, σ, dωΩ,x) is a thin spin structure if and only if

the following holds: for (γ1, γ2) : [0, 1] // LFM [2] a thin path, γ̃2 a ωΩ,x-horizontal lift of γ2, δ̃ a

ν-horizontal lift of the path δ defined by δ(t) := δ(γ1(t), γ2(t)), we have for γ̃1 := γ̃2 · δ̃

∫

γ̃1

ωΩ,x ∈ Z.

Proof. (S, σ, dωΩ,x) is a thin spin structure if and only condition of Definition 3.1.3 is satisfied:

d
ωΩ,x

τ1·β1,τ2·β2
(t · τ̃) = d

ωΩx
τ1,τ2(t) · d

ν
β1,β2

(τ̃ )

for all ((τ1, β1), (τ2, β2)) ∈ L(FM × Spin(n))2
thin

, all t ∈ TS projecting to τ1, and all τ̃ ∈ ˜LSpin(n)

projecting β1. We denote by ptνδ and pt
ωΩ,x
γk the parallel transport maps associated to the connections

ν on ˜LSpin(n) and ωΩ,x on TS, along the paths δ, γ1, and γ2, respectively. Then, above condition is

equivalent to the assertion that

ptωΩ,x
γ1

(t · τ̃ ) = ptωΩ,x
γ2

(t) · ptνδ (τ̃ ) (4.1.5)

holds for all thin paths (γ1, γ2) : [0, 1] // LFM [2] with difference path δ := Lδ(γ1, γ2), elements t∈ S

projecting to γ1(0) and τ̃ ∈ ˜LSpin(n) projecting to δ(0). We note that

ptωΩ,x
γ1

(t · τ̃) = γ̃1(1) · exp

(
2πi

∫

γ̃1

ωΩ,x

)

for all lifts γ̃1 of γ1 with γ̃1(0) = t · τ̃ . For horizontal lifts γ̃2 with γ̃2(0) = t and δ̃ with δ̃(0) = τ̃ we

have pt
ωΩ,x
γ2

(t) = γ̃2(1) and pt
ν
δ (τ̃ ) = δ̃(1). With these formulas, (4.1.5) is equivalent to the assertion

that

exp

(
2πi

∫

γ̃1

ωΩ,x

)
= 1

for every thin path (γ1, γ2), difference δ, horizontal lifts γ̃2 and δ̃, and γ̃1 := γ̃2 · δ̃. �
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The following straightforward calculation only uses property (4.1.2) of the reduction r and the

defining property of the connection A.

Lemma 4.1.6. The 1-form ζ satisfies the identity

(∆ζ)τ1,τ2(X1, X2) = −r(τ2, Y δ
−1) + Z(δ, Āτ2(X2)) + Z(δ, Y δ−1),

where (τ1, τ2) ∈ LFM [2], X1 ∈ Tτ1LFM , X2 ∈ Tτ2LFM , δ ∈ LSpin(n) is defined by the formula

δ(z) := δ(τ1(z), τ2(z)), and Y ∈ TδLSpin(n) is defined by Y (z) := dδ(X1(z), X2(z)).

Now we are prepared for the following key calculation.

Lemma 4.1.7. Let (γ1, γ2) : [0, 1] // LFM [2] be a path with δ : [0, 1] // LSpin(n) defined by

δ(t) := δ(γ1(t), γ2(t)). Assume that γ̃2 is a ωΩ,x-horizontal lift of γ2, and that δ̃ is a ν-horizontal lift

of δ. Then, γ̃1 := γ̃2 · δ̃ is a lift of γ1, and

ωΩ,x(∂tγ̃1(t)) =
1− x

2
Z(δ(t), ∂tδ(t)δ(t)

−1) +
2− x

2
Z(δ(t), Ā(∂tγ2(t))) +

x

2
r(γ2(t), ∂tδ(t)δ(t)

−1).

Proof. The assumptions of horizontality mean that

ωΩ,t(∂tγ̃2(t)) = 0 and ν(∂tδ̃(t)) = 0 (4.1.6)

for all t ∈ [0, 1]. The relation ωΩ,x = Ω− s(σ∗Ā) + x
2σ

∗ζ from the definition of ωΩ,x shows:

Ad−1

δ̃(t)
(Ω(∂tγ̃2(t)))) = Ad−1

δ̃(t)
(s(σ∗Ā(∂tγ̃2(t))) + ωΩ,x(∂tγ̃2(t))) −

x

2
ζ(∂tγ2(t)) (4.1.7)

(4.1.6)
= Ad−1

δ̃(t)
(s(Ā(∂tγ2(t)))−

x

2
ζ(∂tγ2(t))

= Z(δ̃(t), Ā(∂tγ2(t))) + s(Ad−1
δ(t)(Ā(∂tγ2(t)))) −

x

2
ζ(∂tγ2(t)).

That Ω is a ˜LSpin(n)-connection implies then the following:

Ω(∂tγ̃1(t)) = Ad−1

δ̃(t)
(Ω(∂tγ̃2(t))) + δ̃(t)−1∂tδ̃(t) (4.1.8)

(4.1.7)
= Z(δ(t), Ā(∂tγ2(t))) + s(Ad−1

δ(t)(Ā(∂tγ2(t)))) −
x

2
ζ(∂tγ2(t)) + δ̃(t)−1∂tδ̃(t).

The definition of the splitting s from the connection ν implies:

X − s(p∗(X)) = ν1(g
−1X)

(2.2.4)
= νg(X)− ǫν |g−1,g(0, X). (4.1.9)

Now we put the pieces together and obtain:

ωΩ,x(∂tγ̃1(t))

= Ω(∂tγ̃1(t)) − s(σ∗Ā(∂tγ̃1(t))) +
x

2
σ∗ζ(∂tγ̃1(t))

(4.1.8)
= Z(δ(t), Ā(∂tγ2(t))) + s(Ad−1

δ(t)(Ā(∂tγ2(t))))

−
x

2
ζ(∂tγ2(t)) + δ̃(t)−1∂tδ̃(t)− s(Ā(∂tγ1(t))) +

x

2
ζ(∂tγ1(t))

= −s(δ(t)−1∂tδ(t)) + δ̃(t)−1∂tδ̃(t) + Z(δ(t), Ā(∂tγ2(t))) +
x

2
∆ζ(∂tγ1(t), ∂tγ2(t))

(4.1.9)
= νδ̃(t)(∂tδ̃(t))− ǫν |δ̃(t)−1,δ̃(t)(0, ∂tδ̃(t)) + Z(δ(t), Ā(∂tγ2(t))) +

x

2
∆ζ(∂tγ1(t), ∂tγ2(t))

(4.1.6)
= −ǫν |δ(t)−1,δ(t)(0, ∂tδ(t)) + Z(δ(t), Ā(∂tγ2(t))) +

x

2
∆ζ(∂tγ1(t), ∂tγ2(t)).
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With Lemma 4.1.6 this simplifies to

ωΩ,x(∂tγ̃1(t)) = −ǫν|δ(t)−1,δ(t)(0, ∂tδ(t)) +
2− x

2
Z(δ(t), Ā(∂tγ2(t)))

−
x

2
Z(δ(t), ∂tδ(t)δ(t)

−1) +
x

2
r(γ2(t), ∂tδ(t)δ(t)

−1).

Substituting explicit expressions, we get 1
2Z(δ(t), ∂tδ(t)δ(t)

−1) = −ǫν |δ(t)−1,δ(t)(0, ∂tδ(t)); this yields

the claimed formula. �

Now we are in position to prove Proposition 4.1.4, and start with the “if”-part. Suppose ωΩ,1 is super-

ficial. According to Lemma 4.1.5, it suffices to prove that for all thin paths (γ1, γ2) : [0, 1] // LFM [2],

all horizontal lifts γ̃2 of γ2 and δ̃ of δ we get ωΩ,1(∂tγ̃1(t)) = 0 for γ̃1 := γ̃2 · δ̃ and all t ∈ [0, 1]. By

Lemma 4.1.7 this is given by

ωΩ,1(∂tγ̃1(t)) =
1

2
Z(δ(t), Ā(∂tγ2(t))) +

1

2
r(γ2(t), ∂tδ(t)δ(t)

−1).

Explicitly, this is

ωΩ,1(∂tγ̃1(t)) =

∫ 1

0

{〈
∂zδ

∨(t, z)δ∨(t, z)−1, A(∂tγ
∨
2 (t, z))

〉
−
〈
A(∂zγ

∨
2 (t, z)), ∂tδ

∨(t, z)δ∨(t, z)−1
〉}

dz.

The assumption that (γ1, γ2)
∨ : [0, 1]× S1 // FM [2] is a rank one map implies that for every (t, z)

there exist α, β ∈R, not both equal to zero, such that

α∂t(γ1, γ2)
∨(t, z) = β∂z(γ1, γ2)

∨(t, z)

in TFM ⊕ TFM , i.e. α∂tγ
∨
1 (t, z) = β∂zγ

∨
1 (t, z) and α∂tγ

∨
2 (t, z) = β∂zγ

∨
2 (t, z). These imply

α∂tδ
∨(t, z) = β∂zδ

∨(t, z). Assuming either α 6= 0 or β 6= 0, one can see by inspection that the

integrand in above formula vanishes identically for every (t, z). �

We are left with the proof of the “only if”-part of Proposition 4.1.4. We assume x 6= 1 and produce

a counterexample, i.e. appropriate paths for which the integral in Lemma 4.1.5 does not vanish. Let

γ2 be the constant path at a constant loop at a point p∈ FM , i.e. γ2(t)(z) := p. Let δ be a thin path

in LSpin(n), to be specified later. Then, with γ1 := γ2 · δ we have a thin path (γ1, γ2) in LFM
[2]. We

compute the quantity ωΩ,x(∂tγ̃1(t)) of Lemma 4.1.7. The second term in the formula of Lemma 4.1.7,

Z(δ(t), Ā(∂tγ2(t))), vanishes since γ2 is constant and Z is linear in the second argument. Likewise, the

third term vanishes, using the definition (4.1.3) of the reduction r and again that γ2 is constant: For

the first term, however, we have

Z(δ(t), ∂tδ(t)δ(t)
−1) = 2

∫ 1

0

〈
∂zδ

∨(t, z)δ∨(t, z)−1, ∂tδ
∨(t, z)δ∨(t, z)−1

〉
dz. (4.1.10)

Now we construct a specific thin path δ. Let τ ∈ LSpin(n) be a non-constant loop, and let δ(t)(z) :=

τ(ze2πit), the full rotation of the loop τ . Note that

∂zδ
∨(t, z) = ∂zτ(ze

2πit) = ∂tδ
∨(t, z),

i.e. δ∨ is thin and the linear dependence is expressed by constant coefficients. Thus, the integrand

in (4.1.10) is quadratic, hence non-negative, and even positive at at least one z ∈ S1 point as τ is

non-constant. Thus therefore,

yt := Z(δ(t), ∂tδ(t)δ(t)
−1) > 0
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for all t ∈ [0, 1]. It follows that
∫

γ̃1

ωΩ,x =

∫ 1

0

ωΩ,x(∂tγ̃1(t))dt =
1− x

2

∫ 1

0

yt dt,

which is non-zero as x 6= 1. Note that one can scale this quantity continuously down to zero with a

parameter 0 ≤ ǫ ≤ 1, by simply letting all paths end at ǫ instead at 1. In particular, it can be arranged

to be not an integer, hence

exp

(
2πi

∫

γ̃1

ωΩ,x

)
6= 1.

�

Due to Proposition 4.1.4 we promptly set ωΩ := ωΩ,1 as the connection of our choice on TS. Note

that this is a non-standard choice, other treatments of geometric lifting problems choose ωΩ,0 – e.g.

[Gom03, Wal11].

Definition 4.1.8. A spin connection Ω on S is called superficial, if the connection ωΩ on TS is

superficial. A geometric spin structure with superficial spin connection is called a superficial geometric

spin structure.

Together with the connection-preserving isomorphisms between spin structures, superficial geome-

tric spin structures form a category that we denote by Spin∇sf(LM). Due to Proposition 4.1.4, we

obtain a functor

Spin∇sf(LM) // Spinth(LM) : (S, σ,Ω) ✤ // (S, σ, dωΩ).

This functor guarantees the consistency of the various versions of spin structures upon passing from

the setting with connections to the setting without connections.

Definition 4.1.9. A superficial geometric fusion spin structure on LM is a spin structure (S, σ)

together with a fusion product λ and a superficial spin connection Ω, such that ωΩ is fusive with

respect to λ.

Morphisms between superficial geometric fusion spin structures are connection-preserving, fusion-

preserving morphisms of spin structures. Superficial geometric fusion spin structures form a category

that we denote by Spin
∇sf

fus(LM). This category is our loop space formulation of the category of geometric

string structures. The action (4.1.1) of the monoidal category Bun∇(LM) on geometric spin structures

extends to an action

FusBun∇sf(LM)×Spin
∇sf

fus(LM) // Spin
∇sf

fus(LM).

We will see (Corollary 4.2.12 and Theorem 7.3) that this action exhibits Spin
∇sf

fus(LM) as a torsor over

FusBun∇sf(LM).

It is clear from the construction that the passage from the setting with connections to the setting

without connections also works in the presence of fusion products, i.e. we have a functor

Spin
∇sf

fus(LM) // Spin th
fus(LM) : (S, σ, λ,Ω)

✤ // (S, σ, λ, dωΩ ). (4.1.11)

On the level of morphisms, this functor produces honest morphisms f : S // S′ between ˜LSpin(n)-

bundles; these form a subset of the morphisms of Spin th
fus(LM) defined in Definition 3.1.6 that is

characterized by the condition that the fusion homotopy in (iv) of that definition is constant. In

particular, the functor (4.1.11) is not full – just as one would expect it from the passage from a setting

with connections to a setting without connections.
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4.2 Lifting theory for spin connections

We equip the spin lifting gerbe SLM with a connection. We recall that P := Lδ∗ ˜LSpin(n) is the

principal U(1)-bundle of SLM over LFM [2]. It is equipped with the pullback connection Lδ∗ν, but

the bundle gerbe product µ is not connection-preserving for the connection ν. Indeed, we have seen

in Section 2.2 that

pr∗23Lδ
∗ν + pr∗12Lδ

∗ν = pr∗13Lδ
∗ν + Lδ∗2ǫν . (4.2.1)

We now modify the connection Lδ∗ν such that µ becomes connection-preserving. For this purpose,

we consider the 1-form Z(Lδ, pr∗2Ā) ∈Ω1(LFM [2]) and the sum

ξ := Lδ∗β + Z(Lδ, pr∗2Ā) ∈Ω1(LFM [2]), (4.2.2)

where β is the 1-form defined in Lemma 2.2.3. Under the simplicial operator

∆ := pr∗23 + pr∗12 − pr∗13 : Ωk(FM [2]) // Ωk(FM [3])

we obtain the following result.

Lemma 4.2.1. ∆ξ = −Lδ∗2ǫν .

Proof. We make two calculations. First we calculate ∆β := pr∗1β + pr∗2β −m∗β ∈ Ω1(LG2), using

that dmτ1,τ2(X1, X2) = X1τ2 + τ1X2. The result is

(∆β)τ1,τ2(X1, X2) = −

∫ 1

0

{〈
τ1(z)

−1∂zτ1(z), X2(z)τ
−1
2 (z)

〉
−
〈
∂zτ2(z)τ2(z)

−1, τ1(z)
−1X1(z)

〉}
dz.

For the second calculation we use the notation δij := Lδ(τi, τj), in which δ13 = δ23δ12 holds, and obtain

(∆Z(Lδ, pr∗2Ā))τ1,τ2,τ3(X1, X2, X3) = 2

∫ 1

0

〈
∂zδ12(z)δ12(z)

−1, δ23(z)
−1Y23(z)

〉
dz,

where Y23 := dLδ(X2, X3). We have the relation ∆ ◦ Lδ∗ = Lδ∗2 ◦∆ which implements the fact that

δ is a chain map between simplicial manifolds. Putting the two calculations together and identifying

the result under (2.2.4) we obtain the claimed result. �

We also need to calculate the derivative of the 1-form ξ.

Lemma 4.2.2. dξ = − 1
2Lδ

∗ω(θ ∧ θ)− Lδ∗curv(ν) + Z(Lδ, pr∗2dĀ) + ω(Lδ∗θ ∧ Ad−1
Lδ (pr

∗
2Ā)).

Proof. We have [Gom03, Lemma 5.8 (a)]

dZ(Lδ, pr∗2Ā) = Z(Lδ, pr∗2dĀ)− ω(Lδ∗θ ∧ Ad−1
Lδ (pr

∗
2Ā)).

With Lemma 2.2.3 we obtain the claimed formula. �

In the following we consider the 1-form ξ − 1
2∆ζ ∈ Ω1(FM [2]), with ζ the 1-form defined at the

beginning of Section 4.1.

Lemma 4.2.3. The 1-form ξ− 1
2∆ζ ∈Ω1(LFM [2]) is a superficial fusion form, i.e. a superficial fusive

connection on the trivial bundle with respect to the trivial fusion product.
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Proof. This can be verified directly; however, we show in Lemma 7.2 that ξ − 1
2∆ζ is in the image

of the transgression homomorphism 2.2.3; such forms are automatically superficial [Wal12c, Lemma

3.1.7] and fusion [Wal12c, Proposition 3.2.3]. �

We consider on P = Lδ∗ ˜LSpin(n) the connection

χspin := Lδ∗ν + (ξ −
1

2
∆ζ). (4.2.3)

Proposition 4.2.4. The connection χspin has the following properties:

(i) It makes the bundle gerbe product µ connection-preserving.

(ii) It is superficial, and the induced thin structure on P coincides with the one induced by the original

connection: dχspin = dP = dLδ∗ν .

(iii) It is a fusive connection with respect to the fusion product λP = Lδ∗λ on P .

Proof. (i) holds because the correction term satisfies

∆(ξ −
1

2
∆ζ) = ∆ξ = −Lδ∗2ǫν ,

by Lemma 4.2.1 and so cancels the error in the multiplicativity of ν. (ii) and (iii) hold because of

Lemma 4.2.3. We regard P (equipped with the fusion product λP and connection χspin) as the tensor

product of P (equipped with λP and the superficial fusive connection Lδ∗ν) and the trivial bundle

(equipped with the trivial fusion product and the superficial fusive connection ξ − 1
2∆ζ). Since the

conditions of being superficial and fusion are preserved under the tensor product, χspin is superficial

and fusion. The same argument works for thin structures instead of connections. Here, the thin

structure d ξ− 1

2
ζ is the trivial one [Wal12c, Proposition 3.1.8], so that dχspin = dLδ∗ν . �

It remains to find a curving adapted to the connection χspin, i.e. a 2-form Bspin on LFM such

that ∆Bspin = curv(χspin).

Proposition 4.2.5. The 2-form

Bspin :=
1

2
ω(Ā ∧ Ā) + r(curv(Ā))−

1

2
dζ ∈ Ω2(LFM [2])

is a curving for the connection χspin.

Proof. With Lemmata 2.2.3 and 4.2.2 the curvature of χspin is:

curv(χspin) = −
1

2
Lδ∗ω(θ ∧ θ) + Z(Lδ, pr∗2dĀ) + ω(Lδ∗θ ∧Ad−1

Lδ (pr
∗
2Ā))−

1

2
∆dζ.

In order to calculate ∆Bspin, we compute with (2.2.7) and (4.1.2) the formulas

∆ω(Ā ∧ Ā) = −Z(Lδ, [pr∗2Ā ∧ pr∗2Ā])− 2ω(Ad−1
Lδ (pr

∗
2Ā) ∧ Lδ

∗θ)− ω(Lδ∗θ ∧ Lδ∗θ)

∆r(curv(Ā)) = Z(Lδ, curv(pr∗2Ā))

These show the required identity ∆Bspin = curv(χspin). �
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It is worthwhile to compare the connection (χspin, Bspin) on SLM with another connection devel-

oped by Gomi [Gom03] for general lifting gerbes (not only for loop group extensions). That connection

takes as input data just the splitting s of the Lie algebra extension and the reduction r adapted to s.

It is defined by

χGo = Lδ∗νs + Z(Lδ, pr∗2Ā) ∈Ω1(P ),

where νs is the connection on ˜LSpin(n) determined by s. The corresponding curving is given by

BGo :=
1

2
ω(Ā ∧ Ā) + r(curv(Ā)) ∈Ω2(LFM).

Since connections on bundle gerbes form an affine space [Mur96], we obtain the following.

Lemma 4.2.6. The assignment

x
✤ // (χx, Bx) := (χGo −

x

2
∆ζ, BGo −

x

2
dζ)

is a one-parameter family of connections on the spin lifting gerbe SLM , which contains the connection

of Gomi at x = 0 and the connection (χspin, Bspin) at x = 1.

We recall from Section 3.2 that spin structures on LM correspond to trivializations of the spin

lifting gerbe SLM , under the assignment of sending a spin structure (S, σ) to the trivialization (TS, κS)

consisting of the principal U(1)-bundle TS over LFM , and of the bundle isomorphism κS : pr∗2TS ⊗

P // pr∗1TS defined by κS(t⊗ q) := t · q. To Gomi’s connection on the spin lifting gerbe, and to the

connection ωΩ,0 on TS applies a general lifting theorem, see [Gom03] and [Wal11, Theorem 2.2], which

in the present situation has the following form.

Proposition 4.2.7. The assignment (S, σ,Ω)
✤ // (TS, κS, ωΩ,0) induces an equivalence of categories:

Spin∇(LM) ∼=





Trivializations of SLM with

connection compatible with

(χGo, BGo)



 .

We recall that a connection on a trivialization T = (T, κ) is a connection ω on T , and it is called

compatible with a connection (χ,B) on the lifting gerbe if κ is connection-preserving. The curving

B is used in order to associate to each compatible connection on T a covariant derivative: a 2-form

ρT ∈Ω2(LM) uniquely determined by the condition that Lπ∗ρT = curv(ω) +B.

Together with Lemma 4.1.3 we deduce the following result.

Corollary 4.2.8. Under the equivalence of Proposition 4.2.7, the scalar curvature of a geometric spin

connection corresponds to the covariant derivative of a trivialization, i.e.

Lπ∗scurv(Ω) = curv(ωΩ,0) +BGo.

Trivializations with compatible connections together with the connection-preserving isomorphisms

between trivializations form a category, which is, analogously to (3.2.1) a torsor over the monoidal

category Bun∇(LM) of principal U(1)-bundles with connection over LM . The equivalence of Propo-

sition 4.2.7 is equivariant with respect to the Bun∇(LM)-actions on both categories; in particular, we

have the following consequence.

Corollary 4.2.9. The category Spin∇(LM) is a torsor over the monoidal category Bun∇(LM) of

principal U(1)-bundles with connection over LM .
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We want to generalize the equivalence of Proposition 4.2.7 to a version for the connection ωΩ,x for

all x ∈R, and so in particular to the case x = 1. In order to do so, we have the following result.

Lemma 4.2.10. The assignment (T, κ, ω) ✤ // (T, κ, ω + x
2 ζ) induces an equivalence of categories:





Trivializations of SLM with

connection compatible with

(χ0, B0)





∼=





Trivializations of SLM

with connection

compatible with (χx, Bx)



 .

Moreover, the equivalence is equivariant with respect to the Bun∇(LM)-actions, and it preserves the

covariant derivative of trivializations.

Proof. It is enough to show that the given functor is well-defined for all x∈R; it is then invertible by

the functor associated to −x. For well-definedness it suffices to show that the given isomorphism κ is

connection-preserving for the shifted connections. Indeed, in

κ : pr∗2T ⊗P // pr∗1T

we shift on the right hand side by x
2pr

∗
1ζ and on the left hand side by x

2pr
∗
2ζ −

x
2∆ζ = x

2pr
∗
1ζ; thus, κ

is connection-preserving.

The equivariance under the Bun∇(LM)-actions follows directly from the definitions. If ρ is the

covariant derivative of (T, κ, ω) with respect to B0, i.e. Lπ∗ρ = curv(ω) + B0, then the covariant

derivative of (T, κ, ω + x
2 ζ) with respect to Bt = B0 −

x
2dζ is the same ρ, since

Lπ∗ρ = curv(ω) +B0 = curv(ω +
x

2
ζ) −

x

2
dζ +B0 = curv(ω +

x

2
ζ) +Bt.

�

From Proposition 4.2.7 and Lemma 4.2.10 we obtain for each x∈R an equivalence between geometric

spin structures on LM and trivializations of the spin lifting gerbe equipped with the connection

(χx, Bx). In particular, we have for x = 1:

Theorem 4.2.11. The assignment (S, σ,Ω)
✤ // (TS, κS, ωΩ) induces an equivalence of categories

Spin∇(LM) ∼=





Trivializations of SLM with

connection compatible with

(χspin, Bspin)



 .

This equivalence is equivariant for the Bun∇(LM)-actions, and the scalar curvature of a geometric

spin structure corresponds to the covariant derivative of the trivialization.

Definition 4.1.8 of superficial spin connections shows that the equivalence of Theorem 4.2.11 ex-

changes superficial spin connections Ω with trivializations of SLM whose connection ωΩ is superficial.

Likewise, Definition 4.1.9 of geometric fusion spin structures shows that the equivalence persists in the

setting with fusion products, where it becomes the following result.

Corollary 4.2.12. The assignment (S, σ, λ,Ω)
✤ // (TS, κS, λ, ωΩ) induces an equivalence of categories,

Spin
∇sf

fus(LM) ∼=





Fusion trivializations of SLM with

superficial fusive connection

compatible with (χspin, Bspin)



 .

This equivalence is equivariant under the action of the monoidal category FusBun∇sf(LM).
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To close, we observe by inspection that the passage from a setting with connections to a setting

without connections is consistent with the lifting theory, i.e. with Proposition 3.2.6 and Corollary

4.2.12): there is a commutative diagram of categories and functors

Spin
∇sf

fus(LM) //

��





Fusion trivializations of SLM with

superficial fusive connection

compatible with (χspin, Bspin)





��
Spin th

fus(LM) // Triv th
fus(SLM ),

(4.2.4)

with the horizontal functors equivalences of categories.

5 String structures and decategorification

String structures as defined in [Wal13] form a bicategory. The main point of this section is to introduce

several decategorified versions of this bicategory of string structures, which are tailored into a form

that allows a direct application of the duality between gerbes and U(1)-bundles over loop spaces, see

Section 2.

5.1 String structures as trivializations

The idea behind string structures as defined in [Wal13] is to realize the class 1
2p1(M)∈H4(M,Z) using

bundle 2-gerbes.

Definition 5.1.1 ([Ste04, Definition 5.3]). A bundle 2-gerbe over a smooth manifold M is a surjective

submersion π : Y // M together with a bundle gerbe P over Y [2], an isomorphism

M : pr∗23P ⊗ pr∗12P // pr∗13P

of bundle gerbes over Y [3], and a transformation

pr∗34P ⊗ pr∗23P ⊗ pr∗12P
pr∗

234
M⊗id

//

id⊗pr∗
123

M

��

pr∗24P ⊗ pr∗12P

µ ❥❥❥❥
❥❥❥❥

❥
❥❥❥❥

❥❥❥❥
❥

px ❥❥❥❥
❥❥❥❥

❥
❥❥❥❥

❥❥❥❥
❥ pr∗

124
M

��
pr∗34P ⊗pr∗13P pr∗

134
M

// pr∗14P

over Y [4] that satisfies a pentagon axiom.

The isomorphism M is called the bundle 2-gerbe product and the transformation µ is called the

associator . The pentagon axiom implies the cocycle condition for a certain degree three Čech cocycle

on M with values in U(1), which defines – via the exponential sequence – a class

CC(G) ∈H4(M,Z);

see [Ste04, Proposition 7.2] for the details.
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We recall from [CJM+05] the construction of the Chern-Simons 2-gerbe CSM , whose characteristic

class is CC(CSM ) = 1
2p1(M). It uses the basic gerbe Gbas over Spin(n), together with its multiplicative

structure (M, α) described in Section 2.1. Here we first ignore the connections – they become relevant

in Section 6.1. The Chern-Simons 2-gerbe CSM consists of the following structure:

• Its surjective submersion is the frame bundle π : FM // M .

• Its bundle gerbe P over FM [2] is P := δ∗Gbas, where δ : FM
[2] // Spin(n) is the difference map

(i.e. p′ · δ(p, p′) = p).

• Its bundle 2-gerbe product is

M′ := δ∗2M : pr∗23P ⊗pr∗12P // pr∗13P ,

where δ2 : FM [3] // Spin(n)2 is defined by (p′′, p′) · δ2(p, p
′, p′′) = (p′, p).

• Its associator is µ := δ∗3α, where δ3 : FM [4] // Spin(n) is defined analogously. The pentagon

axiom for α implies the pentagon axiom for µ.

More detailed discussions of the Chern-Simons 2-gerbe are given in [CJM+05, Wal10, Wal13, NW13].

Definition 5.1.2 ([Ste04, Definition 11.1]). A trivialization of a bundle 2-gerbe G as in Definition

5.1.1 is a bundle gerbe S over Y , together with an isomorphism

A : pr∗2S ⊗P // pr∗1S

of bundle gerbes over Y [2] and a connection-preserving transformation

pr∗3S ⊗pr∗23P ⊗ pr∗12P
pr∗

23
A⊗id

//

id⊗M

��

pr∗2S ⊗ pr∗12P

σ ❦❦❦
❦❦❦

❦❦
❦❦❦

❦❦❦
❦❦

qy ❦❦❦❦
❦❦❦

❦
❦❦❦

❦❦❦
❦❦ pr∗

12
A

��
pr∗3S ⊗ pr∗13P pr∗

13
A

// pr∗1S

(5.1.1)

over Y [3] that is compatible with the associator µ in the sense of Figure 1.

∗

pr∗
123

σ ◦ id

y� ⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤ id ◦ (id⊗pr∗

234
σ)

�%
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇

∗

pr∗
134

σ ◦ id

��
✶✶
✶✶
✶✶
✶✶

✶✶
✶✶
✶✶
✶✶

∗

pr∗
124

σ ◦ id

�
 ✌
✌✌
✌✌
✌✌
✌

✌✌
✌✌
✌✌
✌✌

∗

id ◦ (µ⊗ id)

+3 ∗

Figure 1: The compatibility condition between the associator µ of a bundle

2-gerbe and the transformation σ of a trivialization. It is an equation of

transformations over Y [4].
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The characteristic class CC(G) ∈ H4(M,Z) of G vanishes if and only if G admits a trivialization

[Ste04, Proposition 11.2]. In particular, the Chern-Simons 2-gerbe CSM has trivializations if and only

if M is a string manifold. This is the motivation for the following definition.

Definition 5.1.3 ([Wal13, Definition 1.1.5]). A string structure on M is a trivialization T of CSM .

The main problem with establishing a relation between string structures and loop space geometry

via the transgression and regression functors of Section 2 is that these functors are defined on the

truncated categories h1Grb
∇(X) and h1Grb (X) of bundle gerbes and not on the full bicategories . This

problem is solved in the next subsections by reformulating the notion of trivializations of bundle

2-gerbes internal to these truncated categories.

5.2 Decategorification of trivializations

In this section G is a general bundle 2-gerbe over M , composed of the same structure as in Definition

5.1.1. According to [Wal13, Lemma 2.2.4], trivializations of G form a bicategory, which we denote by

Triv(G). We recall how the 1-morphisms and 2-morphisms are defined.

Given trivializations T = (S,A, σ) and T′ = (S ′,A′, σ′) of G, a 1-morphism B : T // T′ in Triv(G)

is an isomorphism B : S // S ′ between bundle gerbes over Y together with a transformation

pr∗2S ⊗P
A //

id⊗pr∗
2
B

��

pr∗1S

β
tt
tttt
tt

v~ tt
ttttt
t pr∗

1
B

��
pr∗2S

′⊗P
A

′

// pr∗1S
′

(5.2.1)

over Y [2] that is compatible with the transformations σ and σ′ in the sense of the pentagon diagram

shown in Figure 2. If B1 = (B1, β1) and B2 = (B2, β2) are 1-morphisms between T and T′, a 2-

∗

pr∗12β ◦ id

y� ⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤ id ◦ pr∗23β

�%
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇

∗

id ◦ σ

��
✶✶
✶✶
✶✶
✶✶

✶✶
✶✶
✶✶
✶✶

∗

σ′
◦ id

�
 ✌
✌✌
✌✌
✌✌
✌

✌✌
✌✌
✌✌
✌✌

∗

pr∗13β ◦ id

+3 ∗

Figure 2: The compatibility between the transformations σ and σ′ of two

trivializations T and T′ and the transformation β of a 1-morphism B = (B, β)

between T and T′. It is an equation of transformations over Y [3].

morphism is a transformation ϕ : B1
+3 B2 that is compatible with the transformations β1 and β2 in
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such a way that the diagram

pr∗1B1 ◦ A

pr∗
1
ϕ◦id

��

β1 +3 A′ ◦ (pr∗2B1⊗ id)

id◦(pr∗
2
ϕ⊗id)

��
pr∗1B2 ◦ A

β2

+3 A′ ◦ (pr∗2B2⊗ id)

(5.2.2)

of transformations over Y [2] is commutative.

The bicategory Triv(G) is a module over the monoidal bicategory Grb (M) in terms of an action

2-functor

Grb (M)⊗Triv(G) // Triv(G) : (K,T)
✤ // K⊗T, (5.2.3)

For a trivialization T = (S,A, σ) and a bundle gerbe K overM , the trivialization K⊗T is given by the

bundle gerbe π∗K⊗S, the isomorphism id⊗A and the transformation id⊗σ. We recall the following

result.

Lemma 5.2.1 ([Wal13, Lemma 2.2.5]). The action (5.2.3) exhibits the bicategory Triv(G) as a torsor

over the monoidal bicategory Grb (M).

There are two methods to produce a category from the bicategory Triv(G) of trivializations of a

bundle 2-gerbe. The first method is to take the truncation h1Triv(G), whose objects are those of

Triv(G), and whose morphisms are 2-isomorphism classes of 1-morphisms in Triv(G).

The second method is to consider the truncated presheaf of categories h1Grb and then formally

repeat the definition of trivializations in that ambient category. This gives a category which we denote

by t1Triv(G). An object in t1Triv(G) is a pair (S, [A]) of a bundle gerbe S over Y and an equivalence

class of isomorphisms

A : pr∗2S ⊗P // pr∗1S,

such that there exists a transformation σ as in (5.1.1). Note that it is not required that σ makes the

diagram of Figure 1 commutative. A morphism (S1, [A1]) // (S2, [A2]) in t1Triv(G) is an equivalence

class [B] of isomorphisms B : S1
// S2 such that there exists a transformation β as in (5.2.1). Note

that it is not required that β makes the diagram of Figure 2 commutative.

The two categories of trivializations are related by a functor

t1 : h1Triv(G) // t1Triv(G).

Indeed, an object in h1Triv(G) is just an object (S,A, σ) in Triv(G), and the functor sets t1(S,A, σ) :=

(S, [A]). A morphism in h1Triv(G) is a 2-isomorphism class [(B, β)] of 1-morphisms, and the construc-

tions above show that t1([(B, β)]) := [B] is well-defined.

We recall that Triv(G) is a torsor over Grb (M), see Lemma 5.2.1. By purely formal reasons, it

follows that h1Triv(G) is a torsor over h1Grb (M). There is a similar action of h1Grb (M) on t1Triv(G),

i.e. a functor

h1Grb (M)× t1Triv(G) // t1Triv(G) (5.2.4)

that exhibits t1Triv(G) as a module category over the monoidal category h1Grb (M). On objects, it is

given by (K, (S, [A])) ✤ // (π∗K⊗S, [A⊗id]), and on morphisms it is given by ([J ], [B]) ✤ // [π∗J ⊗B].

The functor t1 is obviously h1Grb (M)-equivariant.
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Next we produce three sets from the bicategory Triv(G) of trivializations. The first is the set

h0Triv(G) of isomorphism classes of trivializations of G. The second is the set h0(t1Triv(G)) of isomor-

phism classes of objects in t1Triv(G). The third is the set t2Triv(G) obtained by formally repeating the

definition of a trivialization ambient to the presheaf h0Grb . In detail, an element of t2Triv(G) is an iso-

morphism class [S] of bundle gerbes S over Y , such that there exists an isomorphism pr∗2S⊗P ∼= pr∗1S

over Y [2].

The three sets of trivializations are related by maps

h0Triv(G)
h0t1 // h0(t1Triv(G))

t2 // t2Triv(G),

where h0t1 is the map induced by the functor t1 on isomorphism classes, and t2 sends an element

[(S, [A])] to [S]. Again by purely formal reasons, h0Triv(G) is a torsor over the group h0Grb (M).

Further, the group h0Grb (M) acts on h0(t1Triv(G)), and h0t1 is equivariant. Finally, we have an action

of h0Grb (M) on t2Triv(G), defined by ([K], [S]) ✤ // [π∗K⊗S], for which the map t2 is equivariant.

5.3 From string structures to string classes

We now have the following versions of string structures:

(a) a bicategory of string structures , String(M) := Triv(CSM ),

(b) two categories of string structures , h1String(M) and String1(M) := t1Triv(CSM ), related by a

functor

t1 : h1String(M) // String1(M),

(c) three sets of string structures , namely h0String(M), h0String1(M) and String0(M) := t2Triv(CSM ),

related by maps

h0String(M)
h0t1 // h0String1(M)

t2 // String0(M).

Additionally, there is a fourth set consisting of so-called string classes. A string class on M is a class

ξ ∈ H3(FM,Z) that restricts on each fibre to the generator γ ∈ H3(Spin(n),Z). We denote the set of

string classes on M by StrCl(M). We have a map

t3 : String0(M) // StrCl(M) : [S] ✤ // DD(S).

This map is well-defined: indeed, for a point p ∈ FM we have the map ιp : Spin(n) // FM

defined by ιp(g) := pg, implementing the “restriction to the fibre of p”. We have another map

jp : Spin(n) // FM [2] defined by jp(g) := (pg, p). Recall that an element [S] in String0(M) is rep-

resented by a bundle gerbe S over FM that admits an isomorphism pr∗2S ⊗ δ∗Gbas
∼= pr∗1S. Pullback

along jp followed by taking the Dixmier-Douady class yields γ = DD(Gbas) = ι∗pDD(S). Thus, DD(S)

is a string class.

The set StrCl(M) of string classes carries an action of H3(M,Z) via pullback to FM and addition,

and under the identification h0Grb (M) ∼= H3(M,Z) the map t3 is equivariant.

Theorem 5.3.1. The functor

t1 : h1String(M) // String1(M)
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is an equivalence of categories; in particular, it is an equivariant functor between h1Grb (M)-torsors.

The maps

h0String(M)
h0t1 // h0String1(M)

t2 // String0(M)
t3 // StrCl(M)

are all bijections; in particular, they are equivariant maps between H3(M,Z)-torsors.

The proof is split into a couple of lemmata. We start with the following Serre spectral sequence

calculation.

Lemma 5.3.2. Let π : P // M be a principal G-bundle over M , for G a compact, simple, simply-

connected Lie group. Let A be an abelian group. For k = 0, 1, 2 the pullback map

π∗ : Hk(M,A) // Hk(P,A)

is an isomorphism. Let p ∈ P be a point and ip : G // P : g ✤ // pg. Then, the sequence

0 // H3(M,A)
π∗

// H3(P,A)
i∗p // H3(G,A)

tr // H4(M,A)

is exact, where tr is the “transgression” homomorphism of the Serre spectral sequence.

In case of G = Spin(n) and A = Z, the transgression homomorphism tr of the Serre spectral

sequence sends the generator γ ∈H3(Spin(n),Z) to the class 1
2p1(M)∈H4(M,Z). Thus, we obtain the

following result about string classes.

Corollary 5.3.3 ([Red06, Proposition 6.1.5]). Let M be a spin manifold.

(i) String classes exist if and only if M is a string manifold.

(ii) The set of string classes StrCl(M) is a torsor over H3(M,Z).

Now we are in position to contribute first partial results to the proof of Theorem 5.3.1.

Lemma 5.3.4. The maps t3 and t2 ◦ h0t1 are bijections.

Proof. IfM is not string, then h0String(M) and StrCl(M) are empty. Hence String0(M) is also empty,

and both maps in the claim are maps between empty sets, hence bijections. IfM is string, h0String(M)

and StrCl(M) are non-empty. Then h0String(M) and StrCl(M) are both torsors over H3(M,Z) by

Lemma 5.2.1 and Corollary 5.3.3, and the over all composition t3 ◦ t2 ◦ h0t1 is an equivariant map

between torsors over the same group, hence a bijection. In particular, t3 is surjective. The definition

of t3 shows immediately that it is also injective. Hence, t3 and t2 ◦ h0t1 are bijections. �

Lemma 5.3.5. Let π : P // M be a principal G-bundle over M , for G a compact, simple, simply-

connected Lie group. We denote by P [k] the k-fold fibre product of P with itself over M , and by

πk : P [k] // M the projection. Then,

π∗
k : Hp(M,A) // Hp(P [k], A)

is an isomorphism for all k ∈ N, p = 0, 1, 2, and A = R,Z,U(1).
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Proof. Since P is a principal G-bundle, we have diffeomorphisms

ϕk : P [k] // P ×Gk−1 : (p1, ..., pk)
✤ // (p1, δ(p1, p2), δ(p1, p3), ..., δ(p1, pk))

with π ◦pr1 ◦ϕk = πk. The projection pr1: P×G
k−1 // P induces an isomorphism in the cohomology

with coefficients in A = R,Z and in degrees p = 0, 1, 2 via the Künneth formula (using that R and Z

have no torsion) and the 2-connectedness of G. For A = U(1) the same statement holds due to the

exactness of the exponential sequence and the five lemma. The bundle projection π : Y // M induces

an isomorphism in cohomology in degrees p = 0, 1, 2 according to Lemma 5.3.2. �

Lemma 5.3.6. Suppose that F is a presheaf of abelian groups over smooth manifolds, and

π : Y // M is a surjective submersion. We denote by πk : Y [k] // M the projection, and by

∆ : F(Y [k]) // F(Y [k+1]) the Čech coboundary operator. Then,

∆ ◦ π∗
k =

{
π∗
k+1 k even

0 k odd.

Proof. For α ∈ F(M) and β = π∗
kα we have ∂∗i β = ∂∗i π

∗
kα = π∗

k+1α. Now the claim is proved by

counting the number of terms in the alternating sum. �

Applying Lemma 5.3.6 to the presheaf F = Hp(−,Z), we obtain the following.

Corollary 5.3.7. Let π : P // M be a principal G-bundle over M , for G a compact, simple, simply-

connected Lie group. Then, for p = 0, 1, 2,

∆ : Hp(P [k],Z) // Hp(P [k+1],Z)

is an isomorphism if k is even, and the zero map if k is odd.

Now we finish the proof of Theorem 5.3.1 with the following two lemmata.

Lemma 5.3.8. The map t2 : h0String1(M) // String0(M) is a bijection.

Proof. By Lemma 5.3.4 it is surjective; hence it remains to prove injectivity. Suppose (S1, [A1]) and

(S2, [A2]) are objects in String1(M) such that there images under t2 are equal, i.e. there exists an

isomorphism B : S1
// S2. We have to construct a transformation

β : pr∗1B ◦ A1
+3 A2 ◦ (pr

∗
2B⊗ id)

over Y [2], see (5.2.1), so that B = (B, β) is an isomorphism in String1(M). A priori, the two isomor-

phisms pr∗1B ◦ A1 and A2 ◦ (pr
∗
2B ⊗ id) are not 2-isomorphic. We recall that the category Hom(G,H)

of isomorphisms between two fixed bundle gerbes G and H over an arbitrary smooth manifold X is a

torsor over the monoidal category Bun(X) of principal U(1)-bundles over X , under an action functor

Bun(X)×Hom(G,H) // Hom(G,H) : (B,A)
✤ // B⊗A, (5.3.1)

see [CJM02]. In our situation, this means that there exists a principal U(1)-bundle B over Y [2] such

that with A′
2 := B⊗A2 we do have a transformation

β : pr∗1B ◦ A1
+3 A′

2 ◦ (pr
∗
2B⊗ id).
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The bundle B has a first Chern class c1(B) ∈ H2(Y [2],Z). We claim that c1(B) = 0, meaning that

A′
2
∼= A2 and β is the claimed transformation; thus, t2 is injective.

Indeed, since (S1, [A1]) and (S2, [A2]) are objects in String1(M) = t1Triv(G), there exist transfor-

mations σ1, σ2 making diagram (5.1.1) commutative. One can paste together σ1 and β and produce

the following transformation:

pr∗3S2⊗pr∗23P ⊗pr∗12P
pr∗

23
A

′

2
⊗id

//

id⊗M

��

pr∗2S2 ⊗pr∗12P

pr∗
12

A
′

2

��

pr∗3S1⊗pr∗23P ⊗pr∗12P

id

�


id⊗pr∗
23

β

-5

pr∗
3
B⊗id⊗id

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖
pr∗

23
A1⊗id

//

M⊗id

��

pr∗2S1⊗pr∗12P

pr∗
12

β

��

σ1
♥♥♥

♥♥♥
♥♥

♥♥♥
♥♥♥

♥♥

rz ♥♥♥
♥♥♥

♥♥

♥♥♥
♥♥♥

♥♥

pr∗
2
B⊗id

99rrrrrrrrrrrrrrr

pr∗
12

A1

��
pr∗3S1 ⊗pr∗13P

pr∗
13

β

(0

pr∗
3
B⊗id

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦♦ pr∗

13
A1

// pr∗1S1

pr∗
1
B

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

pr∗3S2⊗pr∗13P
pr∗

13
A

′

2

// pr∗1S2

Using the relation A′
2 = B ⊗A2 and using that the action (5.3.1) commutes with composition, this

transformation induces another transformation

(pr∗12A2 ◦ (pr
∗
23A2 ⊗ id))⊗ (pr∗12B⊗pr∗23B⊗pr∗13B

∨) +3 pr∗13A2 ◦ (id⊗M)

with B∨ the dual bundle. On the other hand, σ2 is a transformation

σ2 : pr∗12A2 ◦ (pr
∗
23A2⊗ id) +3 pr∗13A2 ◦ (id⊗M)

It follows that pr∗12B⊗pr∗23B⊗pr∗13B
∨ must be trivializable, i.e. ∆c1(B) = 0. By Corollary 5.3.7 this

means c1(B) = 0. �

Lemma 5.3.9. The functor t1 is an equivalence of categories.

Proof. We know already that h0t1 is a bijection. This implies that t1 is essentially surjective, and it im-

plies that for two objects T1 = (S1,A1, σ1) and T2 = (S2,A2, σ2) the Hom-sets Homh1Triv(CSM )(T1,T2)

and Homt1Triv(CSM )(t1(T1), t1(T2)) are either both empty or both non-empty. It remains to show that

t1 induces in the non-empty case a bijection between these sets. We have already seen that t1 is

equivariant with respect to the h1Grb (M)-action, namely the one induced from (5.2.3), and the action

(5.2.4). Over the objects (I, I) and (T1,T2) these induce actions of the group

Homh1Grb (M)(I, I) = h0HomGrb (M)(I, I)
(5.3.1)
= h0Bun(M)

on the sets Homh1Triv(CSM )(T1,T2) and Homt1Triv(CSM )(t1(T1), t1(T2)), respectively. By Lemma 5.2.1,

the first set is even a torsor under this action. We prove that the second is also a torsor, so that t1 is

an equivariant map between torsors, hence a bijection.

We recall that the elements of Homt1Triv(CSM )(t1(T1), t1(T2)) are equivalence classes [B] of iso-

morphisms B : S1
// S2 such that there exists a transformation β as in (5.2.1). The action of

– 39 –



[K] ∈ h0Bun(M) sends [B] to [π∗K ⊗B]. This action is free because π∗ : H2(M,Z) // H2(FM,Z) is

an isomorphism by Lemma 5.3.5. If B and B′ are both isomorphisms from S1 to S2, then by (5.3.1)

there exists a principal U(1)-bundle P on FM such that B′ ∼= B ⊗ P . But again, since π∗ is an

isomorphism, P ∼= π∗K for some K in Bun(M). Hence the action is transitive. �

6 String connections and decategorification

This section is the analogue of Section 5 in the setting with connections. We first recall the definition of

string connections and geometric string structures on the basis of [Wal13]. Geometric string structures

form a bicategory, of which we discuss various decategorified versions. At the end of a sequence of

decategorification we naturally find the notion of a differential string class.

6.1 String connections as connections on trivializations

The Levi-Cevita connection on M lifts to a spin connection A on FM ; in turn it defines a connection

on the Chern-Simons 2-gerbe CSM [Wal13, Theorem 1.2.1]. In the following we recall this construction.

We suppose first that G is a bundle 2-gerbe over a smooth manifold M as in Definition 5.1.1.

Definition 6.1.1. A connection on G is a 3-form C ∈Ω3(Y ) and a connection on the bundle gerbe P

such that

pr∗2C − pr∗1C = curv(P), (6.1.1)

and the bundle 2-gerbe product M as well as the associator µ are connection-preserving.

The 3-form C is called the curving of the connection. In case of the Chern-Simons 2-gerbe, the

announced connection is constructed using the connection A on FM and the connection on the basic

bundle gerbe Gbas described in Section 2.1:

• The curving is the Chern-Simons 3-form CS(A) ∈Ω3(FM) associated to A,

CS(A) = 〈A ∧ dA〉+
1

3
〈A ∧ [A ∧ A]〉 , (6.1.2)

where 〈−,−〉 is the same symmetric invariant bilinear form on the Lie algebra g of Spin(n) that

was used to fix the curvature of the basic gerbe Gbas in Section 2.1.

• The connection on the bundle gerbe P = δ∗Gbas over FM [2] is given by the connection on δ∗Gbas

shifted by the 2-form

ω := 〈δ∗θ ∧ pr∗1A〉 ∈Ω2(FM [2]), (6.1.3)

i.e. we have P = δ∗Gbas ⊗Iω as bundle gerbes with connection. The well-known identity

CS(pr∗2A) = CS(pr∗1A) + δ∗H + dω (6.1.4)

for the Chern-Simons 3-form implies the condition (6.1.1) for the curving.

• We recall that the isomorphism

M : pr∗1G ⊗pr∗2G // m∗G ⊗Iρ
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from the multiplicative structure on Gbas is connection-preserving. Under pullback with δ2 :

FM [3] // Spin(n)2, the 2-form ρ satisfies

pr∗13ω = δ∗2ρ+ pr∗12ω + pr∗23ω. (6.1.5)

This permits to define a connection-preserving bundle 2-gerbe product M′ by

pr∗23P ⊗pr∗12P = δ∗2(pr
∗
1G ⊗pr∗2G)⊗Ipr∗

13
ω−δ∗

2
ρ

δ∗
2
M⊗id

// δ∗2m
∗G ⊗Ipr∗

13
ω = pr∗13P .

• The connection-preserving transformation α from the multiplicative structure on Gbas gives a

connection-preserving associator.

If a bundle 2-gerbe G is equipped with a connection, and T = (S,A, σ) is a trivialization of G,

then a compatible connection on T is a connection on the bundle gerbe S such that the isomorphism

A and the transformation σ are connection-preserving.

Definition 6.1.2 ([Wal13, Definition 1.2.2]). Let T be a string structure on M . A string connection

on T is a compatible connection on T. A geometric string structure on M is a pair of a string structure

on M and a string connection.

Geometric string structures form a bicategory String∇(M) := Triv∇(CSM ), with 1-morphisms and

2-morphisms defined exactly as in the setting without connections, just that all occurring isomorphisms

and transformations are connection-preserving [Wal13, Remark 6.1.1]. We recall the following results

about string connections for later reference.

Theorem 6.1.3 ([Wal13, Theorems 1.3.4 and 1.3.3]).

(i) Every string structure admits a string connection.

(ii) For every geometric string structure T = (S,A, σ), there exists a unique 3-form K ∈Ω3(M) such

that π∗K = CS(A) + curv(S).

6.2 Decategorified string connections

Just like in the setting without connections, we may consider various truncations of the bicategory

Triv∇(G) for a general bundle 2-gerbe G with connection. So we have categories h1Triv
∇(G) and

t1Triv
∇(G) and a functor

t∇1 : h1Triv
∇(G) // t1Triv

∇(G).

Further we have three sets h0Triv
∇(G), h0t1Triv

∇(G) and t2Triv
∇(G), and maps

h0Triv
∇(G)

h0t
∇

1 // h0(t1Triv
∇(G))

t∇
2 // t2Triv

∇(G).

The passage from the setting with connections to the one without connections is attended by

a 2-functor F2 : Triv∇(G) // Triv(G), a functor F1 : t1Triv
∇(G) // t1Triv(G), and a map

F0 : t2Triv
∇(G) // t2Triv(G). It is fully consistent with the various functors and maps introduced
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above, in the sense that the diagrams

h1Triv
∇(G) //

h1F2

��

t1Triv
∇(G)

F1

��
h1Triv(G) // t1Triv(G)

h0Triv
∇(G)

h0F2

��

// h0t1Triv
∇(G)

h0F1

��

// t2Triv
∇(G)

F0

��
h0Triv(G) // h0t1Triv(G) // t2Triv(G)

(6.2.1)

of functors and maps, respectively, are commutative.

We have again various actions. The bicategory Triv∇(G) is a torsor for the monoidal bicategory

Grb∇(M) of bundle gerbes with connection overM [Wal13, Lemma 2.2.5]. As before, a bundle gerbe K

with connection over M acts on a trivialization T = (S,A, σ) with compatible connection by sending

it to (π∗K⊗S, id⊗A, id⊗σ). Correspondingly, the category h1Triv
∇(G) is a torsor category over the

monoidal category h1Grb
∇(M), and the set h0Triv

∇(G) is a torsor over the group h0Grb
∇(M).

In the same natural way, the monoidal category h1Grb
∇(M) acts on the category t1Triv

∇(G) such

that the functor t∇1 is equivariant, and the group h0Grb
∇(M) acts on the set t2Triv

∇(G) such that the

map t∇2 is equivariant.

Now we specialize to the case of the Chern-Simons 2-gerbe G = CSM , and discuss the bicat-

egory String∇(M) = Triv∇(CSM ) of geometric string structures, the two categories h1String
∇(M)

and String∇1 (M) := t1Triv
∇(CSM ) of geometric string structures, and the three sets h0String

∇(M),

h0String
∇
1 (M), and String∇0 (M) := t2Triv

∇(CSM ) of geometric string structures. We first note the fol-

lowing result about the passage from the setting with connections to the setting without connections.

Proposition 6.2.1.

(i) The 2-functor F2 : String∇(M) // String(M) is essentially surjective.

(ii) The functor F1 : String
∇
1 (M) // String1(M) is essentially surjective.

(iii) The map F0 : String
∇
0 (M) // String0(M) is surjective.

Proof. (i) is Theorem 6.1.3 (i). It follows that the functor h1F2 is essentially surjective, and that the

map h0F2 is surjective. Then, (ii) and (iii) follow from the commutativity of the diagrams (6.2.1) and

Theorem 5.3.1. �

Next we present the main theorem of this section, which is the analogue of Theorem 5.3.1 in the

setting with connections.

Theorem 6.2.2. The functor

t∇1 : h1String
∇(M) // String∇1 (M)

is an equivalence of categories; in particular, it is an equivariant functor between h1Grb
∇(M)-torsors.

The map

t∇2 : h0String
∇
1 (M) // String∇0 (M)

is a bijection; in particular, it is an equivariant map between Ĥ3(M)-torsors.

Here, Ĥn(M) stands for the differential cohomology of M . We recall from [Bry93] that the degree

n differential cohomology of a smooth manifold X is a group Ĥn(X) that fits into the exact sequences

0 // Ωn−1
cl,Z (X) // Ωn−1(X)

a // Ĥn(X)
c // Hn(X,Z) // 0
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and

0 // Hn−1(X,U(1)) // Ĥn(X)
R // Ωn

cl,Z(X) // 0,

in which Ωn
cl,Z(X) denotes the closed n-forms on X with integral periods. Bundle gerbes with connec-

tion are classified by degree three differential cohomology in terms of a differential Dixmier-Douady

class D̂D : h0Grb
∇(X) // Ĥ3(X); the map c : Ĥ3(X) // H3(X,Z) corresponds to projecting to the

underlying (non-differential) Dixmier-Douady class, the map R : Ĥ3(X) // Ω3
cl,Z(X) corresponds to

taking the curvature, and the map a: Ω2(X) // Ĥ3(X) corresponds to taking the trivial bundle gerbe

Iρ associated to a 2-form ρ.

In the remainder of this section we prove Theorem 6.2.2, see Lemmata 6.2.5 and 6.2.6 below. First

we generalize one aspect of the Serre spectral sequence calculation of Lemma 5.3.2 from ordinary

cohomology to differential cohomology.

Lemma 6.2.3. The pullback π∗ : Ĥ3(M) // Ĥ3(FM) is injective.

Proof. Let η̂ ∈ Ĥ3(M). We show that η̂ 6= 0 implies π∗η̂ 6= 0. Indeed, if the underlying class

η := c(η̂) ∈ H3(M,Z) is non-zero, than π∗η 6= 0 because of Lemma 5.3.2, and so is π∗η̂ 6= 0. If η = 0,

then η̂ = a(µ) for a 2-form µ ∈ Ω2(M). Since π is a surjective submersion, π∗ is injective. Thus,

if µ is not closed, then π∗µ is also not closed and π∗η̂ = a(π∗µ) must be non-trivial. It remains to

discuss the case that µ is closed but its class is not integral. Then, π∗µ is also closed. By Lemma

5.3.2, π∗ : H2(M,Z) // H2(FM,Z) is an isomorphism, so since µ is not integral, π∗µ is not integral.

Hence π∗η̂ is non-trivial. �

Corollary 6.2.4. The actions of Ĥ3(M) ∼= h0Grb
∇(M) on h0String

∇
1 (M) and String∇0 (M) are free.

Proof. These actions are defined by pullback (injective by Lemma 6.2.3) and then addition in the

group Ĥ3(FM). �

Now we are in position to prove the first part of Theorem 6.2.2.

Lemma 6.2.5. The functor t∇1 : h1String
∇(M) // String∇1 (M) is an equivalence.

Proof. Part I of the proof is to show that t∇1 is essentially surjective. We consider an object

(S, [A]) in String∇1 (M) = t1Triv
∇(CSM ), i.e. S is a bundle gerbe with connection over FM , and

A : pr∗2S ⊗P // pr∗1S is a connection-preserving 1-isomorphism such that there exists a connection-

preserving transformation σ as in (5.1.1). A priori, σ does not satisfy the compatibility condition with

the associator µ of CSM , see Figure 1. We show that it yet does, using the assumption that it is

connection-preserving. The error in the commutativity of the diagram of Figure 1 is a smooth map

ǫ : FM [4] // U(1). Since both µ and σ are connection-preserving, ǫ is locally constant. Since M is

connected, FM and all fibre products FM [k] are connected, in particular FM [4]. Thus, ǫ is constant.

From the pentagon axiom for µ over FM [5] it follows that ∆ǫ = 1. Since ∆ǫ has five terms, which

are all equal as ǫ is constant, this implies ǫ = 1. Thus, σ automatically satisfies the compatibility

condition, (S,A, σ) is a geometric string structure, and a preimage of (S, [A]) under t∇1 . Hence, t∇1 is

essentially surjective.

Part II of the proof is to show that t∇1 is full and faithful. First of all, we note that the map h0t
∇
1

is equivariant under free actions and defined on a torsor, and thus injective. We have just proved

that it also is surjective; hence, h0t
∇
1 is a bijection. Now we proceed similar to the proof of Lemma

5.3.9. That h0t
∇
1 is a bijection implies that for two objects T1 = (S1,A1, σ1) and T2 = (S2,A2, σ2)
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of h1String
∇(M) the Hom-sets Homh1String∇(M)(T1,T2) and HomString∇

1
(M)(t

∇
1 (T1), t

∇
1 (T2)) are either

both empty or both non-empty. It remains to show that t∇1 induces in the non-empty case a bijection

between these sets.

The action of the monoidal bicategory Bun(X) on the category of homomorphisms between two

fixed bundle gerbes over X , see 5.3.1, has a counterpart in the setting with connections, namely an

action

Bun∇0(X)×Hom∇(G,H) // Hom∇(G,H) (6.2.2)

of the monoidal category of principal U(1)-bundles with flat connections on the category of connection

preserving isomorphisms between G and H, and connection-preserving transformations. This action

exhibits again Hom∇(G,H) as a torsor over Bun∇0(X).

The functor t∇1 is equivariant with respect to the h1Grb
∇(M)-actions. Over the objects (I0, I0) and

(T1,T2) these induce actions of the group

Homh1Grb∇(M)(I0, I0) = h0HomGrb∇(M)(I0, I0)
(6.2.2)
= h0Bun

∇0(M)

on the sets Homh1String∇(M)(T1,T2) and HomString∇
1
(M)(t1(T1), t1(T2)), respectively. The first set is a

torsor under this action. We prove that the second is also a torsor, so that t∇1 is an equivariant map

between torsors, hence a bijection.

We recall that the elements of HomString∇
1
(M)(t1(T1), t1(T2)) are equivalence classes [B] of

connection-preserving isomorphisms B : S1
// S2 such that there exists a connection-preserving

transformation β as in (5.2.1). The action of [K]∈h0Bun
∇0(M) ∼= H1(M,U(1)) sends [B] to [π∗K⊗B].

This action is free because π∗ : H1(M,U(1)) // H1(FM,U(1)) is an isomorphism by Lemma 5.3.2.

If B and B′ are both connection-preserving isomorphisms from S1 to S2, then by (6.2.2) there exists

a flat principal U(1)-bundle P on FM such that B′ ∼= B⊗P . But again, since π∗ is an isomorphism,

P ∼= π∗K for some K in Bun∇0(M). Hence the action is transitive. �

The second part of Theorem 6.2.2 is proved by the following lemma.

Lemma 6.2.6. The map t∇2 : h0String
∇
1 (M) // String∇0 (M) is a bijection.

Proof. t∇2 is equivariant with respect to free actions and is defined on a torsor. Hence it is injective.

Now we prove that it is surjective. Consider an element in String∇0 (M), represented by a bundle gerbe

S with connection over FM that admits a connection-preserving isomorphism A : pr∗2S⊗P // pr∗1S.

The existence of a connection-preserving transformation σ as in (5.1.1) is obstructed by a flat principal

U(1)-bundle A over Y [3], i.e. there exists a connection-preserving transformation

σ : (pr∗12A ◦ (pr∗23A⊗ id))⊗A +3 pr∗13A ◦ (id⊗M).

Since flat principal U(1)-bundles are classified by H1(X,U(1)), we infer from Lemma 5.3.5 that this

bundle is the pullback of a flat bundle A′ overM along π3: Y
[3] // M . Now we considerA′ := A⊗π∗

2A
′,

which is another connection-preserving isomorphism A′ : pr∗2S ⊗ P // pr∗1S. Then, σ induces the

required transformation for A′. This means that (S, [A′]) is an object in String∇1 (M) = t1Triv
∇(CSM )

with t∇2 (S, [A]) = [S]. �

6.3 Differential string classes

With Theorem 6.2.2 proved in the previous subsection we are well prepared to introduce an analog of

string classes in the setting with connections – we call it differential string classes . Like string classes,
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differential string classes have the advantage to be based solely on differential cohomology theory, and

no bundle gerbe theory is needed.

We let γ̂ := D̂D(Gbas)∈ Ĥ3(Spin(n)) denote the differential cohomology class of the basic gerbe, with

underlying class γ ∈ H3(Spin(n),Z). As explained in Section 2.1 this class is uniquely determined by

just the 3-form H . We let ω̂ := a(ω) ∈ Ĥ3(FM [2]) denote the differential cohomology class associated

to the 2-form ω of (6.1.3).

Definition 6.3.1. Let M be a spin manifold with spin-oriented frame bundle FM . A differential

string class is a class ξ̂ ∈ Ĥ3(FM) such that the condition

pr∗2ξ̂ + δ∗γ̂ + ω̂ = pr∗1ξ̂ (6.3.1)

over FM [2] is satisfied, where pr1, pr2 : FM [2] // FM are the two projections, and

δ : FM [2] // Spin(n) is the difference map (i.e. p′ · δ(p, p′) = p).

We denote by StrCl∇(M) the set of differential string classes. Condition (6.3.1) implies

γ̂ = i∗pξ̂ ∈ Ĥ3(Spin(n)) (6.3.2)

for all p ∈ FM and ip : Spin(n) // FM : g ✤ // pg the inclusion of the fibre of p. Indeed, for

jp : Spin(n) // FM [2] : g ✤ // (pg, p) we have

j∗pω = j∗p 〈δ
∗θ ∧ pr∗1A〉 =

〈
θ ∧ ι∗pA

〉
= 〈θ ∧ θ〉 = 0.

Further we have j∗pδ
∗γ̂ = γ̂ and j∗ppr

∗
2ξ̂ = 0 and j∗ppr

∗
1ξ̂ = ι∗pξ̂ and so the pullback of (6.3.1) is (6.3.2).

Under the projection c : Ĥ3(X) // H3(X,Z) from differential to ordinary cohomology, condition

(6.3.2) becomes the condition for string classes. In other words, c induces a well-defined map

c : StrCl∇(M) // StrCl(M)

from differential string classes to ordinary string classes.

Remark 6.3.2. Above considerations raise the question of whether we could replace the defining

condition (6.3.1) by condition (6.3.2). However, this is not the case. In order to see this, let ξ̂ be a

differential string class. Let µ ∈Ω2(M) and f ∈C∞(FM,R) satisfy the following assumptions:

• µ is closed and non-zero at at least one point x ∈M .

• df is non-zero at a point p ∈ FM in the fibre over x, and df = 0 at another point p′ ∈ FM in

the same fibre.

Such µ, f clearly exist. We consider the class ǫ̂ = a(ǫ)∈ Ĥ3(FM) associated to the 2-form ǫ := f ·π∗µ∈

Ω2(FM). We have dǫ = df ∧π∗µ+ f ·π∗dµ = df ∧π∗µ. This is non-zero at the point p, in particular,

ǫ is not closed and ǫ̂ 6= 0∈ Ĥ3(FM). We show that ξ̂′ := ξ̂ + ǫ̂ satisfies (6.3.2) but is not a differential

string class. Firstly, we have i∗pǫ = i∗pf · i∗pπ
∗µ = 0, since π ◦ ip is constant. Thus, i∗pξ̂

′ = i∗pξ̂ = γ̂.

Secondly, we have d(pr∗1ǫ−pr∗2ǫ) = d(pr∗1f−pr∗2f) ·pr
∗µ, which is non-zero at the point (p, p′)∈FM [2].

In particular, pr∗1 ǫ̂ 6= pr∗2ǫ̂ ∈ Ĥ3(FM [2]). Thus, condition (6.3.1) is not satisfied.

We have an action of Ĥ3(M) on the set StrCl∇(M) of differential string classes, defined by

(η̂, ξ̂) ✤ // π∗η̂+ ξ̂. Under the projection to ordinary string classes, it covers the action of H3(M,Z) on

StrCl(M). The differential Dixmier-Douady class gives a Ĥ3(M)-equivariant map

String∇0 (M) // StrCl∇(M) : [S]
✤ // D̂D(S).
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This map is a bijection, because D̂D is a bijection and the conditions on both sides are the same.

Thus, we may identify the set of differential string classes with the set String∇0 (M) introduced in the

previous section. With this identification, Theorem 6.2.2 applies to differential string classes, and we

obtain the following result.

Theorem 6.3.3.

(i) The set StrCl∇(M) of differential string classes is non-empty if and only ifM is a string manifold;

in this case it is a torsor over Ĥ3(M).

(ii) The map

h0String
∇(M) // StrCl∇(M) : (S,A, σ) ✤ // D̂D(S)

is a Ĥ3(M)-equivariant bijection between isomorphism classes of geometric string structures and

differential string classes.

(iii) The projection from differential string classes to ordinary string classes,

StrCl∇(M) // StrCl(M), (6.3.3)

is surjective and its fibres are torsors over Ω2(M)/Ω2
cl,Z(M).

(iv) For every differential string class ξ̂ there exists a unique 3-form K ∈ Ω3(M) such that π∗K =

CS(A) +R(ξ̂) as 3-forms over FM .

Proof. By Theorem 6.1.3 (i) and Corollary 5.3.3 (i), M is a string manifold if and only

if it admits geometric string structures. By Theorem 6.2.2 we have Ĥ3(M)-equivariant bi-

jections h0String
∇(M) ∼= String∇0 (M) ∼= StrCl∇(M); this shows (i) and (ii). The projection

StrCl∇(M) // StrCl(M) is a map from a Ĥ3(M)-torsor to a H3(M,Z)-torsor, and equivariant along

the projection c: H3(M) // H3(M,Z). This projection is surjective and has kernel Ω2(M)/Ω2
cl,Z(M);

this shows (iii). Assertion (iv) is Theorem 6.1.3 (ii). �

7 Transgression of string geometry

In [Wala, Section 5.2] and [NW13] we have described transgression for bundle 2-gerbes G with con-

nections and with loopable surjective submersions, i.e. surjective submersions π : Y // M for which

Lπ: LP // LM is again a surjective submersion. Suppose G is such a bundle 2-gerbe over M , with

loopable surjective submersion π : Y // M , a curving 3-form C ∈ Ω3(Y ), over Y [2] a bundle gerbe

P with connection, and over Y [3] a connection-preserving bundle 2-gerbe product M with associator

µ. Then, the bundle gerbe TG over LM with connection and internal fusion product is given as fol-

lows: the surjective submersion is Lπ : LY // LM , the curving is −τΩ(C) ∈ Ω2(LY ), the principal

U(1)-bundle with connection and fusion product over LY [2] is TP , and the connection-preserving,

fusion-preserving bundle gerbe product over LY [3] is TM.

Theorem 7.1. The transgression of the Chern-Simons 2-gerbe CSM is canonically isomorphic to the

spin lifting gerbe SLM as bundle gerbes with connections and internal fusion products, where SLM is

equipped with the connection (χspin, Bspin) constructed in Section 4.2.
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Proof. The bare isomorphism has been constructed in [NW13, Proposition 6.2.1], and in [Wala,

Proposition 5.2.3] it is proved that it is fusion-preserving. We only have to prove that it is connection-

preserving, and for this purpose we have to recall the construction.

We start by noticing that both bundle gerbes, TCSM and SLM , have the same surjective submer-

sion Lπ : LFM // LM . The curving of TCSM is −τΩ(CS(A)), and the curving of SLM is Bspin

from Proposition 4.2.5. These two 2-forms on LFM coincide [CP98, Eq. 24]. The bundle gerbe

TCSM has over LFM [2] the principal U(1)-bundle TP , where P := δ∗Gbas ⊗ Iω, equipped with a

connection νP and an internal fusion product λP induced from transgression. The bundle gerbe SLM

has over LFM [2] the principal U(1)-bundle P = Lδ∗ ˜LSpin(n) = Lδ∗TGbas
, equipped with the fu-

sion product Lδ∗λGbas
and the connection χspin defined in (4.2.3). Naturality of transgression and

the canonical connection-preserving, fusion-preserving bundle isomorphism TIω
∼= IτΩ(ω) provide a

connection-preserving, fusion-preserving isomorphism

TP
∼= Lδ∗TGbas

⊗TIω
∼= Lδ∗TGbas

⊗ IτΩ(ω).

In the first place, this is an isomorphism

TP
∼= P (7.1)

between the principal U(1)-bundles of the two bundle gerbes. It commutes with the bundle gerbe

products ([NW13, Proposition 6.2.1]) and so we have completed the construction of an isomorphism

TCSM
∼= SLM . Moreover, the isomorphism (7.1) is fusion-preserving for the fusion product λP on the

left and Lδ∗λGbas
on the right, as IτΩ(ω) is equipped with the trivial fusion product. Finally, it is

connection-preserving for the connection νP on the left and Lδ∗ν+ τΩ(ω) on the right: we show below

in Lemma 7.2 the equality

τΩ(ω) = ξ −
1

2
∆ζ

of 2-forms on LFM [2], where ξ and ζ are defined in (4.1.4) and (4.2.2), respectively. This shows that

Lδ∗ν + τΩ(ω) = χspin. Thus, (7.1) is connection-preserving. �

Lemma 7.2. The transgression of the 2-form ω ∈ Ω2(P [2]) of (6.1.3) is

τΩ(ω) = ξ −
1

2
∆ζ,

with ξ and ζ the differential forms defined in (4.1.4) and (4.2.2), respectively.

Proof. We use the reformulation

ω = 〈δ∗θ ∧ pr∗1A〉 =
〈
δ∗θ̄ ∧ pr∗2A

〉
.

Then, we calculate for tangent vectors X1 ∈ Tτ1LP , X2 ∈ Tτ2LP , and their differences δ :=Lδ(τ1, τ2)∈

LG and Y := dLδ(X1, X2) ∈ TδLG:

τΩ(ω)|(τ1,τ2)(X1, X2)

=

∫ 1

0

ω(τ1(z),τ2(z))((∂zτ1(z), ∂zτ2(z)), (X1(z), X2(z)))dz

=

∫ 1

0

〈
∂zδ(z)δ(z)

−1, Aτ2(z)(X2(z))
〉
dz −

∫ 1

0

〈
Y (z)δ(z)−1, Aτ2(z)(∂zτ2(z))

〉
dz

= (ξ −
1

2
∆ζ)|τ1,τ2(X1, X2),
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where the last step is obtained using Lemma 4.1.6. �

We are now in position to provide the second half of the main result of this article, an equivalence

between string structures in M and trivializations of the spin lifting gerbe.

Theorem 7.3. Let M be a connected spin manifold. Then, transgression and regression functors

induce an equivalence of categories,

String∇1 (M) ∼=





Fusion trivializations of SLM with

superficial fusive connection

compatible with (χspin, Bspin)



 .

This equivalence is equivariant with respect to the action of h1Grb
∇(M) on the left hand side and

the action of FusBun∇sf(LM) on the right hand side, under the equivalence between these monoidal

categories. Moreover, if K ∈Ω3(M) is the 3-form associated to a geometric string structure by Theorem

6.1.3 (ii), and ρ ∈Ω2(LM) is the covariant derivative of the corresponding trivialization of SLM , then

τΩ(K) = −ρ.

Proof. The purpose of the category String∇1 (M) introduced in Section 6.2 was that its definition

is purely in terms of the presheaf h1Grb
∇: its objects are pairs (S, [A]) consisting of an object S in

h1Grb
∇(FM) and a morphism

[A] : pr∗2S ⊗P // pr∗1S

of h1Grb
∇(FM [2]) such that an equality of morphisms of h1Grb

∇(FM [3]) holds, namely (5.1.1). Like-

wise, the morphisms of String∇1 (M) are morphisms [B] : S // S ′ of h1Grb
∇(FM [2]) such that an

equality of morphisms of h1Grb
∇(FM [3]) holds, namely (5.2.1). Now, we recall from Theorem 2.3.6

that transgression and regression form an equivalence

h1Grb
∇(X) ∼= FusBun∇sf(LX)

that is natural in X and monoidal. Hence, String∇1 (M) is equivalent to the following category:

• An object is a pair (T, κ) of an object T in FusBun∇sf(LFM) and a morphism

κ : pr∗2T ⊗TP
// pr∗1T

in FusBun∇sf(LFM [2]) such that the equality

pr∗3T ⊗pr∗23TP ⊗pr∗12TP

pr∗
23

κ⊗id
//

id⊗TM′

��

pr∗2T ⊗pr∗12TP

pr∗
12

κ

��
pr∗3T ⊗pr∗13TP

pr∗
13

κ

// pr∗1T

of morphisms of FusBun∇sf(LFM [3]) holds.

• A morphism is a morphism ϕ : T // T ′ in FusBun∇sf(LFM [2]), such that the equality

pr∗2T ⊗TP
κ //

pr∗
2
ϕ

��

pr∗1T

pr∗
1
ϕ

��
pr∗2T

′⊗TP
κ′

// pr∗1T
′

of morphisms in FusBun∇sf(LFM [3]) holds.
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This is precisely the category of fusion trivializations of TCSM with superficial fusive connection com-

patible with (νP , τΩ(CS(A))), the connection on the transgression of the Chern-Simons 2-gerbe. The

connection-preserving, fusion-preserving isomorphism of Theorem 7.1 identifies this category with the

claimed one.

The equivariance under the h1Grb
∇(M)-actions follows immediately from the definitions. Suppose

K ∈Ω3(M) is the 3-form associated to a string structure (S, [A]), i.e. π∗K = CS(A) + curv(S), then

τΩ(K) satisfies

Lπ∗τΩ(K) = τΩ(CS(A)) + τΩ(curv(S)) = −Bspin − curv(TS),

see [CP98, Eq. 24] and (2.2.2). Thus, −τΩ(K) is the covariant derivative of (TS ,TA). �

Now we come to the correspondence between string structures and trivializations of the spin lifting

gerbe in the setting without connections.

Theorem 7.4. Let M be a connected spin manifold. Then, regression induces an equivalence

hTriv th
fus(SLM ) ∼= String1(M)

between the homotopy category of thin fusion trivializations of the spin lifting gerbe SLM and the

category of string structures on LM . This equivalence is equivariant with respect to the action of

hFusBunth(LM) on the left hand side and the action of h1Grb (M) on the right hand side, along the

equivalence between the two monoidal categories.

Proof. We proceed as in the proof of Theorem 7.3, now using the equivalence

hFusBunth(LX) ∼= h1Grb (X)

established by the regression functor Rx which is natural in X , monoidal, and depends on the choice of

a point x∈X . Choosing a point p∈FM (and then using the point (p, ..., p)∈FM [k] in all higher fibre

products) we find an equivalence K : C // String1(M), where C stands for the following category:

• An object is a pair (T, κ) of an object T in hFusBunth(LFM) and a morphism

κ : pr∗2T ⊗TP
// pr∗1T

in hFusBunth(LFM [2]) such that the equality

pr∗3T ⊗pr∗23TP ⊗pr∗12TP

pr∗
23

κ⊗id
//

id⊗T
M′

��

pr∗2T ⊗pr∗12TP

pr∗
12

κ

��
pr∗3T ⊗pr∗13TP

pr∗
13

κ

// pr∗1T

(7.2)

of morphisms of hFusBunth(LFM [3]) holds.

• A morphism is a morphism ϕ : T // T ′ in hFusBunth(LFM [2]), such that the equality

pr∗2T ⊗TP
κ //

pr∗
2
ϕ

��

pr∗1T

pr∗
1
ϕ

��
pr∗2T

′⊗TP
κ′

// pr∗1T
′

(7.3)

of morphisms in hFusBunth(LFM [2]) holds.
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The connection-preserving, fusion-preserving isomorphism between TCSM and SLM induces an equiv-

alence between C and a category C′ obtained from C by replacing TP by the principal U(1)-bundle P

of SLM and TM′ by the bundle gerbe product µ of SLM .

Now we go into the details of the category Triv th
fus(SLM ) of thin fusion trivializations of the spin

lifting gerbe, as introduced in Definition 3.2.5. The category C′ receives a functor

K ′ : Triv th
fus(SLM ) // C′

defined in the following natural way:

• It takes a thin fusion trivialization (T, κ, λ, d) and sends it to the pair composed of the ob-

ject (T, λ, d) in FusBunth(FM) and of the homotopy class of κ, which is a morphism in

hFusBunth(LFM [2]) making diagram (7.2) commutative.

• A morphism ϕ between thin fusion trivializations (T, κ, λ, d) and (T ′, κ′, λ′, d′) is sent to its ho-

motopy class, which is a morphism in hFusBunth(LFM). The condition, i.e. the commutativity

of diagram (7.3), is exactly the same as in Definition 3.2.5.

We obtain a commutative diagram of categories and functors,





Fusion trivializations of SLM

with compatible superficial

fusive connection





Theorem 7.3 //

��

String∇1 (M)

F1

��
Triv th

fus(SLM )
K′

// C′ ∼= C
K

// String1(M).

(7.4)

Since the functor F1 is essentially surjective (Proposition 6.2.1 (ii)), and the functor on the top is an

equivalence (Theorem 7.3), it follows that K ′ is essentially surjective. It is also full: suppose ϕ is a

morphism in C′. It is represented by a fusion-preserving, thin bundle morphism ϕ : T // T ′ such

that diagram (7.3) is commutative in hFusBunth(LFM [2]). This means that the representative ϕ is a

morphism in Triv th
fus(SLM ).

However, the functor K ′ is not faithful. This problem is solved by passing to the homotopy category

of thin fusion trivializations, hTriv th
fus(SLM ). We note that the functor K ′ is well-defined on the

homotopy category, i.e. it induces a functor hK ′ making the diagram

Triv th
fus(SLM )

K′

//

��

C′

hTriv th
fus(SLM )

hK′

::✉✉✉✉✉✉✉✉✉✉✉✉✉

strictly commutative. Indeed, a morphism on the left is a class [ϕ] of morphisms between thin fusion

trivializations, in which two morphisms ϕ0 and ϕ1 are identified, if there exists a homotopy through

morphisms of Triv th
fus(SLM ). Such a homotopy is, in particular, a homotopy through fusion-preserving,

thin bundle morphisms. Thus, hK ′([ϕ]) := [ϕ] is well-defined.

As the projection Triv th
fus(SLM ) // hTriv th

fus(SLM ) is surjective, we deduce from the fact that K ′

is essentially surjective and full, that hK ′ is essentially surjective and full, too. It remains to show

that hK ′ is faithful. Suppose ϕ0 and ϕ1 are morphisms in Triv th
fus(SLM ), such that they are equal in
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C′. That is, there exists a homotopy h between ϕ0 = h0 and ϕ1 = h1 through fusion-preserving, thin

bundle morphisms ht : T // T ′, identifying ϕ0 and ϕ1 in hFusBunth(LFM). We show that the same

homotopy h is a homotopy through morphisms in Triv th
fus(SLM ), i.e. the diagram

pr∗2T ⊗P
κ //

pr∗
2
ht⊗id

��

pr∗1T

pr∗
1
ht

��
pr∗2T

′⊗P
κ′

// pr∗1T
′

(7.5)

commutes in hFusBunth(LFM [2]) for all t∈ [0, 1]. Indeed, as ϕ0 and ϕ1 are morphisms in Triv th
fus(SLM )

the diagram commutes for t = 0 (and t = 1). That is, there is a homotopy H between pr∗1ϕ0 ◦ κ = H0

and κ′ ◦ (pr∗2ϕ0⊗ id) = H1 through fusion-preserving, thin bundle morphisms Hs : pr
∗
2T⊗P // pr∗1T .

Now we have the following homotopies:

1. from pr∗1ht ◦ κ to pr∗1ϕ0 ◦ κ, namely s
✤ // pr∗1ht(1−s) ◦ κ

2. from pr∗1ϕ0 ◦ κ to κ′ ◦ (pr∗2ϕ0⊗ id), namely s ✤ // Hs

3. from κ′ ◦ (pr∗2ϕ0 ⊗ id) to κ′ ◦ (pr∗2ht⊗ id), namely s ✤ // κ′ ◦ (pr∗2hst⊗ id)

These can be concatenated to a smooth homotopy showing that diagram (7.5) is commutative in

hFusBunth(LFM). �

8 Proof of Theorem A

The various functors we have introduced form the commutative diagram of Theorem A:

Spin
∇sf

fus(LM)

��

Cor. 4.2.12//





Fusion trivializations

of the spin lifting

gerbe SLM with

superficial connection





Th. 7.3//

��

String∇1 (M) oo
Th. 6.2.2

F1

��

h1String
∇(M)

h1F2

��
hSpin th

fus(LM)
Prop. 3.2.6

//





Homotopy category of

thin fusion

trivializations of the

spin lifting gerbe SLM



 Th. 7.4

// String1(M) oo
Th. 5.3.1

h1String(M).

The separate diagrams have been discussed in Section 4.2, see (4.2.4), in Section 7, see (7.4), and in

Section 6.2, see (6.2.1). The arrows are labelled with references to those statements where we have

proved that they are equivalences of categories and have the claimed equivariance properties.

If M is not a string manifold, String(M) is empty. Thus, all categories in above diagram must be

empty since they have functors to h1String(M). Now supposeM is a string manifold. Then, String(M)

is non-empty. Since the functor F2 is essentially surjective by Theorem 6.1.3 (i), String∇(M) is non-

empty, too, and so are all other categories in the diagram. It also follows that all vertical functors in

the diagram are essentially surjective.
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Table of notation

Bun(X) The category of Fréchet principal U(1)-bundles over X

Bun∇(X) The category of Fréchet principal U(1)-bundles with connection

Grb (X) The bicategory of bundle gerbes over X

Grb∇(X) The bicategory of bundle gerbes with connection over X

hC The homotopy category of a (topological) category, defined by identifying homo-

topic morphisms.

hkC The k-truncation of a (higher) category, defined using (k + 1)-isomorphism classes

of k-morphisms.

Spin th
fus(LM) The category of thin fusion spin structures on LM(Section 3.1)

Spin
∇sf

fus(LM) The category of superficial geometric fusion spin structures (Section 4.1)

StrCl(M) The set of string classes on M(Section 5.3)

StrCl∇(M) The set of differential string classes on M(Section 6.3)

String(M) The bicategory of string structures on M(Section 5.3)

Stringk(M) A decategorification of the bicategory of string structures (Section 5.3)

String∇(M) The bicategory of geometric string structures on M(Section 6.2)

String∇k (M) A decategorification of the bicategory of geometric string structures on M(Section

6.2)

FusBunth(LX) The category of Fréchet principal U(1)-bundles over LX with fusion product and

thin structure

FusBun∇sf(LX) The category of Fréchet principal U(1)-bundles over LX with fusion product and

superficial connection
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