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We discuss the role of the symmetries in photonic crystals and classify them
according to the Cartan-Altland-Zirnbauer scheme. Of particular importance
are complex conjugation C and time-reversal T , but we identify also other sig-
nificant symmetries. Borrowing the jargon of the classification theory of topo-
logical insulators, we show that C is a “particle-hole-type symmetry” rather
than a “time-reversal symmetry” if one consider the Maxwell operator in the
first-order formalism where the dynamical Maxwell equations can be rewrit-
ten as a Schrödinger equation; The symmetry which implements physical
time-reversal is a “chiral-type symmetry”. We justify by an analysis of the band
structure why the first-order formalism seems to be more advantageous than
the second-order formalism. Moreover, based on the Schrödinger formalism,
we introduce a class of effective (tight-binding) models called Maxwell-Harper
operators. Some considerations about the breaking of the “particle-hole-type
symmetry” in the case of gyrotropic crystals are added at the end of this paper.
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1 Introduction

Roughly speaking, a photonic crystal (PhC) is to light what a crystalline solid is to an
electron. Based on this analogy, experiments have been proposed which realize “quantum-
like systems” in PhCs. On the other hand, many well-known effects from solid state physics
have been anticipated in PhCs. That is how edge currents in PhCs have been predicted
[RH08; OO09; LJS12] and observed [WCJ+08; WCJ+09; FLG+11; PRS+12; RPZ+13].

However, this correspondence between electrodynamics and quantum mechanics is not
one-to-one, and there are aspects where these differences become crucial. A priori there is
no way of knowing when it breaks down or even if “analogous” phenomena have the same
explanation. For instance, the analogy to the Bloch electron suggests that the existence of
topologically protected edge states in PhCs can be explained by the bulk-edge correspon-
dence (proved under various levels of generality in [Hat93; KS04]). Its validity is still an
open problem, and it cannot merely be assumed but eventually needs to be established by
a first-principles derivation.
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This paper focuses on the role of symmetries, because breaking or imposing the cor-
rect symmetries becomes crucial for the observation of topological effects. Our main
purpose is to give a complete classification of Maxwell operators Mw according to the
Cartan-Altland-Zirnbauer (CAZ) scheme [AZ97; SRF+08]. This necessitates a reformula-
tion of the Maxwell equations as a first-order, Schrödinger-type equation. The structural
similarities between Maxwell operators and massless Dirac operators are crucial for the
correct identification of relevant symmetries, chief among them are complex conjugation
C and time-reversal T . Consequently, we obtain a exhaustive classification of “photonic
topological insulators” [KMT+13; RZP+13; HLS+14], including all expected topological
invariants for each CAZ class. For instance, this allows us to predict which CAZ classes
support non-trivial invariants which are expected to play a crucial role in a first-principles
derivation of a photonic bulk-edge correspondence.

More specifically, our main points are:

(1) The dynamical Maxwell equations can be recast in the form of the “Schrödinger equa-
tion” (2.3), a first-order equation in time. This Schrödinger-type point of view allows
one to adapt many techniques initially developed for quantum systems to problems of
classical electromagnetism, e. g. space-adiabatic perturbation theory [PST03; DL14a]
and the classification of symmetries. While it is true that complex conjugation C
leaves the second-order formulation of the Maxwell equations (3.1) invariant, it is not
a time-reversal symmetry. C does not implement time-reversal and in the parlance of
classification theory of topological insulators it acts as a “particle-hole symmetry”. The
well-known physical time-reversal T : (E,H) 7→ (E,−H) classifies as “chiral symme-
try”; Note that in the second-order formalism, T becomes a trivial symmetry.

(2) Since the Schrödinger equation is a first-order equation in time, it is the first-order
classification of C as “particle-hole symmetry” and T as a “chiral symmetry” which
matters for the subsequent analysis. A correct CAZ classification of symmetries is
impossible in the second-order formalism: when applying symmetries to the square
of the Maxwell operator M2

w one can no longer distinguish “particle-hole” and “time-
reversal symmetries” as well as “chiral symmetries” and linear, commuting symme-
tries from one another. For PhCs with real material weights the Maxwell operator
(cf. equation (2.4)) is of symmetry class D, DIII or BDI rather than AI, so even in
non-gyrotropic media, Chern numbers (or other topological obstructions) associated
to single, isolated bands need not be zero!

(3) Nevertheless, we show the absence of topological effects in PhCs with real weights
for an important class of initial conditions, namely real fields: the presence of the
C-symmetry implies that real initial states emerge as linear combinations of conju-
gate pairs of Bloch functions. Thanks to the C-symmetry, the total Chern number
associated with a pair of conjugate states is zero because the Chern numbers of sym-
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1 Introduction

metrically related bands are equal in magnitude but have opposite sign. However, we
do not know whether these arguments necessarily imply the absence of all topological
effects: Maxwell operators with C-symmetry have other Z- or Z2-valued topological
invariants which may be non-zero. Further research is needed.

(4) The study of effective dynamics for real initial states in photonic cyrstals becomes a
bona fide multiband problem since single bands can never support real states. That is
particularly significant for approaches which have derived effective ray optics equa-
tions, because effective single band equations do not describe the evolution of real
states. Deriving multiband ray optics for real initial states is still an open problem;
here, the main obstacle is that real states are, to use a term from quantum mechanics,
entangled, and one needs to control intraband terms (cf. the discussion in [DL14a,
Section 5]).

(5) A derivation of ray optics equations in the standard second-order framework is made
more difficult because one is no longer able to distinguish genuine band crossings
from “artificial” ones (compare Figures 2.1 and 3.1). This is because in the second-
order formulation outgoing (ωn(k) > 0) and incoming (ωn(k) < 0) frequency bands
cannot be distinguished, and the presence of any chiral or particle-hole symmetry
lead to symmetries of the form ωn(k)↔−ωn(±k). Thus, there are no isolated, non-
degenerate bands in the |ω| band spectrum of the most common photonic crystals
with C- or T -symmetry. Moreover, it is ωn rather than |ωn| which enters the ray
optics equations.

(6) The CAZ scheme classifies operators in terms of one unitary and/or one antiunitary
operator as well as their product. For the Maxwell operator, C and T are not the
only choices, and we systematically explore alternate symmetries. In particular, we
enumerate the conditions placed on the material weights by the presence of symme-
tries. Here, it is crucial that we work in the first-order Schrödinger-type framework
to identify the nature of each of these symmetries properly. The structural similarity
of the Maxwell operator and massless Dirac operators helps to find an exhaustive list
of symmetries which are relevant for the purpose of CAZ classification. Hence, we
obtain a complete classification of photonic topological insulators (see Table 4.3) and
we tabulate the topological invariants for each class (see Table 4.4). At least 5 of the
10 CAZ classes have already been considered in the physics literature.

(7) We propose the Maxwell-Harper operator (5.1) for a conjugate pair of bands as a sim-
ple model operator for non-gyrotropic PhCs in analogy to the usual Harper operator.
It is a 2×2 matrix operator and exists even if the bands carry non-zero Chern charge.

In what follows, we will derive and expound on these assertions.
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The paper is roughly structured as follows: we will first reformulate the Maxwell equa-
tions as a Schrödinger-type equation in Section 2, derive the frequency band spectrum, ex-
pound on the significance of complex conjugation and introduce the proper time-reversal
operation. Then we will juxtapose first- and second-order formalism in Section 3. The
Cartan-Altland-Zirnbauer classification of Maxwell operators is the topic of Section 4.
Here, we will explain the nature of C and T in the CAZ framework, explore other symme-
tries, discuss the CAZ classification of Maxwell operators and finish with a discussion of
topological invariants. The Maxwell-Harper operator is introduced in Section 5. We close
the paper by a discussion of gyrotropic materials where the electric permittivity ε and the
magnetic permeability µ are hermitian matrix-valued functions with non-zero imaginary
parts.

2 The first-order Schrödinger formalism

The claim that light and a quantum particles behave similarly is fundamentally a state-
ment about their dynamics. So one way to make such a claim rigorous is by reformu-
lating the dynamical Maxwell equations as a Schrödinger-type equation. This first-order
Schrödinger-type formalism of electromagnetism allows one to adapt tools developed for
analyzing quantum problems; for instance, the authors were able to derive effective dy-
namics for adiabatically perturbed PhCs [DL14a] by adapting a technique initially devel-
oped for adiabatic quantum systems [PST03; DL11a].

The propagation of electromagnetic waves in a linear, three-dimensional medium are
governed by the two dynamical Maxwell equations,

ε ∂tE(t, x) =∇×H(t, x), (2.1a)

µ∂tH(t, x) =−∇× E(t, x), (2.1b)

whereas the absence of sources is described by

∇ · εE(t, x) = 0, (2.2a)

∇ ·µH(t, x) = 0. (2.2b)

The properties of the material enter through the electric permittivity tensor ε and the
magnetic permeability tensor µ. While most materials are non-gyrotropic, i. e. ε(x) and
µ(x) are real-symmetric, there are cases when ε(x) and µ(x) are hermitian with non-zero
imaginary part (see e. g. [YCL99; WLF+10; KRL+10; EG13]). Throughout this paper, we
assume that ε and µ are positive, bounded with bounded inverse. To simplify the notation
we shall refer to w = (ε,µ) as material weights and use w = (ε̄, µ̄) to denote the complex
conjugate weights.
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2 The first-order Schrödinger formalism

To the best of our knowledge, the idea to express the dynamical Maxwell equations as
a Schrödinger equation

i∂tΨ= MwΨ (2.3)

originated in a paper by Birman and Solomyak [BS87]. Here, the electromagnetic field
Ψ= (E,H) plays the role of the wave function and the Maxwell operator

Mw =

�

0 +iε−1∇×

−iµ−1∇× 0

�

(2.4)

takes the place of the quantum Schrödinger operator H = 1
2m
(−iħh∇)2 + V . Throughout

the paper we use the short-hand v×E = v × E, e. g. ∇×E = ∇× E denotes the curl. The
material weights w = (ε,µ) also enter into the definition of the scalar product




Ψ,Ψ′
�

w =



E,εE′
�

+



H,µH′
�

=

∫

R3

dx
�

E(x) · ε(x)E′(x) +H(x) ·µ(x)H′(x)
�

, (2.5)

and the corresponding Hilbert space L2
w(R

3,C6) is L2(R3,C6) equipped with the weighted

scalar product 〈 · , · 〉w . Note that complex conjugation is contained in v ·w :=
∑3

j=1 v j w j .
This weighted scalar product provides a decomposition of electromagnetic waves into

longitudinal and transversal component: a quick computation shows that gradient fields
are 〈 · , · 〉w-orthogonal to fields satisfying (2.1) [DL14b, Section 3]. Moreover, the Maxwell
operator is hermitian,




Ψ, MwΨ′
�

w =



MwΨ,Ψ′
�

w , and consequently, the time-evolution
e−itMw is unitary. This leads to the conservation of field energy

E(E,H) =
1

2

∫

R3

dx
�

E(x) · ε(x)E(x) +H(x) ·µ(x)H(x)
�

=
1

2





(E,H)






2
w . (2.6)

2.1 The frequency band picture

The particularity of photonic crystals is that the material weights (ε,µ) are periodic with
respect to some lattice Γ = spanZ{e1, e2, e3} spanned by three (non-unique) fundamental
vectors. Now one proceeds as if Mw were a periodic Schrödinger operator: we employ the
Bloch-Floquet-Zak transform [Zak68; Kuc93]

(ZΨ)(k, y) =
∑

γ∈Γ
e−ik·(y+γ)Ψ(y + γ) (2.7)

to change representation (Z maps onto the space-periodic part of Bloch functions). As
explained in [DL14b, Section 3] the operator Mw is unitarily equivalent to a family of
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2.1 The frequency band picture
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Figure 2.1: A sketch of a typical band spectrum of Mw(k) for a non-gyrotropic photonic
crystal with broken time-reversal symmetry (i. e. ε, µ and χ from equa-
tion (4.1) are real and non-zero). The 2+ 2 ground state bands (±n1) with
linear dispersion around k = 0 are blue. Positive frequency bands are drawn
using solid lines while the lines for the symmetrically-related negative fre-
quency bands are in the same color, but dashed.

Maxwell operators

Mw(k) =W Rot=

�

ε−1 0
0 µ−1

� �

0 −(−i∇+ k)×

+(−i∇+ k)× 0

�

(2.8)

depending on crystal momentum k where Mw(k) acts on Γ-periodic electromagnetic fields
ψ= (ψE ,ψH). This gives rise to Bloch functions ϕn(k) and Bloch frequency bands ωn(k),

Mw(k)ϕn(k) =ωn(k)ϕn(k). (2.9)

Mw(k) has a flat band ω(k) = 0 due to unphysical gradient fields; Bloch functions associ-
ated to non-zero frequency bands are automatically source-free [DL14b, Section 3],

(∇+ ik) · εϕE
n = 0,

(∇+ ik) ·µϕH
n = 0.

Schematically, the frequency band spectrum looks as in Figure 2.1: there are 2 “ground
state bands” with approximately linear dispersion at k ≈ 0. Apart from k = 0, bands do
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2 The first-order Schrödinger formalism

not touch ω = 0. Note that there are bands of positive and negative frequency; the signs
correspond to outgoing and incoming complex Bloch waves. This can already be inferred
from (2.4), the Maxwell operator looks very similar to a massless Dirac operator

Mw =−W σ2 ⊗∇×

where W is given by equation (4.1). Note that the figure depicts the band spectrum of a
non-gyrotropic PhCs with broken time-reversal symmetry, leading to the point symmetry
in the spectrum; in the presence of time-reversal symmetry, all band functions would in
addition be even. With the exception of these symmetry considerations the band spectra
of gyrotropic PhCs share all other features.

2.2 Complex conjugation as a particle-hole symmetry

Complex conjugation CΨ(x) := Ψ(x) induces a relation between Mw and the Maxwell
operator Mw with complex conjugate material weights,

C Mw C =−Mw . (2.10)

Consequently, Maxwell operators Mw for non-gyrotropic media (w = w) can be of class D,
DIII or BDI in the Cartan-Altland-Zirnbauer (CAZ) classification scheme depending on the
presence of additional symmetries [AZ97; SRF+08]. In other words C acts as a particle
hole symmetry which squares to +id. However, C cannot be interpreted as implementing
time-reversal, because unlike for the Schrödinger evolution group we in fact obtain1

C e−itMw C = e+it C Mw C = e−itMw . (2.11)

Instead, complex conjugation interchanges incoming and outgoing (complex) Bloch waves;
This was first noted in [Ber82, Section III] for purely homogeneous media where the ma-
terial weights are constant, but was not linked explicitly to complex conjugation.

Translating equation (2.10) to the Bloch-Floquet-Zak representation involves the sym-
metry CZ = Z C Z−1,

�

CZϕ
�

(k, y) = ϕ(−k, y), (2.12)

and leads to

C Mw(k)C =−Mw(−k). (2.13)

In other words, we have Mw(k)ϕn(k) =ωn(k)ϕn(k) if and only if

Mw(k)
�

CZϕn
�

(k) =−ωn(−k)
�

CZϕn
�

(k).

1Note that C is not an anti-unitary map between L2
w(R

3,C6) and itself but only as a map L2
w(R

3,C6) and the
Hilbert space with conjugate weights L2

w(R
3,C6).
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2.3 Implementation of time-reversal symmetry

Equation (2.13) explains the point symmetry in the band spectrum of non-gyrotropic ma-
terials where w = w: frequency bands come in pairs

�

ωn(k),−ωn(−k)
�

with Bloch func-
tions

�

ϕn(k) , (CZϕn)(k)
�

(dashed and solid lines of the same color in Figure 2.1). These
Bloch waves are necessarily complex, because ϕn and CZϕn are eigenfunctions to fre-
quency bands of different sign.2

2.3 Implementation of time-reversal symmetry

On physical grounds it is misleading to call C a “time-reversal symmetry”, though: in view
of equation (2.11) time-reversal

�

E(t),H(t)
�

7→
�

E(−t),−H(−t)
�

(2.14)

is not implemented by C as in the case of quantum mechanics. Instead, the correct oper-
ation

T = σ3 ⊗ id : (E,H) 7→ (E,−H)

is linear (as opposed to anti-linear) and flips the sign of the magnetic field strength. In
the CAZ classification T is a “chiral-type symmetry” [SRF+08]; we emphasize that both,
in case of C and T the names from the CAZ classification do not correspond to their
physical meaning in electromagnetism (cf. Table 4.1). A straightforward computation
shows T Mw T =−Mw , and consequently the linearity of T implies

T e−itMw T = e+itMw . (2.15)

This equation, however, is just another way of saying that T implements (2.14),
�

E(t)
(−H)(t)

�

= e−itMw

�

E
−H

�

= e−itMw T

�

E
H

�

= T e+itMw

�

E
H

�

=

�

E(−t)
−H(−t)

�

.

Also T gives rise to a symmetry in the band spectrum: taking into account that T is linear,
time-reversal yields the fiber-wise relation

T Mw(k) T =−Mw(k).

Consequently, also the T -symmetry pairs frequency bands
�

ωn(k),−ωn(k)
�

with Bloch
functions

�

ϕn(k), Tϕn(k)
�

.
Let us briefly mention that in [Kon72, eqns. (18a)–(18d)] J = T C has been proposed

as time-reversal symmetry for Maxwell equations with complex material weights. The dif-
ference between T and J only becomes significant for gyrotropic photonic crystals where

2Even for ground state bands, i. e. the bands with linear dispersion around k = 0, a real Bloch basis can only
be chosen at k = 0.
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2 The first-order Schrödinger formalism

w 6= w, because then instead of (2.15) the operator J intertwines the evolution of Mw and
Mw ,

J e−itMw J = e+itMw .

Seeing as T satisfies equation (2.15) and agrees with the way time-reversal is defined in
other literature (see e. g. [Jac98, Table 6.1] or [AS11, Chapter 7]), we will continue to
refer to T as time-reversal. We will pick up the topic of symmetries in Section 4.

2.4 Real states in non-gyrotropic photonic crystals

Very often the initial states of interest are real electromagnetic waves (E,H) = C(E,H). By
definition Zak transforms of such functions are “real” with respect to CZ = Z C Z−1, i. e.

C(E,H) = (E,H) ⇔ CZ Z(E,H) = Z(E,H).

The action of CZ given by (2.12) is no longer just pointwise complex conjugation, and
to avoid confusion we call functions ψ(k) in Bloch-Floquet-Zak representation Real if
(CZψ)(k) = ψ(−k) = ψ(k). This is also consistent with the terminology used in the
theory of Real vector bundles [Ati66; DG14b].

Let us focus on states that are localized in a narrow frequency range, i. e. states associ-
ated to a family of Bloch bands which do not cross or merge with other bands. In the sim-
plest case, we only need to consider a single, non-degenerate bands ω+ > 0 and its sym-
metric twin ω−(k) = −ω+(−k) whose Bloch functions ϕ−(k) =

�

CZϕ+
�

(k) = ϕ+(−k)
are related by complex conjugation. Then the two Real solutions

ψRe (k) =
1p
2

�

ϕ+(k) +ϕ−(k)
�

ψIm (k) =
1

i
p

2

�

ϕ+(k)−ϕ−(k)
�

are Real and Imaginary part of ϕ+; if we introduce the Real part operator ReZ = 1
2

�

1+
CZ� and the Imaginary part operator ImZ = 1

i 2

�

1− CZ�, then we can succinctly write

ψRe =
p

2 ReZϕ+ and ψIm =
p

2 ImZϕ+. Real states associated to the band ω+ are real
linear combinations of ψRe and ψIm , and these real linear combinations always depend
on both, ϕ+ and ϕ−. Hence, finding effective dynamics for real states is a multi-band
problem, one which is still unsolved.

2.5 Two- vs. three-dimensional PhCs

All of our arguments generalize to two-dimensional PhCs as the 2d Maxwell operator is
a restriction of (2.4). Thus, also in two dimensions C is a particle-hole symmetry and
frequency bands on the two-dimensional Brillouin zone come in conjugate pairs.
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2.5 Two- vs. three-dimensional PhCs

To make our arguments self-contained, let us sketch a derivation (see also [Kuc01,
Chapter 7.2.5] for the isotropic case): suppose the material weights w = (ε,µ) are of both
of the form

w =







w1 u+ i v 0
u+ i v w2 0

0 0 w3






=

�

w̃ 0
0 w3

�

(2.16)

i. e. they factor into two blocks. As a consequence the fields in the x1 x2-plane and along
the x3-direction are orthogonal, e. g.




(E1, E2, 0),ε(0,0, E3)
�

= 0,

and similarly for the magnetic field. Moreover, electric fields of the form (E1, E2, 0) drive
the dynamics for the magnetic field only along the x3-direction, ∂tH = −µ−1∇ × E =
�

0,0,∂t H3
�

. Hence, if we start with a transverse electric (TE) mode
�

(E1, E2, 0), (0, 0, H3)
�

,
the time-evolved state will be of the same form. One can repeat the same arguments for
transverse magnetic (TM) modes

�

(0, 0, E3), (H1, H2, 0)
�

.
Now let us impose a second assumption on the material weights, namely that they are

independent of x3. Then we can make a product ansatz Ψ(x1, x2, x3) = Φ(x1, x2)e+ik3 x3

for the electromagnetic fields where the component depending on x3 is just a plane wave.
The 2d Maxwell operator emerges after choosing k3 = 0 (meaning the fields are indepen-
dent of x3), i. e.

Mw,2d =

�

0 +iε−1 (∂1,∂2, 0)×

−iµ−1 (∂1,∂2, 0)× 0

�

where (∂1,∂2, 0)×E = (∂1,∂2, 0)× E. Electromagnetic fields of finite energy are now ele-
ments of L2

w(R
2,C6) with a weighted scalar product defined analogously to (2.5).

The block structure of the material weights leads to a block decomposition of the
Maxwell operator Mw,2d = MTE ⊕ MTM induced by splitting electromagnetic fields into
TE and TM modes,

L2
w(R

2,C6) = L2
TE ⊕ L2

TM.

These two operators can be compactly written as 3× 3-matrix-valued operators, e. g.

MTE =







0 0
+i ε̃−1

�

+∂2

−∂1

�

0 0
+iµ−1

3 ∂2 −iµ−1
3 ∂1 0







is the form of the Maxwell operator for TE modes (E1, E2, H3). This block structure also
means that TE and TM components are independent, e. g. one can compute their (two-
dimensional) frequency bands and Bloch functions separately. Given that we have derived
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3 First- vs. second-order formalism

the 2d Maxwell operator from the full, three-dimensional Maxwell equations, Mw,2d inher-
its properties such as the particle hole-type symmetry. Consequently, also 2d frequency
bands and Bloch functions come as conjugate pairs. And while the particle hole-type
symmetry does not force single bands to be topologically trivial (the Chern number asso-
ciated to ϕn need not be zero), real and imaginary part of ϕn are. From the viewpoint
of topological insulators this is not surprising: the 2d Maxwell operator is of class D in
the Altland-Zirnbauer classification scheme, so one expects to find a Z-valued topological
index.

3 First- vs. second-order formalism

Most of the time, at least implicitly, the second-order equation
�

∂ 2
t +M2

w

�

Ψ= 0 (3.1)

is considered instead of (2.9). From a practical point of view, this has a number of ad-
vantages, most importantly, electric and magnetic components decouple and one obtains
two second-order PDEs. And only one of the two equations needs to be solved. More-
over, in two dimensions this leads to two scalar equations, one for the TM and another
for the TE modes. These simplifications allow for a more efficient treatment. Clearly, for
non-gyrotropic materials where Mw = Mw , complex conjugation leaves (3.1) invariant.

The eigenvalue problem that is usually solved in other works reads

Mw(k)
2ϕn(k) =

�

λn(k)
�2
ϕn(k)

where λn(k) = |ωn(k)| is taken to be positive. This eigenvalue problem is subtly different
from (2.9), because the information whether the Bloch wave is outgoing (ωn > 0) or
incoming (ωn < 0) is discarded.

The information contained in the sign of ωn is critical when one wants to reconstruct
solutions to the dynamical problem. The similarity of (3.1) to the wave equation suggests
to rewrite it as

�

∂t + iMw(k)
��

∂t − iMw(k)
�

Ψ= 0

in Bloch-Floquet-Zak representation, and we see that any solution of the second-order
equation has to be a linear combination of an outgoing and an incoming wave.

But even if one is not interested in the dynamical problem, the loss of information by
discarding the sign of ωn also affects the analysis of the frequency band spectrum, topo-
logical quantities and effective models. Primarily there are two types of situations which
are the starting point for further research, namely (i) isolated bands and (ii) band cross-
ings (especially conical crossings). Or put another way, what matters are the locations of
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band crossings and degeneracies. If we take the absolute value of the spectrum of our
fictitious Maxwell operator from Figure 2.1, the much more convoluted frequency band
picture of Figure 3.1 emerges. Compared to the signed band spectrum, many artificial
band crossings appear (the points X j and Yj). These artificial crossings will have no inter-
esting physical effects associated to them because these bands are in fact decoupled from
one another (e. g. bands n±2 intersects with bands n±4 in Figure 3.1).

The presence of symmetries such as C or T necessarily generates degeneracies in the
|ω| spectrum, because each of these symmetries lead to symmetric pairings of bands.
While in PhCs with C-symmetry the pairing ωn(k)↔ −ωn(−k) leads to a degeneracy
only at k = 0 in the |ω| band picture, frequency bands of PhCs with T -symmetry have
even degeneracy everywhere, because of ωn(k)↔−ωn(k). Put another way, if the PhC
has C- or T -symmetry, then there are no isolated non-degenerate bands in the second-order
formalism – even if they are isolated in the first-order formalism. In case symmetries are
absent and there is no relation between the positive and negative frequency spectrum, but
nevertheless folding up the negative-frequency part still creates artificial band crossings.

The absence of isolated bands in the second-order framework for the most common
classes of PhCs, i. e. those with C- or T -symmetry, also makes a derivation of correct ray
optics equations more difficult. Indeed, recovering the sign of the frequency band ωn(k)
is not just important for checking whether ωn(k) is indeed isolated and all band crossings
are artificial. The sign of ωn is crucial when solving ray optics equations such as [RH08,
eqns. (42)–(43)] or [DL14a, eqn. (45)] (see also [OMN06; EG13]): in case ωn(k) < 0
the ray optics flows associated to ωn(k) and |ωn(k)| will be qualitatively different from
one another.

A distinction between artificial and proper band crossings also enters when one wants
to discuss conical intersection and avoided conical crossings using, say, graphene-type
models [OMN04; RH08; OO09; DL13]. These graphene-type models encapsulate two in-
teresting features: first of all, there is a link between symmetry breaking and the opening
of a gap, and secondly, the existence of topologically non-trivial phases [HK06; OO09].
Artificial band crossings will behave very differently (the points X j and Yj) from proper
band crossings (the points A j and B j) under symmetry breaking: artificial band crossings
will persist while for proper ones gaps may open.

Even if the spectral information can somehow be reconstructed, labeling bands in this
fashion artificially alters the topology of the Bloch bands. Given that topological terms also
enter into the dynamical equations, e. g. the Berry curvature appears in the ray optics
equations, labeling bands properly is crucial. Moreover, we note that one needs the mag-
netic and electric component in order to compute Chern numbers; in the single-band case
where c1 =

1
2π

∫

B dkΩn(k) the right-hand side is guaranteed to be an integer only if one
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4 The CAZ classification of Maxwell operators
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Figure 3.1: The absolute value of the band spectrum from Figure 2.1. Aside from proper
band intersections (points labeled A j and B j), numerous artificial intersections
are introduced (X j and Yj). X j denotes intersections between symmetrically
related bands (bands of the same color) while the Yj are fictitious intersections
between unrelated bands. Note that one cannot tell from the |ω| spectrum
whether time-reversal symmetry is present; if it is, all frequency bands are of
even degeneracy.

takes Ωn(k) to be the rotation of

An(k) =

∫

dy ϕE
n (k, y) · ε(y)ϕE

n (k, y) +

∫

dy ϕH
n (k, y) ·µ(y)ϕH

n (k, y)

rather than the rotation of the first or second term of An only.
Finally, a correct identification of the nature of symmetries for the purpose of CAZ

classification is not possible in the second-order framework, because the action of many
symmetries becomes trivial when considering M2

w instead. More on that below.

4 The CAZ classification of Maxwell operators

The first-order Schrödinger-type formalism presented in Section 2 allows one to sys-
tematically adapt tools developed for analyzing topological phases of quantum systems.
Concretely, we apply the Cartan-Altland-Zirnbauer (CAZ) classification scheme [AZ97;
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4.1 Classification via C and T

SRF+08] to PhCs. Similarly to crystalline solids, PhCs can be classified using the CAZ
classification scheme; this gives rise to different classes of “photonic topological insu-
lators” [KMT+13; RZP+13; HLS+14] which are characterized by different topological
invariants. The aim of this section is to identify for the first time the CAZ classes of PhCs
and their topological invariants.

To include more general linear and lossless media, we now consider Maxwell operators
Mw =W Rot with material weights of the form

W−1 =

�

ε χ

χ∗ µ

�

(4.1)

such that W−1 is bounded, invertible and has a bounded inverse W . The assumption that
the material is lossless is equivalent to W =W ∗. Material weights of this form have been
discussed in the physics literature (see e. g. [Pad07; HLS+14]).

The starting point of a CAZ classification is the choice of one or two symmetry operators,
one unitary and/or one antiunitary which have to square to ±id. These are symmetries of
the free Maxwell operator Rot, and the question arises for which material weights these
symmetries persist?

4.1 Classification via C and T

Our discussion in Sections 2.2–2.3 suggests to use the antiunitary C and the unitary T ; we
will also need their product J = T C . All of these operators square to +id and are indeed
symmetries of the free Maxwell operator,

C Rot C =−Rot,

T Rot T =−Rot,

J Rot J =+Rot.

Because the CAZ scheme was initially developed for quantum problems, the CAZ designa-
tions of C as a “particle-hole symmetry”, of T as a “chiral symmetry” and of J as a “time-
reversal symmetry” do not match the terminology of electromagnetism (cf. Table 4.1).

Seeing as the Maxwell operator is a product of W and Rot, the presence or absence of
symmetries solely depends on the material weights, i. e. whether

U W U∗ =+W

where U stands for C , T or J . (We will discuss the case where symmetry operators anti-
commute with W below.)
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4 The CAZ classification of Maxwell operators

Symmetry Linear/antilinear Parity CAZ designation Physical meaning
C antilinear + particle-hole symmetry real fields remain real
T linear + chiral symmetry time-reversal

J = T C antilinear + time-reversal symmetry

Table 4.1: The CAZ classification holds for arbitrary operators, but the names are derived
from the quantum world. Hence, the CAZ monikers of T , C and J do not match with their
physical interpretations.

Symmetries
present CAZ class ε, µ χ Realized?

none A C C [HLS+14]
J AI R iR [KMT+13]
T AIII C 0 [RH08; LFJ+13; EG13]
C D R R unknown

T , C BDI R 0 [OO09]

Table 4.2: Cartan-Altland-Zirnbauer (CAZ) classification of Maxwell operators using C ,
T and J = T C . The columns labeled ε, µ and χ indicate whether these matrix-valued
functions are complex, real, purely imaginary or zero; note that χ = iR, for instance, also
implies χ 6= 0.

Because U is either unitary or antiunitary, U W U∗ = ±W is in fact equivalent to
U W−1 U∗ = ±W−1, and we will give conditions on the constituents of W−1, namely
ε, µ and χ, which derive from the presence of a symmetry. A series of simple, back-of-
the-envelope computations then gives rise to Table 4.2; note that χ = C, for instance,
is short-hand for (i) χ 6= 0 and (ii) Imχ 6= 0 for otherwise the Maxwell operator is in a
different symmetry class. This way, 5 out of 10 CAZ classes can be realized with PhCs; At
least 4 have been considered in physics literature.

4.2 Extended classification and other symmetries

Due to its Dirac form the free Maxwell operator Rot = −σ2 ⊗∇× has many more sym-
metries than just C and T , so the question arises whether C , T and J = T C are the
only physically relevant operators for a classification of Maxwell operators. Three ways to
extend the classification scheme come to mind:

(1) Instead of requiring U W U∗ = +W for some discrete symmetry U , we can ask for
U W U∗ =−W .
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4.2 Extended classification and other symmetries

(2) Replace T = T3 = σ3 ⊗ id with T j = σ j ⊗ id for j = 1, 2. Here, T j Rot T j = −Rot for
j = 1, 3 and T2 Rot T2 = +Rot. Similarly, we set J j = T j C for the third symmetry.
Note that J2 is the only odd symmetry, J2

2 =−id, while all others are even.

(3) One can include parity (PΨ)(x) = Ψ(−x) as an even symmetry.

Even though mathematically speaking, these symmetry conditions are equally valid, it is
not clear whether they are equally mathematically or physically significant.

From a mathematical perspective linear symmetry operators which commute with the
Maxwell operator are irrelevant for the CAZ classification. For instance, if T2 = σ2 ⊗ id
commutes with W , then also T2 Mw T ∗2 = +Mw holds. Moreover, linear symmetries U
need to intertwine Maxwell operators for the same value of k, i. e. U Mw(k)U∗ =±Mw(k),
whereas antilinear symmetries V have to flip the sign, V Mw(k)V ∗ = ±Mw(−k). That is
also why parity does not play a role in the CAZ classification: even though P is linear, we
have P Rot(k) P =−Rot(−k) for the free Maxwell operator.

We have worked out all different combinations of symmetries for the different choices
of sign in Appendix A and arranged the different realizations of the symmetry classes in
Table 4.3. To get a flavor let us work out the consequences of two alternate symmetry
conditions:
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4 The CAZ classification of Maxwell operators

PPPPPPPPCAZ

realized
1 2 3

A
none

w1, w2, w2, w3 ∈ C

AIII
T1 ≡ χ

w0, w1 ∈ C
w2, w3 = 0

T2 ≡ χ
w1, w3 ∈ C
w0, w2 = 0

T3 ≡ χ
w0, w3 ∈ C
w1, w2 = 0

AI
J1 ≡+TR

w0, w1, w2 ∈ R
w3 ∈ iR

J3 ≡+TR
w0, w2, w3 ∈ R

w1 ∈ iR

C ≡+TR
w0, w1, w3 ∈ iR

w2 ∈ R

AII
J2 ≡−TR
w0 ∈ iR

w1, w2, w3 ∈ R

D
J1 ≡+PH

w0, w1, w2 ∈ iR
w3 ∈ R

J3 ≡+PH
w0, w2, w3 ∈ iR

w1 ∈ R

C ≡+PH
w0, w1, w3 ∈ R

w2 ∈ iR

C
J2 ≡−PH

w0 ∈ R
w1, w2, w3 ∈ iR

BDI

J1 ≡+TR
C ≡+PH

w0, w1 ∈ R
w2, w3 = 0

C ≡+TR
J1 ≡+PH

w0, w1 ∈ iR
w2, w3 = 0

J3 ≡+TR
C ≡+PH

w0, w3 ∈ R
w1, w2 = 0

BDI

C ≡+TR
J3 ≡+PH

w0, w3 ∈ iR
w1, w2 = 0

J3 ≡+TR
J1 ≡+PH

w1 ∈ iR, w3 ∈ R
w0, w2 = 0

J1 ≡+TR
J3 ≡+PH

w1 ∈ R, w3 ∈ iR
w0, w2 = 0

DIII

J2 ≡−TR
J1 ≡+PH

w0 ∈ iR, w3 ∈ R
w1, w2 = 0

J2 ≡−TR
J3 ≡+PH

w0 ∈ iR, w1 ∈ R
w2, w3 = 0

J2 ≡−TR
C ≡+PH

w1, w3 ∈ R
w0, w2 = 0

CI

J1 ≡+TR
J2 ≡−PH

w0 ∈ R, w3 ∈ iR
w1, w2 = 0

J3 ≡+TR
J2 ≡−PH

w0 ∈ R, w1 ∈ iR
w2, w3 = 0

C ≡+TR
J2 ≡−PH

w1, w3 ∈ iR
w0, w2 = 0

Table 4.3: 9 of the 10 CAZ classes can be theoretically realized while the 5 shaded cases
have been realized in experiment (cf. [MMR02; KMT+13] for class CI and the references
in Table 4.2). U ≡ χ means that U acts as a chiral symmetry (linear, U Mw U =−Mw). TR
and PH are short for time-reversal (antilinear, U Mw U =+Mw) and particle-hole symmetry
(antilinear , U Mw U =−Mw) which are either even (+) or odd (−). We also tabulate the
associated conditions on the coefficients w0, . . . , w3, cf. equation (A.1).
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4.3 Topological triviality of frequency bands and Chern numbers

T1 W T1 = +W Here, we have replaced T3 by T1 but kept the sign, and a quick compu-
tation shows

T1 W T1 =+W ⇔ ε = µ, χ = χ∗.

Such a symmetry is not of purely academic interest as a PhC for microwaves with yttrium-
iron-garnet (YIG) rods subjected to a magnetic field in a square lattice geometry realizes
complex ε = µ and χ = 0 [Poz98; WCJ+08]. In addition, this system has time-reversal
symmetry (W commutes with T = T3). However, the additional T1-symmetry does not
change the CAZ class: both, T1 and T3 are linear, so only one of them is relevant for the
CAZ classification. And in both cases, the corresponding Maxwell operator Mw is in CAZ
class AIII (cf. Table 4.3).

Several other works [MMR02; KMT+13] also consider PhCs made up of split ring res-
onators with ε = µ = Reε and χ = Imχ = χ∗. The associated Maxwell operator Mw is
then of class CI: in addition to the symmetry J3 (ε, µ real and χ = Imχ), also T1 (ε = µ,
χ = χ∗) and J2 ∝ T1 J3 are present. Hence, we identify T1 as a chiral symmetry, J3 as an
even time-reversal symmetry and J2 as an odd particle-hole symmetry, and we read off
CAZ class CI from Table 4.3.

C W C =−W If one wants C to act as a “time-reversal symmetry” in CAZ parlance, then

C W C =−W ⇔ ε =−ε, µ=−µ, χ =−χ,

is one way to ensure C Mw C = +Mw . However, combining the fact that the constituents
of W are purely imaginary with W ∗ = W yields that the diagonal entries of the tensors
ε−1 and µ−1 vanish identically. Apart from an approximate realization by making the
purely imaginary offdiagonal entries of W much larger compared to its diagonal entries,
we reckon that this symmetry seems to be of purely mathematical interest. Typically the
ratio of imaginary and real part of the elements of ε and µ is very small (∼ 10−3), and
even in the YIG PhC mentioned above [Poz98; WCJ+08] it is of order ∼ 1.

Obviously, there are other combinations of symmetries and signs, and while some of them
may apply to certain physically-realizable PhCs, it is clear that many just yield physically
unrealistic conditions on ε, µ and χ.

4.3 Topological triviality of frequency bands and Chern numbers

We now explore the link between the CAZ classification and topological photonic insulator
that are characterized by topological invariants. More specifically, the CAZ class of a
Maxwell operator determines which topological invariants can – and which cannot – arise.
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4 The CAZ classification of Maxwell operators

Symmetries
present CAZ class Reduced K-group in dimension

d = 1 d = 2 d = 3 d = 4
none A 0 Z (Z3) Z⊕ (Z6)

J ≡+TR AI 0 0 0 Z
T ≡ χ AIII Z (Z2) Z⊕ (Z3) (Z8)

C ≡+PH D Z2 (Z2
2)⊕Z (Z3

2⊕Z
3) (Z4

2⊕Z
6)

T ≡ χ, C ≡+PH BDI Z (Z2) (Z3) (Z4)
J2 ≡−PH, J3 ≡+TR CI 0 0 Z (Z4)

Table 4.4: CAZ classification of Maxwell operators using C , T and J = T C as well as J2

and J3; all of these have been considered in the literature. We have used the terminology
of Table 4.3 to indicate the nature of the symmetries in the first column. The columns
labeled d = 1, 2,3, 4 are the reduced K-groups for the torus that have been computed by
standard techniques [Kit09; DG14b; DG14a]. The contributions in parentheses are weak
invariants while the origin of those without brackets, the strong invariants, can be traced
back to the reduced K-groups over the sphere Sd . Note that while d = 1 is irrelevant for
the Maxwell operator, it is helpful to include d = 1 to identify patterns in the dimension-
dependence of the reduced K-groups for the Brillouin torus Td . The column d = 4 is
relevant for Maxwell operators that depend on time in a periodic fashion.

To frame the discussion, let us sketch the argument why the first Chern class, the best-
known example of topological invariants, vanish for quantum Hamiltonians with time-
reversal symmetry. And then we will show why this argument fails for Maxwell operators.

Suppose we are given a contiguous family of energy bands σrel(k) =
⋃

n∈I{En(k)}
indexed by I = {nmin, . . . , nmax} that is separated from all others by a gap, e. g. the yellow
(±n2) or the violet bands (±n3) in Figure 2.1. Then the Chern numbers are associated
to the family of Bloch functions or, equivalently, to the projection onto the corresponding
eigenspaces,

π(k) =
∑

n∈I
|ϕn(k)〉〈ϕn(k)|=

i

2π

∫

γ(k)

dz
�

H(k)− z
�−1, (4.2)

which can either be expressed as a sum of rank-1 projections or as a Cauchy integral
where the contour γ(k) encloses only σrel(k).

Now if there exists an antiunitary operator C for which

C π(k)C = π(−k) (4.3)

holds, then it is well-known that the associated first Chern class vanishes [cite]. In the
Schrödinger case where C is complex conjugation and C H(k)C = H(−k), equation (4.3)
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4.3 Topological triviality of frequency bands and Chern numbers

holds true: conjugating the projection with C yields

C π(k)C =−
i

2π

∫

γ(k)

dz
�

C H(k)C − z̄
�−1

=
i

2π

∫

γ(k)

dz
�

H(−k)− z
�−1 = π(−k), (4.4)

because C H(k)C = H(−k) implies σrel(−k) = σrel(k) is enclosed by γ(k). Hence, the
first Chern numbers associated to σrel(k) vanish.

Despite claims in the physics literature, this argument does not carry over to the Maxwell
operator, because the right-hand side of C Mw(k)C = −Mw(−k) contains an additional
minus sign if the material weights are real (Mw is of CAZ class D or BDI). Here, we see
that the first-order Schrödinger-type formalism of electrodynamics and a correct identifi-
cation of the nature of C is crucial. Misidentifying complex conjugation as a “time-reversal
symmetry” is false, both on physical grounds and in the context of the CAZ classification
(see Table 4.1).

However, a quick peak at Table 4.2 reveals that for Maxwell operators of class AI and
BDI

J Mw(k) J =+Mw(−k)

is satisfied, and consequently, the above argument for Schrödinger operators holds verba-
tim after replacing C with the correct “time-reversal symmetry” J and H(k) with Mw(k).

There is another class of Maxwell operators, where topological effects due to non-
zero Chern classes are also absent, namely those of class D (C-symmetry present but
T -symmetry broken). This is for a less obvious reason: here, frequency bands come in
pairs, and one always needs to take symmetrically related pairs in order to be able to
form Real initial states (cf. discussion in Section 2.4). So let us pick a contiguous, sepa-
rated family of positive frequency bands σ+(k) =

⋃

n∈I
�

ωn(k)
	

, and define the collection
of symmetrically related bands σ−(k) =

⋃

n∈I
�

−ωn(−k)
	

as well as the associated pro-
jections π±(k). Then instead of (4.3) a modification of the arguments in equation (4.4)
yields

C π+(k)C = π−(−k), (4.5)

from which we deduce that the Chern numbers of π± are equal in magnitude, but are of
opposite sign [DL14a, Remark 4]. However, there are a few projections which do have
trivial Chern numbers, for instance, (4.3) holds for π(k) = π+(k) + π−(k). Also the
projections |ψRe (k)〉〈ψRe (k)| and |ψIm (k)〉〈ψIm (k)| onto ReZϕn and ImZϕn satisfy (4.3)
by construction, and thus, Chern numbers associated to real states vanish. This explains the
absence of topological effects in non-gyrotropic PhCs.
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5 The Maxwell-Harper approximation for non-gyrotropic PhCs

Chern numbers are but one example of topological invariants, and depending on the CAZ
class there may be others. To see that, we note that any projection π(k) of the form (4.2)
defines a vector bundle, the so-called Bloch bundle (see e. g. [DL11b, Section ]), whose
structure can be analyzed with standard tools of the trade such as K-theory. For each
CAZ class it is the reduced K-group which identifies the form of the topological invariants;
the reduced K-groups for the CAZ classification from Section 4.1 has been tabulated in
Table 4.4.

Note that K-theory gives no clue how to compute topological invariants. Nevertheless,
Table 4.4 tells us which symmetries need to be broken if one wants to find Z2 topolog-
ical invariants (only class D does); we expect this to be significant for a first-principles
derivation of the bulk-edge correspondence for PhCs.

5 The Maxwell-Harper approximation for non-gyrotropic PhCs

Usually, the frequency bands and Bloch functions are only obtainable numerically for given
choices of ε and µ, and one way to better understand some aspects of light dynamics
is to look for simpler model operators which are more amenable to analysis but retain
certain features of the full operator. In solid state physics, one such operator is the Harper
operator [Hof76], and the purpose of this section is to motivate a photonic analog.

Let us consider PhCs of class D or BDI (i. e. C is a symmetry of Mw). As argued in Sec-
tions 2.4 and 4.3 as well as [DL14a, Section 5], if one wants to understand real electro-
magnetic fields, then the simplest model for a PhC necessarily includes two symmetrically
related bands. Suppose, for instance, that Mw is of class D, then according to Table 4.4 we
expect topological effects may still play a role (there are Z2-invariants) even if the total
Chern class of symmetrically chosen bands vanishes.

If the periodic structure is perturbed on the macroscopic level, i. e. we replace the
periodic material weights w = (ε,µ) by w(λ) = (ελ,µλ) where these perturbed material
weights

ελ(x) = τ
−2
ε (λx)ε(x),

µλ(x) = τ
−2
µ (λx)µ(x),

are modulated by bounded, strictly positive functions τε and τµ whose inverses are also
bounded. This type of perturbation has been studied theoretically [RH08; EG13; DL14a]
and models effects such as uneven thermal [DWN+11; DLT+04] or uneven strain tuning
[WYR+04].

Quite naturally, the first task in the study of the perturbed Maxwell operator Mλ = Mw(λ)
is to derive effective dynamics, i. e. to relate the perturbed to the unperturbed dynamics if
one knows something about the initial states. Here, the states one considers are associated
to a relevant family of frequency bands which is separated by a local gap from the others to
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prevent band transition. For instance, the bands
�

ωn2
(k),ωn−2

(k)
	

or
�

ωn3
(k),ωn4

(k)
	

.
However, we do allow band intersections within the family of relevant bands.

For the Bloch electron, the analogous situation in quantum mechanics, this is a very
well-studied problem [PST02]. One type of effective dynamics are semiclassical dynam-
ics: here, the band energy enters the Hamilton function, but the dynamical equations
also contain a topological contribution in the form of the Berry curvature which acts as a
pseudomagnetic field. Such semiclassical equations of motion, ray optics equations, have
been proposed for PhCs by Raghu and Haldane [RH08] and derived in [OMN06; EG13].
However, Real states can never be supported by single frequency bands so even in the
simplest physically relevant situation, one has to work with a conjugate pair of bands
�

ω±(k)
	

=
�

ω(k),−ω(−k)
	

. Then the single-band effective dynamics needs to be aug-
mented by an analysis of an interband term (cf. the discussion in Section 6 of [DL14a]).

So instead, let us pursue a different, complementary strategy to find effective dynamics
in the twin-band case: here, one approximates e−itMλ on the subspace ranΠλ defined
in terms of the superadiabatic projection Πλ = Π0 +O(λ) [Nen91; PST02]. The leading-
order term Π0 is unitarily equivalent to the family of the projections

∑

j=± |ϕ j(k)〉〈ϕ j(k)|
onto the eigenspaces of ω±. Effective dynamics now means that there exists an effective
Maxwell operator Meff and a unitary Uλ such that

�

e−itMλ − U∗λ e−itMeff Uλ
�

Πλ =O(λn)

holds for some n. This scheme has recently been implemented rigorously for photonic
crystals [DL14a], and Uλ, Πλ and Meff have been constructed order-by-order in λ via
explicit recursion relations. The role of the unitary Uλ is to map the problem onto a
simpler reference Hilbert space which in this case is L2(B)⊗CN where B is the Brillouin
zone and in our case N = 2 since we are dealing with two non-degenerate bands.

The leading-order of Meff has been computed in [DL14a] for Bloch bands which indi-
vidually carry zero Chern charge, and Meff is the “quantization” of

Meff(r, k) = τ(r)

�

ω(k) 0
0 −ω(−k)

�

.

This is a matrix-valued function depending on macroscopic position r and crystal momen-
tum k, and involves the perturbation via the function τ(r) = τε(r)τµ(r). After replacing
r with iλ∇k and k with multiplication with k, the resulting Maxwell-Harper operator

Meff =
τ(iλ∇k)

2

�

ω(k) 0
0 −ω(−k)

�

+ h.c. (5.1)

is the analog of “Peierls substitution” for PhCs.
One way to further analyze this operator is to assume τ is periodic on the macroscopic

level; for instance, one can think of a finite sample of size L =
�

L1 e1, L2 e2, L3 e3
	

where
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5 The Maxwell-Harper approximation for non-gyrotropic PhCs

the L j are all positive, large integers, and we impose periodic boundary conditions. This
gives rise to a lattice ΓL and a dual lattice Γ∗L , and we can expand the modulation

τ(r) =
∑

γ∗∈Γ∗L

τ̂(γ∗)e+iγ∗·r

and the frequency band function

ω(k) =
∑

γ∈Γ
ω̂(γ)e+ik·γ

in terms of the Fourier coefficients τ̂(γ∗) and ω̂(γ). The operator Meff can be expressed
algebraically in terms of

�

S jψ
�

(k) = e+ik j ψ(k),
�

T jψ
�

(k) =ψ
�

k+ λ

L j
e∗j
�

.

These two unitary operators are shifts in real and reciprocal space which satisfy the fol-
lowing commutation relations:

T j Sn = ei λ
Ln
δ jn Sn T j ,

�

T j , Tn
�

= 0=
�

S j , Sn
�

, j, n= 1,2, 3.

After a Fourier transform which maps L2(T3) to `2(Γ), one obtains a multiband tight-
binding model from (5.1) just as in condensed matter physics. Simplifying assumptions
on the Fourier coefficients of ω and τ then lead to tight-binding models which can be
analyzed efficiently and perhaps even explicitly.

These six operators generate a representation of a six-dimensional non-commutative
torus on L2(T3) [VFG01, Chapter 12]. Let us denote the C∗-algebra generated by S j and
T j on L2(T3) with A6(λ/L). We have shown that the effective models for the Maxwell
dynamics in the twin bands case can be associated with a (diagonal) representative of
the non-commutative torus A6(λ/L) ⊗MatC(2). This analogy allows us to apply all the
well-known techniques for Harper operators to the Maxwell-Harper operator (5.1). For
instance, one can expect to recover a Hofstadter’s butterfly-like spectrum [Hof76] which
produces a splitting of the two topologically trivial bands ω± into subbands which can
carry a non-trivial topology. We stress that in this case the non-trivial effect is due only to
an incommensurability between the perturbation parameter λ and the lengths L j of the
macroscopic lattice without any magnetic effect.

The operator (5.1) is just a particular example of a Maxwell-Harper operator; the fact
that it is a diagonal element of A6(λ/L)⊗MatC(2) can be linked to the topological triviality
of ω±. However, in PhCs the presence of the PH symmetry does not imply the topological
triviality of single bands, and the Bloch functions ϕ±(k) cannot be used to smoothly diag-
onalize Meff. Instead, our arguments in Section 4 suggest to use Real and Imaginary part
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ψRe and ψIm , and generally one obtains

Meff(r, k) =
τ(r)

2

�

ω(k)−ω(−k) −i
�

ω(k) +ω(−k)
�

i
�

ω(k) +ω(−k)
�

ω(k)−ω(−k)

�

which after the Peierls substitution produces a non diagonal element of A6(λ/L)⊗MatC(2).

6 On the role of complex fields in gyrotropic PhCs

Our explanation for the absence of topological effects in non-gyrotropic PhCs hinged on
the presence of the particle-hole symmetry and the assumption that the electromagnetic
wave was purely real. However, the material weights in gyrotropic media are complex
(such as is the case in [YCL99; WCJ+08; KRL+10; WLF+10], for instance), and the
Maxwell equations are coupled PDEs with complex coefficients. So even if the initial
states are real, the time-evolved fields acquire a non-zero imaginary part. That means a
distinction between real and complex electromagnetic fields is only meaningful for PhCs
with C-symmetry, and to understand PhCs with broken C-symmetry, the significance of
truly complex electromagnetic fields needs to be explored. This is purely a problem of
physics, because mathematically no fundamental obstacles arise in the analysis.

To the best of our knowledge this particular problem has seen very little attention in the
literature. The best reference we have been able to track down is [Ber82]which covers the
case of constant permittivity and permeability; its arguments extend readily to the present
setting, but the author stops short of a complete physical interpretation of the complex
nature of the plane wave solutions he gets. In standard textbooks (e. g. [Jac98]) complex
electromagnetic fields are either discussed in the context of systems with friction or as a
convenient way to express solutions of the Maxwell equations in terms of complex plane
waves rather than sin and cos. Neither one of these qualifications applies: In systems
with friction or amplification, the eigenvalues of ε(x) and µ(x) need to have non-zero
imaginary parts. As long as the material weights are hermitian, the field energy (2.6) is
conserved because the Maxwell operator is selfadjoint.

Essentially, we see two ways to interpret complex electromagnetic waves:

(1) One takes the real part of the complex wave.

(2) One accepts the complex nature of the waves and that only real-valued quantities
such as field intensities and the Poynting vector are measured in experiment.

The problem of strategy (1) is the interpretation of the imaginary part: where does the
associated field energy go? And more importantly, our arguments from Section 4 show the
absence of topological effects for states of the form Re (E,H

�

= CRe
�

E,H
�

. Clearly, this in-
terpretation yields testable hypothesis that are incompatible with experiment (topological
effects in PhCs have been observed [WCJ+08]).
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A Tabulated symmetries

The second interpretation is consistent with experiment, because it allows for topo-
logical effects. Electrodynamics in matter is an effective theory that is obtained after a
suitable coarse graining procedure and holds only for electromagnetic waves whose in
vacuo wavelength is large compared to the size of the constituents of the PhC (e. g. the
size of split-ring resonators). So what is really measured in experiment? Observables in
this context are real-valued functions in the fields such as the field intensities

�

�E(t, x)
�

�

2
and

�

�H(t, x)
�

�

2
, and the Poynting vector

S= Re E×H. (6.1)

The definition of this vector stems from energy conservation ([Ber82, equation (38)]),
namely if

UE(t, x) =
1

2

�

E(t, x) · ε(x)E(t, x) +H(t, x) ·µ(x)H(t, x)
�

denotes the energy density, then S satisfies the conservation law

∂t UE +∇x · S= 0.

Lastly, how are gyrotropic media different? After all, our arguments show that there
is nothing mathematically wrong with having complex electromagnetic waves if all that
counts is the propagation field intensity.
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A Tabulated symmetries

Given that W =W ∗ and W−1 exists, one can express our material weight tensor as

W−1 =
3
∑

j=0

σ j ⊗w j =

�

w0 +w3 w1 − i w2

w1 + i w1 w0 −w3

�

(A.1)
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where σ0 = id is the identity and σ1, σ2 and σ3 are the Pauli matrices, and the w j are
hermitian 3× 3 matrices. Given that Rot=−σ2 ⊗∇×, we immediately obtain

C Rot C =−Rot

T j Rot T j =−Rot, j = 1,3

T2 Rot T2 =+Rot

J j Rot J j =+Rot, j = 1,3

J2 Rot J∗2 =−Rot.

With the exception of J2 for which J2
2 =−id, all other symmetries are even. Consequently,

U Mw U∗ = ±Mw translates to the conditions U W U∗ = ±W for U = C , T j , J j , j = 1,2, 3.
These can again be computed very efficiently using the algebraic properties of the Pauli
matrices.

When tabulating these symmetries, one first needs to pick one unitary and/or one an-
tiunitary operator; since the classification uses U1, U2 and the product U1 U2 there are
many equivalent choices which yield the same classification scheme. For instance, choos-
ing C and T2 is equivalent to choosing C and J2 = T2 C or T2 and J2. This helps to reduce
the size of Tables A.1–A.3 further.

Secondly, two signs need to be chosen, e. g. the (+−) combination imposes

U1 W U∗1 =+W,

U2 W U∗2 =−W,

for two symmetries U1, U2 = T j , J j , C , j = 1,2, 3. Similarly, we define the (++) and (−−)
combinations.

Lastly, linear symmetries which commute with the Maxwell operator are irrelevant for
the purpose of CAZ classification. For the benefit of the reader not yet familiar with the
CAZ classification, we have labelled those symmetries with “[irrel.]” in Table A.1. The
CAZ class is determined by the remaining symmetry (if present); for instance, a Maxwell
operator with (++) symmetries C and T2 is of class D just like any other Maxwell operator
with C Mw C = −Mw . In the (+−) and (−−) tables, though, we have omitted these
superfluous symmetries.
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A Tabulated symmetries

H
HHH

HH+
+

none T1 T2 T3

T1

w0, w1 ∈ C
w2, w3 = 0
[AIII]

T2

w0, w2 ∈ C
w1, w3 = 0
[irrel.]

T3

w0, w3 ∈ C
w1, w2 = 0
[AIII]

C
w0, w1, w3 ∈ R

w2 ∈ iR
[D]

w0, w1 ∈ R
w2, w3 = 0
[BDI]

w0 ∈ R, w2 ∈ iR
w1, w3 = 0
[irrel.]

w0, w3 ∈ R
w1, w2 = 0
[BDI]

J1

w0, w1, w2 ∈ R
w3 ∈ iR
[AI]

w0, w1 ∈ R
w2, w3 = 0
[BDI]

w0, w2 ∈ R
w1, w3 = 0
[irrel.]

w0 ∈ R, w3 ∈ iR
w1, w2 = 0
[CI]

J2

w0 ∈ R
w1, w2, w3 ∈ iR

[C]

w0 ∈ R, w1 ∈ iR
w2, w3 = 0
[CI]

w0 ∈ R, w2 ∈ iR
w1, w3 = 0
[irrel.]

w0 ∈ R, w3 ∈ iR
w1, w2 = 0
[CI]

J3

w0, w2, w3 ∈ R
w1 ∈ iR
[AI]

w0 ∈ R, w1 ∈ iR
w2, w3 = 0
[CI]

w0, w2 ∈ R
w1, w3 = 0
[irrel.]

w0, w3 ∈ R
w1, w2 = 0
[BDI]

Table A.1: This table describes all the interesting cases for the CAZ classification in the
(++)-case, namely when U j W U∗j = +W , j = 1,2. Each cell contains the possible values
of the tensor valued entries w0, . . . , w3 of the matrix W according to the choice of U1 (hor-
izontal axis) and U2 (vertical axis). Also the CAZ label is displayed. We observe that the
symmetry T2 is irrelevant since T2 W T2 = +W implies [T2, Mw] = 0 (linear symmetries
commuting with the operator M do not enter in the CAZ classification scheme). Hence,
the symmetry class is determined by the other symmetries (if present), e. g. a Maxwell
operator with symmetries C and T2 is of class D.
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H
HHH

HH−
−

none T2

T2

w1, w3 ∈ C
w0, w2 = 0
[AIII]

C
w0, w1, w3 ∈ iR

w2 ∈ R
[AI]

w1, w3 ∈ iR
w0, w2 = 0
[CI]

J1

w0, w1, w2 ∈ iR
w3 ∈ R
[D]

w1 ∈ iR, w3 ∈ R
w0, w2 = 0
[BDI]

J2

w0 ∈ iR
w1, w2, w3 ∈ R

[AII]

w1, w3 ∈ R
w0, w2 = 0
[DIII]

J3

w0, w2, w3 ∈ iR
w1 ∈ R
[D]

w1 ∈ R, w3 ∈ iR
w0, w2 = 0
[BDI]

Table A.2: This table describes all the interesting cases for the CAZ classification in the
(−−)-case, namely when U j W U∗j = −W , j = 1,2. Each cell contains the possible values
of the tensor valued entries w0, . . . , w3 of the matrix W according to the choice of U1

(horizontal axis) and U2 (vertical axis). Also the CAZ label is displayed. We observe that
the symmetries T1 and T3 are absent since T j W T j = −W implies [T j , Mw] = 0, j = 1, 3
(linear symmetries commuting with the operator M do not enter in the CAZ classification
scheme).
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A Tabulated symmetries

H
HHH

HH+
−

T2 C J1 J2 J3

T1

w0, w1 ∈ iR
w2, w3 = 0
[BDI]

w0, w1 ∈ iR
w2, w3 = 0
[BDI]

w0 ∈ iR, w1 ∈ R
w2, w3 = 0
[DIII]

w0 ∈ iR, w1 ∈ R
w2, w3 = 0
[DIII]

T3

w0, w3 ∈ iR
w1, w2 = 0
[BDI]

w0 ∈ iR, w3 ∈ R
w1, w2 = 0
[DIII]

w0 ∈ iR, w3 ∈ R
w1, w2 = 0
[DIII]

w0, w3 ∈ iR
w1, w2 = 0
[BDI]

C
w1, w3 ∈ R
w0, w2 = 0
[DIII]

w2 ∈ iR, w3 ∈ R
w0, w1 = 0
[D]

w1, w3 ∈ R
w0, w2 = 0
[DIII]

w1 ∈ R, w2 ∈ iR
w0, w3 = 0
[D]

J1

w1 ∈ R, w3 ∈ iR
w0, w2 = 0
[BDI]

w2 ∈ R, w3 ∈ iR
w0, w1 = 0
[AI]

w1, w2 ∈ R
w0, w3 = 0
[AI+AII]

w1 ∈ R, w3 ∈ iR
w0, w2 = 0
[BDI]

J2

w1, w3 ∈ iR
w0, w2 = 0
[CI]

w1, w3 ∈ iR
w0, w2 = 0
[CI]

w1, w2 ∈ iR
w0, w3 = 0
[D+C]

w2, w3 ∈ iR
w0, w1 = 0
[D+C]

J3

w1 ∈ iR, w3 ∈ R
w0, w2 = 0
[BDI]

w1 ∈ iR, w2 ∈ R
w0, w3 = 0
[AI]

w1 ∈ iR, w3 ∈ R
w0, w2 = 0
[BDI]

w2, w3 ∈ R
w1, w0 = 0
[AI+AII]

Table A.3: This table describes all the interesting cases for the CAZ classification in the
(+−)-case, namely when U1 W U∗1 = −W and U2 W U∗2 = +W . Each cell contains the
possible values of the tensor valued entries w0, . . . , w3 of the matrix W according to the
choice of U1 (horizontal axis) and U2 (vertical axis). Also the CAZ label is displayed. We
have again omitted superfluous symmetries.
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