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ON WIENER NORM OF SUBSETS OF Z, OF MEDIUM SIZE

S. V. KONYAGIN ! | I. D. SHKREDOV?

Abstract.

We give a lower bound for Wiener norm of characteristic function of subsets
A from Zy, p is a prime number, in the situation when exp ((logp/ log logp)1/3) <
|A] < p/3.

1 Introduction

We consider the abelian group G = Z, = Z/pZ, where p is a prime number.
Denote the Fourier transform of a complex function on G to be a new function

f(y) = }92 F(@)ey(7)

zeG

where e,(u) = exp(2miu/p) (we note that e, is correctly defined for u € Z,).
It is known that the function f can be reconstructed from f by the inverse

Fourier transform R
F@) =Y f(n)ep(—z). (1)

VEZLp

We define the Wiener norm of a function f as

1 lay = IFla = 1A = D 1F (I

YELp

By xs, S C G denote the characteristic function of some set S.
In this note we discuss the problem of estimation from below the Wiener
norm of x4 for A C Z, in terms of p and |A|.
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If x € A, then, by (1), we have

1= 1Y fe—an)| = S 170l

YE€Lp YELyp

Thus, we get a trivial estimate for Wiener norm of any nonempty A C Z,

Ixalla > 1. (2)

Next we observe that because of

Ixz\alla = lIxalla + (1 —2]A|/p)

it is sufficient to consider the case |A| < p/2. It is easy to see that if A C Z,
is an arithmetic progression with

2<|Al <p/2 (3)
then
[xalla < log|Al

It is commonly believed that for any A satisfying (3) there is the same lower
bound
lxalla > log |Al. (4)

The first nontrivial lower bound for ||xall4, |A| < p/2, in some range was

established in[2]:
A log p 1/3
ealla > 12 .
p \loglogp

This estimate was improved by T. Sanders [7] for |A| < p/2, |A| > p. As
was shown in [4], the results of [7] imply the following.

Theorem 1 Let p be a prime number, A C Z,, 0 < n = |A|/p < 1/2. If
1> (logp)~"*(loglog p)'/* then

_ _ —1/2
[xalla > (logp)"/*(loglog p)~'n*? (1 + log (n*(log p)**(loglog p) ™)) ',

and if n < (logp)~/*(loglog p)'/? then

Ixalla > n'/?(log p)/*(log log p) 7/2.



Our interest to study Wiener norm of large subsets of Z, was inspired by
the paper of V.V. Lebedev [5] on quantitative variants of Beurling—Helson
theorem.

Theorem 1 is nontrivial if our subset A is large, that is

|Alp~! (log p)'/?(loglog p) ™" — o0
(and of course |A| < p/2). For small A we proved in [4] a sharp estimate.
Theorem 2 Let p be a prime number, A C Z,, and
2 < |A| < exp ((logp/ loglogp)'/?) .

Then
xalla > log |Al.

In this note we study the subsets A C Z, of medium size. Our main
result is the following assertion.

Theorem 3 Let p be a prime number, A C Z,,
exp ((log p/loglogp)'/?) < |A| < p/3.

Then
lIxalla > (log(p/|A])"/?(log log(p/|Al)) 0.

We observe that using arguments of Theorem 2 one can get analogious
estimates for sets A slightly exceeding the bound indicated in the statement.
However, the improvement is marginal. Moreover, it seems that by that way
one cannot get a nontrivial estimate for rather large subsets, namely, such
that log |A| > log p.

2 Comparison with the continuous case

We denote e(u) = exp(2miu). For sets B C Z a continuous analog of (4)
is a well-known fact. Namely, it was proved in [3] and [6] that if B C Z,

2 < |B| < oo then
1
/ Ze(bu)
0

beB

du > log | B|.




Moreover, in [6] the following stronger result was proved: if by < --- < b, are
real numbers and ¢; are arbitrary complex numbers then

/01 Z;Cje(bju)

This inequality implies the following lemma.

l
du > Z@. (5)
=1 7

Lemma 4 Letn € N, B C [-2n,2n] C Z, |B] > 2,0 <n < 1/2, |IBN
[—n,n]| > (1 —n)|B|, ¢(b) (b € B) are complex numbers with c(b) = 1 for

be BN[—n,n]. Then
> c(b)e(bu)

/1
0 lbeB

Proof Let B = {b; < --- < b} wherel = |B|, and let BN[—n,n| = {b, <
-++ < by}. The polynomial ZéeB c(b)e(bu) can be rewritten as Z;Zl cje(bju)
where ¢; = 1 for [; < j <ly. We denote

1
-
0

l2
1
S>3 = > log((ly+1)/0).
Jj=h
We have Iy —l; +1 > (1 —n)l. Ifn < 1/l, then l; = 1,1, =1, S >
log((l2 +1)/11) = logl as required. If n > 1/I, then we have

1
du >> min <log—,log |B\> :
n

Z c(b)e(bu)| du.

beB

By (5),

Hence,
log((l2 +1) /1) = log((ly + (1 = n)1) /1) = log((1 +n)/2n) > log(1/n),
and we again get the assertion of the lemma. a

The discrete and continuous L!'-norms of trigonometric polynomials can
be compared by the following lemma.
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Lemma 5 We have

1 1
];Z Z cxep(7y) >>/ Z cpe(zu)| du.

€Ly ||zl<p/3 O |lel<p/3
See [11], chapter 10, Theorem 7.28.

One can deduce (4) from Lemma 5 provided that A C [—p/3,p/3] (this
inclusion means that any residue a € A has an integer representative from
[—p/3,p/3]) or if some non-degenerate affine image of A in Z, is contained
in [—p/3,p/3]. This argument was used in the proof of Theorem 2.

Now let us define the de la Vallée-Poussin polynomials and means. For

functions
F(V) = Z Cxep(IV)a G(’Y) = Z d:cep(lvy)

TE€Lyp TELyp

we define their convolution

FxG(v) = Z codzen(Ty).

TE€ZLp

It is easy to see that

F>1<G(7):1 Z F(&)G(&2).

§1+&2="

Therefore,
1
STIF«GM < =Y IFMI DGO (6)
VEZLp pwezp YEZp

Study of arbitrary trigonometric polynomials in Z, can be reduced to
polynomials of small degree using de la Vallée-Poussin means. Define the de
la Vallée-Poussin polynomial of order n < p/4 as

2n — |z|+ 1
Va(y) = Z ep(27) + Z Tep(m)
lz|<n n<|z|<2n

and the de la Vallée-Poussin mean for F' of order n < p/4 as F'* V/,.
We need in the lemma.



Lemma 6 Forn < p/4 the following inequality holds

S V()] < 3p.

YEZp
The proof is contained in the proof of Theorem 7.28 of chapter 10 in [11].

Using Lemma 6 and (6) we obtain the following lemma.

Lemma 7 Forn < p/4 the following inequality holds

Z chep(xv)jL Z %cxel@(my) §BZ Z ceep(zy)] .

YEZy ||z|<n n<|z|<2n YELy ||z|<p/2

Combining Lemmas 7, 5, and 4 we get the following.

Lemma 8 Let B C Z,, n < p/6, 0 < n < 1/2. Assume that |B N
[—2n,2n]| > 2 and

|B N [=n,n]| = (1 =n)|BN[-2n,2n]|.
Then )
[X5|l1 > min (logﬁ,log |B N [—2n, 2n]|) :

3 Balog— Szemerédi— Gowers theorem, Freiman’s
theorem, and structure of sets with small
Wiener norm

Given an arbitrary set ) C Z, and k € N, denote the quantity Tx(Q) as the
number of solutions to the equation

T+t rp =2+ + 1,

with z1, ..., x5, 2], ..., 2}, € Q. Note that for T9(Q) is commonly called the
additive energy of @ (see, e.g. [10]). We have

Te(Q) =p™ ) [Re()*

The following lemma is a particular case of Lemma 4 from [4].
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Lemma 9 Let Q C AC Z,, ||xalla < K, k€ N. Then

Tk(Q) > ﬂ
= | A[K 22
In particular,
Ty(a) > A4 @
S xally

For subsets A, B of an ambient additive abelian group their sum and
difference are defined in a natural way:

A+B={axb:acAbe B}.

The following result is the current version of the Balog— Szemerédi— Gowers
theorem [9] (see also [1]).

Lemma 10 If G is an additive abelian group, A is a nonempty finite subset
of G, To(A) > |A]}/L, then there exists A’ C A such that |A’| > |A|/L and

A" — A'| < LA (8)
Next, it is known that
A4+ A < |4 - AT
(see Corollary 6.29 from [10]). Hence, (8) implies the inequality
|A"+ A < LB A 9)

Another important ingredient from Additive Combinatorics is Freiman’s
theorem. Define a generalized arithmetic progression (GAP) as a subset of
Z,, of the form

1=1

d
P:P([L’O;X;W):{ZIZQ—I—Z'Ui[EiZ O§U1<wz(7z:1,,d)}

where x = (21,...,24) € Z%, w = (wy,...,wq) € N*. We will assume that
all x; are not equal to zero. The dimension of P is d and the size of P is
Hle w;. The following result is the current version of the Freiman’s theorem

7).



Lemma 11 If B is a nonempty subset of Z,, |B+ B| < M|B|, M > 2, then
there is a GAP P of dimension at most log®°Y M and size at most | B| such
that

IBAP| > |B|exp (— log®+o( M) .

Applying subsequently (7), Lemma 8 with (9), and Lemma 11 we get

Lemma 12 For any e > 0 and K > K(¢) if A is a nonempty subset of Z,
with || xalla < K and
d. = d.(K) = log"™* K (10)

then there exists a GAP P of dimension at most d. and size at most |A| such
that
|ANP| > |Ale™.

Our immediate purpose is to put some multiplicative translate of a set
with small Wiener norm into a small segment of Z,. To do it, recall Blicht-
feld’s lemma ([10], Lemma 3.27).

Lemma 13 Let I’ C R? be a lattice of full rank, and let V be an open set in
R? such that mes(V) > mes(R?/T"). Then there exist distinct x,y € V such
thatx —y €T,

Let P = P(zo;x;w) be the GAP from Lemma 12, let

(14]/p)"/

wy

)

fori=1,...,d, 0 > 0 be a small number,

d
Vs = H(—& o; +6) C R

i=1
We observe that

d 4] 1
mes(Vs) > Ha,- = ?Hwi—l >
i=1

1
i=1 P
Let I' be the lattice <
r=z%+=7.
p



Then I' is a union of p translates of Z?. Consequently, mes(R?/T") = 1/p.
Now we can apply Lemma 13 and conclude that there exist distinct x,y € V;
such that x —y € I'. Tending d to 0 we see that there are distinct points

d
z,y € ‘/E] = H[Oval]

i=1

with x —y € I'. Equivalently, putting

Z,, =y \ {0}

and denoting by |z|, z € Z, the minimal absolute value of a representative
of z in Z, we see that there exists ¢ € Z;, ¢ < p such that fori =1,...,d
the following holds |qz;| < pay.

For any x € P we have

d
q Z Vil
i=1

So, we get the following structural property of sets with small Wiener norm.

lq(z — x0)| =

d d
<Y wilgui| < wia; = dp(|Al/p)"*.
=1 1=1

Lemma 14 For any e > 0 and K > K(¢) if A is a nonempty subset of Z,
with ||xalla < K, d. is defined by (10),

KON

then there exist xo € Z, and q € Zy, such that for the set
B =q(A—xo) ={q(z —x0) : v € A}

we have
|B N [—m,m]| > |Ale™%.



4 Upper estimates of Tj(Q) for scattered @)

Let us formulate the main result of the section.

Lemma 15 Let I,k,m,M be positive integers. Let also Q = UZ-I:1 Q; CZ

be a set such that Q; C [—4'm, —%m) U (5m,4'm], i runs over a subset of

N of cardinality I, and |Q;| = M. Then
T,(Q) < 28FEFIF M1 (11)

Proof of Lemma 15. First of all, put Q@ = QN {z : = > 0} and
Q™ =Q\ Q". Using Holder inequality, one can easily obtain

Ti(Q) < 4" max{T(Q"), Tx(Q")}

and, thus, we need in an appropriate upper bound for Ty (Q"), Tr(Q7).
Without loosing of generality, we bound just Tj(Q7), and, moreover, we
write (Q instead of Q7.

Further, put Ny(z) = {1+ +q =z : ¢; € Q}|. Clearly, > NZ(z) =
T(Q) and

> Ni(x) = |QIF = I"M*.

In view of the last identity it is sufficient to prove the following uniform
estimate for Ni(x).

Lemma 16 For any x, we have
Ni(z) < 20EF A1

Proof of the lemma. Take a vector §= (s1,...,8p), $1 + -+ s, = k, and
put

Ni(z) = {qi+ - +q. = = : sy elements from A;,, ..., Is, elements from A, }|,

where i1 < iy < --- < 4. Then
- k!
Ni() = 30 Ni(o) - . (12

s1!. .. 8!
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Thus, we need to estimate N;(z) for any 3. Because of

Ni@) < Y Y bolat e a—1) S AE). . Ay (HMF (13)

Q€A WA, _,

where A;(5) is the number of choices for indices of sets A;,, and dy(2) is the
function such that do(z) = 1 iff 2 = 0. We need to estimate the quantities
A(5). Suppose that the sets A;,,..., A;,_, are fixed and let us find an upper
bound for the number of sets A;,. Let z be the least integer number such

that
4l+z

-1
D si¥ <5 > (14)
j=1

Then the number of the sets A;, is bounded by z+1. Indeed, without loosing
of generality, we can suppose that i; = j, j € [ —1] and 4 =1+ 2, 2/ > 2.
Then the set A;, is defined uniquely because otherwise we have a solution of
the equation

M1+...+Ml_1—|—ﬂl::(,’:LL/1+"'+M2_1+N;7 (15>

where pj, 1 € s;Ai;, j € [l — 1], and, similarly, u € s;A11., 1y € 5144,
iy <1+ 2. If (15) takes place then

4l+z 4l+z’
<
g =%y

-1
s <pp—m St e < s
j=1

with a contradiction. It follows that

-1
3! 97—!
A(5) < log(QZ s;477") +1 <log(2 Krrjlgl}il{sﬂ b +1.

J=1

Let my < mg < --- < my be the local maximums of the sequence max1§j§1_1{3j2j‘l},
[l € [b—1]. Let also d; be the number of appearing of the maximum
m;. Then Z;Zl d; = k. Further, by the construction of the sequence
max;<;<;—1{s;27 7'}, | € [b— 1] one can see that d; < log2s;, j € [t]. Return-
ing to (12), and having (13), we get

|

k!
Ni(z) < MM Z STl (1og 28, + 1)% ... (log 2s,,, + 1)% <

—

11



t log 2sm, .
log 2s,,. + 1)l°82sm
< MF1eFk) § ||(Ogsﬂ+) Jg

S !
Sy sees Smy J=1 i

SS

t
< MFLe2kg (Z (log 2s + 1)10g25> < 9Bk k k-1

S

as required. Thus, we have proved our lemma and, hence, Lemma 15. O

Remark 17 If one allows an additional multiplies of the form (logk)* in
bound (11) then the result follows immediately. Indeed, we can split our set
A onto sets By,...,B,, r ~ logk such that each B; contains A; with | = j
(mod 7). Thus we lose exactly (log k)* multiple but any set A;, in each Bj
is defined uniquely, all A;(5) = 1 (see formulas (13), (14)), and, hence,
Ti(B;) < CHEFM*=1 B ¥, where C > 0 is an absolute constant.

5 Proof of Theorem 3

We fix an arbitrary ¢ > 0 and assume that
Ixalla <K, K. <K < (log(p/|A])"*(loglog(p/|A]))~"~*. (16)

Our aim is to prove that (16) cannot hold provided that p/|A| exceeds some
quantity depending on €. Since € > 0 is arbitrary, the theorem will follow.
We take xg,q, m, and B accordingly with Lemma 14. Since

~

Xs(7) = ep(—qroy)Xaly),
we conclude that ||xg|[a = [[xalla. Thus,
Ix5la < K. (17)
Let [y be the maximal positive integer [ with 2'm < p/3,
Dy={beB: b <2'm}, 0<1<ly,

n = exp(—CK)
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for a large constant C, and
M = [n|Ale~*].

If for some [ > 1 we have |D; \ D,_1| < M then applying Lemma 8 to
n = 2='m and taking into account the inequality |D;| > |Dy| and the lower
bound for |Dy| from Lemma 14 we find

) ) 1
5] > min (1og5,1ogwo\) |
Since
1
log | Do| > log |A| — d. > (log p/ loglog p)'/* > K (loglog p)*/* > log -,
7

we see that )
X5l > logﬁ,

and we get contradiction with (17) provided that C'is large enough.
Thus, it is enough to consider the case where |D; \ D;_1| > M for all
Il =1,...,ly. For each [ with [ = 0 (mod 2) we take S; C D, \ D, with

|S;| = M. Define
Q=||s.
I

Now we are in position to use Lemma 15 with & = [K] and the sets @); that
are the sets S; in another numeration (I = [ly/2]). Let us compare the upper
estimate (11) for T4 (Q) with the lower estimate from Lemma 9 taking into
account that |Q| = IM. After simple calculations we obtain

@

_Ik—l < K3k—228k
Al T

implying (because of |Q|/|A| < exp(log*™® K))
I < K°. (18)
We have
[ >1y/2 = 1> log(p/m) > d_*log(p/|Al) — logd, .
Recalling (16) and (10) we see that
1] > d " log(p/|Al) > log(p/|Al) (loglog(p/|A[)) 7.
So, (18) does not agree with (16) as required. O
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