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ON WIENER NORM OF SUBSETS OF Zp OF MEDIUM SIZE

S. V. KONYAGIN 1 , I. D. SHKREDOV2

Abstract.

We give a lower bound for Wiener norm of characteristic function of subsets

A from Zp, p is a prime number, in the situation when exp
(

(log p/ log log p)1/3
)

≤

|A| ≤ p/3.

1 Introduction

We consider the abelian group G = Zp = Z/pZ, where p is a prime number.
Denote the Fourier transform of a complex function onG to be a new function

f̂(γ) =
1

p

∑

x∈G

f(x)ep(xγ) ,

where ep(u) = exp(2πiu/p) (we note that ep is correctly defined for u ∈ Zp).

It is known that the function f can be reconstructed from f̂ by the inverse
Fourier transform

f(x) =
∑

γ∈Zp

f̂(γ)ep(−xγ). (1)

We define the Wiener norm of a function f as

‖f‖A(G) = ‖f‖A = ‖f̂‖1 =
∑

γ∈Zp

|f̂(γ)| .

By χS, S ⊂ G denote the characteristic function of some set S.
In this note we discuss the problem of estimation from below the Wiener

norm of χA for A ⊂ Zp in terms of p and |A|.

1The first author is supported by grant RFBR 14-01-00332 and grant Leading Scientific
Schools N 3082.2014.1

2The second author is supported by grant mol a ved 12–01–33080.
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If x ∈ A, then, by (1), we have

1 =

∣

∣

∣

∣

∣

∣

∑

γ∈Zp

f̂(γ)ep(−xγ)

∣

∣

∣

∣

∣

∣

≥
∑

γ∈Zp

|f̂(γ)| .

Thus, we get a trivial estimate for Wiener norm of any nonempty A ⊂ Zp

‖χA‖A ≥ 1. (2)

Next we observe that because of

‖χZp\A‖A = ‖χA‖A + (1− 2|A|/p)

it is sufficient to consider the case |A| < p/2. It is easy to see that if A ⊂ Zp

is an arithmetic progression with

2 ≤ |A| < p/2 (3)

then
‖χA‖A ≍ log |A|.

It is commonly believed that for any A satisfying (3) there is the same lower
bound

‖χA‖A ≫ log |A|. (4)

The first nontrivial lower bound for ‖χA‖A, |A| < p/2, in some range was
established in[2]:

‖χA‖A ≫
|A|

p

(

log p

log log p

)1/3

.

This estimate was improved by T. Sanders [7] for |A| < p/2, |A| ≫ p. As
was shown in [4], the results of [7] imply the following.

Theorem 1 Let p be a prime number, A ⊂ Zp, 0 < η = |A|/p < 1/2. If
η ≥ (log p)−1/4(log log p)1/2 then

‖χA‖A ≫ (log p)1/2(log log p)−1η3/2
(

1 + log
(

η2(log p)1/2(log log p)−1
))−1/2

,

and if η < (log p)−1/4(log log p)1/2 then

‖χA‖A ≫ η1/2(log p)1/4(log log p)−1/2.
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Our interest to study Wiener norm of large subsets of Zp was inspired by
the paper of V.V. Lebedev [5] on quantitative variants of Beurling–Helson
theorem.

Theorem 1 is nontrivial if our subset A is large, that is

|A|p−1(log p)1/2(log log p)−1 → ∞

(and of course |A| < p/2). For small A we proved in [4] a sharp estimate.

Theorem 2 Let p be a prime number, A ⊂ Zp, and

2 ≤ |A| ≤ exp
(

(log p/ log log p)1/3
)

.

Then
‖χA‖A ≫ log |A|.

In this note we study the subsets A ⊂ Zp of medium size. Our main
result is the following assertion.

Theorem 3 Let p be a prime number, A ⊂ Zp,

exp
(

(log p/ log log p)1/3
)

≤ |A| ≤ p/3.

Then
‖χA‖A ≫ (log(p/|A|))1/3(log log(p/|A|))−1+o(1).

We observe that using arguments of Theorem 2 one can get analogious
estimates for sets A slightly exceeding the bound indicated in the statement.
However, the improvement is marginal. Moreover, it seems that by that way
one cannot get a nontrivial estimate for rather large subsets, namely, such
that log |A| ≫ log p.

2 Comparison with the continuous case

We denote e(u) = exp(2πiu). For sets B ⊂ Z a continuous analog of (4)
is a well–known fact. Namely, it was proved in [3] and [6] that if B ⊂ Z,
2 ≤ |B| < ∞ then

∫ 1

0

∣

∣

∣

∣

∣

∑

b∈B

e(bu)

∣

∣

∣

∣

∣

du ≫ log |B|.
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Moreover, in [6] the following stronger result was proved: if b1 < · · · < bl are
real numbers and cj are arbitrary complex numbers then

∫ 1

0

∣

∣

∣

∣

∣

l
∑

j=1

cje(bju)

∣

∣

∣

∣

∣

du ≫

l
∑

j=1

|cj|

j
. (5)

This inequality implies the following lemma.

Lemma 4 Let n ∈ N, B ⊂ [−2n, 2n] ⊂ Z, |B| ≥ 2, 0 < η < 1/2, |B ∩
[−n, n]| ≥ (1 − η)|B|, c(b) (b ∈ B) are complex numbers with c(b) = 1 for
b ∈ B ∩ [−n, n]. Then

∫ 1

0

∣

∣

∣

∣

∣

∑

b∈B

c(b)e(bu)

∣

∣

∣

∣

∣

du ≫ min

(

log
1

η
, log |B|

)

.

Proof Let B = {b1 < · · · < bl} where l = |B|, and let B∩[−n, n] = {bl1 <
· · · < bl2}. The polynomial

∑l
b∈B c(b)e(bu) can be rewritten as

∑l
j=1 cje(bju)

where cj = 1 for l1 ≤ j ≤ l2. We denote

S =

∫ 1

0

∣

∣

∣

∣

∣

∑

b∈B

c(b)e(bu)

∣

∣

∣

∣

∣

du.

By (5),

S ≫

l2
∑

j=l1

1

j
≫ log((l2 + 1)/l1).

We have l2 − l1 + 1 ≥ (1 − η)l. If η < 1/l, then l1 = 1, l2 = l, S ≫
log((l2 + 1)/l1) = log l as required. If η ≥ 1/l, then we have

l1 ≤ ηl + 1 < 2ηl.

Hence,

log((l2 + 1)/l1) ≥ log((l1 + (1− η)l)/l1) ≥ log((1 + η)/2η) ≫ log(1/η),

and we again get the assertion of the lemma. ✷

The discrete and continuous L1–norms of trigonometric polynomials can
be compared by the following lemma.
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Lemma 5 We have

1

p

∑

γ∈Zp

∣

∣

∣

∣

∣

∣

∑

|x|≤p/3

cxep(xγ)

∣

∣

∣

∣

∣

∣

≫

∫ 1

0

∣

∣

∣

∣

∣

∣

∑

|x|≤p/3

cxe(xu)

∣

∣

∣

∣

∣

∣

du.

See [11], chapter 10, Theorem 7.28.

One can deduce (4) from Lemma 5 provided that A ⊂ [−p/3, p/3] (this
inclusion means that any residue a ∈ A has an integer representative from
[−p/3, p/3]) or if some non–degenerate affine image of A in Zp is contained
in [−p/3, p/3]. This argument was used in the proof of Theorem 2.

Now let us define the de la Vallée-Poussin polynomials and means. For
functions

F (γ) =
∑

x∈Zp

cxep(xγ), G(γ) =
∑

x∈Zp

dxep(xγ)

we define their convolution

F ∗G(γ) =
∑

x∈Zp

cxdxep(xγ).

It is easy to see that

F ∗G(γ) =
1

p

∑

ξ1+ξ2=γ

F (ξ1)G(ξ2).

Therefore,
∑

γ∈Zp

|F ∗G(γ)| ≤
1

p

∑

γ∈Zp

|F (γ)|
∑

γ∈Zp

|G(γ)| . (6)

Study of arbitrary trigonometric polynomials in Zp can be reduced to
polynomials of small degree using de la Vallée-Poussin means. Define the de
la Vallée-Poussin polynomial of order n ≤ p/4 as

Vn(γ) =
∑

|x|≤n

ep(xγ) +
∑

n<|x|≤2n

2n− |x|+ 1

n + 1
ep(xγ)

and the de la Vallée-Poussin mean for F of order n ≤ p/4 as F ∗ Vn.
We need in the lemma.
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Lemma 6 For n ≤ p/4 the following inequality holds
∑

γ∈Zp

|Vn(γ)| ≤ 3p.

The proof is contained in the proof of Theorem 7.28 of chapter 10 in [11].

Using Lemma 6 and (6) we obtain the following lemma.

Lemma 7 For n ≤ p/4 the following inequality holds

∑

γ∈Zp

∣

∣

∣

∣

∣

∣

∑

|x|≤n

cxep(xγ) +
∑

n<|x|≤2n

2n− |x|+ 1

n+ 1
cxep(xγ)

∣

∣

∣

∣

∣

∣

≤ 3
∑

γ∈Zp

∣

∣

∣

∣

∣

∣

∑

|x|≤p/2

cxep(xγ)

∣

∣

∣

∣

∣

∣

.

Combining Lemmas 7, 5, and 4 we get the following.

Lemma 8 Let B ⊂ Zp, n ≤ p/6, 0 < η < 1/2. Assume that |B ∩
[−2n, 2n]| ≥ 2 and

|B ∩ [−n, n]| ≥ (1− η)|B ∩ [−2n, 2n]| .

Then

‖χ̂B‖1 ≫ min

(

log
1

η
, log |B ∩ [−2n, 2n]|

)

.

3 Balog– Szemerédi– Gowers theorem, Freiman’s

theorem, and structure of sets with small

Wiener norm

Given an arbitrary set Q ⊂ Zp and k ∈ N, denote the quantity Tk(Q) as the
number of solutions to the equation

x1 + · · ·+ xk = x′
1 + · · ·+ x′

k

with x1, . . . , xk, x
′
1, . . . , x

′
k ∈ Q. Note that for T2(Q) is commonly called the

additive energy of Q (see, e.g. [10]). We have

Tk(Q) = p2k−1
∑

γ

|χ̂Q(γ)|
2k .

The following lemma is a particular case of Lemma 4 from [4].
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Lemma 9 Let Q ⊂ A ⊂ Zp, ‖χA‖A ≤ K, k ∈ N. Then

Tk(Q) ≥
|Q|2k

|A|K2k−2
.

In particular,

T2(A) ≥
|A|3

‖χA‖2A
. (7)

For subsets A,B of an ambient additive abelian group their sum and
difference are defined in a natural way:

A± B = {a± b : a ∈ A, b ∈ B}.

The following result is the current version of the Balog– Szemerédi– Gowers
theorem [9] (see also [1]).

Lemma 10 If G is an additive abelian group, A is a nonempty finite subset
of G, T2(A) ≥ |A|3/L, then there exists A′ ⊂ A such that |A′| ≫ |A|/L and

|A′ −A′| ≪ L4|A′| . (8)

Next, it is known that

|A′||A′ + A′| ≤ |A′ −A′|2

(see Corollary 6.29 from [10]). Hence, (8) implies the inequality

|A′ + A′| ≪ L8|A′|. (9)

Another important ingredient from Additive Combinatorics is Freiman’s
theorem. Define a generalized arithmetic progression (GAP) as a subset of
Zp of the form

P = P (x0;x;w) =

{

x0 +
d
∑

i=1

vixi : 0 ≤ vi < wi (i = 1, . . . , d)

}

where x = (x1, . . . , xd) ∈ Z
d
p, w = (w1, . . . , wd) ∈ N

d. We will assume that
all xi are not equal to zero. The dimension of P is d and the size of P is
∏d

i=1wi. The following result is the current version of the Freiman’s theorem
[7].
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Lemma 11 If B is a nonempty subset of Zp, |B+B| ≤ M |B|, M ≥ 2, then

there is a GAP P of dimension at most log3+o(1) M and size at most |B| such
that

|B ∩ P | ≥ |B| exp
(

− log3+o(1) M
)

.

Applying subsequently (7), Lemma 8 with (9), and Lemma 11 we get

Lemma 12 For any ε > 0 and K ≥ K(ε) if A is a nonempty subset of Zp

with ‖χA‖A ≤ K and
dε = dε(K) = log3+εK (10)

then there exists a GAP P of dimension at most dε and size at most |A| such
that

|A ∩ P | ≥ |A|e−dε .

Our immediate purpose is to put some multiplicative translate of a set
with small Wiener norm into a small segment of Zp. To do it, recall Blicht-
feld’s lemma ([10], Lemma 3.27).

Lemma 13 Let Γ ⊂ R
d be a lattice of full rank, and let V be an open set in

R
d such that mes(V ) > mes(Rd/Γ). Then there exist distinct x, y ∈ V such

that x− y ∈ Γ.

Let P = P (x0;x;w) be the GAP from Lemma 12, let

αi =
(|A|/p)1/d

wi

for i = 1, . . . , d, δ > 0 be a small number,

Vδ =
d
∏

i=1

(−δ, αi + δ) ⊂ R
d.

We observe that

mes(Vδ) >

d
∏

i=1

αi =
|A|

p

d
∏

i=1

w−1
i ≥

1

p
.

Let Γ be the lattice
Γ = Z

d +
x

p
Z.

8



Then Γ is a union of p translates of Zd. Consequently, mes(Rd/Γ) = 1/p.
Now we can apply Lemma 13 and conclude that there exist distinct x, y ∈ Vδ

such that x− y ∈ Γ. Tending δ to 0 we see that there are distinct points

x, y ∈ V0 =

d
∏

i=1

[0, αi]

with x− y ∈ Γ. Equivalently, putting

Z
∗
p = Zp \ {0}

and denoting by |z|, z ∈ Zp the minimal absolute value of a representative
of z in Z, we see that there exists q ∈ Z

∗
p, q < p such that for i = 1, . . . , d

the following holds |qxi| ≤ pαi.
For any x ∈ P we have

|q(x− x0)| =

∣

∣

∣

∣

∣

q
d
∑

i=1

vixi

∣

∣

∣

∣

∣

<
d
∑

i=1

wi|qxi| ≤
d
∑

i=1

wiαi = dp(|A|/p)1/d.

So, we get the following structural property of sets with small Wiener norm.

Lemma 14 For any ε > 0 and K ≥ K(ε) if A is a nonempty subset of Zp

with ‖χA‖A ≤ K, dε is defined by (10),

m =

[

dεp

(

|A|

p

)1/dε
]

,

then there exist x0 ∈ Zp and q ∈ Z
∗
p such that for the set

B = q(A− x0) = {q(x− x0) : x ∈ A}

we have
|B ∩ [−m,m]| ≥ |A|e−dε.

9



4 Upper estimates of Tk(Q) for scattered Q

Let us formulate the main result of the section.

Lemma 15 Let I, k,m,M be positive integers. Let also Q =
⊔I

i=1Qi ⊆ Z

be a set such that Qi ⊆ [−4im,−4i

2
m) ∪ (4

i

2
m, 4im], i runs over a subset of

N of cardinality I, and |Qi| = M . Then

Tk(Q) ≤ 28kkkIkM2k−1 . (11)

Proof of Lemma 15. First of all, put Q+ = Q ∩ {x : x ≥ 0} and
Q− = Q \Q+. Using Hölder inequality, one can easily obtain

Tk(Q) ≤ 4k max{Tk(Q
+),Tk(Q

−)}

and, thus, we need in an appropriate upper bound for Tk(Q
+),Tk(Q

−).
Without loosing of generality, we bound just Tk(Q

+), and, moreover, we
write Q instead of Q+.

Further, put Nk(x) = |{q1+· · ·+qk = x : qj ∈ Q}| . Clearly,
∑

x N
2
k (x) =

Tk(Q) and
∑

x

Nk(x) = |Q|k = IkMk .

In view of the last identity it is sufficient to prove the following uniform
estimate for Nk(x).

Lemma 16 For any x, we have

Nk(x) ≤ 26kkkMk−1 .

Proof of the lemma. Take a vector ~s = (s1, . . . , sb), s1 + · · ·+ sb = k, and
put

N~s
k(x) = |{q1+· · ·+qk = x : ∃s1 elements from Ai1, . . . , ∃sb elements from Aib}| ,

where i1 < i2 < · · · < il. Then

Nk(x) =
∑

~s

N~s
k(x) ·

k!

s1! . . . sb!
. (12)

10



Thus, we need to estimate N~s
k(x) for any ~s. Because of

N~s
k(x) ≤

∑

q1∈Ai1

· · ·
∑

qb∈Aib−1

δ0(q1+· · ·+qb−x) ≤ ∆1(~s) . . .∆b−1(~s)M
k−1 , (13)

where ∆l(~s) is the number of choices for indices of sets Ail, and δ0(z) is the
function such that δ0(z) = 1 iff z = 0. We need to estimate the quantities
∆l(~s). Suppose that the sets Ai1 , . . . , Ail−1

are fixed and let us find an upper
bound for the number of sets Ail . Let z be the least integer number such
that

l−1
∑

j=1

sj4
j ≤ sl

4l+z

2
. (14)

Then the number of the sets Ail is bounded by z+1. Indeed, without loosing
of generality, we can suppose that ij = j, j ∈ [l − 1] and il = l + z′, z′ > z.
Then the set Ail is defined uniquely because otherwise we have a solution of
the equation

µ1 + · · ·+ µl−1 + µl = x = µ′
1 + · · ·+ µ′

l−1 + µ′
l , (15)

where µj, µ
′
j ∈ sjAij , j ∈ [l − 1], and, similarly, µl ∈ slAl+z′, µ

′
l ∈ slAil ,

il < l + z′. If (15) takes place then

sl
4l+z

2
≤ sl

4l+z′

2
< µ′

l − µl ≤ µ1 + · · ·+ µl−1 ≤

l−1
∑

j=1

sj4
j

with a contradiction. It follows that

∆l(~s) ≤ log(2

l−1
∑

j=1

sj4
j−l) + 1 ≤ log(2 max

1≤j≤l−1
{sj2

j−l}) + 1 .

Letm1 < m2 < · · · < mt be the local maximums of the sequence max1≤j≤l−1{sj2
j−l},

l ∈ [b − 1]. Let also dj be the number of appearing of the maximum
mj . Then

∑t
j=1 dj = k. Further, by the construction of the sequence

max1≤j≤l−1{sj2
j−l}, l ∈ [b− 1] one can see that dj ≤ log 2sj, j ∈ [t]. Return-

ing to (12), and having (13), we get

Nk(x) ≤ Mk−1
∑

~s

k!

s1! . . . sb!
· (log 2sm1

+ 1)d1 . . . (log 2smt
+ 1)dt ≤

11



≤ Mk−1ekk!
∑

sm1
,...,smt

t
∏

j=1

(log 2smj
+ 1)log 2smj

smj
!

≤

≤ Mk−1e2kk!

(

∑

s

(log 2s+ 1)log 2s

ss

)t

≤ 26kkkMk−1

as required. Thus, we have proved our lemma and, hence, Lemma 15. ✷

Remark 17 If one allows an additional multiplies of the form (log k)k in
bound (11) then the result follows immediately. Indeed, we can split our set
A onto sets B1, . . . , Br, r ∼ log k such that each Bj contains Al with l ≡ j
(mod r). Thus we lose exactly (log k)k multiple but any set Ail in each Bj

is defined uniquely, all ∆j(~s) = 1 (see formulas (13), (14)), and, hence,
Tk(Bj) ≤ CkkkMk−1|Bj|

k, where C > 0 is an absolute constant.

5 Proof of Theorem 3

We fix an arbitrary ε > 0 and assume that

‖χA‖A ≤ K, Kε ≤ K ≤ (log(p/|A|))1/3(log log(p/|A|))−1−ε. (16)

Our aim is to prove that (16) cannot hold provided that p/|A| exceeds some
quantity depending on ε. Since ε > 0 is arbitrary, the theorem will follow.

We take x0, q,m, and B accordingly with Lemma 14. Since

χ̂B(γ) = ep(−qx0γ)χ̂A(qγ),

we conclude that ‖χB‖A = ‖χA‖A. Thus,

‖χB‖A ≤ K. (17)

Let l0 be the maximal positive integer l with 2lm < p/3,

Dl = {b ∈ B : |b| ≤ 2lm}, 0 ≤ l ≤ l0,

η = exp(−CK)

12



for a large constant C, and

M =
[

η|A|e−dε
]

.

If for some l ≥ 1 we have |Dl \ Dl−1| < M then applying Lemma 8 to
n = 2l−1m and taking into account the inequality |Dl| ≥ |D0| and the lower
bound for |D0| from Lemma 14 we find

‖χ̂B‖1 ≫ min

(

log
1

η
, log |D0|

)

.

Since

log |D0| ≥ log |A| − dε ≫ (log p/ log log p)1/3 > K(log log p)2/3 > log
1

η
,

we see that

‖χ̂B‖1 ≫ log
1

η
,

and we get contradiction with (17) provided that C is large enough.
Thus, it is enough to consider the case where |Dl \ Dl−1| ≥ M for all

l = 1, . . . , l0. For each l with l ≡ 0 (mod 2) we take Sl ⊂ Dl \ Dl−1 with
|Sl| = M . Define

Q =
⊔

l

Sl.

Now we are in position to use Lemma 15 with k = [K] and the sets Qi that
are the sets Sl in another numeration (I = [l0/2]). Let us compare the upper
estimate (11) for Tk(Q) with the lower estimate from Lemma 9 taking into
account that |Q| = IM . After simple calculations we obtain

|Q|

|A|
Ik−1 ≤ K3k−228k

implying (because of |Q|/|A| ≤ exp(log3+ε K))

I ≪ K3. (18)

We have

I ≥ l0/2− 1 ≫ log(p/m) ≥ d−1
ε log(p/|A|)− log dε .

Recalling (16) and (10) we see that

|I| ≫ d−1
ε log(p/|A|) ≫ log(p/|A|)(log log(p/|A|))−3−ε.

So, (18) does not agree with (16) as required. ✷
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