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Sufficient Criteria for Existence of Pullback Attractors for

Stochastic Lattice Dynamical Systems with Deterministic

Non-autonomous Terms 1
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Abstract: We consider the pullback attractors for non-autonomous dynamical systems
generated by stochastic lattice differential equations with non-autonomous deterministic
terms. We first establish a sufficient condition for existence of pullback attractors of
lattice dynamical systems with both non-autonomous deterministic and random forcing
terms. As an application of the abstract theory, we prove the existence of a unique
pullback attractor for the first-order lattice dynamical systems with both deterministic
non-autonomous forcing terms and multiplicative white noise. Our results recover many
existing ones on the existences of pullback attractors for lattice dynamical systems with
autonomous terms or white noises.

Keywords: Random attractor, stochastic lattice dynamical system, multiplicative white
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1 Introduction

The study of non-autonomous evolution equations has attracted several interests from both

mathematicians and physicists due to the effects of time-dependent linear/non-linear forces from

natural phenomena are represented by non-autonomous terms in the associated models. One

of the important concepts for describing the asymptotic behavior of non-autonomous evolution

equations is the pullback attractor, which generalized the notation of global attractor for non-

autonomous dynamical systems [2, 10, 11]. The pullback attractors are different from the uniform

attractor (see e.g. [7, 8]) in that they employ techniques of non-autonomous equations more

straightly.

Global attractors, uniform attractors and pullback attractors all play important roles in the

fields of asymptotic behavior of autonomous and non-autonomous infinite dynamical systems

[7, 8, 15, 17, 19, 20]. Sometimes, the forwards dynamics may be hard to describe, in this case,

there is not even an attracting trajectory (which would in general be a moving object) that

describes the dynamics. Especially, in the stochastic cases, the pullback process produces a

1This work has been partially supported by NSFC Grants 11071199, NSF of Guangxi Grants
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fixed subset of the phrase space. Pullback attractors attract all bounded set, then become

appropriate alternatives to study the asymptotic behavior of dynamical systems.

Lattice dynamical systems, which are coupled systems with ODEs on infinite lattices, have

drawn much attention from mathematicians and physicists recently, due to the wide range of

applications in various areas (e.g. [9]). For autonomous deterministic lattice dynamical systems,

we can see e.g. [3, 26, 27, 28, 31] for the existence and approximations of attractors. For non-

autonomous deterministic cases, we can see e.g. [25, 30, 32, 33] for the existence and continuity

of kernel section, uniform attractors and pullback exponential attractors. As in the stochastic

cases, stochastic lattice dynamical systems (SLDS) arise naturally while random influences or

uncertainties are taken into account in lattice dynamical systems, these noises may play an

important role as intrinsic phenomena rather than just compensation of defects in deterministic

models. Since Bates et al. [4] initiated the study of SLDS, lots of work have been done regarding

the existence of global random attractors for SLDS with white additive/multiplicative noises in

regular or weight spaces of infinite sequences, see e.g. [5, 6, 16, 29]. For lattice dynamical systems

perturbed by other “rough” noises, we can refer to e.g. [13, 14] for more details. As we can seen

that all the systems above are considered with the autonomous deterministic external forcing

terms (if indeed exist!). There is no results on pullback attractors for general non-autonomous

SLDS (with time-dependent deterministic coefficients and external forcing terms) as far as we

know.

Motivated by [22] and [30], we consider the existence of non-autonomous dynamical systems

generated by lattice differential equations with both non-autonomous deterministic and stochas-

tic forcing terms. By borrowing the main framework of [22] on two parametric space, we first

set up the abstract structure for the continuous cocycle. As a typical example, we investigate

the following stochastic lattice dynamical systems (SLDS) with time-dependent external forcing

terms:
dui(t)

dt
= νi(t)(ui−1 − 2ui + ui+1)− λi(t)ui − fi(ui, t) + gi(t) + ui ◦

dw(t)

dt
, (1.1)

where i ∈ Z, Z denotes the integer set; ui ∈ R, νi(t) and λi(t) are locally integrable in t;

gi ∈ C(R,R) and fi ∈ C(R × R,R) satisfies proper dissipative conditions; w(t) is a Brownian

motion (Wiener process) and ◦ denotes the Stratonovich sense of the stochastic term.

Stochastic systems similar to (1.1) are discrete of the Reaction-Diffusion equation which

used to model the phenomena of stochastic resonance in biology and physics, where f is a

time-dependent input signal and w is a Wiener process used to test the impact of stochastic

fluctuations on f . For this topic, we can see e.g. [12, 21, 23, 24] and the references therein.

The main difference between system (1.1) and the model considered in [4] is the coefficients and
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deterministic external forcing terms are time-dependent. In this case, the existing results of one

parametric space cannot be applied directly. We first need to introduce two parametric space

to describe the dynamics of the SLDS: one is responsible for deterministic forcing and the other

is responsible for stochastic perturbations. Then we applied the skeleton to (1.1).

The outline of the paper is as follows. In the next section, we recall some results regarding

pullback attractor for non-autonomous dynamical systems over two parametric spaces in [22]. In

section 3, we establish the conditions on the existence of pullback attractors for cocycles over two

parametric spaces. In section 4, a sufficient condition for the existence of pullback attractors for

lattice differential equations with both non-autonomous deterministic and random forcing terms

is given. As a example of the result in previous sections, the existence of pullback attractor for

the first-order SLDS with time-dependent deterministic force and multiplicative white noise is

studied in the last section.

2 Preliminaries

For the reader’s convenience, we recall the theory of pullback random dynamical systems over

two parametric spaces in [22].

Let Ω1 be a nonempty set and {θ1,t}t∈R be a family of mappings from Ω1 into itself such that

θ1,0 is the identity on Ω1 and θ1,s+t = θ1,tθ1,s for all t, s ∈ R. Let (Ω2,F2, P ) be a probability

space and θ2 : R×Ω2 → Ω2 be a (B(R)×F2,F2) -measurable mapping such that θ2(0, ·) is the
identity on Ω2, θ2(s + t, ·) = θ2(t, ·)θ2(s, ·) for all t, s ∈ R and Pθ2(t, ·) = P for all t ∈ R. We

usually write θ2(t, ·) as θ2,t and call both (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) a parametric

dynamical system.

Let (X, d) be a complete separable metric space with Borel σ-algebra B(X). Denote by 2X

the collection of all subsets of X. A set-valued mapping K : Ω1 ×Ω2 → 2X is called measurable

with respect to F2 in Ω2 if the value K(ω1, ω2) is a closed nonempty subset of X for all ω1 ∈ Ω1

and ω2 ∈ Ω2, and the mapping ω2 ∈ Ω2 → d(x,K(ω1, ω2)) is (F2, B(R))-measurable for every

fixed x ∈ X and ω1 ∈ Ω1. If K is measurable with respect to F2 in Ω2, then we say that the

family {K(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} is measurable with respect to F2 in Ω2. We now define a

cocycle on X over two parametric spaces.

Definition 2.1. Let (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) be parametric dynamical systems.

A mapping Φ: R
+ ×Ω1 ×Ω2 ×X → X is called a continuous cocycle on X over (Ω1, {θ1,t}t∈R)

and (Ω2,F2, P, {θ2,t}t∈R) if for all ω1 ∈ Ω1, ω2 ∈ Ω2 and t, τ ∈ R
+, the following conditions

(i)-(iv) are satisfied:

(i) Φ(·, ω1, ·, ·) : R+ × Ω2 ×X → X is (B(R+)×F2 × B(X), B(X))-measurable;
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(ii) Φ(0, ω1, ω2, ·) is the identity on X;

(iii) Φ(t+ τ, ω1, ω2, ·) = Φ(t, θ1,τω1, θ2,τω2, ·)Φ(τ, ω1, ω2, ·);

(iv) Φ(t, ω1, ω2, ·) : X → X is continuous.

In the sequel, we use D(X) to denote a collection of some families of nonempty subsets of X:

D(X) = {D = {D(ω1, ω2) ⊆ X : D(ω1, ω2) 6= ∅, ω1 ∈ Ω1, ω2 ∈ Ω2}}.

Definition 2.2. Let D(X) be a collection of some families of nonempty subsets of X and

K = {K(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D(X). Then K is called a D(X)-pullback absorbing set

for Φ if for all ω1 ∈ Ω1, ω2 ∈ Ω2 and for every B ∈ D(X), there exists T = T (B,ω1, ω2) > 0

such that

Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)) ⊆ K(ω1, ω2) for all t ≥ T.

If, in addition, for all ω1 ∈ Ω1 and ω2 ∈ Ω2, K(ω1, ω2) is a closed nonempty subset of X and K

is measurable with respect to the P -completion of F2 in Ω2, then we say K is a closed measurable

D(X)-pullback absorbing set for Φ.

Definition 2.3. Let D(X) be a collection of some families of nonempty subsets of X. Then Φ

is said to be D(X)-pullback asymptotically compact in X if for all ω1 ∈ Ω1 and ω2 ∈ Ω2, the

sequence

{Φ(tn, θ1,−tnω1, θ2,−tnω2, xn)}∞n=1 has a convergent subsequence in X

whenever tn → ∞, and xn ∈ B(θ1,−tnω1, θ2,−tnω2) with {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D(X).

Definition 2.4. Let D(X) be a collection of some families of nonempty subsets of X and

A = {A(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D(X). Then A is called a D(X)-pullback attractor for Φ

if the following conditions (i)-(iii) are fulfilled:

(i) A is measurable with respect to the P -completion of F2 in Ω2 and A(ω1, ω2) is compact

for all ω1 ∈ Ω1 and ω2 ∈ Ω2.

(ii) A is invariant, that is, for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

Φ(t, ω1, ω2,A(ω1, ω2)) = A(θ1,tω1, θ2,tω2), ∀ t ≥ 0.

(iii) A attracts every member of D(X), that is, for every B = {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈
D(X) and for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

lim
t→∞

d(Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)),A(ω1, ω2)) = 0.
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The following result on the existence and uniqueness of D(X)-pullback attractors for Φ can

be found in [22].

Proposition 2.5. Let Φ be a continuous cocycle on X over (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R).
Suppose that K = {K(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D(X) is a closed measurable (w.r.t. the

P -completion of F2) D(X)-pullback absorbing set for Φ in D(X) and Φ is D(X)-pullback asymp-

totically compact in X. Then Φ has a unique D(X)-pullback attractor A = {A(ω1, ω2) : ω1 ∈
Ω1, ω2 ∈ Ω2} ∈ D(X) which is given by

A(ω1, ω2) =
⋂

τ≥0

⋃

t≥τ

Φ(t, θ1,−tω1, θ2,−tω2,K(θ1,−tω1, θ2,−tω2)).

To describe the size of subsets in a Banach space X, we introduce the concept of Kolmogorov’s

ε-entropy. Let Y be a subset of X. Given ε > 0, we define

nε(Y ) := min{n ≥ 1 : Y ⊂
n
⋃

i=1

N (xi, ε) for some x1, . . . , xn ∈ X},

where N (xi, ε) = {y ∈ X : ‖y − xi‖X < ε}. The Kolmogorov ε-entropy of the subset Y of X is

the number

Kε(Y ) := lnnε(Y ) ∈ [0,+∞]. (2.1)

3 Pullback attractors for cocycles in ℓ
2

In this section, we provide some sufficient conditions for the existence of pullback attractors for

cocycles in ℓ2.

Let D be a bounded nonempty subset of ℓ2, denote by ‖D‖ = supu∈D ‖u‖. Suppose D =

{D(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} is a family of bounded nonempty subsets of ℓ2 satisfying, for

every γ > 0,

lim
s→+∞

e−γs‖D(θ1,−sω1, θ2,−sω2)‖2 = 0. (3.1)

Denote by D(ℓ2) the collection of all family of bounded nonempty subsets of ℓ2,

D(ℓ2) = {D = {D(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} : D satisfies (3.1)}.

Definition 3.1. A mapping Φ: R
+ × Ω1 × Ω2 × ℓ2 → ℓ2 is said to be asymptotically null

in D(ℓ2) if for a.e. ω1 ∈ Ω1, ω2 ∈ Ω2, any B(ω1, ω2) ∈ D(ℓ2), and any ε > 0, there exist

T (ε, ω1, ω2, B(ω1, ω2)) > 0 and I(ε, ω1, ω2, B(ω1, ω2)) ∈ N such that

∑

|i|>I(ε,ω1,ω2,B(ω1,ω2))

|(Φ(t, θ1,−tω1, θ2,−tω2, u(θ1,−tω1, θ2,−tω2)))i|2 ≤ ε2,

for all t ≥ T (ε, ω1, ω2, B(ω1, ω2)) and u(ω1, ω2) ∈ B(ω1, ω2).
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Theorem 3.2. Suppose that

(a) there exists a closed measurable (w.r.t. the P -completion of F2) D(ℓ2)-pullback absorbing

set K in D(ℓ2) such that for a.e. ω1 ∈ Ω1, ω2 ∈ Ω2, any B(ω1, ω2) ∈ D(ℓ2), there exists

TB(ω1, ω2) > 0 yielding

Φ(t, θ1,−tω1, θ2,−tω2)B(θ1,−tω1, θ2,−tω2) ⊂ K for all t ≥ TB(ω1, ω2);

(b) Φ: R+×Ω1×Ω2×ℓ2 → ℓ2 is asymptotically null on K, i.e., for a.e. ω1 ∈ Ω1, ω2 ∈ Ω2, any

B(ω1, ω2) ∈ D(ℓ2), and any ε > 0, there exist T (ε, ω1, ω2,K) > 0 and I0(ε, ω1, ω2,K) ∈ N

such that

sup
u∈K

∑

|i|>I0(ε,ω1,ω2,K)

|(Φ(t, θ1,−tω1, θ2,−tω2, u(θ1,−tω1, θ2,−tω2)))i|2 ≤ ε2,

∀t ≥ T (ε, ω1, ω2, B(ω1, ω2)).

Then

(i) Φ possesses a unique D(ℓ2)-pullback attractor is given by, for each ω1 ∈ Ω1 and ω2 ∈ Ω2,

A(ω1, ω2) =
⋂

τ≥TK(ω1,ω2)

⋃

t≥τ

Φ(t, θ1,−tω1, θ2,−tω2,K(θ1,−tω1, θ2,−tω2));

(ii) the Kolmogorov ǫ-entropy of A(ω1, ω2) satisfies

Kε ≤ (2I0(ε, ω1, ω2,K) + 1) ln(⌊2r0(ω1, ω2)
√

2I0(ε, ω1, ω2,K) + 1

ε
⌋+ 1),

where r0(ω1, ω2) = supu(ω1,ω2)∈K ‖u(ω1, ω2)‖.

Proof. The proof is based on Theorem 3.1 in [16] and Proposition 2.5 under slightly modifica-

tions.

(i) For a.e. ω1 ∈ Ω1, ω2 ∈ Ω2 and tn → ∞ as n → ∞, let pn(ω1, ω2) ∈ K(θ1,−tnω1, θ2,−tnω2) ∈
D(ℓ2) (n = 1, 2, · · · ) and

u(n)(ω1, ω2) = Φ(tn, θ1,−tnω1, θ2,−tnω2),

where u
(n)
i (ω1, ω2) = (Φ(tn, θ1,−tnω1, θ2,−tnω2))i, i ∈ Z. By (a), there exists N1(ω1, ω2,K) ∈ N

such that tn ≥ TK(ω1, ω2) if n ≥ N1(ω1, ω2,K). Hence

u(n)(ω1, ω2) = Φ(tn, θ1,−tnω1, θ2,−tnω2)pn(ω1, ω2) ∈ K, ∀n ≥ N1(ω1, ω2,K).

Now let us prove that the set

Λ = {u(n)(ω1, ω2) = Φ(tn, θ1,−tnω1, θ2,−tnω2)pn(ω1, ω2)}n≥N1(ω1,ω2,K)
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is pre-compact, that is, for any given ε > 0, Λ has a finite covering of balls of radius ε. By

condition (b), there exists T1(ε, ω1, ω2,K) > 0 and I0(ε, ω1, ω2,K) ∈ N such that for n ≥
N2(ε, ω1, ω2,K), we have that tn ≥ T1(ε, ω1, ω2,K) and

sup
n≥N1(ω1,ω2,K)

(
∑

|i|>I0(ε,ω1,ω2,K)

|Φ(tn, θ1,−tnω1, θ2,−tnω2)pn(ω1, ω2))i|2)
1

2 ≤ ε

2
.

Let N3(ε, ω1, ω2,K) = max{N1(ω1, ω2,K), N2(ε, ω1, ω2,K)}. Thus for any n ≥ N3(ε, ω1, ω2,K),

u(n)(ω1, ω2) = (u
(n)
i (ω1, ω2))i∈Z can be decomposed into

u(n)(ω1, ω2) = (u
(n)
i (ω1, ω2))i∈Z

= (v
(n)
i (ω1, ω2))i∈Z + (o

(n)
i (ω1, ω2))i∈Z

= v(n)(ω1, ω2) + o(n)(ω1, ω2), (3.2)

where

v
(n)
i (ω1, ω2) =

{

u
(n)
i (ω1, ω2), |i| ≤ I0(ε, ω1, ω2,K),

0, |i| > I0(ε, ω1, ω2,K),

and

o
(n)
i (ω1, ω2) =

{

0, |i| ≤ I0(ε, ω1, ω2,K),

u
(n)
i (ω1, ω2), |i| > I0(ε, ω1, ω2,K).

Then for n ≥ N3(ε, ω1, ω2,K), we obtain

‖v(n)(ω1, ω2)‖2 =
∑

|i|≤I0(ε,ω1,ω2,K)

|u(n)i (ω1, ω2)|2

≤ ‖u(n)(ω1, ω2)‖2 ≤ r20(ω1, ω2),

‖o(n)(ω1, ω2)‖2 =
∑

|i|>I0(ε,ω1,ω2,K)

|u(n)i (ω1, ω2)|2 ≤ ε2

4
,

and

|v(n)i (ω1, ω2)| ≤ r0(ω1, ω2),

for all |i| ≤ I0(ε, ω1, ω2,K), where r0(ω1, ω2) defined in (ii). Now let

Γ(ω1, ω2) = {v = (vi)|i|≤I0(ε,ω1,ω2,K) ∈ R
2I0(ε,ω1,ω2,K)+1 :

vi ∈ R, |vi| ≤ r0(ω1, ω2)},

and

nε,ω1,ω2
(Γ(ω1, ω2))

= (⌊2r0(ω1, ω2)
√

2I0(ε, ω1, ω2,K) + 1

ε
⌋+ 1)2I0(ε,ω1,ω2,K)+1.
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Then Γ(ω1, ω2) ⊂ R
2I0(ε,ω1,ω2,K)+1 is a (2I0(ε, ω1, ω2,K) + 1)-dimensional regular polyhedron

which is covered by nε,ω1,ω2
(Γ(ω1, ω2)) open balls of radius ε

2 centered at u∗m = (u∗m,i)|i|≤I0(ε,ω1,ω2,K),

u∗m,i ∈ R, 1 ≤ m ≤ nε,ω1,ω2
(Γ(ω1, ω2)), in the norm of R2I0(ε,ω1,ω2,K)+1.

For each 1 ≤ m ≤ nε,ω1,ω2
(Γ(ω1, ω2)), we set vi = (vm,i)i∈Z ∈ ℓ2 such that

vm,i =

{

u∗m,i, |i| ≤ I0(ε, ω1, ω2,K),

0, |i| > I0(ε, ω1, ω2,K).

Then for v(n)(ω1, ω2) = (v
(n)
i (ω1, ω2))i∈Z (n ≥ N3(ε, ω1, ω2,K)) in the decomposition (3.2), there

exists m0 ∈ {1, 2, · · · , nε,ω1,ω2
(Γ(ω1, ω2))} such that

‖v(n)(ω1, ω2)− vm0
‖2 =

∑

|i|≤I0(ε,ω1,ω2,K)

|u(n)i (ω1, ω2)− um0,i|2 ≤
ε2

4
,

and hence, we get

‖u(n)(ω1, ω2)− vm0
‖2 = ‖v(n)(ω1, ω2)− vm0

+ o(n)(ω1, ω2)‖2

≤ 2‖v(n)(ω1, ω2)− vm0
‖2 + 2‖o(n)(ω1, ω2)‖2 ≤ ε2.

Therefore, {u(n)i (ω1, ω2) = Φ(tn, θ1,−tnω1, θ2,−tnω2)n≥N3(ε,ω1,ω2,K)} ⊂ ℓ2 can be covered by

nε,ω1,ω2
(Γ(ω1, ω2)) open balls of radius ε centered at vm = (vm,i)i∈Z, 1 ≤ m ≤ nε,ω1,ω2

(Γ(ω1, ω2)).

(ii) By the invariant property of D(X)-pullback attractors, we have

A(ω1, ω2) = Φ(t, θ1,−tω1, θ2,−tω2)A(θ1,−tω1, θ2,−tω2) ⊂ K

for t ≥ T (ω1, ω2,K) and a.e. ω1 ∈ Ω1, ω2 ∈ Ω2. For any ε > 0, we can see that A(ω1, ω2) can be

covered under the norm of ℓ2, by nε,ω1,ω2
(Γ(ω1, ω2))-balls in ℓ2 with center vm = (vm,i)i∈Z, 1 ≤

m ≤ nε,ω1,ω2
(Γ(ω1, ω2)) and radius ε. Thus, by the definition of (2.1), the proof is completed.

4 Pullback attractors for lattice differential equations in ℓ
2

In this section, we discuss the proper choice of parametric spaces Ω1 and Ω2 to consider pullback

attractors for lattice differential equations with both non-autonomous deterministic and random

forcing terms by using the abstract theory presented in the previous section.

Suppose now Ω1 = R. Define a family {θ1,t}t∈R of shift operators by

θ1,t(τ) = τ + t, ∀t, τ ∈ R. (4.1)

Let Φ: R+×R×Ω2×ℓ2 → ℓ2 be a continuous cocycle on ℓ2 over (R, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R)
where {θ1,t}t∈R is defined in (4.1). Due to Theorem 3.2, we obtain the following result:
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Theorem 4.1. Suppose that

(a) there exists a closed measurable (w.r.t. the P -completion of F2) D(ℓ2)-pullback absorbing

set K in D(ℓ2) such that for a.e. τ ∈ R, ω ∈ Ω2, any B(τ, ω) ∈ D(ℓ2), there exists

TB(τ, ω) > 0 yielding Φ(t, τ − t, θ2,−tω)B(τ − t, θ2,−tω) ⊂ K for all t ≥ TB(τ, ω);

(b) Φ: R
+ × R × Ω2 × ℓ2 → ℓ2 is asymptotically null on K, i.e., for a.e. τ ∈ R, ω ∈ Ω2, any

B(τ, ω) ∈ D(ℓ2), and any ε > 0, there exist T (ε, τ, ω,K) > 0 and I0(ε, τ, ω,K) ∈ N such

that

sup
u∈K

∑

|i|>I0(ε,τ,ω,K)

|(Φ(t, τ − t, θ2,−tω, u(τ − t, θ2,−tω)))i|2 ≤ ε2,

∀t ≥ T (ε, τ, ω,B(τ, ω)). (4.2)

Then

(i) Φ possesses a unique D(ℓ2)-pullback attractor is given by, for each τ ∈ R and ω ∈ Ω2,

A(τ, ω) =
⋂

s≥TK(τ,ω)

⋃

t≥s

Φ(t, τ − t, θ2,−tω,K(τ − t, θ2,−tω)); (4.3)

(ii) the Kolmogorov ε-entropy of A(τ, ω) satisyies

Kε ≤ (2I0(ε, τ, ω,K) + 1) ln(⌊2r0(τ, ω)
√

2I0(ε, τ, ω,K) + 1

ε
⌋+ 1),

where r0(τ, ω) = supu(τ,ω)∈K ‖u(τ, ω)‖, ∀τ ∈ R, ω ∈ Ω2.

5 Pullback attractors for SLDS in ℓ
2

In this section, we will apply Theorem 4.1 to prove the existence of a pullback attractor for

non-autonomous first order stochastic lattice dynamical system.

5.1 Mathematical Settings

Denote Cb(R, ℓ
2) be the space of all continuous bounded functions from R into ℓ2. Consider the

following non-autonomous first order lattice differential equations with time-dependent external

forcing terms and multiplicative white noise

dui(t)

dt
= νi(t)(ui−1 − 2ui + ui+1)− λi(t)ui − fi(ui, t) + gi(t) + ui ◦

dw(t)

dt
, i ∈ Z, (5.1)

with initial data

ui(τ) = ui,τ , i ∈ Z, τ ∈ R, (5.2)
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where ui ∈ R, Z denotes the integer set; νi(t) and λi(t) are locally integrable in t; gi ∈ C(R,R)

and fi ∈ C(R × R,R) for i ∈ Z; w is an independent Brownian motion. Note that system

(5.1)-(5.2) can be written as for t ≥ τ ∈ R,

du

dt
= −ν(t)Au− λ(t)u− f(u, t) + g(t) + u ◦ dw(t)

dt
, u(τ) = uτ = (ui,τ )i∈Z, (5.3)

where u = (ui)i∈Z, f(u, t) = (fi(ui, t))i∈Z, g(t) = (gi(t))i∈Z, Au = (−ui−1 + 2ui − ui+1)i∈Z and

w(t) is the white noise with values in ℓ2 defined on the probability space (Ω,F , P ) and

Ω = {ω ∈ C(R, ℓ2) : ω(0) = 0},

the Borel sigma-algebra F is generated by the compact open topology, and P is the corresponding

Wiener measure on F . Define a group {θ2,t}t∈R acting on (Ω,F , P ) by

θ2,tω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R. (5.4)

Then (Ω,F , P, {θ2,t}t∈R) is a parametric dynamical system. We make the following assumptions:

(A1) λi(t), νi(t) ∈ L1
loc(R) in t and there exist positive constants λ0, λ0 and ν0, ν0 such that for

∀i ∈ Z, t ∈ R,

0 < λ0 ≤ λi(t) ≤ λ0 < +∞,

0 < ν0 ≤ νi(t) ≤ ν0 < +∞;

(A2) fi(x, t) is differentiable in x and continuous in t; fi(0, t) = 0; xfi(x, t) ≥ −α2
i (t), where

α(t) = (αi(t))i∈Z ∈ Cb(R, ℓ
2), and there exists a constant β ≥ 0 such that ∂xfi(x, t) ≥ −β,

∀x, t ∈ R, i ∈ Z;

(A3) There exists a positive-valued continuous function ζ(ι, t) ∈ C(R+ × R,R+) such that

sup
i∈Z

max
x∈[−ι,ι]

|∂xfi(x, t)| ≤ ζ(ι, t), ∀ι ∈ R
+, t ∈ R;

(A4) g(t) = (gi(t))i∈Z ∈ Cb(R, ℓ
2).

Now, let {θ1,t}t∈R be the group acting on R given by (4.1). We next define a continuous

cocycle for system (5.3) over (R, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R). This can be done by

first transferring the stochastic system into a corresponding non-autonomous deterministic one.

Given ω ∈ Ω, denote by

z(ω) = −
∫ 0

−∞
erω(r)dr. (5.5)
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Then the random variable z given in (5.5) is a stationary solution of the one-dimensional

Ornstein-Uhlenbeck equation

dz + zdt = dw(t).

In other words, we get

dz(θ2,tω) + z(θ2,tω)dt = dw(t). (5.6)

By [4, 6], we know that there exists a θ2,t-variant set Ω
′ ⊆ Ω of full P measure such that z(θ2,tω)

is continuous in t for every ω ∈ Ω′, and the random variable |z(ω)| is tempered. In addition, for

every ω ∈ Ω′, we have the following limits:

lim
t→±∞

|ω(t)|
|t| = 0, lim

t→±∞
|z(θ2,tω)|

|t| = 0 and lim
t→±∞

1

t

∫ t

0
z(θ2,sω)ds = 0. (5.7)

Hereafter, we will write Ω as Ω′ and θ2,t as θt instead.

5.2 Existence and Uniqueness of a Mild Solution

Let u(t) be the solution of system (5.3), then v(t) = u(t)e−z(θtω) satisfies

dv

dt
= −ν(t)Av − λ(t)v − e−z(θtω)f(ez(θtω)v, t) + e−z(θtω)g(t) + z(θtω)v, (5.8)

with initial condition vτ = v(τ, ω) = uτe
−z(θτω), t > τ, τ ∈ R, ω ∈ Ω. We recall v : [τ, τ + T ) →

ℓ2 (T > 0) a mild solution of the following random differential equation

dv(t)

dt
= G(v, t, θtω), v = (vi)i∈Z, G = (Gi)i∈Z, t ≥ τ ∈ R,

where ω ∈ Ω, if v ∈ C([τ, τ + T ), ℓ2) and

vi(t, τ) = vi(τ) +

∫ t

τ

Gi(v(s), s, θsω)ds for i ∈ Z and t ∈ [τ, τ + T ).

In this subsection, we will prove the existence and uniqueness of the mild solution of system

(5.8).

Proposition 5.1. Let T > 0 and assumptions (A1-A4) hold. Then for τ ∈ R, ω ∈ Ω and any

initial data vτ ∈ ℓ2, system (5.8) has a unique (F ,B(ℓ2))-measurable mild solution v(·, τ ;ω, vτ ,
g) ∈ C([τ, τ + T ), ℓ2) with v(τ, τ ;ω, vτ , g) = vτ , v(t, τ ;ω, vτ , g) ∈ ℓ2 being continuous in vτ ∈ ℓ2

and g ∈ Cb(R, ℓ
2). Moreover, the solution v(t, τ ;ω, vτ , g) exists globally on [τ,+∞) for any

τ ∈ R. Moreover, for given t ∈ R
+, τ ∈ R, ω ∈ Ω and uτ ∈ ℓ2, the mapping

Φ(t, τ, ω, vτ , g) = v(t+ τ, τ ; θ−τω, vτ , g) = u(t+ τ, τ ; θ−τω, uτ , g)e
−z(θtω),

generates a continuous cocycle from R
+×R×Ω×ℓ2 to ℓ2 over (R, {θ1,t}t∈R) and (Ω,F , P, {θt}t∈R),

where vτ = uτe
−z(θτω).
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Proof. We first show that if vτ ∈ ℓ2, system (5.8) has a unique measurable mild solution

v(t, τ ;ω, vτ , g) ∈ ℓ2 on [τ, τ + T ) with v(τ, τ ;ω, vτ , g) = vτ for T > 0 and ω ∈ Ω.

Given ω ∈ Ω, vτ ∈ ℓ2 and g ∈ Cb(R, ℓ
2), let

F (v, t, ω) = −ν(t)Av − λ(t)v − e−z(ω)f(vez(ω), t) + e−z(ω)g(t) + vz(ω).

Note that F (v, t, ω) is continuous in v and locally integrable in t and measurable in ω from

ℓ2 ×R× Ω into ℓ2. Denote |‖ · |‖ = supt∈R ‖ · (t)‖, then by (A1-A4),

‖F (v, t, ω)‖ ≤ (λ0 + 4ν0 +max{ζ(‖v‖|ez(ω)|, t), β} + |z(ω)|)‖v‖
+ |e−z(ω)||‖g|‖.

Hence for any v(1) = (v
(1)
i )i∈Z, v(2) = (v

(2)
i )i∈Z ∈ ℓ2,

‖F (v(1), t, ω) − F (v(2), t, ω)‖
≤ (λ0 + 4ν0 +max{ζ((‖v(1)‖+ ‖v(2)‖)|ez(ω)|, t), β} + |z(ω)|)‖v(1) − v(2)‖.

For any bounded set B ⊂ ℓ2 with supu∈B ‖v‖ ≤ ι, and define

κB(t, ω) = (λ0 + 4ν0 +max{ζ(ι|ez(ω)|, t), β} + |z(ω)|)ι + |e−z(ω)||‖g|‖ ≥ 0,

then for any v, v(1), v(2) ∈ B,

F (v, t, ω) ≤ κB(t, ω), ‖F (v(1), t, ω)− F (v(2), t, ω)‖ ≤ κB(t, ω)‖v(1) − v(2)‖

and
∫ τ+1

τ

κB(s, θsω)ds < ∞, ∀τ ∈ R.

By [10, Proposition 2.1.1], problem (5.8) possesses a unique local mild solution v(·, τ, ω; vτ , g) ∈
C([τ, τ + Tmax), ℓ

2) satisfying the integral equation

v(t) = vτ +

∫ t

τ

(−ν(s)Av − λ(s)v − e−z(θsω)f(vez(θsω), s)

+ e−z(θsω)g(s) + vz(θsω))ds, t ∈ [τ, τ + Tmax) (0 < Tmax ≤ T ),

(5.9)

where [τ, τ + Tmax) is the maximal interval of existence of the solution of (5.8).

We next show that Tmax = T . Since λi(t), νi(t) ∈ L1
loc(R) in t, by [18], there exist sequences

of continuous functions in t ∈ R, λ
(m)
i (t), ν

(m)
i (t),m ∈ N, such that

lim
m→∞

∫ t

τ

|λ(m)
i (s)− λi(s)|ds = 0 and λ0 ≤ λ

(m)
i (t) ≤ λ0,∀τ, t ∈ R, (5.10)

lim
m→∞

∫ t

τ

|ν(m)
i (s)− νi(s)|ds = 0 and ν0 ≤ ν

(m)
i (t) ≤ ν0,∀τ, t ∈ R. (5.11)
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Consider the following differential equations with initial data vτ ∈ ℓ2,

dv(m)

dt
= F (m)(v(m), t, ω), (5.12)

where F (m)(v(m), t, ω) = (F
(m)
i (v(m), t, ω))i∈Z and

F
(m)
i (v(m), t, ω) = −ν

(m)
i (t)Av

(m)
i − λ

(m)
i (t)v

(m)
i

− e−z(ω)fi(v
(m)
i ez(ω), t) + e−z(ω)gi(t) + v

(m)
i z(ω).

(5.13)

For ω ∈ Ω, by the continuity of F
(m)
i (v(m), t, ω) in t, (5.12) has a unique solution v(·, τ ;ω, vτ , g) ∈

C([τ, τ + T
(m)
max), ℓ2) ∩ C1((τ, τ + T

(m)
max), ℓ2) such that

dv
(m)
i

dt
= F

(m)
i (v(m), t, ω) (5.14)

and

v
(m)
i = vτ +

∫ t

τ

F
(m)
i (v(m)(s), s, ω)ds. (5.15)

Taking the inner product in ℓ2 in (5.14) yields

d‖v(m)‖2
dt

= 2(−ν(m)(t)Av(m) − λ(m)(t)v(m) + z(θtω)v
(m), v(m))

−2(e−z(θtω)f (m)(v(m)ez(θtω), t), v(m)) + 2(e−z(θtω)g(m)(t), v(m)). (5.16)

Note that

−βe2z(θtω)‖v(m)‖2 ≤ (f(v(m)ez(θtω), t), v(m)ez(θtω))

≤ ι(ez(θtω)‖v(m)‖, s)e2z(θtω)‖v(m)‖2.

It follows from (5.16) that

d‖v(m)‖2
dt

≤ (−λ0 + 2β + 2z(θsω))‖v(m)‖2 + (2|‖α|‖2 + |‖g|‖2
λ0

)e−2z(θsω). (5.17)

Applying Gronwall’s inequality to (5.17), we obtain that

‖v(m)(t)‖2 ≤ ‖vτ‖2e(2β−λ0)(t−τ)+2
∫
t

τ
z(θrω)dr

+ (2|‖α|‖2 + |‖g|‖2
λ0

)e(2β−λ0)t+2
∫
t

0
z(θrω)dr

∫ t

τ

e(λ0−2β)s−2z(θsω)−2
∫
s

0
z(θrω)drds

:= η2(t, τ, ω), t ∈ [τ, τ + T (m)
max),

where η2(t, τ, ω) ∈ C([τ, τ + T ),R+) is independent of m, which implies that

|v(m)
i (t)| ≤ η(t, τ, ω), for all m ∈ N, t ∈ [τ, τ + T ), ω ∈ Ω. (5.18)
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It then follows that for some η̃(T, τ, ω) > 0, which is independent onm such that |F (m)
i (v(m)(t), t)| ≤

η̃(T, τ, ω) and

|v(m)
i (t)− v

(m)
i (s)| =

∫ t

s

|F (m)
i (v(m)(r), r)|dr

≤ η̃(T, τ, ω)|t− s|,∀t, s ∈ [τ, τ + T ),m ∈ N, ω ∈ Ω.

By the Arzela-Ascoli Theorem, there exists a convergent subsequence {v(mk)
i (t), t ∈ [τ, τ + T )}

of {v(m)
i (t), t ∈ [τ, τ + T )} such that

v
(mk)
i (t) → v̄i(t) as k → ∞ for t ∈ [τ, τ + T ), i ∈ Z

and v̄i(t) is continuous in t ∈ [τ, τ + T ). Moreover, |v̄i(t)| ≤ η(t, τ, ω) for t ∈ [τ, τ + T ), ω ∈ Ω.

By (5.10), (5.11), (5.18) and the Lebesgue Dominated Convergence Theorem, we have

lim
k→∞

∫ t

τ

|λ(mk)
i (s)v

(mk)
i (s)− λi(s)v̄i(s)|ds = 0, (5.19)

lim
k→∞

∫ t

τ

|ν(mk)
i (s)v

(mk)
i (s)− νi(s)v̄i(s)|ds = 0. (5.20)

Thus by replacing m by mk in (5.15) and letting k → ∞, we obtain

v̄i(t) = vτ +

∫ t

τ

Fi(v̄(s), s, ω)ds for all t ∈ [τ, τ + T ), ω ∈ Ω,

which implies that ū(t) = (ūi(t))i∈Z is a mild solution of (5.8). Then by the uniqueness of the

mild solutions of (5.8), Tmax = T . Moreover, this means that v(t, τ ;ω, vτ , g) exists globally on

[τ,+∞) for any τ ∈ R. Here we remain to show for given t ∈ R
+, τ ∈ R, ω ∈ Ω and uτ ∈ ℓ2, the

mapping

Φ(t, τ, ω, vτ , g) = v(t+ τ, τ ; θ−τω, vτ , g) = u(t+ τ, τ ; θ−τω, uτ , g)e
−z(θtω),

generates a continuous cocycle from R
+×R×Ω×ℓ2 to ℓ2 over (R, {θ1,t}t∈R) and (Ω,F , P, {θt}t∈R)

in the sense of Definition 2.1. In fact, the function F (v, t, ω) is continuous in v, g and measurable

in t, ω, which implies that v : (R+)×R×Ω× ℓ2 → ℓ2, (t, ·;ω, vτ , g) 7→ v(t, ·;ω, vτ , g) is (B(R+)×
F × B(ℓ2),B(ℓ2))-measurable (see [2]). The proof is complete.

5.3 Existence of a Pullback Absorbing Set

In this subsection, we will get the existence of a D(ℓ2)-pullback absorbing set for the continuous

cocycle Φ.
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Lemma 5.2. Let λ̃ = λ0 − β − 2√
π
> 0. Assume that (A1-A4) hold, then there exists a closed

measurable D(ℓ2)-pullback absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} for Φ in D(ℓ2) such that

for any B(τ, ω) ∈ D(ℓ2), there exists TB = TB(τ, ω) > 0 yielding Φ(t, τ−t, θ−tω)B(τ−t, θ−tω) ⊆
K(τ, ω) for all t ≥ TB and vτ−t ∈ B(τ − t, θ−tω).

Proof. Let Φ(m) be a solution of system (5.12), then Φ(m) ∈ ℓ2 for all t ≥ τ . From Proposition

5.1, we know that v(m)(τ, τ − t, θ−τω) = Φ(m)(t, τ − t, θ−tω). Denote λ̂ = λ0 − β and apply

Gronwall’s inequality over (τ − t, τ) to (5.17), it follows that

‖v(m)(τ, τ − t, ω, vτ−t)‖2 + β

∫ τ

τ−t

e−λ̂(τ−s)+2
∫
τ

s
z(θrω)‖v(m)(s, τ − t, ω, vτ−t)‖2ds

≤ e−λ̂t−2
∫
τ−t

τ
z(θrω)dr‖vτ−t‖2

+ (2|‖α|‖2 + |‖g|‖2
λ0

)e−λ̂τ+2
∫
τ

0
z(θrω)dr

∫ τ

τ−t

eλ̂s−2z(θsω)−2
∫
s

0
z(θrω)drds.

Since v(mk) → v for some mk → ∞, where v is the mild solution of (5.8), then the estimation

above still holds with v(mk) being replaced by v. Now, by replacing ω with θ−τω in the expression

v, we obtain

‖v(τ, τ − t, θ−τω, vτ−t‖2

+ β

∫ τ

τ−t

e−λ̂(τ−s)+2
∫
τ

s
z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2ds

= ‖v(τ, τ − t, θ−τω, v(τ − t, θ−τω)‖2

+ β

∫ 0

−t

e−λ̂s+2
∫
0

−t
z(θrω)dr‖v(s + τ, τ − t, θ−τω, vτ−t)‖2ds

≤ e−λ̂t−2
∫
τ−t

τ
z(θr−τω)dr‖vτ−t‖2

+ (2|‖α|‖2 + |‖g|‖2
λ0

)

∫ τ

τ−t

eλ̂(s−τ)−2z(θs−τω)+2
∫
τ

s
z(θr−τω)drds

≤ e−λ̂t−2
∫
0

−t
z(θrω)dr‖vτ−t‖2

+ (2|‖α|‖2 + |‖g|‖2
λ0

)

∫ 0

−t

eλ̂s−2z(θsω)+2
∫
0

s
z(θrω)drds

≤ e−λ̂t−2
∫
0

−t
z(θrω)dr‖vτ−t‖2

+ (2|‖α|‖2 + |‖g|‖2
λ0

)

∫ 0

−∞
eλ̂s−2z(θsω)+2

∫
0

s
z(θrω)drds.

(5.21)

Due to (5.7), we know that
∫ 0

−∞
eλ̂s−2z(θsω)+2

∫
0

s
z(θrω)drds < +∞,

and

lim
t→±∞

1

t

∫ t

0
|z(θsω)|ds =

1√
π
.
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Let λ̃ = λ0 − β − 2√
π
and consider for any vτ−t ∈ B(τ − t, θ−tω), we have for λ̃ > 0, τ ∈ R from

(3.1) that

e−λ̂t−2
∫
0

−t
z(θrω)dr‖vτ−t‖2

≤ e−λ̂t−2
∫
0

−t
z(θsω)ds‖B(τ − t, θ−tω)‖2 → 0 as t → +∞. (5.22)

By (5.21) and (5.22), it follows that

‖v(τ, τ − t, θ−τω, vτ−t)‖2

≤ 1 + (2|‖α|‖2 + |‖g|‖2
λ0

)

∫ 0

−∞
eλ̂s−2z(θsω)+2

∫
0

s
z(θrω)drds.

Now denoting

R2(ω) = 1 + (2|‖α|‖2 + |‖g|‖2
λ0

)

∫ 0

−∞
eλ̂s−2z(θsω)+2

∫
0

s
z(θrω)drds, (5.23)

we conclude that

K(τ, ω) = Bℓ2(0, R(ω)) (5.24)

is a closed measurable D(ℓ2)-pullback absorbing set. In fact, for all γ > 0,

e−γtR2(θ−tω) = e−γt + (2|‖α|‖2 + |‖g|‖2
λ0

)e−γt

∫ 0

−∞
eλ̂s−2z(θs−tω)+2

∫
0

s
z(θr−tω)drds

= e−γt + (2|‖α|‖2 + |‖g|‖2
λ0

)e−γt

∫ −t

−∞
eλ̂(s+t)−2z(θsω)+2

∫
0

s
z(θrω)drds

→ 0 as t → +∞.

5.4 Asymptotically Null of the Solutions

In this subsection, the property of asymptotically null for the solution Φ of system (5.8) will be

established.

Lemma 5.3. Let K(τ, ω) be the absorbing set given by (5.24). Then for every ǫ > 0, there

exist T̃ (ǫ, τ, ω,K(τ, ω)) > 0 and Ñ(ǫ, τ, ω,K(τ, ω)) ≥ 1, such that the solution Φ(t, τ − t, θ−tω) =

v(τ, τ − t, θ−τω) of problem (5.8) is asymptotically null, that is, for all t ≥ T̃ (ǫ, τ, ω,K(τ, ω)),

vτ−t ∈ B(τ − t, θ−tω),

∑

|i|>Ñ(ǫ,τ,ω,K(τ,ω))

|(v(τ, τ − t, θ−τω, vτ−t, g)i|2 ≤ ǫ2.
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Proof. Choose a smooth cut-off function satisfying 0 ≤ ρ(s) ≤ 1 for s ∈ R
+ and ρ(s) = 0 for

0 ≤ s ≤ 1, ρ(s) = 1 for s ≥ 2. Suppose there exists a constant c0 such that |ρ′(s)| ≤ c0 for

s ∈ R
+. For any n ≥ 1, let v

(m)
n = v(m)(τ, τ − t, ω, vτ−t,n, gn) = (v

(m)
n,i )i∈Z be a mild solution of

(5.12). Let N be a fixed integer which will be specified later, and set x
(m)
n = (x

(m)
n,i )i∈Z where

x
(m)
n,i = ρ( |i|

N
)v

(m)
n,i for any i ∈ Z. Then taking the inner product of (5.12) with x in ℓ2, we obtain

d

dt

∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i |2

= −2ν(m)(t)(Amv(m)
n , x(m)

n )− 2(λ(m)(t)− z(θtω))
∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i |2

− 2e−z(θtω)
∑

i∈Z
ρ(

|i|
N

)f(ez(θtω)v
(m)
n,i , t)v

(m)
n,i

+ 2e−z(θtω)(gn(t), x
(m)
n ).

(5.25)

We now estimate terms in (5.25) one by one. First, we have

(Amv(m)
n , x(m)

n ) = (B̃mv(m), B̃mx(m)
n ) ≥ −2c0

N
‖v(m)‖2. (5.26)

For the second term in (5.25), it follows from the assumption (A2) that

−∞ < −2e−z(θtω)
∑

i∈Z
ρ(

|i|
N

)fi(e
z(θtω)v

(m)
n,i , t)v

(m)
n,i ≤ 2e−2z(θtω)

∑

|i|≥N

α2
i (t).

For the last term in (5.25),

2e−z(θtω)(gn(t), x
(m)
n ) ≤ λ(m)(t)

∑

i∈Z
ρ(

|i|
N

)|vi|2 +
1

λ0
e−2z(θtω)

∑

|i|≥N

g2i (t). (5.27)

Combining (5.25)-(5.27), it yields

d

dt

∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i |2 + (λ0 − 2z(θtω))

∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i |2

≤ 4ν0c0
N

‖v(m)‖2 + (2 +
1

λ0
)e−2z(θtω)

∑

|i|≥N

(α2
i (t) + g2i (t)).

(5.28)

Apply Gronwall’s inequality to (5.28) over (τ − t, τ), we obtain that

∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i (τ, τ − t, ω, v

(m)
τ−t,n, gn)|2

≤ e−λ0t−2
∫
τ−t

τ
z(θrω)dr‖v(m)

τ−t,n‖2

+
4ν0c0
N

∫ τ

τ−t

e−λ0(τ−s)+2
∫
τ

s
z(θrω)dr‖v(m)(s, τ − t, ω, v

(m)
τ−t,n, gn)‖2ds

+ (2 +
1

λ0
)
∑

|i|≥N

(α2
i (t) + g2i (t))

∫ τ

τ−t

e−λ0(τ−s)+2
∫
τ

s
z(θrω)dr−2z(θsω)ds.

(5.29)
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Now, for τ ∈ R, substitute θ−τω for ω and estimate each term in (5.29)

∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i (τ, τ − t, θ−τω, v

(m)
τ−t,n, gn)|2

≤ e−λ0t−2
∫
τ−t

τ
z(θr−τω)dr‖v(m)

τ−t,n‖2

+
4ν0c0
N

∫ τ

τ−t

e−λ0(τ−s)+2
∫
τ

s
z(θr−τω)dr‖v(m)(s, τ − t, θ−τω, v

(m)
τ−t,n, gn)‖2ds

+ (2 +
1

λ0
)
∑

|i|≥N

(α2
i (t) + g2i (t))

∫ τ

τ−t

e−λ0(τ−s)+2
∫
τ

s
z(θr−τω)dr−2z(θs−τω)ds

≤ e−λ0t−2
∫
0

−t
z(θrω)dr‖v(m)

τ−t,n‖2

+
4ν0c0
N

∫ 0

−t

e−λ0s+2
∫
0

−t
z(θrω)dr‖v(m)(s+ τ, τ − t, θ−τω, v

(m)
τ−t,n, gn)‖2ds

+ (2 +
1

λ0
)
∑

|i|≥N

(α2
i (t) + g2i (t))

∫ 0

−t

eλ0s+2
∫
0

s
z(θrω)dr−2z(θsω)ds.

(5.30)

By Lemma 5.2, there exists T1(ǫ, τ, ω,K(ω)) > 0 such that for all t ≥ T1(ǫ, τ, ω,K(ω)),

4ν0c0
N

∫ 0

−t

e−λ0s+2
∫
0

−t
z(θrω)dr‖v(m)(s+ τ, τ − t, θ−τω, v

(m)
τ−t,n, gn)‖2ds

≤ 4ν0c0
βN

R2(ω),

(5.31)

where R2(ω) is given by (5.23). Since g(t), α(t) ∈ Cb(R, ℓ
2), by using (5.7) again, we know

(2 +
1

λ0
)
∑

|i|≥N

(α2
i (t) + g2i (t))

∫ 0

−∞
eλ0s+2

∫
0

s
z(θrω)dr−2z(θsω)ds < ∞,

and hence

lim
N→∞

(2 +
1

λ0
)
∑

|i|≥N

(α2
i (t) + g2i (t))

∫ 0

−∞
eλ0s+2

∫
0

s
z(θrω)dr−2z(θsω)ds = 0. (5.32)

Now, by means of (5.22) and (5.30)-(5.32), there exist T̃ (ǫ, τ, ω,K(ω)) ≥ T1(ǫ, τ, ω,K(ω)) and

Ñ(ǫ, τ, ω,K(ω)) ≥ 1 such that

∑

|i|≥Ñ(ǫ,τ,ω,K(ω))

|v(m)
n,i (τ, τ − t, θ−τω, v

(m)
τ−t,n, gn)|2

≤
∑

i∈Z
ρ(

|i|
N

)|v(m)
n,i (τ, τ − t, θ−τω, v

(m)
τ−t,n, gn)|2 ≤ ǫ2. (5.33)

Since there is mk such that

v
(mk)
n,i (τ, τ − t, θ−τω, v

(m)
τ−t,n, gn) → (v(τ, τ − t, θ−τω, vτ−t,n, gn))i

18



as mk → ∞, by (5.33)

∑

|i|≥Ñ(ǫ,τ,ω,K(ω))

|(v(τ, τ − t, θ−τω, vτ−t,n, gn))i|2 ≤ ǫ2

for any n ≥ 1. Now, letting n → ∞ we can obtain the conclusion.

5.5 Existence of Pullback Attractors

We are now in a position to give our main result in this section.

Theorem 5.4. Suppose that (A1-A4) hold. The lattice dynamical system Φ with both non-

autonomous deterministic and random forcing terms generated by system (5.8) has a unique

pullback attractor.

Proof. The result follows directly from Lemmas 5.2, 5.3 and Theorem 4.1.
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