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Abstract

Compelling evidence–though yet no formal proof–has been adduced that the probability

that a generic (standard) two-qubit state (ρ) is separable/disentangled is 8
33 (arXiv:1301.6617,

arXiv:1109.2560, arXiv:0704.3723). Proceeding in related analytical frameworks, using a fur-

ther determinantal 4F3-hypergeometric moment formula (Appendix A), we reach, via density-

approximation (inverse) procedures, the conclusion that one-half ( 4
33) of this probability arises

when the determinantal inequality |ρPT | > |ρ|, where PT denotes the partial transpose, is sat-

isfied, and, the other half, when |ρ| > |ρPT |. These probabilities are taken with respect to the

flat, Hilbert-Schmidt measure on the fifteen-dimensional convex set of 4 × 4 density matrices.

We find fully parallel bisection/equipartition results for the previously adduced, as well, two-

“re[al]bit” and two“quater[nionic]bit” separability probabilities of 29
64 and 26

323 , respectively. The

new determinantal 4F3-hypergeometric moment formula is, then, adjusted (Appendices B and

C) to the boundary case of minimally degenerate states (|ρ| = 0), and its consistency manifested–

also using density-approximation–with an important theorem of Szarek, Bengtsson and Życzkowski

(arXiv:quant-ph/0509008). This theorem states that the Hilbert-Schmidt separability probabilities

of generic minimally degenerate two-qubit states are (again) one-half those of the corresponding

generic nondegenerate states.
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I. INTRODUCTION

The problem of determining the probability that a bipartite/multipartite quantum state

of a certain random nature exhibits a particular entanglement characteristic is clearly of

intrinsic “philosophical, practical, physical” [1]) interest [1–7]. We have reported [8, 9] major

advances, in this regard, with respect to the “separability/disentanglement probability” of

generalized two-qubit states (representable by 4× 4 density matrices ρ), endowed with the

flat, Hilbert-Schmidt measure [5, 10]. Most noteworthy, a concise formula [9, eqs. (1)-(3)]

P (α) = Σ∞i=0f(α + i), (1)

where

f(α) = P (α)− P (α + 1) =
q(α)2−4α−6Γ(3α + 5

2
)Γ(5α + 2)

3Γ(α + 1)Γ(2α + 3)Γ(5α + 13
2

)
, (2)

and

q(α) = 185000α5 + 779750α4 + 1289125α3 + 1042015α2 + 410694α + 63000 = (3)

α

(
5α
(

25α
(
2α(740α + 3119) + 10313

)
+ 208403

)
+ 410694

)
+ 63000

has emerged that yields for a given α, where α is a random-matrix-Dyson-like-index [11, 12],

the corresponding Hilbert-Schmidt separability probability P (α). The setting α = 1 pertains

to the fifteen-dimensional convex set of (standard/conventional, off-diagonal complex-entries)

two-qubit density (4× 4 Hermitian, unit-trace, positive-semidefinite) matrices.

The succinct formula yields (to arbitrarily high numerical precision) P (1) = 8
33

(cf. [13],

[14, eq. B7], [15, sec. VII]). It is interesting to note that in this standard quantum-

mechanical case [16], the probability seems of a somewhat simpler nature (smaller numera-

tors and denominators) than the value P (1
2
) = 29

64
obtained for the (“attractive toy model”

[4]) nine-dimensional convex set of 4 × 4 (two-“rebit”) density matrices with real entries

[17], or, the value P (2) = 26
323

derived for the twenty-seven-dimensional convex set of 4 × 4

(two-“quaterbit” [18]) density matrices with quaternionic entries [19, 20]. (Let us note that

P (3
2
) = 36061

262144
[9, p. 9]. However, unlike the results for α = 1

2
, 1 and 2, we have not been

able to obtain this value through direct density-matrix calculations. This disparity may be

attributable to the proposition that the only associative real division algebras are the real

numbers, complex numbers, and quaternions [21].)
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Fei and Joynt [22] have recently found strong support for these three primary conjectures

by Monte Carlo sampling, using the extraordinarily large number of 5× 1011 points for each

of the three cases (cf. [23, eq. (30)], [24]).

A. Multi-step derivation of concise formula

These simple rational-valued α-parameterized separability probabilities and the formula

P (α) above that yields them were obtained through a number of distinct steps of anal-

ysis. First, based on extensive computations (employing Cholesky matrix decomposi-

tions/parameterizations, Dirichlet measure and integration over spheres), we inferred the

(yet formally unproven) determinantal-moment formula [8, p. 30] (cf. [25, eq. (28)] [26])

〈∣∣ρPT ∣∣n〉 =
n! (α + 1)n (2α + 1)n

26n
(
3α + 3

2

)
n

(
6α + 5

2

)
2n

+
(−2n− 1− 5α)n (α)n

(
α + 1

2

)
n

24n
(
3α + 3

2

)
n

(
6α + 5

2

)
2n

5F4

(
−n−2

2
,−n−1

2
,−n, α + 1, 2α + 1

1− n, n+ 2 + 5α, 1− n− α, 1
2
− n− α

; 1

)
.

The brackets here denote expectation with respect to Hilbert-Schmidt (Euclidean) measure,

while 5F4 indicates a particular generalized hypergeometric function. The partial transpose

of ρ, obtainable by transposing in place its four 2× 2 blocks, is denoted by ρPT .

The first 7,501 of these moments (n = 0, 1, . . . 7500) were employed as input to a Math-

ematica program of Provost [27, pp. 19-20], implementing a Legendre-polynomial-based-

density-approximation routine. From the high-precision, exact-arithmetic results obtained,

we were able to formulate highly convincing, well-fitting conjectures (including the above-

mentioned 8
33

for α = 1) as to underlying simple rational-valued separability probabilities.

Then, with the use of the Mathematica FindSequenceFunction command applied to the

sequence (α = 1, 2, . . . , 32)–or, fully equivalently, α = 1
2
, . . . 63

2
–of these conjectures, and

simplifying manipulations of the lengthy Mathematica result generated, we derived a multi-

term 7F6 hypergeometric-based formula [9, Fig. 3] (cf. [28, eq. (11)]), with argument

27
64

= (3
4
)3, for the conjectured values. Then, Qing-Hu Hou (private communication) applied

a highly celebrated (“creative telescoping”) algorithm of Zeilberger [29] to this 7F6-based

expression to obtain the concise separability probability formula ((1)-(3)) for P (α) itself [9,

Figs. 5, 6].
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B. General remarks

Let us note that although the extensive symbolic and numeric computations conducted

throughout this broad research project, have not furnished the rigorous proofs we, of

course, strongly desire, they have been central to the testing of different approaches, and

to the advancement of the specific determinantal-moment conjectures used for separability-

probability evaluation. The conjectures take the form of equations asserted to hold for

infinite ranges of parameter values, which can be verified for specific values of these param-

eters by symbolic computation.

Parallel programs to this one are being pursued in which: (1) the theoretically-important

Bures (minimal monotone) measure [5, 30, 31]–rather than the Hilbert-Schmidt one–is ap-

plied to the 4 × 4 density matrices; and (2) the 6 × 6 (qubit-qutrit) systems are studied

with the Hilbert-Schmidt measure appropriate to them. Considerably less progress has so

far been achieved in these areas. No general moment formulas have yet been advanced, with

explicit specific moment calculations having been implemented for the real and complex

density matrices, so far for α = 1
2

and α = 1 for small values of n [8, sec. 6] [32, 33].

C. Outline of study

In sec. II, we change our previous focus in [8, 9] from the moments and probability distri-

butions associated with |ρPT | to the associated variable (|ρPT |−|ρ|), for which certain results

appear to simplify, and in sec. III to the variable |ρPT0 |, where ρ0 is minimally degenerate.

In both instances, once again applying the density-approximation procedure of Provost [27],

we will find separability probabilities equal to one-half those obtained by use of the concise

formula for P (α) ((1)-(3)). We, then, show the consistency of these results with a theorem

of Szarek, Bengtsson and Życzkowski [4], thus, lending even further support to that already

compiled for the validity of the formula for P (α).

II. GENERIC, NONDEGENERATE CASES (|ρ| 6= 0)

In the course of obtaining the 5F4-hypergeometric-based Hilbert-Schmidt (HS) moment

formula above–and a more general two-variable (n, k) form of it for
〈∣∣ρPT ∣∣n |ρ|k〉 /〈|ρ|k〉–

there were employed certain intermediate “utility functions”, in particular [8, p. 26], to use
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the notation there,

F2 (n, k) =
〈
|ρ|k

(∣∣ρPT ∣∣− |ρ|)n〉 /〈|ρ|k〉 ,
incorporating the new variable of specific interest here, that is, (|ρPT | − |ρ|). Subsequently,

we have obtained the explicit formula (Appendix A)

F2 (n, k) = (−1)n
(α)n

(
α + 1

2

)
n

(n+ 2k + 2 + 5α)n
24n
(
k + 3α + 3

2

)
n

(
2k + 6α + 5

2

)
2n

× 4F3

(
−n

2
, 1−n

2
, k + 1 + α, k + 1 + 2α

1− n− α, 1
2
− n− α, n+ 2k + 2 + 5α

; 1

)
.

We set k = 0 in this formula, and once again applied the Legendre-polynomial-based-

density-approximation procedure of Provost [27], in the same manner as in our previous

studies [8, 9]. It was first necessary to observe, however, that rather than the variable range

− 1
16
≤ |ρPT | ≤ 1

256
employed in these earlier studies, the appropriate interval would now be

− 1
16
≤ (|ρPT | − |ρ|) ≤ 1

432
. (Note that 432 = 24 · 33, as well as, of course, 16 = 24 and

256 = 28.).

A. Two-parameter family of density matrices illustrating range of (|ρPT | − |ρ|)

The extreme values of this indicated range [− 1
16
, 1
432

] can be illustrated by the use of a

two-parameter family of density matrices

ρ =


u 0 0 v

0 1
2
− u 0 0

0 0 1
2
− u 0

v 0 0 u

 . (4)

For u = 1
4
, v = 0, we have the limiting value, |ρ| = 1

256
, while for u = 1

2
, v = 1

2
, we have the

limit |ρPT | = − 1
16

. Further, for u = 1
6
, v = 1

6
, we have both |ρ| = 0 and |ρPT | = 1

432
. If for

this last choice of parameters, we interchange |ρ| with its partial transpose |ρPT |, a value

of − 1
432

, that is, the lower bound on the domain of separability, is obtained for the variable

(|ρPT | − |ρ|) of current interest.

As examples of entangled states for which the values of
(∣∣ρPT ∣∣− |ρ|) are dense in

[
− 1

16
, 0
]
,

we can employ the above family (4) with u = 1
2
− ε, 2ε ≤ v ≤ 1

2
− 2ε, where 0 < ε < 1

6
so

that 1
2
− u < v < u. (Note that ρ is positive-definite provided 0 < u < 1

2
and |v| < u.) For
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this family,
∣∣ρPT ∣∣ =

(
1
2
− ε
)2

(ε2 − v2) < 0 and
∣∣ρPT ∣∣− |ρ| = −v2 (4u− 1). Thus, the range

for the given parameters is
[
− 1

16
(1− 4ε)3 ,−ε2 (1− 4ε)

]
. Let ε→ 0+ to get the interval of

entanglement
[
− 1

16
, 0
]
.

We crucially rely throughout these series of analyses upon the proposition that |ρPT | > 0

is both a necessary and sufficient condition for a two-qubit state to be separable [34, 35].

To expand upon this point, the partial transpose of a 4 × 4 density matrix ρ can possess

at most one negative eigenvalue, so that the non-negativity of |ρPT |–the product of the four

eigenvalues of ρPT–is tantamount to separability.

1. Intervals of interest in 6× 6 density matrix case

Quite contrastingly, and more complicatedly, in our ongoing study of generic (generalized

qubit-qutrit) 6 × 6 density matrices endowed with the Hilbert-Schmidt measure [33], |ρPT |

can be either positive or negative for an entangled state. This is due to the possibility that

two eigenvalues of ρPT could now be negative. In this 6× 6 case, it appears that the ranges

of interest are 0 ≤ |ρ| ≤ (1
6
)6 = 1

46656
and − 1

2916
≤ |ρPT | ≤ 1

2916
, where 2916 = 22 × 36.

The interval of entanglement − 1
2916
≤ |ρPT | ≤ 0 would be associated with a single negative

eigenvalue, and (1
6
)6 ≤ |ρPT | ≤ 1

2916
with a pair of negative eigenvalues. The remaining

segment 0 ≤ |ρPT | ≤ (1
6
)6 could have partial transposes having none–indicating separability–

or two negative eigenvalues.

B. Separability probability calculations, using density-approximation

In the generalized 4 × 4 density matrix scenario, the variable (|ρPT | − |ρ|) ranges over

[− 1
16
, 1
432

], with the the subrange [0, 1
432

] of (|ρPT | − |ρ|) containing only separable states.

Now, employing α = 1 in the new 4F3 hypergeometric-based moment formula immedi-

ately above, we obtained, based on 9,451 (n = 0, 1, . . . 9, 450) moments, again using the

Provost density-approximation methodology [27], an estimate for the separability proba-

bility (over [− 1
16
, 1
432

]) that was 0.50000004358 as large as P (1) = 8
33

, given by eqs. (1)-

(3). The parallel calculations in the two-rebit (α = 1
2
) and two-“quaterbit” (α = 2) cases

yielded estimates of 0.5000025687 × P (1
2
) and 0.5000000000177 × P (2), respectively. (Dif-

ferences in rates of convergence–much the same as observed in [8]–can be attributed to the
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FIG. 1: Density-approximation estimation based on the first 51 moments of the probability distri-

butions, as a function of the Dyson-index-like parameter α, of the variable (|ρPT | − |ρ|)

initial [zeroth-order] assumption of the Legendre-polynomial-density-approximation proce-

dure that the probability distributions to be fitted are uniform in nature, rendering more

sharply-peaked distributions more difficult to rapidly approximate well.) A fortiori, for the

α = 4 (conjecturally octonionic) value [9, p. 9], P (4) = 4482
4091349

, our computed value was

0.500000000000000015×P (4). These outcomes, certainly, help to strongly bolster the valid-

ity of the (yet formally unproven) concise formula ((1)-(3)), yielding the full (whole) generic

Hilbert-Schmidt two-qubit separability probabilities P (α).

In Fig. 1 we display an estimate based on the first 51 (n = 0, . . . , 50) moments of the

probability distributions under analysis as a function of α over the subrange [− 1
108
, 1
432

] of the

full range [− 1
16
, 1
432

] of (|ρPT | − |ρ|). The distributions are more sharply peaked for smaller

α (nearer to α = 1
2

in the plot), as the larger values of P (α) for smaller α would indicate

(Appendix E).

1. Probabilities over larger interval [− 1
432 ,

1
432 ]

For the two-rebit, two-qubit and two-quaterbit probabilities over the extended interval

[− 1
432
, 1
432

], symmetric about zero, containing all separable and now some entangled states
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(and thus providing upper bounds on the total separability probabilities), the estimates,

again based on 9,451 moments were 0.78082617689, 0.69244685258 and 0.601390039979.

However, we were not able to discern any particular underlying common structure (formula)

in these values.

III. GENERIC, MINIMALLY DEGENERATE CASES (|ρ| = 0)

Let us now importantly note that these “half-separability-probabilities” of 29
128
, 4
33
, 13
323

obtained above, appear, by Hilbert-Schmidt-based analyses of Szarek, Bengtsson and

Życzkowski [4], to be exactly equal to the “full-separability-probabilities” for the corre-

sponding minimally-degenerate (boundary, that is |ρ| = 0) generic two-rebit, two-qubit and

two-quaterbit states. We are now able to make a further interesting connection to this body

of work–and thereby find additional strong support for its findings, as well as our earlier

ones [8, 9], obtained quite independently.

Let us note, firstly, that in [8, sec. 7] it was asserted that the range of |ρPT | under the

minimally-degenerate constraint |ρ| = 0 is (once again, as it was for (|ρPT | − |ρ|) above)

the interval [− 1
16
, 1
432

]. (Under this determinantal constraint, we will employ the notation

|ρPT0 |.) The maximum of this range is attainable by the two-parameter density matrix (4),

for example, with u = 1
6

and v = 1
6
.

In [8, App. C], we had listed the two-rebit (α = 1
2
) Hilbert-Schmidt moments of |ρPT0 |n,

n = 1, . . . , 10. Now, in an exploratory exercise, we computed the ratio of these ten results

to the corresponding moments given by the 4F3-based formula above for the moments of

(|ρPT |− |ρ|). Most interestingly, these ten ratios had the explanatory formula (found by the

Mathematica FindSequenceFunction command)

(3n+ 7)(4n+ 9)

9(4n+ 7)
. (5)

Then, performing further computations for α = 1, n = 1, 2, it was possible to develop a line

of reasoning (Appendix B) that the expression (5) was the α = 1
2
-specific case of a more

general moment formula, incorporating the factor

(10α + 3n+ 2)(12α + 4n+ 3)

(12α + 3)(10α + 4n+ 2)
(6)

(equaling 1 for n = 0). In fact, the existence of a ratio of this form between the moments
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implies the equality of the probabilities that the respective random variables–in the case at

hand, (|ρPT | − |ρ|) and |ρPT0 |–are positive (Appendix C).

A. Separability probability calculations, using density-approximation

We employed 9,451 of the original 4F3-based moments now adjusted by this last ra-

tio (6), in the density-approximation routine of Provost, just as before. For α = 1
2
, 1, 3

2

and 2, we obtained for the cumulative probabilities over the separability interval [0, 1
432

],

the values 0.50000261669 × P (1
2
), 0.50000003530 × P (1), 0.50000000060467 × P (3

2
) and

0.50000000001267× P (2), and similarly for α > 2.

We note that the convergence of these results to P (α)/2 is somewhat superior than in

the earlier parallel set of analyses for (|ρPT |− |ρ|) (sec. II B). Apparently relatedly, the ratio

of the standard deviation of the probability distribution of (|ρPT | − |ρ|) to that of |ρPT0 | is

0.788 for α = 1
2

and 0.857 for α = 1. So, the distribution for (|ρPT | − |ρ|) is more peaked

at the value zero. Thus, the Legendre-polynomial-based density-approximation procedure

(which starts with a uniform approximation) is slower to converge in those cases. Further

consistent with this observation, based now on 6,301 moments, the ratio of the “y”-intercept

for (|ρPT | − |ρ|) to that for |ρPT0 | was estimated as 1.30202 for α = 1
2

and 1.21134 for α = 1.

1. Relations to separability-probability theorem of Szarek, Bengtsson and Życzkowski

These density approximation estimations extraordinarily close to one-half certainly are

strongly in line with the main finding regarding the Hilbert-Schmidt separability probabil-

ities of minimally degenerate (boundary) states of Szarek, Bengtsson and Życzkowski [4,

Theorem 2]. These three authors had established that the set of positive-partial-transpose

states for an arbitrary bipartite systems is “pyramid-decomposable” and hence, a body of

“constant height”. They stated that “since our reasoning hinges directly on the Euclidean

geometry, it does not allow one to predict any values of analogous ratios computed with

respect to the Bures measure, nor other measures” [4, p. L125].

Nonetheless, the “symmetric halves” separability-probability finding elucidated above

(that is, the separability probability for |ρPT | > |ρ| equaling that for |ρ| > |ρPT |) does appear

to be measure-independent, that is extendible from the Hilbert-Schmidt (flat, Euclidean)
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metric to the use of alternative metrics, such as the Bures (minimal monotone) metric [5, 30].

2. Rank-two 4× 4 density matrices

We have also been able to conclude that for the generic rank-two 4× 4 density matrices

(for which, of course, |ρ| is also zero)–as opposed to the generic rank-three (minimally

degenerate) ones just analyzed, the Hilbert-Schmidt separability probability is zero. An

intuitive argument to this effect is that if one possesses a rank-two 4×4 density matrix with

a positive partial transpose, then if one interchanges the role of these two matrices, one has a

partial transpose with two zero eigenvalues (cf. [36]). Such a scenario is infinitesimally close

to one with two (slightly) negative eigenvalues–a situation which has been well-established

is not tenable [34, 35]. (Somewhat contrastingly, in [37], numerical evidence indicated that

the ratio of Hilbert-Schmidt separability probabilities for generic [rank-six] 6 × 6 density

matrices to rank-four such matrices was close to the integer 34.) A fortiori, the Hilbert-

Schmidt separability probability of the generic rank-one (pure states) 4×4 density matrices

is also zero.

IV. CONCLUDING REMARKS

In need of further study is the issue of whether or not the Dyson-index ansatz of random

matrix theory [11, 12]–apparently applicable in the Hilbert-Schmidt case, as our various

results for general α so far would indicate–extends to other measures (Bures,. . . ), as well

(cf. [32, 33]).

We note, regretfully, of course, that formal proofs for the Hilbert-Schmidt determinantal

moment formulas and the density-approximation results obtained with their use have not

yet been advanced–and certainly still seem far from development. Certainly, however, the

cumulative computational evidence appears very strong for the validity of, inter alia, the

indicated 29
64
, 8
33

and 26
323

two-rebit, two-qubit and two-quaterbit separability probabilities.

Noticeably still lacking is an insightful geometric intuition into the geometry of the 4 × 4

density matrices that might help to explain such results (cf. [38–42]). Can the 8
33

two-qubit

separability probability result, for example, only be understood in some sense as a limiting

result–as the infinite-summation “concise formula” ((1)-(3)) might seem to indicate–or is
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it possibly remarkably manifest in some discrete (pyramidal? [4]) subdivision of the 15-

dimensional convex set of 4× 4 density matrices?

Possible extensions of the research program presented above and in [8, 9] to the Hilbert-

Schmidt case of 6 × 6 (qubit-qutrit) density matrices and the Bures instance of 4 × 4

density matrices have been investigated in [32, 33]. Some limited determinantal moment

computations have been reported (α = 1
2
, n = 1, 2; α = 1, n = 1, in both instances)

(Appendix D), but yet no comparable formulas of the type
〈
|ρ|k

∣∣ρPT ∣∣n〉 /〈|ρ|k〉 nor〈
|ρ|k (

∣∣ρPT ∣∣− |ρ|)n〉 /〈|ρ|k〉 developed. Such formulas have been the fundamental basis

for most of the advances noted here and previously [8, 9].

Appendix A: Moments of
(∣∣ρPT ∣∣− |ρ|)

Consider the general α case, generic k.

Let

g (k, n) :=
(k + 1)n (k + 1 + α)n (k + 1 + 2α)n
26n
(
k + 3α + 3

2

)
n

(
2k + 6α + 5

2

)
2n

,

there is a multiplication relation:

g (0, k) g (k, n) = g (0, k + n) .

Let

h (k, n) := 5F4

(
−n,−k, α, α + 1

2
,−2k − 2n− 1− 5α

−k − n− α,−k − n− 2α,−k+n
2
,−k+n−1

2

; 1

)
.

Then 〈
|ρ|k
〉

= g (0, k)〈∣∣ρPT ∣∣n |ρ|k〉 /〈|ρ|k〉 = g (k, n)h (k, n)〈∣∣ρPT ∣∣n |ρ|k〉 = g (0, k + n)h (k, n) .

Define

F2 (n, k) =
〈
|ρ|k

(∣∣ρPT ∣∣− |ρ|)n〉 /〈|ρ|k〉 ,

12



then

F2 (n, k) =
1

g (0, k)

n∑
j=0

(
n

j

)
(−1)n−j

〈
|ρ|k+n−j

∣∣ρPT ∣∣j〉
=

1

g (0, k)

n∑
j=0

(
n

j

)
(−1)n−j g (0, k + n)h (k + n− j, j)

= g (k, n)
n∑
j=0

(
n

j

)
(−1)n−j h (k + n− j, j) .

We will produce F ′2 (n, k) :=
∑n

j=0

(
n
j

)
(−1)n−j h (k + n− j, j) as a single sum (so that

F2 (n, k) = g (k, n)F ′2 (n, k)).

Lemma IV.1 Let n,m = 0, 1, 2, . . . and let x be a variable, if 0 ≤ m ≤ n then

n∑
j=0

(−n)j
j!

(−j)m (x+ j)m = (−1)m
(x)2m
(x)n

(−n)m (−m)n−m ,

otherwise the sum is zero.

Proof If m > n then (−j)m = 0 for 0 ≤ j ≤ n. Suppose 0 ≤ m ≤ n then (−j)m = 0 for

0 ≤ j < m and the sum is over m ≤ j ≤ n. Thus

n∑
j=m

(−n)j
j!

(−j)m (x+ j)m = (−1)m
n∑

j=m

(−n)j j!

j! (j −m)!

(x)j (x+ j)m
(x)j

= (−1)m (x)m

n∑
j=m

(−n)j (x+m)j
(j −m)! (x)j

.

Change the index of summation j = m+ i then the sum equals

(−1)m
(−n)m (x)m (x+m)m

(x)m

n−m∑
i=0

(m− n)i (x+ 2m)i
i! (x+m)i

= (−1)m
(−n)m (x)2m

(x)m

(−m)n−m
(x+m)n−m

= (−1)m (−n)m (−m)n−m
(x)2m
(x)n

,

by the Chu-Vandermonde sum.
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Observe that (−m)n−m = 0 for 2m < n. Then

F ′2 (n, k) = (−1)n
n∑
j=0

(−n)j
j!

×
n∑
i=0

(−j)i (j − k − n)i (α)i
(
α + 1

2

)
i
(−2k − 2n− 1− 5α)i

i! (−k − n− α)i (−k − n− 2α)i
(
−k+n

2

)
i

(
−k+n−1

2

)
i

= (−1)n
n∑
i=0

(α)i
(
α + 1

2

)
i
(−2k − 2n− 1− 5α)i

i! (−k − n− α)i (−k − n− 2α)i
(
−k+n

2

)
i

(
−k+n−1

2

)
i

×
n∑
j=0

(−n)j
j!

(−j)i (j − k − n)i .

Apply the lemma to the j-sum with x = −k − n and m = i to obtain

(−1)i (−n)i (−i)n−i
(−n− k)2i
(−n− k)n

= (−1)i
(−n)i (−i)n−i

(−n− k)n
22i

(
−k + n

2

)
i

(
−k + n− 1

2

)
i

and thus

F ′2 (n, k) =
(−1)n

(−n− k)n

n∑
i=0

(−n)i (−i)n−i (α)i
(
α + 1

2

)
i
(−2k − 2n− 1− 5α)i

i! (−k − n− α)i (−k − n− 2α)i
(−1)i 22i.

This is not in hypergeometric form because of the term (−i)n−i; also the summation extends

over n
2
≤ i ≤ n. Change the index j = n− i then

(−n)i
i!

(−i)n−i = (−1)i
n!

(n− i)!i!
(−1)n−i

i!

(2i− n)!
= (−1)n

n!

j! (n− 2j)!

= (−1)n
22j

j!

(
−n

2

)
j

(
1− n

2

)
j

and the reversal formula is

(x)i = (x)n−j =
(x)n−j (x+ n− j)j

(x+ n− j)j

= (−1)j
(x)n

(1− n− x)j
.

Thus

F ′2 (n, k) =
(−1)n (α)n

(
α + 1

2

)
n

(−2k − 2n− 1− 5α)n
(−n− k)n (−k − n− α)n (−k − n− 2α)n

(7)

×
[n/2]∑
j=0

(
−n

2

)
j

(
1−n
2

)
j
(k + 1 + α)j (k + 1 + 2α)j

j! (1− n− α)j
(
1
2
− n− α

)
j
(n+ 2k + 2 + 5α)j

22j+2n−2j

= (−1)n 22n
(α)n

(
α + 1

2

)
n

(n+ 2k + 2 + 5α)n
(k + 1)n (k + 1 + α)n (k + 1 + 2α)n

× 4F3

(
−n

2
, 1−n

2
, k + 1 + α, k + 1 + 2α

1− n− α, 1
2
− n− α, n+ 2k + 2 + 5α

; 1

)
;
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a balanced sum.

The formula was tested for F2 (2, k), also directly verified for n = 3, arbitrary α.

Combining the front factors in F2 (n, k) (from g (k, n)) we obtain

(−1)n
(α)n

(
α + 1

2

)
n

(n+ 2k + 2 + 5α)n
24n
(
k + 3α + 3

2

)
n

(
2k + 6α + 5

2

)
2n

. (8)

Appendix B: Minimally degenerate case

Recall the Cholesky decomposition ρ = C∗C where

C =


x1 x5 x6 x7

0 x2 x8 x9

0 0 x3 x10

0 0 0 x4

 (9)

with
∑10

j=1 |xj|
2 = 1, xj ≥ 0 for 1 ≤ j ≤ 4 and xj ∈ R for α = 1

2
, or xj ∈ C for α = 1

(5 ≤ j ≤ 10). Then |ρ| = (x1x2x3x4)
2. Denote integration over the space of 4× 4 positive-

definite matrices with trace one by 〈·〉. Suppose p is a monomial in {xj, xj} then

〈p〉 =
(1 + 3α)n1

(1 + 2α)n2
(1 + α)n3

(1)n4

(4 + 12α)n

10∏
j=5

(α)nj
(10)

where n =
∑10

j=1 nj and:

• α = 1
2
, p =

∏10
j=1 x

2nj

j , that is, each exponent is even;

• α = 1, p =
∏4

j=1 x
2nj

j ×
∏10

j=5 (xjxj)
nj , that is, p is a monomial in

x21, · · · , x24, |x5|
2 , · · · , |x10|2;

otherwise 〈p〉 = 0.

The boundary of the set of states (positive-definite matrices with trace one) contains

Ω0, the set of positive-semidefinite matrices of possible ranks 1, 2 or 3 (and trace one).

In the following discussion the parameters are stated first for the real α = 1
2

case, then

in parentheses for the complex α = 1 case. We consider the determinant of the partial

transpose, denoted by
∣∣ρPT0

∣∣, as a random variable defined on Ω0, with respect to the Hilbert-

Schmidt measure, that is, the Euclidean 8-dimensional (resp. 14) measure, restricted to Ω0.

We claim that integrating with respect to this measure can be carried out by integrating
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over Cholesky products with x4 = 0 and the surface measure on the unit sphere in R9 (resp.

R15) and the Jacobian x
5/2
1 x22x

3/2
3 (resp. x41x

3
2x

2
3). The generic (or random) elements of Ω0

are called minimally degenerate.

Let ΩC
0 denote the set of Cholesky products C∗C with the conditions as in (9) and with

x4 = 0. The same arguments used in [8, sec. D.2] show that the surface measure on the

sphere multiplied by the above Jacobian is mapped to the HS-measure on ΩC
0 . So it remains

to show that the elements of Ω0\ΩC
0 do not enter into the probability calculation. For any

real symmetric (resp. Hermitian) 4× 4 matrix M let dj (M) denote the determinant of the

upper left j × j submatrix of M (a principal minor), for 1 ≤ j ≤ 4. Then M is positive-

definite (resp. positive-semidefinite) if and only if dj (M) > 0 for all j (resp. dj (M) ≥ 0 for

all j). Suppose ρ ∈ Ω0 then ρ has a unique Cholesky factorization if dj (ρ) > 0 for j = 1, 2, 3;

these conditions imply that x1x2x3 > 0. As a consequence x4 = 0 because |ρ| = (x1x2x3x4)
2,

and thus ρ ∈ ΩC
0 .

As contrapositive we have shown that ρ ∈ Ω0\ΩC
0 implies dj (ρ) = 0 for at least one value

of j = 1, 2, 3. This is an additional algebraic condition besides |ρ| = 0 satisfied by the entries

of ρ, that is ρ belongs to a manifold (or variety) of lower dimension in Ω0 (< 8 for α = 1
2
,

and < 14 for α = 1) and such sets have HS-measure zero.

The appropriate measure on the set of Cholesky factors with x4 = 0 can be interpreted

as a conditional density on a subset of the unit sphere, or as the surface measure on the

sphere in one less dimension. In general suppose f is a density on some region E ⊂ RN then

the conditional density given yN = u is

f (y1, · · · , yN−1, u)∫
Eu
f (t1, · · · , tN−1, u) dt1 · · · dtN−1

where Eu :=
{
t ∈ RN−1 : (t, u) ∈ E

}
. In our situation the density vanishes on the set of

interest (x4 = 0) so we need to take a limit.

Consider a general Dirichlet density

Γ (α1 + · · ·+ αN)

Γ (α1) · · ·Γ (αN)

N∏
j=1

y
αj−1
j

on TN−1 =
{
y ∈ RN−1 : yj ≥ 0 ∀j,

∑N−1
j=1 yj ≤ 1

}
and yN := 1 −

∑N−1
j=1 yj; also αj > 0 ∀j.

Compute the conditional density given xN = u with 0 < u < 1; then Eu = (1− u)TN−2,

that is, Eu =
{
y ∈ RN−2 : yj ≥ 0 ∀j,

∑N−2
j=1 yj ≤ 1− u

}
. After a simple change-of-variable
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we obtain the conditional density

Γ (α1 + · · ·+ αN−1)

Γ (α1) · · ·Γ (αN−1) (1− u)β−1

N−2∏
j=1

y
αj−1
j ,

where β =
∑N−1

j=1 αj, y ∈ Eu and yN−1 := 1 − u −
∑N−2

j=1 yj. Now we can take the limit

u→ 0+ and obtain the obvious Dirichlet distribution on TN−2.

By applying this general result to the Cholesky factor (where yj = x2j or |xj|2 and N =

10, 16 for α = 1
2
, 1 respectively) we find that the formula for the integral of a monomial with

respect to the (x4 = 0)-conditional density is very similar to the general one

〈p〉 =
(1 + 3α)n1

(1 + 2α)n2
(1 + α)n3

(0)n4

(3 + 12α)n

10∏
j=5

(α)nj
, (11)

with the same rules for ni as before; the effect of the term (0)n4
is that 〈p〉 = 0 for any

monomial having x4 as a factor; note (0)0 = 1 (the empty product).

We proceed to the main results (conjectures): there is a natural decomposition∣∣ρPT ∣∣ = f1 (x′) + x24f2 (x′) + |ρ| ,

where x′ omits x4 (that is, x′ = (x1, · · · , x3, x5, · · · , x10)). In the previous section there is a

formula for
〈
|ρ|k

(∣∣ρPT ∣∣− |ρ|)n〉 =
〈
|ρ|k (f1 (x′) + x24f2 (x′))

n
〉

. Note f1 (x′) =
∣∣ρPT0

∣∣ when

ρ ∈ ΩC
0 . It is desired to find 〈f1 (x′)n〉, namely the nth moment of

∣∣ρPT0

∣∣, for the conditional

density (11). The key step is to consider〈
(x1x2x3)

2k x2k−24

(
f1 (x′) + x24f2 (x′)

)n〉
,

for k = 1, 2, 3, . . . (k > 0 is required for integrability). Consider the integrals of monomials

(notations as in (10)):〈
(x1x2x3x4)

2k p
〉

=
(1 + 3α)k (1 + 2α)k (1 + α)k (1)k

(4 + 12α)4k
(12)

×
(k + 1 + 3α)n1

(k + 1 + 2α)n2
(k + 1 + α)n3

(k + 1)n4

(4 + 4k + 12α)n

10∏
j=5

(α)nj
, (13)

and 〈
(x1x2x3)

2k x2k−24 p
〉

=
(1 + 3α)k (1 + 2α)k (1 + α)k (1)k−1

(4 + 12α)4k−1
(14)

×
(k + 1 + 3α)n1

(k + 1 + 2α)n2
(k + 1 + α)n3

(k)n4

(3 + 4k + 12α)n

10∏
j=5

(α)nj
. (15)
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Observe that the quantity on the right side of (12) is
〈
|ρ|k
〉

and the quantity on the right

side of (14) is
〈

(x1x2x3)
2k x2k−24

〉
.

Conjecture

For k = 1, 2, 3, . . . , α = 1
2

or 1〈
(x1x2x3)

2k x2k−24

(∣∣ρPT ∣∣− |ρ|)n〉 =
〈

(x1x2x3)
2k x2k−24

〉
×(2 + 4k + 10α + 3n) (3 + 4k + 12α + 4n)

(2 + 4k + 10α + 4n) (3 + 4k + 12α)
F2 (n, k) ,

where F2 is given in (7) and (8).

The conjectured formula can be written as〈
(x1x2x3)

2k x2k−24 (f1 (x′) + x24f2 (x′))
n
〉

〈
(x1x2x3)

2k x2k−24

〉
= (−1)n

(α)n
(
α + 1

2

)
n

(n+ 2k + 1 + 5α)n (2 + 10α + 4k + 3n)

24n
(
k + 3α + 3

2

)
n

(
2k + 6α + 3

2

)
2n

(2 + 10α + 4k + 2n)

× 4F3

(
−n

2
, 1−n

2
, k + 1 + α, k + 1 + 2α

1− n− α, 1
2
− n− α, n+ 2k + 2 + 5α

; 1

)
.

Corollary IV.2 The (x4 = 0)-conditional expectation

〈
f1 (x′)

n〉
=
〈∣∣ρPT0

∣∣n〉
= (−1)n

(α)n
(
α + 1

2

)
n

(n+ 1 + 5α)n (2 + 10α + 3n)

24n
(
3α + 3

2

)
n

(
6α + 3

2

)
2n

(2 + 10α + 2n)

× 4F3

(
−n

2
, 1−n

2
, 1 + α, 1 + 2α

1− n− α, 1
2
− n− α, n+ 2 + 5α

; 1

)
.

Proof From (14) and (15), for a monomial p we have〈
(x1x2x3)

2k x2k−24 p
〉

〈
(x1x2x3)

2k x2k−24

〉 =
(k + 1 + 3α)n1

(k + 1 + 2α)n2
(k + 1 + α)n3

(k)n4

(3 + 4k + 12α)n

10∏
j=5

(α)nj
,

with the same conditions on {ni} as before. The limit of this expression as k → 0+

equals the (x4 = 0)-conditional expectation 〈p〉. From the property of (0)n4
it follows

that
〈
(f1 (x′) + x24f2 (x′))

n〉
= 〈f1 (x′)n〉.

The conjecture has been verified (by symbolic computation) for n = 1, 2, 3, 4, α = 1
2

and

α = 1. (One notes that the n = 4, α = 1 computation involves around 8000 monomials
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with a nonzero integral, and roughly 4 million monomials with zero integral. Each of these

monomials is of degree 32 in 16 variables.)

Appendix C: Equal probabilities

For a probability density supported on a bounded interval I let µn [f ] :=
∫
I
xnf (x) dx,

for n = 0, 1, 2, . . .. The following is the probability density for the random variable XY

where the density function of X is f (x), the density of Y is γyγ−1 on 0 < y < 1, and X, Y

are independent. It is obvious that Pr {XY > 0} = Pr {X > 0}.

Definition Suppose f (x) is a probability density function supported on [a, b] with a < 0 <

b, and γ > 0, then

M (γ) f (x) :=

 γxγ−1
∫ b
x
f (t) t−γdt, 0 < x < b

γ |x|γ−1
∫ x
a
f (t) |t|−γ dt, a < x < 0.

Proposition IV.3 Suppose f, γ are as in the definition, and n = 0, 1, 2, 3, . . . then M (γ) f

is a probability density such that∫ b

0

xnM (γ) f (x) dx =
γ

γ + n

∫ b

0

xnf (x) dx,∫ 0

a

xnM (γ) f (x) dx =
γ

γ + n

∫ 0

a

xnf (x) dx,

µn [M (γ) f ] =
γ

γ + n
µn [f ] .

Proof In the following iterated integral change the order of integration and then evaluate

the inner integral:∫ b

0

xnM (γ) f (x) dx = γ

∫ b

0

xn+γ−1dx

∫ b

x

f (t) t−γdt = γ

∫ b

0

f (t) t−γdt

∫ t

0

xn+γ−1dx

=
γ

γ + n

∫ b

0

f (t) t−γ+n+γdt.

Similarly ∫ 0

a

xnM (γ) f (x) dx = γ

∫ 0

a

xn |x|γ−1 dx
∫ x

a

f (t) |t|−γ dt

= γ

∫ 0

a

f (t) |t|−γ dt
∫ 0

t

xn |x|γ−1 dx;

in the inner integral change the variable x = −u and then integrate to obtain

(−1)n
(−t)n+γ

γ + n
=

tn |t|γ

γ + n
for a < t < 0. This establishes the first two equations and the

sum of the two shows µn [M (γ) f ] = γ
γ+n

µn [f ].
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Proposition IV.4 Suppose f is a density function on [a, b] with a < 0 < b, γ > 0 and

0 < δ < 1, then g (x) := δf (x) + (1− δ)M (γ) f (x) is a density function on [a, b] and∫ b

0

xng (x) dx =
γ + δn

γ + n

∫ b

0

xnf (x) dx,∫ 0

a

xng (x) dx =
γ + δn

γ + n

∫ 0

a

xnf (x) dx,

µn [g] =
γ + δn

γ + n
µn [f ] .

Proof It is clear that g is a density. The other claims follow from the previous proposition.

For example ∫ b

0

xng (x) dx = δ

∫ b

0

xnf (x) dx+ (1− δ)
∫ b

0

xnM (γ) f (x) dx

=

{
δ + (1− δ) γ

γ + n

}∫ b

0

xnf (x) dx

=
γ + δn

γ + n

∫ b

0

xnf (x) dx.

Now fix α (= 1
2
, 1 for the real and complex cases) and denote the density function of(∣∣ρPT ∣∣− |ρ|) by f (x), supported on

[
− 1

16
, 1
432

]
, or for arbitrary α > 0 take the density

function whose nth moments are given by F2 (n, 0) (see equations 7 and 8 ); also denote the

density function of
∣∣ρPT0

∣∣ in the minimally degenerate setting by g (x) (more generally the

density whose moments are given by
(2 + 10α + 3n) (3 + 12α + 4n)

(2 + 10α + 4n) (3 + 12α)
F2 (n, 0)).

Let U1 denote the random variable with density M
(
3α + 3

4

)
g (x), then by Proposition

IV.3 the range of U1 is
[
− 1

16
, 1
432

]
and

µn

[
M

(
3α +

3

4

)
g

]
=

3α + 3
4

3α + 3
4

+ n
µn [g] =

3 + 12α

3 + 12α + 4n
µn [g] , n = 0, 1, 2, 3, . . .

Pr {U1 > 0} = Pr
{∣∣ρPT0

∣∣ > 0
}
.

Let U2 denote the random variable with density h (x) := 3
4
f (x) + 1

4
M
(
1+5α

2

)
f (x), then by

Proposition IV.4 the range of U2 is
[
− 1

16
, 1
432

]
and

µn [h] =
1+5α

2
+ 3n

4
1+5α

2
+ n

µn [f ] =
2 + 10α + 3n

2 + 10α + 4n
µn [f ] , n = 0, 1, 2, 3, . . . ,

Pr {U2 > 0} = Pr
{∣∣ρPT ∣∣− |ρ| > 0

}
.

Proposition IV.5 Suppose α > 0 then Pr
{∣∣ρPT ∣∣− |ρ| > 0

}
= Pr

{∣∣ρPT0

∣∣ > 0
}

.
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Proof From the conjecture it follows that µn
[
M
(
3α + 3

4

)
g
]

= µn [h] for all n. By the

uniqueness of moments (on bounded intervals) U1 and U2 have the same density and

Pr
{∣∣ρPT ∣∣− |ρ| > 0

}
= Pr {U2 > 0} = Pr

{
|ρ0|PT > 0

}
.

Appendix D: Specific moments for 6 × 6 Hilbert-Schmidt and 4 × 4 Bures

scenarios

6× 6 Hilbert-Schmidt moments

n = 1

〈
|ρ|k(|ρPT | − |ρ|)

〉
rebit−retrit/HS

〈|ρ|k〉rebit−retrit/HS
= − 5(k + 2)(k + 3)(2k + 7)

96(k + 4)(3k + 11)(3k + 13)(6k + 23)(6k + 25)
, (16)〈

|ρ|k(|ρPT | − |ρ|)
〉
qubit−qutrit/HS

〈|ρ|k〉qubit−qutrit/HS
= − (k + 3)(k + 5)(2k + 11)

3(2k + 13)(3k + 19)(3k + 20)(6k + 37)(6k + 41)
, (17)

and〈
|ρ|k(|ρPT | − |ρ|)

〉
quaterbit−quatertrit/HS

〈|ρ|k〉quaterbit−quatertrit/HS
= − 5(k(k(3k + 70) + 521) + 1194)

6(2k + 23)(3k + 34)(3k + 35)(6k + 67)(6k + 71)
.

(18)

n = 2

〈
|ρ|k(|ρPT | − |ρ|)2

〉
rebit−retrit/HS

〈|ρ|k〉rebit−retrit/HS
= (19)

5 (24k6 + 900k5 + 10974k4 + 63561k3 + 193602k2 + 302033k + 192132)

82944(k + 5)(3k + 11)(3k + 13)(3k + 14)(3k + 16)(6k + 23)(6k + 25)(6k + 29)(6k + 31)

and 〈
|ρ|k(|ρPT | − |ρ|)2

〉
qubit−qutrit/HS

〈|ρ|k〉qubit−qutrit/HS
= (20)

k6 + 69k5 + 1315k4 + 11475k3 + 51964k2 + 119856k + 112680

108(2k + 15)(3k + 19)(3k + 20)(3k + 22)(3k + 23)(6k + 37)(6k + 41)(6k + 43)(6k + 47)
.

n = 3

〈
|ρ|k(|ρPT | − |ρ|)3

〉
rebit−retrit/HS

〈|ρ|k〉rebit−retrit/HS
=
−35A

663552B
(21)

where

A = 24k8 + 976k7 + 16438k6 + 152052k5 + 852799k4 + 2987211k3+

6400915k2 + 7669535k + 3920730
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and

B = (k + 6)(3k + 11)(3k + 13)(3k + 14)(3k + 16)(3k + 17)

(3k + 19)(6k + 23)(6k + 25)(6k + 29)(6k + 31)(6k + 35)(6k + 37).

4× 4 Bures moments

n = 1

〈
|ρ|k(|ρPT | − |ρ|)

〉
two−rebit/Bures

〈|ρ|k〉two−rebit/Bures
= − k(16k(k + 7) + 245) + 173

128(k + 2)2(2k + 3)(2k + 5)(2k + 7)
(22)

and 〈
|ρ|k(|ρPT | − |ρ|)

〉
two−qubit/Bures

〈|ρ|k〉two−qubit/Bures
= − 3(2k(16k(k + 10) + 499) + 1005)

128(k + 3)(k + 4)(k + 5)(4k + 9)(4k + 11)
. (23)

n = 2

〈
|ρ|k(|ρPT | − |ρ|)2

〉
two−rebit/Bures

〈|ρ|k〉two−rebit/Bures
=

A

4194304B
(24)

where

A = 4182016k10+87822336k9+745901568k8+3257689088k7+8000700112k6+16462195504k5+

65217922488k4 + 254319857272k3 + 570485963797k2 + 660408583199k + 311220769578

and

B = (k + 2)2(k + 3)2(2k + 3)(2k + 5)2(2k + 7)(2k + 9)(2k + 11).

For each of the nine (six Hilbert-Schmidt and three Bures) results above, one can perform

a transformation k → (k+ r), where r is a simple rational number, so that the coefficient of

the second-highest power in the numerator becomes zero. (As throughout our paper α = 1
2
,

1 and 2 denote real, complex and quaternionic scenarios, respectively.) For the Hilbert-

Schmidt cases, we have r = 17
6

[n = 1, α = 1
2
]; r = 9

2
[n = 1, α = 1]; r = 70

9
[n = 1, α = 2];

r = 25
4

[n = 2, α = 1
2
]; r = 23

2
[n = 2, α = 1]; and r = 61

12
[n = 3, α = 1

2
]. For the three Bures

cases: r = 7
3

[n = 1, α = 1
2
]; r = 10

3
[n = 1, α = 1]; and r = 21

10
[n = 2, α = 1

2
].

A formula that fits the first two equations ((16) and (17)) in this appendix is

− 4α(α + 1)(α + 2)(2α + k + 1)(4α + k + 1)(5α + k + 1)(8α + 2k + 3)

(30α + 6k + 6)(30α + 6k + 7)(30α + 6k + 8)(30α + 6k + 9)(30α + 6k + 10)(30α + 6k + 11)
.

(25)
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However, for α = 2, this formula yields

− 4(k + 5)(k + 9)(2k + 19)

3(2k + 23)(3k + 34)(3k + 35)(6k + 67)(6k + 71)
, (26)

and not (18).

V. APPENDIX E. A SYMMETRY PROPERTY OF SEPARABLE STATES

Let Ω denote the set of 2N × 2N Hermitian matrices, with entries in R,C, or H, such

that M ∈ Ω implies:

• Mii ≥ 0 for 1 ≤ i ≤ 2N , and
∑2N

i=1Mii = 1;

• |Mij| ≤ 1 for 1 ≤ i, j ≤ 2N.

Consider Ω as a compact (closed bounded) subset of Rd where d = N (2N + 1), 4N2,

2N (4N − 1) for the fields R,C, H respectively, and furnish Ω with the standard Euclidean

(Lebesgue) measure µ. This is equivalent to the Hilbert-Schmidt measure.

Let σ denote the operation of partial transposition. As an action on the subset Ω of Rd

it permutes some coordinates and changes the sign of some other coordinates (for example

M12 is replaced by M21 = M12, that is (ReM12, ImM12)→ (ReM12,− ImM12)). Thus σ is

an isometry (a congruence relation) and preserves measure.

Let P := {M ∈ Ω : M ≥ 0} (positive semi-definite). Consider (for M ∈ P )

Pr {σM ≥ 0} =
µ (P ∩ σP )

µ (P )
.

Now suppose M ∈ P ∩ σP what can be deduced about Pr {det (σM) ≥ detM}? Let

E+ = {M ∈ P ∩ σP : det (σM) > detM} ,

E0 = {M ∈ P ∩ σP : det (σM) = detM} ,

E− = {M ∈ P ∩ σP : det (σM) < detM} .

Now σE+ = E−, σE− = E+ and σE0 = E0 and P ∩ σP is the disjoint union of E+, E0, E−

and µ (P ∩ σP ) = µ (E+) + µ (E−) + µ (E0). The set E0 is of lower dimension in Rd, thus

µ (E0) = 0. By the measure-preserving property of σ it follows that µ (E−) = µ (σE+) =

µ (E+) and hence µ (E+) = 1
2
µ (P ∩ σP ), and

Pr {det (σM) ≥ detM} =
µ (E+)

µ (P )
=

1

2

µ (P ∩ σP )

µ (P )
=

1

2
Pr {σM ≥ 0} .
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As is known the condition σM ≥ 0 is equivalent to det (σM) ≥ 0 when N = 2, thus M ∈ E+

is equivalent to M ∈ P and det (σM) > detM .
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