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Introduction

The generating functions of enumerative geometry constitute an important and very interesting
class of tau-functions of integrable hierarchies. This intriguing paradigm remains a subject of
considerable interest and a number of examples of its manifestation continuously grows. In this
paper we construct new relations connecting three tau-functions from this family and derive
linear constraints for all of them.

Namely, we consider the Kontsevich—Witten tau-function, the generating function of linear
Hodge integrals and the generating function of the simple Hurwitz numbers. The first of them is
known to be a tau-function of the KdV integrable hierarchy, while the other two are tau-functions
of the KP hierarchy. In this work we prove that

TKW = é—i— THodge- (01)

Here the operator (A}'Jr belongs to the symmetry group GL(oco) of the KP hierarchy. Moreover,
we derive an explicit expression for this operator, up to a constant factor (which is checked to
be equal to unity). Since a relation of this type, which connects the Hodge tau-function with



the Hurwitz tau-function, is known [I], formula (0.I)) allows us describe all three tau-functions
in terms of symmetry group operators.
The approach we use is based on the description of integrable hierarchies in terms of the Sato

Grassmannian, and more specifically, in terms of the Kac—Schwarz operators. This construction
allows us to derive linear constraints

J 70 =0, for m>1, (0.2)
L7, =0, for m>—1, (0.3)

where the index o indicates one of three considered tau-functions. All operators j% and E%

—

belong to the gl(c0) algebra (more specifically, to W14 ), and satisfy the commutation relations:
[:f,‘j‘,jﬁl} =0, for k,m>1,
[Ag, jf,fb]_ = —mj;‘jﬁrm, for k> -1 and m > 1, (0.4)

[A&Z%}_ = (k— m)Z&_m, for k,m > —1.

The constraints for the Kontsevich—Witten tau-function are well known, namely, in this case
equations (0.2)) describe a reduction from KP to KdV, and equations (0.3]) are the Virasoro
constraints. Two other families of constraints (for the Hurwitz and Hodge tau-functions) are
obtained explicitly for the first time (see, however, [2L[3]).

Although constraints for all three tau-functions satisfy the same commutation relations, they
are quite different in their form. Namely, the constraints for the Kontsevich—Witten and Hodge
tau-functions are given by the first and second order differential operators, while the constraints
for the Hurwitz tau-function contain all higher derivative terms.

The present paper is organized as follows. Section [I] contains material on the classical KP
hierarchy, tau-functions and Kac—Schwarz operators. In Section 2] we prove the relation between

tau-functions and derive the constraints (0.2]) and (0.3]). Section B is devoted to concluding
remarks.



1 KP hierarchy and its symmetries

In this section we give a brief introduction to the subject, for more details, see [4-9] and references
therein.

1.1 Free fermions

From the works of the Kyoto school [7] it is known that infinite-dimensional groups act on the
spaces of solutions of the integrable hierarchies. In particular, a central extension of the group
GL(c0) acts on the space of solutions of the KP hierarchy. This action is very natural in the
formalism of free fermiogi which we are going to sketch in this section. In particular, the
elements of the algebra gl(oo) (a central extension of a version of the gl(co) algebra) is naturally
given by bilinear normally ordered combinations of free fermions.

Let us introduce the free fermions ¢, ¥}, n € Z, which satisfy the canonical anticommutation

relations

[V ¥mls = [n, dple = 00 [n, ¥ ]4 = Gmn- (1.1)

They generate an infinite dimensional Clifford algebra. We use their generating series

U(z) =D e, W(2) =) wha (1.2)

kez, kez,

Next, we introduce a vacuum state |0), which is a “Dirac sea” where all negative mode states
are empty and all positive ones are occupied:

Y |0) =0, n<0; ¥, 10)=0, n>0.
(For brevity, we call indices n > 0 positive.) Similarly, the dual vacuum state has the properties
(O[¢py, =0, n<0; (0[pp, =0, n>0.

With respect to the vacuum |0), the operators 1, with n < 0 and ¢, with n > 0 are annihilation
operators while the operators ) with n < 0 and v,, with n > 0 are creation operators.

The normal ordering $(...): with respect to the Dirac vacuum |0) is defined as follows:
all annihilation operators are moved to the right and all creation operators are moved to the
left, taking into account that the factor (—1) appears each time two neighboring fermionic
operators exchange their positions. For example: 9j¢1: = —U1Y], W_1¢o?t = —vot—_1,
ST 50 = Yot 9], ete. Under the sign of normal ordering, all fermionic operators
¥; and ¢ anticommute. In other words, it is wrong to use the commutation relations of the
Clifford algebra under the sign of normal ordering, i.e., for example, *¢f12 # ¢ (1 — ¥19]) 2.

We also introduce “shifted” Dirac vacua |n) and (n| defined as

¢n—1---¢1¢0’0>7 n > 07
n) = (13)
Yo Y0 ]0), n <O,



O Y5y .. r_y, n>0,
(n| = (1.4)
Ol _1¥2...¢n, n<O.

For them we have

Ym|n) =0, m<mn; Y n) =0, m>n, (15)
(| =0, m>n;  (n|¢y, =0, m<n. '
and
Ynln)=ln 1), Wil 1) = o), -,
(n+1|vn = (n], (nly, = (n+1].
It is useful to introduce the bare vacuum |0co) and totally occupied space |—o0):
loo) = ... Yath1ehg |0),
(1.7)
|—00) = ---¢i37/)i27/)i1 |0) .
For these states we have:
0) = g s . . . |oo),
(1.8)

0) =129 _3...|—00).

With respect to the totally occupied state, all ¢)}’s are the annihilation operators while all ;’s
are the creation operators. With respect to the bare vacuum it is vice versa:

Yy |—00) = Yy |oo) =0, k€ Z. (1.9)
Bilinear combinations ), = Bmn s,y of the fermions, with certain conditions on the matrix
B = (Bun), generate an infinite-dimensional Lie algebra Exponentiating these expressions one

obtains an infinite dimensional group (a version of GL(c0)). Sometimes it is more convenient
to consider the algebra elements with normally ordered bilinear fermionic combinations

XB = Bunithtns. (1.10)

1To obtain a well-defined algebra and group one have to impose some restrictions on the matrix B (for example,
it can have only finite number of nonzero diagonals, or only a finite number of nonzero elements below (above)
the principal diagonal [I0]). We do not impose any restrictions of this type, thus, generally speaking, “algebra
elements” and “group elements” we consider do not belong to a well-defined algebra or group. Products or
commutators of such elements can be divergent and, in principle, should be regularized. The simplest example of
such regularization corresponds to the commutation relation between the current components ([L22]) (see, e.g., [4]).
No divergences appear in our calculations, thus we ignore this subtlety in what follows.



Corresponding group elements

G:exp(z Bik;lp;wk;) (1.11)

1,k€Z

act on the bare vacuum and totally occupied space in a particularly simple way. Namely, these
states are the eigenstates for all group elements:

G |—o0) = exp (Z Bii) |—o00) ,

<0
(1.12)
G |o0) = exp _ZB“ |oo) .

1>0

Excited states (over the vacuum |0)) are obtained by filling some empty states (acting by the
operators wj) and creating some holes (that is acting by the 1);’s). A particle carries the charge
—1 while a hole carries the charge +1, so any state with a definite number of particles and holes
has the definite charge. Let us introduce a convenient basis of states with definite charge in
the fermionic Fock space Hp. The basis states |\, n) are parametrized by n (the charge n with
respect to the vacuum state |0)) and Young diagrams A in the following way. Given a Young
diagram A = (A1,...,\;) with £ = £()\) nonzero rows, let (@|3) = (a1, ooy agolBry -5 Bay)
be the Frobenius notation for the diagram A. Here d()) is the number of boxes on the main
diagonal and o; = \; — 4, B; = N, — i, where X\ is the transposed (reflected about the main

diagonal) diagram A. Then

A, n) = w;_ﬁl_l .. w;_ﬁd(k)_l 7/’n+ad(x) o WUngay )

(1.13)
<)\7 ’I’L| = <7'L| ¢:L+a1 s rlzz);kl-i-ad(k) rl,Z)n_Bdo\)_l s T;Z)n—ﬁl—l'
For the empty diagram (0, n| = (n|, |0,n) = |n).
An operator
E=2 kiwis (1.14)
kez
is the energy operator. It defines a gradation on the Clifford algebra:
[E7¢k]_ = k¢k7
(1.15)
[E7¢]:]_ - _kw;:u

so that the energy of the operators 1, and 1), are k and —k respectively. We say that an
element of the Clifford algebra has positive (negative) energy, if it can be represented as a sum
of monomials ag vk, ... Y, Y, -y, with 37, ki — 3 m; > 0 (respectively < 0). Operators

. n1



(LI0) with a strictly upper triangular matrix B have positive energy and annihilate the left
vacuum

(0| Xp =0. (1.16)

Operators with a strictly lower triangular matrix B have negative energy and annihilate the
right vacuum

X50) = 0. (1.17)
From the commutation relations
[Xp,tn] =Y Binthi, [Xp, w5l == Bnithf, (1.18)
we see that
eXPne B =N " Rip, € Pne B =Y (R, (1.19)

where R = exp(B).

Expectation values of group elements are the 7-functions of integrable hierarchies of non-
linear differential equations. This means that they obey an infinite set of the Hirota bilinear
equations. The tau-function of the KP hierarchy labeled by a group element (L.IT]) is a ratio of
two correlation functions:

ed+(t)
o) = W. (1.20)

It depends on the variables t = {t1, t2, ...}, usually called times, through the linear combination
Jy(t) = > 4o tkJi of the operators

Je= 3 s = resa (27 tw() R (2):1 ). (1.21)

JEZ

They are the Fourier modes of the “current operator” J(z) = 27121 (2)1*(2)¢ and span the
Heisenberg algebra

[Tk, Ji] = Kbk-41,0- (1.22)

Operators J, with positive and negative k£ have negative and positive energy respectively, so
that

Ji ’0> = <0‘ J_p=0 for k> 0. (1.23)

Normalization (I.20) guarantees that 7(0) = 1. The bilinear identity
jq{ €62 (6 L )r (¢ + [+~ 1)z = 0 (1.24)

7



encode all nonlinear equations of the integrable KP hierarchy. Here we use the standard short-
hand notations

1 1
t+[z] = {tliz,t2i§z2,t3i§23,...}

and

E(t,2) =t (1.25)

k>0

The first nontrivial term in the expansion of the Lh.s. of (I.24]) gives the KP equation

7111 — 4111 + 3 (T11)2 + 377199 — 3 (T2)2 — 41713 + 41173 =0, (1.26)
where 75,4, = 82 82 ... 7. The second derivative of this equation with respect to t; gives the

1 2
KP equation in its standard form
3’LL22 = (4’LL3 — 12uu1 — U111)1 s

where u = 8‘3—; log(7). A KP tau-function, independent@ on even times tor, k = 1,2,..., is a
tau-function of the KdV hierarchy.

The coherent states e/~®) |n) (where J_(t) = > ko tkJr) and (n] e’+®) can be expanded as
linear combinations of the basis states |\, n). The coefficients are the famous Schur polynomials.
This expansion is important since it provides a link between hierarchies 02 integrable equations

and the theory of symmetric functions. Given a Young diagram A = (&|5), one can introduce
the Schur polynomials (or Schur functions) via the Jacobi-Trudi formula:

t)=  det  hy_si(t), 1.27
sx(t) et +5(t) (1.27)

where hy(t) are the Schur polynomials for one-row diagrams

exp (£(t,2)) = > hg(t)z". (1.28)
k=1
It holds
e/~ n) =3 (=1)"Vsx(t) [A, n), (1.29)
A
(n]e”+(® = "(—1)"Ms5(t) (A\,nl, (1.30)
A

2 Actually, a prefactor which is exponential of a linear combination of even times is allowed, as it does not
affect the Hirota equations.



where the sums run over all Young diagrams X including the empty one, and we have introduced
b(\) = Z?gi)(ﬁi +1). For the empty diagram sg(t) = 1, b(0) = 0.
The Baker—Akhiezer (BA) function and its adjoint are given by the Sato formulas

et TE =T (1M Wy(2)G0)

Yit,2) =e t) (e ®G]0)

(1.31)

_ e T ) (1] Uy (2)G 0)

vt 2) ) 2(0[e+®a]0)

(1.32)

In terms of the BA function and its adjoint, the bilinear identity (I.24]) acquires the form
jé (b, 2)Y* (¢, 2) dz = 0. (1.33)

1.2 Wi, algebra

The boson-fermion correspondence allows us to represent a bilinear combination of the fermions
in terms of the bosonic operators Jy:

° * o __ ? * ¢(y)_¢(z)* _
ow(y)w (Z)o - y_2<*e * 1)7 (134)
where
o(z) = Z k! (J_kzk - sz_k> + Jolog z + P. (1.35)
k=1

Operators Jy and P commute with all other components .J;, and satisfy the commutation relation
[Jo, P]_ = 1.

Since the operator P drops out of (I.34]), both Jy and P play no role for our consideration of
the KP hierarchy and can be ignored in what follows (but they are important for MKP or Toda
hierarchies). The normal ordering for bosonic operators * ... * puts all J;, with positive k to the
right of all J, with negative k.

An expansion of (L34 /f\or y = z + € with small e yields the algebra Wi ., which is an
important subalgebra in gl(oc0):

e b(e)=0(2) « _ 1 " m)
e - +mZ::1 TR W™ (z) (1.36)
so that the operators W(m)(z) =3 z—"—mW,Em) are just normal ordered elementary Schur

functions (28] of the variables py = £9%¢(z), where 9, = %
W (2) = (m — 1)1 hy(p) . (1.37)

9



The same expansion of (L.34]) allows us to identify
WD () = 7Lt ()0 e(2) (1.38)

or, in terms of the bosonic current,

WD () = =t (J(2) + 0" J(2): (1.39)
From (.15 follows that operator
WD = —res. (271 ()20 =) ) (1.40)
has energy —n:
[E, W,gmq =W, (1.41)

Commutation relations of the operators W™ with the fermionic fields (L2) follow form the
more general relations (LI8):

WD (z)| = amnar(a), .
1.42
Wm0 (2)] = (0™t 2),

Sometimes it is more convenient to use another basis for the same Wi, algebra [9]. Namely,
we put

WO () = WO(2) = 0.0(2),
W@ (2) = WO (z) - %8ZW(1)(2) =

- - L (1.43)
1MW@ZW@@—@W®@+EwWW@:

z

Algebra Wi is a central extension of the algebra w1y, of diffeomorphisms on the circle.
There are many different ways to identify elements

a= ) 20 (1.44)

1€7,j20

of w14, with operators from Wi, o,. We identify an operator (L.44]) with
W, = res, (z_1:¢*(z)a ¥(2)?) (1.45)

10



so that
W™ = Wit (1.46)
From (LI8)) it follows that

[Wa,¢(2)]_ = —C”/J(Z)a
[Wa, 9" (2)]_ = a™¥(2),

(1.47)

where a* € w11 is the adjoint operator for which an identity

res, (271 f(2)ag(z)) =res, (27 'g(2) a* f(2))

holds for any commuting f(z) and g(z) (in particular, (z¥07)* = z(—a,)™2*1).
The algebra Wi, is a central extension of wi4, thus

[Wm 5 Waz]_ = [a1,a2]— + Cal,aga (148)
where Cy, 4, is a central element commuting with all other operators in Wi4. This term can

be effectively described by the commutation relations for the generating functions (for example,
functions of this type were considered in [11]):

(@) = Wiangeon = ves, (271107 ()20 0(2) 1) (1.49)

These generating functions can be represented in terms of the bosonic field (I.35]) as follows:

R,.(q) = %—q <resz (z”_lje¢(qz)_¢(z) j) - 5n70> . (1.50)

An operator R, is an infinite linear combination of operators Wém):
Ry(e) = — (w,gw +eW? + 5(W,§3> + W)+ ) . (1.51)

For pg # 1 the commutation relation between operators R,, can be found by a direct calculation:

1
Bula) B )] = 0" =3 (Rutonap) + Oino = ). (1.52)
which, for p = ¢~! reduces to
[Ru(q), Rmn(a™ D] _ = (7" = ¢") Jntem + 1¢" Oy 0- (1.53)

Operators R, are important for the description of the Virasoro constraints for the Hurwitz
tau-function in Section

11



1.3 Heisenberg, Virasoro, and W® algebras

The operators W) (z) for k = 1,2,3 are particularly important for our construction. Let us
consider them in more detail. Operator W(Y(z) coincides with the current J(z):

WW(z) = 0.4(z) Z,Ml (1.54)

mez
and its components

T =W__ (1.55)

span the Heisenberg algebra (L.22]).
The operator

W) = 1t (@02 = 3 (1.56)

mez

generates the Virasoro algebra Vir C W14 with central charge ¢ = 1. This algebra is spanned
by the operators

Ly =W_ n(z0. 4012 (1.57)

satisfying the commutation relations
L 3
[Li, Lin)— = (k — m)Lgym + 125k,—m(k — k). (1.58)

The operator Ly coincides with the energy operator (L.14]).

We introduce two subalgebras Viry of the Virasoro algebra, spanned by Lj with strictly
positive and strictly negative indices. We will say that an operator belongs to the group Vir,
(Vir_), if it is of the form exp (V) with V € Viry (V € Vir_).

Operators Ly together with J; span the so-called Heisenberg—Virasoro algebra V. Commu-

tation relations of V are given by (L22]), (L58) and
[ka Jm]— = —MJgtm- (1'59)
In what follows, we also consider the Heisenberg—Virasoro group with elements of the form
Cexp Z (arp Ly + brJy) |, (1.60)
kez
where C' is a constant.
The subalgebra V. C V, spanned by J; with £ > 1 and L, with m > —1, has no central

terms in the commutation relations (I22]), (IL58) and (I59). This subalgebra describes the sets
of constraints for the tau-functions considered in Section

12



The operator

1 M,
W) = 21 (0:0() 1 = Y g (1.61)
nez
where
Mn =W __n(2024(nt2)20. 4 L (nt1)(nt2)) (1.62)

together with W (2) generates the W (®)-algebra introduced in [12].
From the commutation relations (L[.22]) we have

)
8% 0] e’+®  for k>0,
k

0le”+® 5 =g for k=0, (1.63)

| —kt_i (O] e+ for k< o.

This implies that for any operator W, which is a combination of the bosonic current modes
(LZI) (in particular, for any operator from Wi ,.,) there exists an operator W, which acts in
the space of functions of the times ¢, such that:

W (0] e’+® = (0] e+ ®W. (1.64)
Namely, we put
)
% for k>0,
k
jk =130 for k=0, (1.65)

| —kt_p for k<O,

so that

oo

N B 1 9
J(z) =" <ktkzk ' zk+18—tk> : (1.66)
k=1

This identification allows us to represent the transformation given by the group multiplication

TH(t) —> TGH(t), (1.67)

13



in terms of the operators, acting on the functions of the times ¢, (at least for G, which is a group
element of the W4, algebra). From the definition (L20]) it follows that

—

Towp(t) = C’eWTH(t), (1.68)

where C' = % is a constant. This constant is equal to unity if the operator W has positive
energy.
For example, for W =37, _,axJi and an arbitrary group element H we have

Tow g (t) = exp (Z ka_ktk> T (t). (1.69)

k>0

For W =3, arJi, we have

Towp(t) = % X T (t + a). (1.70)

The Virasoro subalgebra of Wi, is generated by the operators

~ 1 - 0 1 0?
Ly == btot kit = - 1.71
2 > abtats+ ; Kt |2 ag::m Ot 0ty (1.71)

at+b=—m

which are counterparts of (L57). For the W) algebra we have

— 1 0
My = 5 > abctatpte+ > abtety o e
a+bte=—k c—a—b=k

2 1 83
+ Z 8tb8t i +Z Ot 0ty Ot (1.72)

b+c—a=k
In particular,
—~ 0 82
My = tit; i+ )t ———
0 ;1 <w Bty + (0 + J)tity at,-atj> (1.73)

is the cut-and-join operator of the Hurwitz tau-function [I3}14].

1.4 Miwa parametrization and Grassmannian

The Miwa parametrization is very convenient for various problems, in particular for matrix
models. There are different ways to introduce the Miwa parametrization. All of them are
combinations of four basic possibilities, corresponding to the sign combinations in

1
ty =+ Tr Z*k, (1.74)

14



Here Z is a diagonal matrix diag (21, 22, . . ., 2n) for some finite NV and the signs are independent.
Let us start with the Miwa parametrization

ty = —%Tr zZ7k (1.75)

A tau-function in this parametrization is

T(-[z7]) =" (tk = —%trZ"“> . (1.76)

From the boson-fermion correspondence it follows that a tau-function in this parametrization
is given by the correlation functions

I (] e—J+ (= D= =z D g 10)
T(_ [Z 1]) - <0]G‘0>
O[5 - Yn_19(21) .. ¥(2n)G|0)
(01 G 0) IT;;(zi — %) ’

(1.77)

The Wick theorem (see, e.g., [4]) allows us to rewrite this fermionic correlation function as a
ratio of determinants:

B dety; 1 i(2))

(- [Z_l]) _ e , (1.78)
where
(0] ¥7_19(2)G[0)
902'(2) = <0|1G |0> ) (1'79)
and

A(z) = [z - =) (1.80)

1<j

is the Vandermonde determinant.
From the anticommutation relations (1)) it follows that

(Wi, 9(2)], =27, (1.81)
so that the functions ¢;(z), which are usually called basis vectors, have the following expansion
. O] Y (2)¢f_1G0) 1 e Lk
pi(2) =21 - =2 i 1.82
o1G0) 2 (1.82)

where

G 0) 83

15



The set {¢;(z)} defines a subspace W of an infinite dimensional Grassmannian. Correspond-
ing theory was introduced by M. Sato in [I5] and further developed by G. Segal and G. Wilson
in [16]. Convergence of a tau-function as a function of times is not important for us (we consider
a tau-function as a formal series in times), thus, we will focus on Sato’s version of the construc-
tion. Let us consider the space H = H, & H_, where the subspaces H_ and H, are generated
by negative and nonnegative powers of z respectively. Then the Sato Grassmannian Gr con-
sists of all closed linear spaces W € H, which are compatible with H,. Namely, an orthogonal
projection w4 : W — H should be a Fredholm operator, i.e. both the kernel kermy € W and
the cokernel coker m, € Hy should be finite-dimensional vector spaces. The Grassmannian Gr
consists of components Gr(k), parametrized by an index of the operator m.. We need only the
component Gr(o), which corresponds to the Dirac vacuum |0). Moreover, we will consider only
the big cell Grf) of Gr"), which is defined by the constraint ker my = coker my = 0.

For any W from Grgf) there exists a basis {¢;(z)} such that the matrix relating {71 (p;(2))}
with 2z has a well-defined determinant. Any such basis we call admissible. It can be always
transformed to the basis of the form

_ i1 -k
pi(z) = 2' +k>§1 Pikz (1.84)
—1

Obviously, for each W there exists a unique basis for which ¢; ;, = 0 for £ < 1 (that is the basis

of the form (I.82)). This basis is called canonical.

Let us denote a point of Grf), corresponding to a group element GG, by W¢. Then, the Baker—

Akhiezer function (IL31]) belongs to the space W for all values of t, for which the corresponding
tau-function is not equal to zero [16]. Then, from the expansion (L30) it follows that

(A 1 9(2)G[0) € We (1.85)
for arbitrary A. Thus

(0] Xob(2)G |0) € We (1.86)

for any X from the Clifford algebra such that the correlation function does not vanish.
For any group element G = exp <Zi,kez Bii2r ¢k:) the matrix ([.83]) defines a group
element, which is equivalent to G in the following sense. Consider

G=exp| Y @intythio1 |, (1.87)
ik=1

where ¢; ;, are the coefficients of the canonical basis (I.82). It can be shown (see, e.g., (3.37)
in [4]) that

G10) = (0| G |0) x G |0). (1.88)
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Relation (LI1Z) implies that G |oo) = |oo), thus

G 0) = g T .. . |oo), (1.89)
where
Ui = GUIGT = v + ) it = ress (27 g ()17 (2)) - (1.90)
=1

We see that the fermionic operators @i, which describe the state G |0), are defined by the
canonical basis vectors (L79).

Let us consider an operator W, € Wi, related to some differential operator a € wi4c0 by
(L45). Then, an action of the operators from the algebra Wi, as well as the corresponding
group elements on the space of tau-functions can be translated to the action of algebra elements
W1400 and corresponding group elements on the Grassmannian [9]. Indeed, relation (L.88)) yields

eVeG|0) = (0] G |0) x V=G 0), (1.91)
where
Ve G |0) = glalvilal Pilal ... Ve ooy (1.92)

and, for any operator ¥ we define
Ula) = eVale=Wa, (1.93)

From (L12) it follows that €'V |oo) is proportional to |oo). Taking into account (L90) and (L47)
we have

@i[a] = Mo @i e Wa = res, (z_lgpkﬂ(z)ew"z/}* (z)e_W“)
= res, (z_lgokﬂ(z)e“*?,b*(z)) (1.94)
= res, (z_lzb*(z)e“gpkﬂ(z)) .

This observation justifies the identification (L45]) between two types of operators.

We see that the action of the group element e'Ve is equivalent to the action of the operator
e® on the set of basis vectors. The problem is that, in general, for operators W,, which have
components with non-positive energy, the vectors e®p, are not of the form (L84]), but are
Laurent series infinite in both directions. In spite of this difficulty, these vectors can sometimes
constitute an admissible basis.

This can also be shown in a slightly different way. Namely, let us denote by ¢ (z) the
canonical basis vectors corresponding to the group element eV«G. Then, by definition,

n Ol vy 1 9(2)e™=G0) (0] y; e"eep(2)[—a] G |0)
# (%) Olemam G0) : (1.95)
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where, from ([L47) we have

Y(2)[-a] = e Vep(2)e = ety(2).

Thus,
oi (2) = e (0] X9(2)G [0) (1.96)
for
Y * 1€Wa
(0] GW“G 0)

From (L86) it follows that W,w, 5 C e*Wg. On the other hand

(0] ¢f_re”Vayp(z)e™ =G |0)
(01 G0)

epi(z) = = (0| X (2)eV=G |0) (1.97)

for

*16 Wa

goYime
(01G10)
so that e*Wg C W,w.. This means that e*Wg coincides with W w, .
We have seen that the vectors e®p;(z) belong to W,w,. Do they constitute an admissible
basis? The answer depends on the energy of the operator W,. If it has positive energy, then

a0 0l e V()M G 10) (0] y[ali(=) WaG|0 RS
where
vt = res, <z_ke“zi_l) . (1.99)

We see that yf = 1, so (L98)) are basis vectors, but not necessary the canonical ones. For W,
with energy equal to zero we have the same expression as in (LL98]), but only diagonal elements
of the matrix v} are not equal to zero. Thus, e%p;(z) in this case is proportional to the basis
vector ¢!'(z) with the coefficient of proportionality

7¢ = res, (z ey 1) . (1.100)
If the operator W, has components of negative energy then, in general, the vectors e®p;(z) do

not constitute an admissible basis.
For another sign convention in the Miwa parametrization:

te = %TrZ_k (1.101)
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a tau-function is again given by the ratio of determinants

~ 0] e+ (ler D+-+J4 ("D G |0)
r([z71) = <

<0| 1/)_1 e ¢_N¢*(ZN) e ¢*(21)G |0>

= det(2) (0] G [0) A(Z) (1.102)
B detz]'szl ©;i (%)
o Az)
where
pr(z) = 27" x <0|¢<‘S|¢;(|?>G|O>. (1.103)

These basis vectors define the orthocomplement W+ of the subspace W. Obviously, they can
also be expressed in terms of the matrix ¢; j

pr(z) =271 = iz (1.104)
k=1

and the adjoint BA function (L3Z) belongs to W+. Repeating the argument for ¢y (2) one can
show that the action of the operator exp(W,) on the space of tau-functions is equivalent to the
action of the operator exp(—z~'a*z) on the sets of the adjoint basis vectors ¢} (z).

In the next chapter we will work with the Miwa parametrization, which uses an inverse
matrix variable

1
ty = - Tr z*. (1.105)

We denote by ®;(z) the basis vectors in this parametrization, namely
Oi(2) =iz ) =24 (1.106)
For this choice of the sign convention we have the following expression for a tau-function:

r((2)) = ‘“A(i‘“)) (1.107)

Corresponding identification between operators from Wiy, and operators from wiyo, acting
on families of the basis vectors ®;(z), is

W ogm = —(2°0;)" 27", (1.108)

This allows us to introduce W1y, operators, which are the counterparts of the w4, operators,
acting in this Miwa parametrization. For operators (LI08]) we define

Y_(z2az)msz = Wzkag’b. (1.109)
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Thus, action of the operator a € wi4o on the set of basis vectors ®x(z) is equivalent to the
action of the operator

Y, =res, (2712 (271 2t azyt(z7h)?) (1.110)

from the algebra Wi, on the group element. The corresponding bosonic operators are defined
by

% _ @+
}/(ZQaz)mzk = res, <Z *m—HJ(Z)* . (1111)

In particular, in this parametrization the operators (L55]), (I57) and (L.62) correspond to
the following operators from wy

Je=Y;, oir=2"" k#1,

- k41
Ly=Y, <l =2" (Zaz — T) ; (1.112)
1 2
)

A constant from wi.1 4 corresponds to the operator Jy, which we can identify with zero as far
as we consider the KP hierarchy.
1.5 Kac—Schwarz operators

Let a € w11~ be an operator such that
aWcw (1.113)

for some point of the Grassmannian Grgﬁ)) . Then, for the corresponding tau-function it holds

that
Wer=Cr (1.114)
for some constant C. Indeed,

(0] e”+®OW, G |0)

OKED (1.115)

Wer =

Kaz

3The operators used in [1] are related to our operators by a conjugation w = zw 271, just because M.

Kazarian uses another normalization of the basis vectors, ®) = z &K%
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and, from (L88]) we have

WG [0) = (0] G |0) x W.G |0) = (0] G |0) (Z{p;{pj b [W{[]_ By - |oo)
=0
+URUT - Waleo) ). (1116)

Since

{Wa,@ﬂ _ =res, (z_lw*(z)a Pr11(2)) (1.117)

is a linear combination of % for any a satisfying (ILI13]), and the totally occupied space is the
eigenstate of any algebra element (LI0]), we have

W,G|0) = C G|0) (1.118)
for some constant C. Thus,
—~ (0] e’+® G |0)
Wer=Cr—rnr—er-—-=-=CT. (1.119)
(01 G [0)

Operators a satisfying (IL.I13]), or similar relations for W+, we call the Kac-Schwarz operators
[17]. Obviously, the Kac—Schwarz operators form an algebra. However, general properties of such
an algebra for arbitrary KP solutions are unknown (see, e.g., [18] and [19] for recent discussion).

1.6 Virasoro group action

In this subsection we describe how the subgroups Vir4 of the Virasoro group act on different
spaces important for our construction. In particular, we consider an action on the space of func-
tions of times (the main example here, of course, is an action on the space of tau-functions), on
the Heisenberg—Virasoro algebra and an action of the corresponding groups of diffeomorphisms
on the space H.

With any operator exp (Y axLy) from either Vir, or Vir_, according to the rule (LI12I),
we identify an operator exp (D agli). This operator is defined in terms of the formal series

g(2) =Y apz'F:
S o = 9(2)0: — 50'(2) — = g(). (1.120)

This series allows us to define two formal Laurent series in z:

f(z) =exp (Z akl+k> Z exp (— Z akl+k) (1.121)

and
f(z) = exp (Z akl—k) Z exp (— Zakl—k> = % (1.122)
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For an operator from Vir, the series f and fare of the form
f(z2)=z24b_1+boz t4b gz 24+b_yz 3+

and
F2) =2 +b_122 4 (b_a +b_12) 2% + (3b_ob_y + b_g + b_1®) 2* (1123
+ (4b_gb1 +2b_0% + 6b_ob_12 +b_g+b_1*) 2"+
For an operator from Vir_ we have

f(z):Z+blz2+b223—|—b324—|—b425+...

and

. by — b2 2013 —3boby 4+ b3 10bobi2 + by — 5b1* — 4bgby — 2652
f(z):z—l—bl—l—zzl—l— 1 Z221+3+ 201" + 04 1 301 2+

23

Here b;’s are polynomials in the coefficients ay.

Notations we use can be confusing, because it is not always clear if we consider a product of
two operators (one of which can be an operator of order zero), or an operation of the operator on
the function (so that the result is a function). To avoid possible confusion, when necessary we
will denote the product of two operators as a - b, while an action of the operator on the function
as a[b]. For example:

f(z) =exp <Z aklk> - Z - exp (— Z aklk) =exp (9(2)0,) [2] .

We use this notation for operators of all types.

Series f(z) and f(z) play an important role in our constructions. Thus, in what follows we
need

Lemma 1.1 For any constant o and a series f(z) defined by (IL.121) we have

exp (9(2)0: + ag'(2)) = (f'(2))” - exp (9(2)0) (1.124)

and

o (155 (fmr -~ 7)) w0 for k21

(1.125)
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Proof. Both relations follow from the Baker—Campbell-Hausdorff formula. From this formula

we know that for any h(z) and g(z) we have

exp (ah(z) + g(2)0:) = exp(an(z)) exp (9(2)0:)
where n(z) is a formal Laurent series in z:

e9(2)%= _ 1
n(z) = T [h(2)] = h(z) + 59(2) 0.h(z) + ...

In particular, if h(z) = ¢'(z2), then

e9(2)9: _ 1

n(z) = == [g/(2)] = (79 — 1) [log(9(2))] = log(g(f(2))) — log(9(2)).

9(2)0:

Moreover, we have

9(f(2) = /% [g(2)]

I
/N
gy

Q
—~
N3
S5
w
Q
—~
N
~—
SN
N—
)

so that

and (LI124]) follows from (L.I26]).
For (LI125) we have instead of (I.I28)

which, for k # 1, is equal to

n(z) = <€g(z)6z - 1> [(kz _ 11)Zk—1:| = i 1 <f(2;k—1 - zk1—1> ;

and for £ =1

n(z) = (@ ~ 1) [~ log(=)] = log (m) ,

which establishes (I.125)). This completes the proof.

(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

From this lemma and ([I20) we immediately arrive at the following expression for the

operator (LI20):
exp (Z aklk> = % f'(2) exp (9(2)0,) .
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In what follows we will also use the formula (LI125]) for k = 4:

exp (g(z) . - %) = exp <ﬁ - 3%) exp (9(2)0) (1.135)

Let us show, how the groups Viry act on the algebra Wi . For the current J(z) from the
commutation relation (L59) we have:

[Li, J(2)]_ = 28 (20, + (k + 1)) [J(2)]. (1.136)
Thus

Tk g(z) e S owh = oxp (YD g (202 + (k + 1)) [(2)]. (1.137)

From the definition of the series f(z) (LI22) it follows that (see, e.g., [20]):

exp (- at (20 + (k+1))) [J()] = F(2) J(F(2)): (1.138)

For the generating series of the Virasoro algebra W (z) from (58] we have

= 2 (2. +2(k + 1) W (2)] + 1—12(k:3 _ B2, (1.139)

[Lk, w® (z)]

so that

~ 2 ~ D_ 1
Zbh W (z) . Rk = (7)) WOF(2) + S [S k- k2], (1140)
where
D= apz" (20, +2(k +1)). (1.141)
More generally, under conjugation the operator *.J (z)k: behaves like a k-differential:
- k ~
eRanbi () rem Rk — (F(2)) LI () 4 (1.142)

Of course, the above formulas are central extensions of the conjugation relations for the
algebra wi4~. For example, let us consider the operators l,, from (LII2)). Since

exp (Z akzl_k@) ., exp( Zakzl k@) e )5 (1.143)

we have

exp (Z aklk> Iy - €Xp (— Zaklk> =r(2)0, — %7‘/(2) — 27 1r(2), (1.144)
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where r(z) = f(2)17™/f'(2).
Let us show how an element of the Virasoro group Viry, acts on an arbitrary function of
times (not necessary a tau-function) Z(t):

eXoxli [7(4)] = eZ b Z(t) . e~ Lewbn . Xl 1], (1.145)
Let us assume that the function Z(t) is given by a correlation function

Z(t) = <eZk>oktk5k> (1.146)

in some model with some commuting operators Si. Then, since the operators Ek for positive k
annihilate constants, for an operator from Vir, we have

62’00 akfk [Z(t)] — <eXp <Z k‘Sk eZk>o akfk “tp e 2 k>0 akzk> [1]>

k>0

9

= <eXp <kz>0 <k ti Sk + S_ka—tk>> [1]> (1.147)
o 1~ ~

= <exp <kz>0/€ <tk Sk + §Sk5—k>> > ,

Sj = res, <z_k_1 Q) (1.148)

where

for
Q=> Sif(2)" (1.149)
k=1

Here f(z) is the series (LI21)). The last line of (LI4T]) can also be represented as

X k>0 kL [Z(t)] = <eXp <Z kt; res, (%) — %resz (Q 0, Q_)> > . (1.150)

k>0

If S = %Tr X* for some X (in particular, it can be a matrix in some matrix integral), then one
can say even more. In this case (LI50) reduces to

k>0 ar Ly <eXp (Z t; Tr Xk>> =
k>0
— ~ N
f(X)®1-1® f(X) X .
<\/det Yol 1ox  Xdet <f(X)> exp <ZtkTrf(X)k>>7

k>0

(1.151)
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where f is given by ([LI2ZZ). We see that if the correlation function in the Lh.s. of (LI5I) is
a tau-function, then this formula gives an infinite dimensional family of tau-functions given by
correlation functions with double-trace interaction.

Action of the group Vir_ can be derived from the action of Vir, and from the following
observation: for operators (L43)) with m = 1,2,3 we have

W (t) [ezboktksﬂ —Wm(s) [ezboktksk} , (1.152)

where an operator Wlim)(S) acts in the space of function of Si’s. In particular, for the Virasoro
operators we have an identity

exp (Z akik(t)) [ezboktksk} = exp (Z a_kfk(S)) [ezboktksk] . (1.153)
k<0 k>0

Thus, to describe an action of Vir_ we can take the expression (LI50) for an action of Vir,,
interchange ¢, and Sk, and substitute f(z) with f(2):

ol 1 P
e2ok<0 Ok *Z(t) = exp <—§reszP82P_ X { exp ZkSkresz sy , (1.154)

k>0

where
P=>"t,f(2)". (1.155)
k=1

For the operators Sy = %Tr X* this expression reduces to
~ 1 —_~
e2k<0 %Lk 7 (1) = exp <—§reSZP8Z P_> X <exp ( E tr Tr [f(X)k] >> , (1.156)
+
k>0

where we use the notation [...]|; for the part, which contains only strictly positive degrees of
X.

Since operators from the algebra Vir_ are of the first order, operators from Vir_ define a
linear change of variables when act on an arbitrary function:

E2k<0 akzkz(t) — e i Aitits g (’E) , (1.157)
where
1) = res, (z_k_l P> , (1.158)
and

A;j = res; <f(z)i8,z [f(z)ﬂ_) . (1.159)
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For tau-functions this transformation is known as a transformation between equivalent hierar-
chies [20H22].

1.7 Matrix models

Any formal series in an infinite set of variables ¢ can be expanded in a sum of the Schur
functions. Expansions of the tau-functions of the KP hierarchy are quite special, namely the
coefficients ¢y parametrized by the Young diagrams A:

T(t) =) easa(t) (1.160)
A

satisfy the Pliicker relations [§]. From the expansion (L30) the fermionic correlation function
expression for the coefficients easily follows:

ex = (=)™ (X, 0/ G |0). (1.161)

Let us denote by 7V (¢) a restricted sum
™) = D as(b), (1.162)

where [()) is the length of the partition, so that 7(t) = 7°°(t). This restricted sum is also a KP
tau-function for any N (see, e.g., [4]). Since for any N x N matrix Z the Schur function labeled
by A vanishes if [(A) > N

Sx <tk = %tr Zk> =0, (1.163)
one has
™ (2) =" (2]) = =7 (2)]). (1.164)

The restricted sums (LI62]) naturally appear in the expansion of the matrix integrals. Let us
consider classes of the matrix models, which are most important for our purposes.

Unitary matrix integrals are of primary interst for us. We use the Haar measure normalized
in such a way that the integral over the unitary group is equal to unity:

/ [dU] = 1. (1.165)
u
Integration rules for the Schur functions are particularly simple:

/u[dU] S ({UAUTBD = W, (1.166)
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sx ([AB])

[ s @Ay s, ([v8]) = 255205, (1.167)

where dim y is a value of the Schur polynomial in the Miwa parametrization with the unity
matrix I = diag (1,1,...,1):

)\i—)\j—l-j—’i
i

dimy=s (1) = ][

0<i<j<N

(1.168)

With the help of the Cauchy—Littlewood identity, this leads us to the following expansion of the
unitary matrix model:

/ [dU] exp (Zth’“HmUT’“) = ) salt)sa(D). (1.169)
u k=0 (NN

To restore the explicit time dependence for any tau-function in the Miwa parametrization
one can use the unitary matrix integral:

TN = ex N I Tk T . .
(t) /u dU] p@tkw) () (1.170)

The Itzykson—Zuber (IZ) integral for diagonal matrices A and B is a simple symmetric
combination of the eigenvalues of A and B :

= det %
/M (U exp (Tr (UAU'B)) = (g k!) m. (1.171)

In what follows we will mostly work with the eigenvalue integrals. For example, for A= B =1
the orthogonality condition (L.I67) in terms of eigenvalues reduces to:

N du;
Momf, G180 0000 = Nl (1172)
j=1 ujl=

Another important class of matrix integrals is given by integrals over Hermitian matrices.
A Hermitian matrix can be decomposed into the product ® = UXUT with unitary U and real

diagonal X. Then the element of the volume in the Hermitian matrix integral f?—i [d®]... is:
N
[d®] = [dU] A(z)? ] ] das. (1.173)
i=1

The normal matrix integral is an integral over normal matrices (that is over matrices com-
mutating with their conjugate, [Z, Z T] = 1). A normal matrix can be diagonalized

Z=UZzZUT, (1.174)
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with the unitary matrix U and the diagonal matrix Z with complex entries. Then the measure
in the normal matrix integral [y, [dZ]... is

N
[dZ) = [dUT|A(2)]* [ ] 4 (1.175)
=1
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2 Three tau-functions and relations between them

In this section we investigate the properties of several generating functions of enumerative ge-
ometry and relations between them. All considered partition functions are tau-functions of the
KP integrable hierarchy, and, in what follows, we focus on their integrable properties.

2.1 Tau-functions and enumerative geometry

This section is devoted to a brief reminder of the geometric origin of the considered tau-functions,
for more details see, e.g., [1L23H25].

The first of the partition functions we consider is the generating function of linear Hodge
integrals. Let M., be the Deligne-Mumford compactification of the moduli space of stable
complex curves with n marked points. We consider linear Hodge integrals

[ n e = Oy ), 2.1)
pin

where ); is the first Chern class of the line bundle corresponding to the cotangent space of
the curve at the i-th marked point and A; is the i-th Chern class of the Hodge bundle. These
integrals are trivial, unless the corresponding complex dimensions coincide:

j + Zmz = dim (mp;n) ) (2.2)

i—1

where dim (ﬂp;n) =3p—3+n.
Let us introduce the generating function of linear Hodge integrals:
F(t%u) =Y (-1) <Aj exp | Y (2k + 1) topi17i > u?, (2.3)

320 k>0

where A\g = 1 and t° denotes a set of odd times topy1. H The change of variables

Tl(t) =1y,
1 9 0
T2k+3(t) = %+ 3 Z (mu tm + 2(m + 1)u tm41 + (m + Q)tm+2) 8TT2k+1(t) (2 4)
m>1 m ’
PN ~ ~
- To+2ul 1 +1_ >T t
%_1_3(“ 0+2uLl_1+ L_o) Tor4q(t),

such that Toyy1(t) = togps+1 + O(u), allowed M. Kazarian to relate the generating function (2.3))
(which is a solution of integrable hierarchy of topological type [26] but not a solution of the KP)

4Here we want to stress that the chosen normalization of the variables t;, does not coincide with the one
generally accepted in the enumerative geometry, but is natural for matrix models and integrable systems.
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to the KP hierarchy. Namely, in [I] it was proved that the exponential of the function

FHodge(t; u) = F(T(t); u) (2.5)
is a tau-fucntion of the KP hierarchy for arbitrary u:
THodge(t; u) = exp (FHodge(t; u)) . (26)

This function, as opposed to (23]), depends on both even and odd times.
For u = 0 only y-classes survives in (2Z3]):

FKw(tO) = <exp <Z(2k’ + 1)” t2k+17—k> > = FHodge(t§ 0) = F(to; 0) (27)
k>0

and (2.6) reduces to the profound Kontsevich—-Witten (KW) tau-function

TKw(to) = exp (FKw(to)) = THodge(t§ 0) (28)

It is known that linear Hodge integrals can be expressed through the intersection numbers
of the v-classes [27,28]. Namely,

P70 = @y (£°), (2.9)
where
N e szu4k—2 N
S Ly 1y (2.10)
2 2k(2k — 1)
Here
~ (2i+ 11 - 0 1 (—1)° 0?
= to; - = - -
@ Z; (2 + 4k — D 2 Otgriay 2 Hj;%_z 20+ )I2)j + D Dlgig1 0ty (21D

and t, =t — 6%3 are the times subject to the dilation shift and By are the Bernoulli numbers

T

e T Byrx
=1+= .
et —1 + 2 + g_:l (2k)!

Operator @ does not belong to the gl/(o\o) symmetry algebra of the KP hierarchy.

Hurwitz numbers count ramified coverings of Riemann surfaces. More specifically, the Hur-
witz number h(p|mq,...,my) gives the number of the Riemann sphere coverings with N sheets,
M fixed simple ramification points and a single point with ramification structure given by {m;},
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a partition of N. The number of double ramification points M, the genus p of the cover and the
partition {m;} are related:

M=2p—2+ (mi+1). (2.12)
i=1

The generating function of the Hurwitz numbers

h(p;my,...,my
Z Z ( i )ﬁMml ceeMpt;y -, (2.13)

’I’L>1 pxmlv HMn

defines the Hurwitz tau-function

TH(t; ) = exp (Fu(t; 8)) . (2.14)

7h is known to be a tau-function of the KP hierarchy (moreover, its generalization for double
Hurwitz numbers is a tau-function of the 2D Toda lattice [29]).

The Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula [23] relates the Hurwitz num-
bers h(p;m,...,m,) with linear Hodge integrals

h(p,ml,..., H 1—)\1—|—>\2— :E)\p

2.15
m;! Mopin mﬂ/}z) ( )

This formula allowed M. Kazarian [I] to find a relation between the Hurwitz tau-function (214
and the Hodge tau-function (2.6]). These two tau-functions are related with each other by the

G L(o0) group element. Our goal is to extend this connection and to include the KW tau-function
into it.

2.2 Heisenberg—Virasoro group and three tau-functions

From [112] we know that the ELSV formula allows us to connect the generating function for the
Hodge integrals (Z6]) and the Hurwits tau-function (ZI4) in a simple way:

THodge(tyu) =GoG- TH(t,B), (216)

where

(2.17)

are the elements of the Heisenberg—Virasoro group. In what follows we put § = u?. The operator
L_ belongs to the Virasoro algebra Vir_ and is described below.

In [30] we have claimed that the relation (2.I6]) can be naturally extended to include the
KW tau-function. Here we clarify this extension. Namely
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Conjecture 2.1
Trew (8°) = G Trodge (b, 1), (2.18)
where
G, = psloels gilo ¢ Vir, (2.19)
and operator E+ is defined by the series fi from (2:27).

In Section [Z8 we prove (28] up to a constant prefactor. Namely,
Theorem 2.1

Trew (£2) = C(u) G THodge (t, 1), (2.20)

where C(u) is a Taylor series in u with constant coefficients of the form
o0
Clu) =1+ cpu. (2.21)
k=1

Explicit calculations show that, at least, C'(u) = 1 + O(u?).
From Conjecture 2] it follows that the KW and Hurwitz tau-functions are related by an
operator from the Heisenberg—Virasoro group:

Tiw (8°) = Gy Go G_T(t, B). (2.22)
Let us describe the operators Ei in more detail. Namely,

Li=Y asf™ Lk (2.23)
k>0

belong to the algebras Viry. Coefficients a1, can be described by two formal Laurent series

(see Section [L6])

f+(z) = exp <Z aikzlekaz) z. (2.24)

k>0

These two series are of different complexity: while f_(z) is relatively simple

fo(2) = e T =2 — 2224 0(2%), (2.25)

1+ 2

with an inverse series

| i

F k
72" (2.26)

T

OEDY
k=1
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the series fy(z) is given implicitly as a solution of the equation

f+(2) < f+(2) )
—————exp| —————= | = Fexp(—FE), 2.27
1+ f1(2) 1+ f1(2) =E) (227)
where
1 g
Botay)(—L ) + 2 (2.28)
" \/<1 + f+(2)> " 323
The solution of the equation (227 is uniquely specified by the asymptotics for large |z|:
2
i) =2 — 510 (z7h). (2.29)

Let us stress that both fi and f_ can be represented as compositions of two intermediate
series:

f(2) = fe1 (fr2(2)), (2.30)
where
fri(2) = exp (Z aﬂzl*’“az) z (2.31)
k>0

for ¢ = 1,2. This factorization corresponds to the factorization of the Virasoro group operators:
exp (Ei) = exp (Zf)) - exp (E?) . (2.32)

For (2.25)) the factorization is obvious:

fo1(z) =ze7"
@ ; (2.33)
f-2(z) = 1+2

Factorization of the series fy is less trivial. Namely, fi can be expressed as a composition of

1
fa(z) = zexp (z71)sinh (z71) — 1
2 1 2 2 4
_ ., st 1t a4 2 b 3 4 4 5. _* -6 (2.34)
FT3t9f Tit Tast 1ol 12mist e
13 614 4 958 668 1 L
ey . S A 0 1)
tiiaiE ¢ 1e9asss © 7onessas © T+ igiossamesc  TOT)
and fo, satisfying the equation
1 1 1 1
—_~ _coth < > _ N 2.35
G2 "\ Fn@)  Fal ~ 32 (2.35)
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The series

1,1 1 1658 . 251 o
Fralt) = 2= p2 F fpe 2t e 2 T 30142125 © T 15962821875 .30
1952908 T 10945903 3 15 '
523660371609375 & N 80120036856234375 i +0 (z )

contains only odd terms, so that the Virasoro constraints for the KW tau-function allow us to
get rid of the corresponding operator (see Section 2.7).

2.3 Kontsevich—Witten tau-function

The Kontsevich-Witten tau-function [31.32] is one of the most important objects of modern
mathematical physics. It is given by a formal series in times with rational coefficients:

1, 1 1 ¢ 25 5 25 , 5 1,
TKW(t):1+6tl +§t3+ﬁt1 +Et3tl +@t3 +§t5tl+%tl 2.37)
+4—9t6t +%t3t2+§t4t +%t3+%ttt +§t2t —l—@t +... .
576 L 3T 7es P T gt 372 ey O T gt T 198 0

In the Miwa parametrization it is equal to the asymptotic expansion of the Kontsevich matrix

integral over the Hermitian matrix ®:
3 AP?
/H [d®] exp <—Tr <? + T))

/H [dD] exp <—Tr %{’2>

This integral depends on the external matrix A, which is assumed to be a positive defined
diagonal matrix. The times t; are given by the Miwa transform of the matrix A:

mew ([A7Y]) = (2.38)

e = %Tr AF (2.39)

After the shift of the integration variable

d=X-A (2.40)

the numerator of (2.38)) can be represented as

g3 TrA? /H [dX]exp <—Tr <)§—f - AZX>> . (2.41)

The Itzykson—Zuber integral (LITI) allows us to reduce the r.h.s. of (238) to the ratio of

determinants

N
det OEW (2)

maw (12) = — 5= (2.42)
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where Z = A~! and the basis vectors are given by integrals

Yy Y
<I>kK (2) 27Tz/ dyy 1exp<—§+@>

5 \ (2.43)
_ d —1yk-1 vy vy
\/2772 /_oo yly+ =) e 5~ 5
The coefficients of the basis vectors can be found explicitly, in particular
25T (3% + 1)
KW 3k
() ng(Qk)'F( )Z
(2.44)

6k+12°T (3k+1) o,
@KW(Z):— 2 Z3k 1‘
2 ]§6k—19’f (2k)!T (3)

The first line of (2.43]) allows us to find the Kac-Schwarz operators of the KW tau-function
[17,33]. Indeed, we have:

(&} 3z3
oM (2) = o> <—Z —>/ dy y* " exp <—g—, + ig) =agw L (2), (2.45)
where
1 50 22
- - _ 32 = 2.46
LU (2.46)
Thus,
agw {@*"} c {5V} (2.47)
and the operator axyy is the Kac—Schwarz operator.
To construct another Kac—Schwarz operator we use the 1dent1tyl
(afw —27%) W (z) = 0. (2.48)
From this identity and the recursion relation (2:45]) it follows that
22 = o — 2(k — 1)@ (2.49)
Thus,
bKW = 2_2 (250)

5Corresponding operator generates the D-module describing the tau-function [34].
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is also the Kac—Schwarz operator. Kac—Schwarz operators (2.46]) and (2.50]) satisfy the canonical
commutation relation

[aKw,wa]_ =2 (2.51)

and generate an algebra of the Kac—Schwarz operators for the KW tau-function.
The Kac—Schwarz operators that have been constructed allow us to find two infinite series
of operators, which annihilate the tau-function. Let us consider the operators

= > > 0
N (R g for k=l (2.52)

where we have used (LI09). From the general properties of the Kac—Schwarz operators it follows
that the KW tau-function is an eigenfunction of the operators (Z52]). The same is true for the
Virasoro operators

~ ~ 1 1~ 1 0 1
LKW = - = Loy — ——— i )
k g g0k = glar — g5 T gk (2.53)
where
1 1 Cop_
W= 1 (bKW)k-H,aKW} = - <l2k — 2%k 3) (2.54)
+ 2

for k > —1.

To find corresponding eigenvalues it is enough to check that these operators satisfy the
commutation relations of the algebra V,:

[@Kw,j,{fw] =0, for k,m >1,

[EkKW,jT{fW} = —mJEW  for k> -1 and m > 1, (2.55)

[E?W,ng} = (k— m)i,ﬁ%, for k,m > —1.

Since all generators of the algebra can be obtained as commutators of some other generators,
the eigenvalues of all of them are equal to zero:

JEW e =0, m>1 (2.56)
and
LEWrpew =0, m>—1. (2.57)

Obviously, the first identity is just another way to say that the KW tau-function does not depend
on even times (and is a tau-function of the KdV hierarchy).
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Then, for any function Z(t°) depending only on the odd times tg;,+1, we have

~ ~ 1
ﬁkZ(tO) = <L2k + §5k70> Z(to), k>-—1, (2.58)
where the operators
0o 1 m—1 2 t% 1
= (2 + 1)ty + = + L1+ =0, m>—1
kZ::l ? +13t2k+2m+1 2 £ Otopr10tom—2p—1 2 g™
(2.59)
constitute the same subalgebra of the Virasoro algebra:
[En, Em] =2(n — m)E,H_m, n,m > —1. (2.60)

Thus, the Virasoro constraints from (2.57) are equivalent to the standard Virasoro constraints
for the KW tau-function

TKw, m 2> —1. (2.61)

The Virasoro operators Ly, are combinations of the even part of the current (LG0):

S T =T & w10
j(Z) = f = kz_:l (2]{7 + 1)t2k+12 + k2 m s (2.62)
namely
2* _
2y - o (263)
k=—o00

2.4 Hurwitz tau-function

According to [13,[14] the Hurwitz tau-function, given by (2.I4]) can be represented in terms of
the cut-and-join operator (L73)):

—~

Th(t; 8) = exp <§Mo> exp (t1)

p o (2.64)
_1+t1+7(t1+t2)+7(t%—t2)+---
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The coefficients of the parameter [ expansion are polynomials in ¢; (up to an exponential
prefactor):

1
i (t; 5) = et <1 + 128 + 1 (t1? + 2t2° + 6t3) B2
1 (2.65)
55 (Bt1%t + 245 + 1885ty + 1680ty + 245 + 3244) 6+ > _

From (Z64]) we can easily derive an expression for the basis vectors [I]: using the notations
of Section [I] we get

o) = (o) exp (Gmo ) explion) - (2.66)

where 7’,; = res, <z‘k exp <§m0> zk> = exp <% + g (k‘ — %)2), so that

[Nl}e

((z0=4)"=(k=4)") 21—k _ i (k) = (r-3)7) 20 (2.67)

=0

dH(z)=e

This basis is not a canonical one. It is convenient to rewrite the basis vectors (IJkH in terms of
integrals in one variable [35]. Namely, for any operator A we have

5 42 1 (%) y2
_ v 9.
e? \/m/_oodyexp< 2ﬁ+yA>, (2.68)

. 2
so that, since mg = (z@z — %) + %, we have

S k-1)?) )
D2 eXP( \j;ﬂ_ﬁ 3) > _ dy (ze¥)1* exp <_g_5_%+zey>’ (2.69)

or, combining terms in a different way,

dH(2) = ;;—_Tkﬁ /_: dy exp <—% (y + (k — %) 5)2 + zey) . (2.70)

This integral can diverge (for example, it diverges for any real nonzero z) and should be only
considered as a formal Laurent series. The tau-function in the Miwa parametrization is

detgjﬂ /()
A(z7h

_ Pl 3
= / dy; A (z7'eY) exp (—ZWH(%%)>
2 A =1
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with the potential

2
Wh(z,y) = 7 + = —zeY. (2.72)
2p
This eigenvalue integral representation allows us to construct several matrix model repre-
sentations. First of all, one can introduce additional integration variables, given by the unitary
matrix. As a result, the Hurwitz tau-function can be represented as a Hermitian matrix inte-
gral [35,36]:

(121 8) = Py /H [dp(®)] exp <—%Tr<1>2 +Tr <e‘1’—N5/2Z)> , (2.73)

where the measure of integration [du(®)] is non-flat and can be represented in terms of the
standard measure on the space of Hermitian matrices, given by (LI73]), as follows:

[dp(®)] = \/det sinh (%25 2%) [d] . (2.74)
(<I>®1 1®<I>)

2

The coefficient Py = [, [du(®)] exp <—%Tr <I>2) does not depend on the external matrix Z.

The same tau-function can be given by an integral over normal matrices [35]. Namely, the
integral (LI70) in the eigenvalue form gives

(6 8) = / [dU] exp (th*k) 1 ([U];5)

k=1
(2.75)

N ) oo N
- wll (% / d—> AEAE e | 33tz * | i (12]:5).
i=1 v

k=1j=1
On substitution of (2.71)) into this relation we get an integral of the form

( / dy; 74 o ) JA(="1e V) exp (fj W(zi,yn) (2.76)

=1

for some known function W (z,y). This integral can be reduced to a normal matrix integral
with the measure (LI75H]). Indeed, let us assume that z; integral is taken over the circle |z;| =
exp(—y;/2), so that |z, !| = exp(—y;/2). Then

N dzzi _ N o 2
@76) = H P A(2)A(Z)exp | > W (z,—loglzl*) | , (2.77)

i=1
where d?z = d (R 2) d (S 2), so that the tau-function is given by a normal matrix integral
i (t;8) = P~ / [dZ] exp( TTWH+ZtkTTZ ) (2.78)
k=1
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where

— 1
t 1 t_ (zh-1
Wi =55 (1og Z Z) Slog 22" — (21) (2.79)

and P, again, does not depend on times.

2.5 Kac—Schwarz description of the Hurwitz tau-function

Let us find the Kac-Schwarz operators for the Hurwitz tau-function. First of all, from (2.70)
we see that

exp (:I:ﬁz(%) O (2)

(B DY ) e

(zeiﬁ)l_k 1 1 2
= or dyexp( 28 <y—|—<k‘$1—§>5> —I-Zey),

where we have shifted the integration variable y — y F 8. Therefore, operator

by = 2 texp ( Bz—) (2.81)

is the Kac—Schwarz operator
by ®ff = SVl . (2.82)

Combining relation ([2.80) with an identity

0 4 exp( (k‘——

il — _ y
zaszk(z) Jonp / dy (1 —k + zeY)
2
x (ze¥)17F exp <_g_ﬁ ~3 + zey> (2.83)
we get
3} 3}
<z exp (ﬂz&) - z&> o = (k—1)oH, (2.84)
Thus, the operator
0 0
ag = z exp (ﬂz&) — 7y (2.85)
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is the Kac—Schwarz operators for the Hurwitz tau-function Tt is easy to check that these
Kac—Schwarz operators satisfy the commutation relation

lam,br]_ = bu. (2.87)

The operators ay and by completely define a point of the Grassmannian. Indeed, on sub-
stitution of the first basis vector

F=1+) ol 2m (2.88)

into (2.84) for £ = 1 we obtain the first coefficient, cpfl = 1, and a recursive relation, which
allows us to find all other @%71:

e™mP

2.89
m+190m1 ( )

H
Pm+1,1 —
This yields ®¥, while all higher basis vectors can be obtained with the help of [282).
The operators ag and by can be quantized via (LI09), and for the obtained operators Y,
and Y}, the Hurwitz tau-function is an eigenfunction

2

?aHztl—EoJrﬂZ_lJrB—J\/Z_lJr...,
2.90
Ty = 2 511+ 52 M + 2L +i + >
H_atl L oty ! ! oty

Yy

It is easy to find the corresponding eigenvalue for the operator f/aH. Indeed, it is obvious that
the operator Y, ,(:0,) has positive energy. Thus, Y, ep(820,)Z(t)lt=0 = 0 for all functions
Z(t), and we have

Yau i (t)le=0 = —Yeo. 7 () ]t=0 = 0, (2.91)
so that
Yo, i (t) = 0. (2.92)

To find the eigenvalue of the operator f/bH let us consider a commutator of the operators
(290). Tt is a deformation of the commutation relation (2.87):

[YQH,YbH} =Y, +C, (2.93)

5The operators ap and by can be obtained by a conjugation of the Kac-Schwarz operators z — 20, and 2z~ *
for the tau-function exp(t1)

B B
ag =e2™ (z —20,)e 2™,
(2.86)
by =e Pe2™0 7l g 20
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where Cpy is a constant. Since the Hurwitz tau-function is an eigenfunction for both operators,
for the commutator we have

Vans Vo | 7a(8) =0, (2.94)
so that
Yoy 7 (t) = —Cpr 7r(t). (2.95)

From the definition of operators Y, and Ry in (IL49) and (I.II0) we have

Y. k0. = —d" 1 Ry(q). (2.96)
Thus,
}/}QH = —(/15_1(65) — Eo,
R R (2.97)
YbH = _6—25<I>1(e—6)’
so that the commutation relation (L53)) yields
Vs Vo] = [81(P) + Lo, 81(c™)| =Ty, — e, (2.98)
Thus, Cy = —e? and
Yo, T (t) = e P (t). (2.99)
Let us consider two families of operators
i = (bg)* for k> 1,
(2.100)

= — (by)*ay for k> —1.

It is obvious that all these operators (maybe except for llfl) belong to the Kac—Schwarz algebra.
For 1] this statement can be checked explicitly:

ol = (1—k)e 8, _,. (2.101)

Our notations reflect the fact that these operators are the deformations of the standard operators

(LI12):

it = ji +0(B),
(2.102)

k+1. .
=1+ Jk — Jrk—1 + O(B).
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where we assume that jo = 1. From the commutation relation (2.87]) one can easily derive the
commutation relations

G, =o,
[0 = -t (2.103)
[lfvlg]_ = (k- m)ll{:{—i—ma

which coincide with the commutation relations of the subalgebra V. of the Heisenberg—Virasoro
algebra. We have the following explicit expressions:

H @5 _k . g
Ji. =€ 2 Pz exp< kﬂz@z)’

. 5 . o\ o (2.104)
lf — Tk exp <(1 - k:)ﬁz&> + T8,k exp <—k‘ﬁz&> 25
From (2.96) for k£ > 0 we have
V. hobieon = —e DB G <e—k6> ,
2.105)
_ 19 ([ —(k+1)kB —kB
Y, —ke—kBz0z 49, ok (e P, (e >> .
Thus,
~ K243k g~ _
and for ?lgz we have
}/IH = L(] + ?{\)—1(65) - i;aHy
i}lH = %3_26&51(6_6) = _% }/}bH7
~ W2k o~ (2.107)
Vi =e 2 Bd, 4 <e(1 k)ﬁ)
1 w2 -~
—i—Eek 2 kﬁ% <e_(k+1)k6 D, <e_k5)) , for k=—-1 and k> 1.
An expansion of these operators follows for the expansion (2.102)
Y = Ji +O(B),
(2.108)

E+1

5 jk - jk—1 + O(B).

}/}kH:Lk"‘F
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The relations (L.52]), (L53]) and the commutation relation
Lo Bula)] = —kBulq)

allow us to find the commutation relations between the operators ?j]{g and ?lf

Thus, the operators
T =Yg =™, k>1
L =Yim —e 61 + %e—%ék,z, k> —1.
satisfy the commutation relations of the algebra V. :
[@H,fﬂ_ =0, for k,m>1,
[Ef,jﬂ]_ = —mj]ﬁ_m, for k> -1 and m >1,

[EH,Zﬁ] =(k— m)EkHer, for k,m > —1.

(2.109)

(2.110)

(2.111)

(2.112)

Since 7y is an eigenfunction of the operators J]f and LkH , from these commutation relations it

follows that the Hurwitz tau-function satisfies the constraints

ff,{rH:o, for m > 1,

Eﬁm =0, for m> —1.
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2.6 Hodge tau-function
The Hodge tau-function (2.6]) is a deformation of the KW tau-function:

THodge(t; u) = TKW(t)

35 1225 35 35

15 25 25 , ,
+ 6t2+§t4t1+ t3t2+—t2t1 + — s+ —— t2t3 + —t17ts+ —t1%ts

48 36 8 768 18 4
s+ 2 ey 220 2P
48512 43212 288213 24 3l1t4
+ 25t 2y 103, t—l——2737t e PN A +Ett 4125 a8
72 gt Tolstit oot g talite S taty A mor fstT + ot b
+1t +147t2t+1225” RW
36 0 16 2T 576 2
+ Lt +%t —|—§t +245ttt +Et2t+§t to+ - | ud+
2 21 9062 T3 0T g T g M T gt 2
(2.114)

It is related to the Hurwitz tau-function by (2.I6]), or, in other words, by a linear change of
variables accomplished by cancelation of proper linear and quadratic terms in free energy. Let
us describe this relation in more detail.

The prefactor exp ( > k>0 K lgf 1t") in ([2.I7) is responsible for genus zero one-point con-
tributions from the non-stable maps. On the level of basis vectors it corresponds to the multi-
plication:

0) F72 i k| gt
®, 7 (2) = exp Z x B O (2). (2.115)

k=1

The next step in the chain of transformations (2I6]) is given by the operator E(_l), which,
according to (LI34)), on the level of basis vectors yields

1, _ Bz 10f1(Bz) (o) ( [-1(B2)
% =T B\ e ¢k< g >

MQﬁ (;+ ) Zzef<(2_k+%) _(k_%) ) (Ze ') (2116)
i=0 v
42
1- Bze—g(k—%){l—w-z /OO dy (Zey—BZ)l—k 7; %—I—zey 527
2m3 —0

where f_1(z) is the series (Z33]). After a change of integration variable y — y + [z these basis
vectors can be represented as

_ 112 o0 2
(I)I(fl)(z) _ /127T§Ze— (k=3) /_OO dy (ze¥)1F exp <_?2J_ﬁ _ % Fa(e¥—1— y)> . (2.117)
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Corresponding tau-function in the Miwa parametrization is

detz ,j=1 (1)51) (Zj)

: 2.11
eﬁ(%_%) N 00 N ( 8)
_ 7& le—kﬂzi/ dy,A (Z_le_y) exp <_ZW(1)(Z“%)) ,
(27T5) 2 A1) i —o0 i—1
where the potential is
y?
Wu)(z,y)—%Jr——z( eV —y—1). (2.119)

Independent time variables can be introduced with the help of (LI70):

N .
T(]Y)(t) = % H <2Lm j{ %) A(z)A(z7 ") exp ZZtkz T ([Z])
i=1 '

k=1 j=1
SE-%) v

(27rﬁ ]ZNu palet <2m jé & / dy2> A (zle)

x det(1 — BZ)? H Wy Ew)+ Xt (2.120)
=1

Using the change of variables from the previous section we reduce the tau-function to the normal
matrix integral

) () =Py /N [dZ) exp (—Tr Way + > tiTr Z‘k> : (2.121)

k=1

where the normalization factor P(;) = i) v [dZ] exp (—Tr Wl) does not depend on the variables
t, and

1 2 1 1
Wy = 33 (1ogZTZ) + 51ogZTZ— (ZNY '+ Z—-ZlogZ1Z — 51og(1 —BZ).  (2.122)

Let us check this matrix integral formula for N = 1 and the Miwa parametrization of times
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t = 2y*. From (2I20) we have

_8
T1 ([y]) - li dzzge_%(logmz)z_%IOg‘Z‘z-l'Z*l—z—l—zlog\z\z
W TV218 Jo  1-y/z
1 1 1/1 1 5
=1 (e —1— Lo o 1 (1 3 5 1.3 3 2\
royeg (F-1-0+18) e g (50— LB -rp )y
5 g8 1 385 1ags Llag L gs 1 s 1 1g 5 4
+<24B SRR L S TR SRS TL L
+0(y%).

(2.123)

It is easy to check that this expression coincides with an expansion of the first basis vector <I>§1)
from (ZII6) as it should be according to (LI64). Other basis vectors can also be obtained in
the form of integrals over C.

2)

The next step in the transformation from 7y to THdge is given by the operator L , COrre-

sponding to the series f_s(z) from (2.33]). The operator I® i very simple:
L® = _pL_,. (2.124)

Indeed, consider an operator [_ = z2% which shifts the variable z~!. Then

0 0 1 1
exp <—ﬁz2&> [2] = exp <5F> [F} Ty 3 =7 fﬁz = [-2(2). (2.125)

Since for a constant a the conjugation with the operator e®~1 yields

—~ ~ 2
el <Z tkzk> el =3 "t 10> kT 4 % D k(k— 1)t 24

k>0 k>0 k>0 k>0 (2126)
= Ztk ((z+a)k —ak> ,
k>0

we can E(:onstru(:t a matrix model, which describes the Hodge tau-function, when N tends to
infinity

~ _47. 712
T]]'{Vodge = ﬁ 3LO€L7 7_(117) (t)
» - o Lo . (2.127)
=P (@Z)exp | ~Tr Wy + 3573, (271 - 8)" = (=9)") ),
NxN k=1

where the potential W(l) is given by (2.122)).

"This can also be considered as a consequence of (LI50).
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One can take another route and obtain the basis vectors for the Hodge tau-function (they
were obtained in [I]) directly from the Hurwitz basis vectors ®:

-1 _ 2zu+22
(I)kHodge(Z) :u4(1—k)f — Futz) e 2o o (u3f_(u'z))
_(u z
2 \i—k+1 (2.128)
z _u z
oY i 3 (D)) (e ™)
V1i4+ulz =0 it ,

or as a transformation of the vectors <I>,(€1) and their integral representation (2.I17)):

<I>Hodge(z) _ 5—%(z%+k—1)e—ﬁz2m (I)](gl) (Z)

k
(z71 + u‘l)k_1 o0 1 1 2 z
— dyexp|—==(y+ (k-2 u3> +———(—1-1) .
V2mud(1+ zu~1) /—oo YO Taw (y ( 2> (u+ 2)u? ( v)
(2.129)
The change of integration variable y +— 3 + log(1 + u~12) yields

(I)HodgE( ) B_L;(k—%)Q /oo p ( y)l—k ( ) (2 130)

z) = zZe €XP\—WHodge )5 )

k V2rud(1+ zut) Joco Y Hods

where

1 _ 2 z z _
wHOdge = 2—u3 (y + lOg(l +u 125)) — ﬂey + m (1 + y + log(l +u 1Z)) . (2131)

Thus we can again introduce times with the help of the unitary matrix integral
[e.e]
Tgodge(tv ’LL) = ];r(ljdge //\f [dZ] €xXp <—TI‘ WHodge + Z tkTr Z_k) 5 (2132)
k=1
where

1 7tz \\? 1 B 1
Winoie = g5 (108 (17 yrz) ) + 3108717 +los (L+07'2) ~ i

Z i (2.133)
R <1 s <m>> |
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In particular, for the Miwa parametrization with N = 1 we get

_ 1 “‘2‘2 2 1 = _ u\z\z
Lot (s b e(2)

1 2
THodge([y] ; u) = T Vars Jo i 1—-z"ly)Q+ulz)
2¢%' —2 203 —ub , 2463 41203 4 9ub — 36’ 4200 — 12¢% 0P 4
=1+ 108 Y-+ 6 ul2 v HOW),

(2.134)
which coincides with the first basis vector ®; from (2.I28]). Let us stress that it is not
obvious that the matrix models (2127) and (m (which do not coincide with each other for
finite V) have finite limits, when u tends to zero, while the corresponding tau-function in this
limit reduces to the KW tau-function.

In what follows we need the properties of the series

Hodge

CIDdege(z). Namely, let us show that

Lemma 2.2

1 1\F!
q)dege(z) = <; + E) X (formal Taylor series both in z and u). (2.135)

Proof. The statement of the lemma follows from the integral representation (2.129]). Indeed,
let us change the variable of integration y — yu+/u + z. Then

~1
(I)]?Odge(z) = ( +u- / dye 2y —(k— )\/u—l—zuy—l—zZ;":S(u—l—z)%*luk*S% (2.136)

27re -3)

In the expansion of the integral about the Gaussian potential only even powers of y survive.
The coefficient in front of each of them is a polynomial in u and z. Thus, the only source of
negative powers of z and w is the prefactor, which completes the proof.

Thus, among all basis vectors (IDdege only the first one has a finite limit at u = 0:
1 00 y2 y3
pllodse = d - = XV (2). 2.137
1 (Z) =0 \/ﬁ - Y exp + 3 1 (Z) ( )

However, it is easy to construct another admissible basis, regular at u = 0:

T Hodge _ x Hodge
(I)I - <I>1 )

<I>§Iodge _ <I>§Iodge —1q)Hodge

)

(2.138)

)

(I)Hodge (I)Hodge _ —1(I)Hodge u—2(I)11‘Iodge

q)fodge _ q)?odge o 3u—1<1>§{odge + 3u—2<1>£{odge _ u—3<1>{{odge

9
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2.7 Simplified relation
In this section, we simplify the relation (2.I8]). Let us denote

~ 47 ~(G) AT i T
V= g9 psto = 37 DA, (2.139)

for i = 1,2. Then, the relation (Z.I8]) connecting two tau-functions can be represented as

THodge(t; u) =€
This relation can be simplified with the help of the Virasoro constraints for the KW tau-

function ([2.57). Indeed, from (235 it follows that the series fio(z) includes only odd powers
72

of z, so that the operator L}’ and, as a consequence, Vg, contain only positive even Virasoro
operators:

Vo= alu Ly, (2.141)

Let us forget for a while that the coefficients agi) are defined by (2.35]), and consider the

operator 172 for arbitrary a;i). Then, from the Baker—Campbell-Hausdorff formula it follows

that for any such operator there exists a unique first order operator

N = bru’F 2.142
Z g 5t2k+3 ( )
such that
exp <]V) - exp (—YA@) = exp (—22 aéi)uzkEkKW> . (2.143)
k=1

Virasoro operators EkK W annihilate the KW tau-function, thus from ([2.I43)) it follows that

~

exp (—172) i (t) = exp (—N) rrew (). (2.144)

To find N we switch to the ordinary differential operators (ILI1Z). Then identity ZI43) is
equivalent to

exp(n(z)) - exp ( Za% 12k> = exp <— Zagg (lgk - z_2k_3)) , (2.145)
k=1

where n(z) is a formal Taylor series in z~! (it is obvious that there are no central terms

which would modify the relation). Lemma [[T] allows us to restore n(z). Indeed, if g(z) =

o1



-3, a% )12k then (ZI4H) is equivalent to (LI2H) for k = 4 and a = 1, that is to (LI35):

1 1
n(z) = 3FE)E 38 (2.146)

Finally, we come back to the particular coefficients agi). If the coeflicients aéi) are as in

Section 22, then f(z) coincides with f15(z), and from (235) we have

1 1 1 1 1 1 > 22kB 1
n(z)zi——:—co‘ch<—>————:z 2k

3(f_;21(z))3 323 22 z z 323 = (2k)! 22k+1 (2.147)
1 2 LT | 2 n 1382 ~13 ~15
— T _Z 002 10
5° Tem® " wm? ' omm” R Gl

where By are the Bernoulli numbers. Coming back to the operators from Wi, ., we have

2 ng 2 k— 1) 8
= . 2.148
Z Otor41 ( )

This operator shifts all KAV timesﬁ Thus we have proved

Lemma 2.3 The relation (2.18) holds if and only if

THodge(t,u) = e e Ny (t). (2.149)

In the next section we will show that this relation is satisfied, at least up to a constant factor.

2.8 Proof of Theorem 2.1

As it was shown in the previous section, the statement of Theorem [2.1] is equivalent to the
relation

Ticw (8) = C(u)e e Thogge(t, ). (2.150)

Let us prove it using the description of the Grassmannian considered in Section 2. Namely, we
will show that the vectors

Q= uF e @M | > 0 (2.151)

belong to the KW space of the Grassmannian

Qr € Wikw. (2.152)

8 An operator of this type in the context of the Kontsevich-Witten tau-function appears in the description of
the Weil-Petersson volume of the moduli spaces of bordered Riemann surfaces [37].
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Here

1),k
o= aull (2.153)
k>0
and
n=u"nu"1z). (2.154)

are the counterparts of the operators Vi and N. According to Section [[4], the relation (2152
guarantees that two tau-functions coincide up to a constant factor.
For small k the relation (ZI52]) can be checked perturbatively. For example,

4 47 2 1 ]
a0 — (1 2 _ 3 4 pEW
= (1 e+ (e~ 1)+ (agomm + n) v ) 99

2 1 , 4 23 673 \ o
L — I B )
- (3“ BAY Tt <5670zﬁ - 68040> v > 2 (%)

4 1361 1 1 1097
0p = (14 242 _ 3 4 ) pEW
’ ( " 32" * <162O 2726> v (4050210 - 4725z4> vt > ()

5 1 5, 32 8T 10877\ o
P o2 _ )
- (3“ A Tat T < 2835026 68040> v > 2 (%)

(2.155)

and, since bxy = 272 is the Kac-Schwarz operator for the KW tau-function, the relation (2.152))
for k = 1 and k£ = 2 holds at least up to u*. The main idea of the proof is to show that all Q,
can be represented in a similar way to all orders in w.

To prove (2.I52) we use Lemma It shows that the vector uk_l@kHOdge can be considered
as a formal series in variable u. Let us introduce a new variable 7 = u/z. Then, in the variables

u and 7 the basis vector @,dege from (2128 is given by

2

—L/mde A A T 2.156
BTl AR AN R R A ) @)

uk—l q)k{fodge

where
T— 1 {log(l+n) (2.157)
=——+1lo .
I+n & 7
and
u? 1)\ 2 1 n?
G=——1[k—= — | —— — 1] —log(1 . 2.158
P (3) ras (e ) e e
Let us change the variable of integration y — uwy + 1"
G- 1I2 2
k—1 5 Hodge e’ 2 o Y 1 T eVt 21
) = d —= — k—=+4+— — . 159
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Action of the operator exp(v;) on the basis vectors is defined by (LI34]). It maps the variable
n to

1 e’ sinh(n)

- = ~1, (2.160)
fra(n™) U
so that 1" maps to
- 2 S| 1
T =exp(v1) T exp (—v1) = 627771 1 + log (e o ) =1+ 5772 +0(nh). (2.161)
Combining it with expression
1 3
= — (772 cothn — 1 — "—> (2.162)
U 3
after some calculations we obtain
~ 3
G—% 00 N
Q= L / dy exp <—W) , (2.163)
V2run=! J—oo
where
~ 3 1\* 1 S| M1 T2
G (1 += 772(3 + 2—7762+ L
2 2 U (€21 — 1) e“m —1 2
, (2.164)
N T2
1 _r —
and
—~ y2 i 1 T eyv
=2 _ SRR 2.1
w 5y YU 2+u3 + " (2.165)

Since both v; and 7 are series in u, the vectors (2.I63]) are still the formal Taylor series in the
variable 1 with coefficients depending on both positive and negative powers of z.
The series T is invariant under a sign change of 7:

—2n _ 2n n _
~n——n 2n e 1 2ne e 1 ~
T +— T +log< 2 > T +log< 2 =T ( )

Thus, it contains only even powers of 7. It is easy to show that G is also invariant under the
change 1 — —n so that its expansion is

3 2
-~ u 1 1 1 13 1 7 137
G- (k—2) - (1ot ) = = 4 6
2 ( 2> u3< T T3 T > 87 160" " 3samas’ T
(2.167)
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Since

R SN AR 111, 1
We st b= 04 > Lo —yu (k=5 = = (g7 = e+ |

also contains only even powers of 7, coming back to variables u and z, we have

3 o0

~ o~ y y i .—29

GHW =" —gatu). s B (2169
Z,J:

where £;;j(u) are some polynomials in ul

Thus,
6_3%3 o0 s Y y3 Y
Q. = d Rii Y2 = — =, 2.171
v B P exp(?»! 2z2> (241

where £;j(u) are some other polynomials in u; or, using expression (Z43]) of the basic vectors
for the KW tau-function, we have

(e e}

Q=Y fy(w)z 2 (-1)'2f W (2). (2.172)
i,j=0

Because 272 is the Kac-Schwarz operator, this is a combination of the basis vectors for the KW
tau-function, which completes the proof of Theorem 2.11

2.9 Kac—Schwarz description of the Hodge tau-function

The relation ([2149) (or, equivalently, relation (ZI50])) allows us to obtain the Kac—Schwarz
operators for the Hodge tau-function. Indeed, the Kac—Schwarz operators for two tau-functions

2 2
K/OOZ_% <k_%> ;
1
K10:—<k—§>7

K20 = K30 = 0,

9More specifically

i (2.170)
o=\ for i>3
Ki0 = TR or 1> 9,
1
Kil = —Euéi,m
7 3 1 u
Ri2 = <@U - ﬂ) di,0 + %51,17

and, for general j > 2 we have k;; = ((ajUS +b5) 6i0 + ¢judin) 1?9~ for some rational a;, b;, and c;.
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are related by the conjugation:

__—v —Nn n v
G Hodge = € € agw € € -,

} } (2.173)
bHodge =e e "brwe e,

Since both n(z) and b are series in z with constant coefficients, they commute. Thus, we
have

bHodge = (%)2 (2.174)

where

—v — U ra 2
qg=ue 1z161=f+1(77):77—§772+"' (2.175)

with 7 = u/z and the series j:_l is related to fi1 by (ILI22]). Thus, the series ¢ is defined by an
equation, which follows from (2:34)):

4ginh
L LY (2.176)
q
To solve it we use the ansatz
_ 1
=T (2.177)
5 .

On substitution of this ansatz into (ZI76]) we get an equation

1

S_e™5- e +n, (2.178)

where S_ is the solution, which corresponds to the asymptotic (2.I75]) for small n. Thus,

g=-"5% (2.179)
2
where Sy are two solutions of the equation
1 1
Se™ = — ¢ T 2.180
1+n ( )
in the vicinity of the the ramification point n =0, S = 1. They are
> o
+ = U+ 2z = Z(_l)knku
k=0 (2.181)

1 1 19 43 3827
2 3 4 5 6 7 8
o= = - ——n" 40
o7 “1357 405" Ts67" 42525 " (),
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so that

63 4, 193 5 262 5 19319 ;

8). 2.182
3T s s T O (2.182)

2 5
7’4o’ -

q(z) =n— 3 5

Therefore, the Kac-Schwarz operator

5 4

14 2 2
bHodge = 2~ = — 3 uz"3 + n u?zt — % w27+ 1—§u4z_6 — % wW’z"4+ 0 (2_8) (2.183)
define an infinite family of the Kac—Schwarz operators jé{Odge = (bHodge)k . This family corre-
sponds to the family of operators J,, JHedge,
ijOdge =V troage = e eV 2 0 Ve = res, (Q%j(z)) (2.184)
Tk Otoy,

where Q = u‘lﬁrl(uz). They are u-deformations of the operators ij W which define the KdV
reduction of the KW tau-function:

’\Hodge 0
= — 2.1
Tt = S+ Ofw), (2.185)

for example, the coefficients of the first operator from this family coincide with the coefficients
of bHodge

-2 _ 2,2 g =R g e . (2.186
J “ o 3% 9" on 135" ot T 15" oty 2835 L ot O(u?). (2.186)

THodge

The operators J;, , by construction, annihilate 7oqge:

~

J]i'{odge THodge = 0, k>0. (2187)

Since bf949¢ is not a polynomial, one can consider other combinations of brodge and its
powers. For example, another combination will appear in case of conjugation described by the
relation (2.I8) instead of (2.149)). It seems that there is no canonical choice. This corresponds
to the fact that according to (ZIT73)), both apodge and brodge are “gap-infinity” operators in the
notations of [I§].

Let us describe the Kac-Schwarz operator afoq¢e. Namely, the conjugation with e™ in 2I173)
yields

e Magw e = agw — 23 <%ﬁ> =agw + % (27700th (n) —n? coth (n)? — 1) . (2.188)

From the conjugation relation (L.I44]) it follows that conjugation with e”* yields

1 _
A Hodge = YHodge 0, — §g}Iodge -z 1gHodge - hHodgey (2'189)
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where

20-5)1—-54+) 1 w u
_ _ L —9 2.1
Ptodge u(S_ — Sy) quutz\utz 1 (2.190)
and
222 1
GHodge = ——— <1 + 2 (1 - —>> . (2.191)
q z 2q

By construction, the Kac-Schwarz operators apoqge and bproqqe satisfy the same canonical com-
mutation relation (2.192]) as operators for the KW tau-function

[aHodg67 bHodge]_ =2. (2192)
Explicit expressions for operators l,dege = —% [(bHodge)k“,aHodge] n allow us to construct

the Virasoro constraints for the Hodge tau-function. Namely, the operators

2
~ ~ 1
Hodge odoe u _ 2.193
Ly Vyroase = 360k—1+ 750k (2.193)

annihilate the Hodge tau-function:
Lo e = 0, k> 1, (2.194)
Here the operators }A/}Hodge can be represented as residues
k
~ 1 — ~
Yystotse = 5res—o (Q%—l (A W)+ B J(z))) , (2.195)

where

1
A—2+ZU<2—@>,

2
B=[—2 Yo B
1+ uz 1+ uz

Operators EkHOdge are deformations of the Virasoro operators for the KW tau-function

(2.196)

EkHodge _ e—f/le—ﬁ E]IC(W 6N6V1 — EkKW + O(u)’ (2197)
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in particular

_ - B - 29 8~ 40 1
2LHodge:L_ v oL - 2 2 Lo — —— — —
-1 2 at1+”< ! 3at2>+” (9 07 90t 18>

2 ~ 38 0 11 ~ 64 0

3 4 5
_ 1 - Lo - — 10)

u (27 ! 135 8t4> Y <405 2 405 8t5> (u )7

todge  ~ O 1 2. 0 2. 26 0
2Lé{dg :Lo_a—t;),+§+u<§[/l+28—t4>_uz <_L2+——>

+u3<14i L 4o a>_u4<22E L 1751 a>+0(u5)'

(2.198)

135 T 135015 4051 405 Otg

~

By construction, the operators L
tation relations of the Heisenberg—Virasoro algebra

kHOdge and :]\kHOdge belong to W11 and satisfy the commu-

[j;gHodge7 jrlr{odge] — 07
(Lot Tie] = —m B 2199)
Lyt Lietoe| = (k= m) Ll

The Virasoro constraints for the Hodge tau-function should be equivalent to the polynomial
recursion formula for the Hodge integrals, which can be considered as a Laplace transform of
the cut-and-join equation [24].

There is another possibility to construct the Kac—Schwarz operators for the Hodge tau-
function. Namely, they can be obtained by a conjugation of the operators ag and by, which
were obtained in Section 2.4l While operators apoqge and bpoqge obtained here are of zeroth
and first order, conjugation of ay and by yields operators of infinite order (which, nevertheless
belong to the same algebra of the Kac-Schwarz operators).

2.10 Quantum spectral curve

In this section we discuss quantum (spectral) curves for the three tau-functions, considered

in this paper. In the literature, there are different notations for quantum spectral curve, see

e.g., [34,38H43]. Here we take the point of view similar to the one adopted in [441[45]. If
A(z,y) =0, z,y € C (or C¥) (2.200)

is the spectral curve, which describes the partition function Z(t) of the model, then an operator
such that

A* <z, %) Z([2)) =0 (2.201)

OWe put A = 1.
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which is a deformation (quantization) of the spectral curve (2.200), defines quantum spectral
curve. The partition function in the Miwa parametrization t; = %zk, which is annihilated by
the operator A*, is known as the principal specialization of this partition function.

If the partition function is a tau-function of an integrable hierarchy, the principal specializa-
tion coincides with the first basis vector

7 ([2]) = ®1(2). (2.202)

Thus, quantum curves for tau-functions are closely related to the Kac—Schwarz operators. If the
operator A* ( 9 ) describing a quantum curve is the Kac—Schwarz operator, one can “quantize”
it once again usmg (CII0) and the boson-fermion correspondence. As a result one obtains an
operator D= YA* for which the full tau-function is an eigenfunction:

Dr(t) = C7(t) (2.203)

for some eigenvalue C.

For the Hurwitz tau-function the quantum curve was constructed in [44]. Namely, the
quantum curve operator is a quantization of the Lambert curve, and coincides with the Kac—
Schwarz operator ay (2.85):

. 0 0
I = GH = Zexp (ﬂz%) — %5, (2.204)

so that, as follows from (2.84)),
Ay ol (2) = 0. (2.205)

Then, quantization (LII0) and the boson-fermion correspondence yields an operator D H = }A/'A;I
such that

Dy m(t) = 0. (2.206)

Here
~ -~ -~ B2 ~
Dy =1t —LQ—I—ﬁL_l—I—?M_l—I-"' . (2.207)

Equation (2.48]) defines the quantum curve equation for the KW tau-functions:

__1 2
* 2 e 33 < 3 0 ) _9 2z
— oy — brw = A2 2 Y 2.208
Kw = G — brw = —o— ( % g ( )

where, after the change of variables z = 272, the operator in the brackets is given by a quanti-
zation of the Airy spectral curve 492 — x. The corresponding operator

Dxw =M_y —2L_1 + t4 (2.209)
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annihilates the KW tau-function
Dyxw mw (t) = 0. (2.210)

This equation is a combination of the constraints (2.50) and (2.57).

The action of Wi, operators with positive energy can be translated to the action of op-
erators from wiis on the quantum curves. Thus, we claim that the quantum curve for the
Hodge tau-function can be obtained by a conjugation from the quantum curve for the Hurwitz
tau-function:

oo k—2 _ o k—2 -~
*Hodge :B—gloev,e_zkzl Kh 2 gkt k A% T, 2 1zke_”*ﬁ%l0, (2.211)
where
o
vo =D a kBl (2.212)
k=1
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3 Concluding remarks

In this paper we have proved a relation, which connects three tau-functions of enumerative
geometry by operators from GL(c0). However, there are still many open questions. First of all,
Conjecture 2.l remains unproven. An approach we adopt in this paper seems to be not suitable
to prove that the constant C'(u) from Theorem [2.1]is equal to one.

It is natural to consider some relatively small subgroups of the GL(o0) and to investigate the
corresponding families of tau-functions. The simplest subgroup corresponds to the Heisenberg—
Virasoro algebra. However, all tau-functions, that can be obtained by the action of the group
elements of the Heisenberg—Virasoro group on the trivial tau-function are too simple to describe
partition functions that are interesting for applications. Namely, they are of the form

T(t) = exXp Z Aijtitj + Z Bjtj
0, J

for some constant A;; and Bj. We claim that to obtain a family of tau-functions that is im-
portant fo/r\ applications, it is enough to consider the group elements, which include also an
operator M, from the W) algebra. Examples of such tau-functions are given by the three
tau-functions considered in this paper. The method used for construction of the normal matrix
model, developed here, can be generalized to other tau-functions, which are described by the
group elements of the Heisenberg-W®) algebra. It would also be interesting to find a relation
between the operator representation for the KW tau-function obtained here and the similar (but
essentially different) representation, obtained in [46].

Another question, which remains beyond the scope of this work, is the relation between ob-
tained Virasoro constraints and corresponding matrix models. Usually the Virasoro constraints
are related to simple symmetries of matrix integrals [47], but we are unable to derive the Virasoro
constraints for the obtained matrix integrals in this simple way.

It would be natural to try to continue the chain of conjugations ([2.I73]) and to construct
the Kac—Schwarz operators of the zeroth and first orders for the Hurwitz tau-function. Unfor-
tunately, the naive conjugation seems to give divergent results.

The developed approach can be applied to the so-called r-spin Hurwitz numbers. To describe
them, one should consider the generalized Kontsevich models instead of the KW tau-function
[48].
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