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Introduction

The generating functions of enumerative geometry constitute an important and very interesting
class of tau-functions of integrable hierarchies. This intriguing paradigm remains a subject of
considerable interest and a number of examples of its manifestation continuously grows. In this
paper we construct new relations connecting three tau-functions from this family and derive
linear constraints for all of them.

Namely, we consider the Kontsevich–Witten tau-function, the generating function of linear
Hodge integrals and the generating function of the simple Hurwitz numbers. The first of them is
known to be a tau-function of the KdV integrable hierarchy, while the other two are tau-functions
of the KP hierarchy. In this work we prove that

τKW = Ĝ+ τHodge. (0.1)

Here the operator Ĝ+ belongs to the symmetry group GL(∞) of the KP hierarchy. Moreover,
we derive an explicit expression for this operator, up to a constant factor (which is checked to
be equal to unity). Since a relation of this type, which connects the Hodge tau-function with
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the Hurwitz tau-function, is known [1], formula (0.1) allows us describe all three tau-functions
in terms of symmetry group operators.

The approach we use is based on the description of integrable hierarchies in terms of the Sato
Grassmannian, and more specifically, in terms of the Kac–Schwarz operators. This construction
allows us to derive linear constraints

Ĵα
m τα = 0, for m ≥ 1, (0.2)

L̂α
m τα = 0, for m ≥ −1, (0.3)

where the index α indicates one of three considered tau-functions. All operators Ĵα
m and L̂α

m

belong to the ̂gl(∞) algebra (more specifically, toW1+∞), and satisfy the commutation relations:

[
Ĵα
k , Ĵ

α
m

]
−
= 0, for k,m ≥ 1,

[
L̂α
k , Ĵ

α
m

]
−
= −mĴα

k+m, for k ≥ −1 and m ≥ 1,

[
L̂α
k , L̂

α
m

]
−
= (k −m)L̂α

k+m, for k,m ≥ −1.

(0.4)

The constraints for the Kontsevich–Witten tau-function are well known, namely, in this case
equations (0.2) describe a reduction from KP to KdV, and equations (0.3) are the Virasoro
constraints. Two other families of constraints (for the Hurwitz and Hodge tau-functions) are
obtained explicitly for the first time (see, however, [2, 3]).

Although constraints for all three tau-functions satisfy the same commutation relations, they
are quite different in their form. Namely, the constraints for the Kontsevich–Witten and Hodge
tau-functions are given by the first and second order differential operators, while the constraints
for the Hurwitz tau-function contain all higher derivative terms.

The present paper is organized as follows. Section 1 contains material on the classical KP
hierarchy, tau-functions and Kac–Schwarz operators. In Section 2 we prove the relation between
tau-functions and derive the constraints (0.2) and (0.3). Section 3 is devoted to concluding
remarks.
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1 KP hierarchy and its symmetries

In this section we give a brief introduction to the subject, for more details, see [4–9] and references
therein.

1.1 Free fermions

From the works of the Kyoto school [7] it is known that infinite-dimensional groups act on the
spaces of solutions of the integrable hierarchies. In particular, a central extension of the group
GL(∞) acts on the space of solutions of the KP hierarchy. This action is very natural in the
formalism of free fermions, which we are going to sketch in this section. In particular, the

elements of the algebra ̂gl(∞) (a central extension of a version of the gl(∞) algebra) is naturally
given by bilinear normally ordered combinations of free fermions.

Let us introduce the free fermions ψn, ψ
∗
n, n ∈ Z, which satisfy the canonical anticommutation

relations

[ψn, ψm]+ = [ψ∗
n, ψ

∗
m]+ = 0, [ψn, ψ

∗
m]+ = δmn. (1.1)

They generate an infinite dimensional Clifford algebra. We use their generating series

ψ(z) =
∑

k∈Z
ψkz

k, ψ∗(z) =
∑

k∈Z
ψ∗
kz

−k. (1.2)

Next, we introduce a vacuum state |0〉, which is a “Dirac sea” where all negative mode states
are empty and all positive ones are occupied:

ψn |0〉 = 0, n < 0; ψ∗
n |0〉 = 0, n ≥ 0.

(For brevity, we call indices n ≥ 0 positive.) Similarly, the dual vacuum state has the properties

〈0|ψ∗
n = 0, n < 0; 〈0|ψn = 0, n ≥ 0.

With respect to the vacuum |0〉, the operators ψn with n < 0 and ψ∗
n with n ≥ 0 are annihilation

operators while the operators ψ∗
n with n < 0 and ψn with n ≥ 0 are creation operators.

The normal ordering •
•
(. . .) •

•
with respect to the Dirac vacuum |0〉 is defined as follows:

all annihilation operators are moved to the right and all creation operators are moved to the
left, taking into account that the factor (−1) appears each time two neighboring fermionic
operators exchange their positions. For example: •

•
ψ∗
1ψ1

•
•
= −ψ1ψ

∗
1 ,

•
•
ψ−1ψ0

•
•
= −ψ0ψ−1,

•
•
ψ2ψ

∗
1ψ1ψ

∗
−2

•
•
= ψ2ψ1ψ

∗
−2ψ

∗
1 , etc. Under the sign of normal ordering, all fermionic operators

ψj and ψ∗
j anticommute. In other words, it is wrong to use the commutation relations of the

Clifford algebra under the sign of normal ordering, i.e., for example, •
•
ψ∗
1ψ1

•
•
6= •

•
(1− ψ1ψ

∗
1)

•
•
.

We also introduce “shifted” Dirac vacua |n〉 and 〈n| defined as

|n〉 =





ψn−1 . . . ψ1ψ0 |0〉 , n > 0,

ψ∗
n . . . ψ

∗
−2ψ

∗
−1 |0〉 , n < 0,

(1.3)
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〈n| =





〈0|ψ∗
0ψ

∗
1 . . . ψ

∗
n−1, n > 0,

〈0|ψ−1ψ−2 . . . ψn, n < 0.

(1.4)

For them we have

ψm |n〉 = 0, m < n; ψ∗
m |n〉 = 0, m ≥ n,

〈n|ψm = 0, m ≥ n; 〈n|ψ∗
m = 0, m < n.

(1.5)

and

ψn |n〉 = |n+ 1〉 , ψ∗
n |n+ 1〉 = |n〉 ,

〈n+ 1|ψn = 〈n| , 〈n|ψ∗
n = 〈n+ 1| . (1.6)

It is useful to introduce the bare vacuum |∞〉 and totally occupied space |−∞〉:

|∞〉 = . . . ψ2ψ1ψ0 |0〉 ,

|−∞〉 = . . . ψ∗
−3ψ

∗
−2ψ

∗
−1 |0〉 .

(1.7)

For these states we have:

|0〉 = ψ∗
0ψ

∗
1ψ

∗
2 . . . |∞〉 ,

|0〉 = ψ−1ψ−2ψ−3 . . . |−∞〉 .
(1.8)

With respect to the totally occupied state, all ψ∗
j ’s are the annihilation operators while all ψj ’s

are the creation operators. With respect to the bare vacuum it is vice versa:

ψ∗
k |−∞〉 = ψk |∞〉 = 0, k ∈ Z. (1.9)

Bilinear combinations
∑

mnBmnψ
∗
mψn of the fermions, with certain conditions on the matrix

B = (Bmn), generate an infinite-dimensional Lie algebra.1 Exponentiating these expressions one
obtains an infinite dimensional group (a version of GL(∞)). Sometimes it is more convenient
to consider the algebra elements with normally ordered bilinear fermionic combinations

XB =
∑

mn

Bmn
•
•
ψ∗
mψn

•
•
. (1.10)

1To obtain a well-defined algebra and group one have to impose some restrictions on the matrix B (for example,
it can have only finite number of nonzero diagonals, or only a finite number of nonzero elements below (above)
the principal diagonal [10]). We do not impose any restrictions of this type, thus, generally speaking, “algebra
elements” and “group elements” we consider do not belong to a well-defined algebra or group. Products or
commutators of such elements can be divergent and, in principle, should be regularized. The simplest example of
such regularization corresponds to the commutation relation between the current components (1.22) (see, e.g., [4]).
No divergences appear in our calculations, thus we ignore this subtlety in what follows.
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Corresponding group elements

G = exp
(∑

i,k∈Z
Bik

•
•
ψ∗
i ψk

•
•

)
(1.11)

act on the bare vacuum and totally occupied space in a particularly simple way. Namely, these
states are the eigenstates for all group elements:

G |−∞〉 = exp

(∑

i<0

Bii

)
|−∞〉 ,

G |∞〉 = exp


−

∑

i≥0

Bii


 |∞〉 .

(1.12)

Excited states (over the vacuum |0〉) are obtained by filling some empty states (acting by the
operators ψ∗

j ) and creating some holes (that is acting by the ψj ’s). A particle carries the charge
−1 while a hole carries the charge +1, so any state with a definite number of particles and holes
has the definite charge. Let us introduce a convenient basis of states with definite charge in
the fermionic Fock space HF . The basis states |λ, n〉 are parametrized by n (the charge n with
respect to the vacuum state |0〉) and Young diagrams λ in the following way. Given a Young
diagram λ = (λ1, . . . , λℓ) with ℓ = ℓ(λ) nonzero rows, let (~α|~β) = (α1, . . . , αd(λ)|β1, . . . , βd(λ))
be the Frobenius notation for the diagram λ. Here d(λ) is the number of boxes on the main
diagonal and αi = λi − i, βi = λ′i − i, where λ′ is the transposed (reflected about the main
diagonal) diagram λ. Then

|λ, n〉 ≡ ψ∗
n−β1−1 . . . ψ

∗
n−βd(λ)−1 ψn+αd(λ)

. . . ψn+α1 |n〉 ,

〈λ, n| ≡ 〈n|ψ∗
n+α1

. . . ψ∗
n+αd(λ)

ψn−βd(λ)−1 . . . ψn−β1−1.

(1.13)

For the empty diagram 〈∅, n| = 〈n|, |∅, n〉 = |n〉.
An operator

E =
∑

k∈Z
k •

•
ψkψ

∗
k

•
• (1.14)

is the energy operator. It defines a gradation on the Clifford algebra:

[E,ψk]− = kψk,

[E,ψ∗
k]− = −kψ∗

k,
(1.15)

so that the energy of the operators ψk and ψ∗
k are k and −k respectively. We say that an

element of the Clifford algebra has positive (negative) energy, if it can be represented as a sum
of monomials a~k~mψk1 . . . ψknψ

∗
m1
. . . ψ∗

n1
with

∑
i ki −

∑
j mj > 0 (respectively < 0). Operators
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(1.10) with a strictly upper triangular matrix B have positive energy and annihilate the left
vacuum

〈0|XB = 0. (1.16)

Operators with a strictly lower triangular matrix B have negative energy and annihilate the
right vacuum

XB |0〉 = 0. (1.17)

From the commutation relations

[XB , ψn] =
∑

i

Binψi, [XB , ψ
∗
n] = −

∑

i

Bniψ
∗
i , (1.18)

we see that

eXBψne
−XB =

∑

i

ψiRin, eXBψ∗
ne

−XB =
∑

i

(R−1)niψ
∗
i , (1.19)

where R = exp(B).
Expectation values of group elements are the τ -functions of integrable hierarchies of non-

linear differential equations. This means that they obey an infinite set of the Hirota bilinear
equations. The tau-function of the KP hierarchy labeled by a group element (1.11) is a ratio of
two correlation functions:

τG(t) =
〈0| eJ+(t)G |0〉

〈0|G |0〉 . (1.20)

It depends on the variables t = {t1, t2, . . .}, usually called times, through the linear combination
J+(t) =

∑
k>0 tkJk of the operators

Jk =
∑

j∈Z

•
•
ψjψ

∗
j+k

•
•
= resz

(
z−1 •

•
ψ(z)zkψ∗(z) •

•

)
. (1.21)

They are the Fourier modes of the “current operator” J(z) ≡ z−1 •
•
ψ(z)ψ∗(z) •

•
and span the

Heisenberg algebra

[Jk, Jl] = kδk+l,0. (1.22)

Operators Jk with positive and negative k have negative and positive energy respectively, so
that

Jk |0〉 = 〈0| J−k = 0 for k ≥ 0. (1.23)

Normalization (1.20) guarantees that τ(0) = 1. The bilinear identity

∮

∞
eξ(t−t

′,z)τ(t− [z−1])τ(t′ + [z−1])dz = 0 (1.24)
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encode all nonlinear equations of the integrable KP hierarchy. Here we use the standard short-
hand notations

t± [z] ≡
{
t1 ± z, t2 ±

1

2
z2, t3 ±

1

3
z3, . . .

}

and

ξ(t, z) =
∑

k>0

tkz
k. (1.25)

The first nontrivial term in the expansion of the l.h.s. of (1.24) gives the KP equation

ττ1111 − 4τ1τ111 + 3 (τ11)
2 + 3ττ22 − 3 (τ2)

2 − 4ττ13 + 4τ1τ3 = 0, (1.26)

where τi1i2... ≡ ∂
∂ti1

∂
∂ti2

. . . τ . The second derivative of this equation with respect to t1 gives the

KP equation in its standard form

3u22 = (4u3 − 12uu1 − u111)1 ,

where u = ∂2

∂t12
log(τ). A KP tau-function, independent2 on even times t2k, k = 1, 2, . . ., is a

tau-function of the KdV hierarchy.
The coherent states eJ−(t) |n〉 (where J−(t) =

∑
k<0 tkJk) and 〈n| eJ+(t) can be expanded as

linear combinations of the basis states |λ, n〉. The coefficients are the famous Schur polynomials.
This expansion is important since it provides a link between hierarchies of integrable equations
and the theory of symmetric functions. Given a Young diagram λ = (~α|~β), one can introduce
the Schur polynomials (or Schur functions) via the Jacobi-Trudi formula:

sλ(t) = det
i,j=1,...,ℓ(λ)

hλi−i+j(t), (1.27)

where hk(t) are the Schur polynomials for one-row diagrams

exp (ξ(t, z)) =
∞∑

k=1

hk(t)z
k. (1.28)

It holds

eJ−(t) |n〉 =
∑

λ

(−1)b(λ)sλ(t) |λ, n〉, (1.29)

〈n| eJ+(t) =
∑

λ

(−1)b(λ)sλ(t) 〈λ, n|, (1.30)

2Actually, a prefactor which is exponential of a linear combination of even times is allowed, as it does not
affect the Hirota equations.
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where the sums run over all Young diagrams λ including the empty one, and we have introduced

b(λ) =
∑d(λ)

i=1 (βi + 1). For the empty diagram s∅(t) = 1, b(∅) = 0.
The Baker–Akhiezer (BA) function and its adjoint are given by the Sato formulas

ψ(t, z) = eξ(t,z)
τ(t − [z−1])

τ(t)
=

〈1| eJ+(t)ψ(z)G |0〉
〈0| eJ+(t)G |0〉 , (1.31)

ψ∗(t, z) = e−ξ(t,z) τ(t + [z−1])

τ(t)
=

〈−1| eJ+(t)ψ∗(z)G |0〉
z 〈0| eJ+(t)G |0〉 . (1.32)

In terms of the BA function and its adjoint, the bilinear identity (1.24) acquires the form

∮

∞
ψ(t, z)ψ∗(t′, z) dz = 0. (1.33)

1.2 W1+∞ algebra

The boson-fermion correspondence allows us to represent a bilinear combination of the fermions
in terms of the bosonic operators Jk:

•
•
ψ(y)ψ∗(z) •

•
=

z

y − z

(
∗
∗
eφ(y)−φ(z) ∗

∗
− 1
)
, (1.34)

where

φ(z) =

∞∑

k=1

k−1
(
J−kz

k − Jkz
−k
)
+ J0 log z + P. (1.35)

Operators J0 and P commute with all other components Jk and satisfy the commutation relation

[J0, P ]− = 1.

Since the operator P drops out of (1.34), both J0 and P play no role for our consideration of
the KP hierarchy and can be ignored in what follows (but they are important for MKP or Toda
hierarchies). The normal ordering for bosonic operators ∗

∗
. . . ∗

∗
puts all Jk with positive k to the

right of all Jk with negative k.
An expansion of (1.34) for y = z + ǫ with small ǫ yields the algebra W1+∞, which is an

important subalgebra in ̂gl(∞):

∗
∗
eφ(z+ǫ)−φ(z) ∗

∗
= 1 +

∞∑

m=1

ǫm

(m− 1)!
W̃ (m)(z) (1.36)

so that the operators W̃ (m)(z) =
∑∞

n=−∞ z−n−mW̃
(m)
n are just normal ordered elementary Schur

functions (1.28) of the variables pk = 1
k!∂

k
zφ(z), where ∂z ≡ ∂

∂z

W̃ (m)(z) = (m− 1)! ∗
∗
hm(p) ∗

∗
. (1.37)
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The same expansion of (1.34) allows us to identify

W̃ (m+1)(z) = −z−1 •
•
ψ∗(z)∂mz ψ(z)

•
•
, (1.38)

or, in terms of the bosonic current,

W̃ (m+1)(z) =
1

m+ 1
∗
∗
(J(z) + ∂z)

m J(z) ∗
∗
. (1.39)

From (1.15) follows that operator

W̃ (m+1)
n = −resz

(
z−1 •

•
ψ∗(z)zm+n∂mψ(z) •

•

)
(1.40)

has energy −n:
[
E, W̃ (m)

n

]
−
= −n W̃ (m)

n . (1.41)

Commutation relations of the operators W̃
(m)
n with the fermionic fields (1.2) follow form the

more general relations (1.18):

[
W̃ (m+1)

n , ψ(z)
]
−
= zm+n∂mz ψ(z),

[
W̃ (m+1)

n , ψ∗(z)
]
−
= −z(−∂z)mzm+n−1ψ∗(z).

(1.42)

Sometimes it is more convenient to use another basis for the sameW1+∞ algebra [9]. Namely,
we put

W (1)(z) = W̃ (1)(z) = ∂zφ(z),

W (2)(z) = W̃ (2)(z)− 1

2
∂zW̃

(1)(z) =
1

2
∗
∗
(∂zφ(z))

2 ∗
∗
,

W (3)(z) = W̃ (3)(z)− ∂zW̃
(2)(z) +

1

6
∂2zW̃

(1)(z) =
1

3
∗
∗
(∂zφ(z))

3 ∗
∗
,

. . .

(1.43)

Algebra W1+∞ is a central extension of the algebra w1+∞ of diffeomorphisms on the circle.
There are many different ways to identify elements

a =
∑

i∈Z,j≥0

ai,jz
i∂jz (1.44)

of w1+∞ with operators from W1+∞. We identify an operator (1.44) with

Wa ≡ resz
(
z−1 •

•
ψ∗(z)aψ(z) •

•

)
(1.45)
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so that

W̃ (m)
n =W−zm+n−1∂m−1

z
. (1.46)

From (1.18) it follows that

[Wa, ψ(z)]− = −aψ(z),

[Wa, ψ
∗(z)]− = a∗ψ(z),

(1.47)

where a∗ ∈ w1+∞ is the adjoint operator for which an identity

resz
(
z−1f(z) a g(z)

)
= resz

(
z−1g(z) a∗ f(z)

)

holds for any commuting f(z) and g(z) (in particular, (zk∂mz )∗ = z(−∂z)mzk−1).
The algebra W1+∞ is a central extension of w1+∞, thus

[Wa1 ,Wa2 ]− =W[a1,a2]− + Ca1,a2 , (1.48)

where Ca1,a2 is a central element commuting with all other operators in W1+∞. This term can
be effectively described by the commutation relations for the generating functions (for example,
functions of this type were considered in [11]):

Rn(q) ≡Wznqz∂z = resz

(
z−1 •

•
ψ∗(z)znqz∂zψ(z) •

•

)
. (1.49)

These generating functions can be represented in terms of the bosonic field (1.35) as follows:

Rn(q) =
1

1− q

(
resz

(
zn−1 ∗

∗
eφ(qz)−φ(z) ∗

∗

)
− δn,0

)
. (1.50)

An operator Rn is an infinite linear combination of operators W̃
(m)
n :

Rn(e
ǫ) = −

(
W̃ (1)

n + ǫ W̃ (2)
n +

ǫ2

2
(W̃ (3)

n + W̃ (2)
n ) + · · ·

)
. (1.51)

For pq 6= 1 the commutation relation between operators Rn can be found by a direct calculation:

[Rn(q), Rm(p)]− = (qm − pn)

(
Rn+m(qp) + δm+n,0

1

1− qp

)
, (1.52)

which, for p = q−1 reduces to

[
Rn(q), Rm(q−1)

]
− =

(
q−n − qm

)
Jn+m + nq−nδm+n,0. (1.53)

Operators Rn are important for the description of the Virasoro constraints for the Hurwitz
tau-function in Section 2.5.
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1.3 Heisenberg, Virasoro, and W
(3) algebras

The operators W (k)(z) for k = 1, 2, 3 are particularly important for our construction. Let us
consider them in more detail. Operator W (1)(z) coincides with the current J(z):

W (1)(z) = ∂zφ(z) = J(z) =
∑

m∈Z

Jm
zm+1 (1.54)

and its components

Jk =W−zk (1.55)

span the Heisenberg algebra (1.22).
The operator

W (2)(z) =
1

2
∗
∗
(∂zφ(z))

2 ∗
∗
=
∑

m∈Z

Lm

zm+2
(1.56)

generates the Virasoro algebra V ir ⊂W1+∞ with central charge c = 1. This algebra is spanned
by the operators

Ln =W−zn(z∂z+n+1
2 ) (1.57)

satisfying the commutation relations

[Lk, Lm]− = (k −m)Lk+m +
1

12
δk,−m(k3 − k). (1.58)

The operator L0 coincides with the energy operator (1.14).
We introduce two subalgebras V ir± of the Virasoro algebra, spanned by Lk with strictly

positive and strictly negative indices. We will say that an operator belongs to the group Vir+
(Vir−), if it is of the form exp (V ) with V ∈ V ir+ (V ∈ V ir−).

Operators Lk together with Jk span the so-called Heisenberg–Virasoro algebra V. Commu-
tation relations of V are given by (1.22), (1.58) and

[Lk, Jm]− = −mJk+m. (1.59)

In what follows, we also consider the Heisenberg–Virasoro group with elements of the form

C exp


∑

k∈Z
(akLk + bkJk)


 , (1.60)

where C is a constant.
The subalgebra V+ ⊂ V, spanned by Jk with k ≥ 1 and Lm with m ≥ −1, has no central

terms in the commutation relations (1.22), (1.58) and (1.59). This subalgebra describes the sets
of constraints for the tau-functions considered in Section 2.
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The operator

W (3)(z) =
1

3
∗
∗
(∂zφ(z))

3 ∗
∗
=
∑

n∈Z

Mn

zn+3
, (1.61)

where

Mn =W−zn(z2∂2
z+(n+2)z∂z+

1
6
(n+1)(n+2)), (1.62)

together with W (2)(z) generates the W (3)-algebra introduced in [12].
From the commutation relations (1.22) we have

〈0| eJ+(t)Jk =





∂

∂tk
〈0| eJ+(t) for k > 0,

0 for k = 0,

−kt−k 〈0| eJ+(t) for k < 0.

(1.63)

This implies that for any operator W , which is a combination of the bosonic current modes
(1.21) (in particular, for any operator from W1+∞) there exists an operator Ŵ , which acts in
the space of functions of the times tk, such that:

Ŵ 〈0| eJ+(t) = 〈0| eJ+(t)W. (1.64)

Namely, we put

Ĵk =





∂

∂tk
for k > 0,

0 for k = 0,

−kt−k for k < 0,

(1.65)

so that

Ĵ(z) =
∞∑

k=1

(
ktkz

k−1 +
1

zk+1

∂

∂tk

)
. (1.66)

This identification allows us to represent the transformation given by the group multiplication

τH(t) 7→ τGH(t), (1.67)

13



in terms of the operators, acting on the functions of the times tk (at least for G, which is a group
element of the W1+∞ algebra). From the definition (1.20) it follows that

τeWH(t) = CeŴ τH(t), (1.68)

where C = 〈0|H|0〉
〈0|eWH|0〉 is a constant. This constant is equal to unity if the operatorW has positive

energy.
For example, for W =

∑
k<0 akJk and an arbitrary group element H we have

τeWH(t) = exp

(∑

k>0

ka−ktk

)
τH(t). (1.69)

For W =
∑

k>0 akJk we have

τeWH(t) =
〈0|H |0〉

〈0| eWH |0〉 × τH(t+ a). (1.70)

The Virasoro subalgebra of W1+∞ is generated by the operators

L̂m =
1

2

∑

a+b=−m

abtatb +
∞∑

k=1

ktk
∂

∂tk+m
+

1

2

∑

a+b=m

∂2

∂ta∂tb
, (1.71)

which are counterparts of (1.57). For the W (3) algebra we have

M̂k =
1

3

∑

a+b+c=−k

a b c ta tb tc +
∑

c−a−b=k

a b ta tb
∂

∂tc

+
∑

b+c−a=k

a ta
∂2

∂tb∂tc
+

1

3

∑

a+b+c=k

∂3

∂ta∂tb∂tc
. (1.72)

In particular,

M̂0 =
∑

i,j≥1

(
i j ti tj

∂

∂ti+j
+ (i+ j)ti+j

∂2

∂ti∂tj

)
(1.73)

is the cut-and-join operator of the Hurwitz tau-function [13,14].

1.4 Miwa parametrization and Grassmannian

The Miwa parametrization is very convenient for various problems, in particular for matrix
models. There are different ways to introduce the Miwa parametrization. All of them are
combinations of four basic possibilities, corresponding to the sign combinations in

tk = ±1

k
TrZ±k. (1.74)
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Here Z is a diagonal matrix diag (z1, z2, . . . , zN ) for some finite N and the signs are independent.
Let us start with the Miwa parametrization

tk = −1

k
TrZ−k. (1.75)

A tau-function in this parametrization is

τ
(
−
[
Z−1

])
≡ τ

(
tk = −1

k
trZ−k

)
. (1.76)

From the boson-fermion correspondence it follows that a tau-function in this parametrization
is given by the correlation functions

τ
(
−
[
Z−1

])
=

〈0| e−J+([z−1
1 ])−...−J+([z−1

N ])G |0〉
〈0|G |0〉

=
〈0|ψ∗

0 . . . ψ
∗
N−1ψ(z1) . . . ψ(zN )G |0〉

〈0|G |0〉∏i<j(zi − zj)
.

(1.77)

The Wick theorem (see, e.g., [4]) allows us to rewrite this fermionic correlation function as a
ratio of determinants:

τ(−
[
Z−1

]
) =

detNi,j=1ϕi(zj)

∆(z)
, (1.78)

where

ϕi(z) =
〈0|ψ∗

i−1ψ(z)G |0〉
〈0|G |0〉 , (1.79)

and

∆(z) =
∏

i<j

(zj − zi) (1.80)

is the Vandermonde determinant.
From the anticommutation relations (1.1) it follows that

[
ψ∗
i−1, ψ(z)

]
+
= zi−1, (1.81)

so that the functions ϕi(z), which are usually called basis vectors, have the following expansion

ϕi(z) = zi−1 − 〈0|ψ(z)ψ∗
i−1G |0〉

〈0|G |0〉 = zi−1 +
∞∑

k=1

ϕi,kz
−k, (1.82)

where

ϕi,k =
〈0|ψ∗

i−1ψ−kG |0〉
〈0|G |0〉 . (1.83)
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The set {ϕi(z)} defines a subspace W of an infinite dimensional Grassmannian. Correspond-
ing theory was introduced by M. Sato in [15] and further developed by G. Segal and G. Wilson
in [16]. Convergence of a tau-function as a function of times is not important for us (we consider
a tau-function as a formal series in times), thus, we will focus on Sato’s version of the construc-
tion. Let us consider the space H = H+ ⊕H−, where the subspaces H− and H+ are generated
by negative and nonnegative powers of z respectively. Then the Sato Grassmannian Gr con-
sists of all closed linear spaces W ∈ H, which are compatible with H+. Namely, an orthogonal
projection π+ : W → H+ should be a Fredholm operator, i.e. both the kernel kerπ+ ∈ W and
the cokernel coker π+ ∈ H+ should be finite-dimensional vector spaces. The Grassmannian Gr
consists of components Gr(k), parametrized by an index of the operator π+. We need only the
component Gr(0), which corresponds to the Dirac vacuum |0〉. Moreover, we will consider only

the big cell Gr
(0)
+ of Gr(0), which is defined by the constraint ker π+ = coker π+ = 0.

For any W from Gr
(0)
+ there exists a basis {ϕi(z)} such that the matrix relating {π+(ϕi(z))}

with zi has a well-defined determinant. Any such basis we call admissible. It can be always
transformed to the basis of the form

ϕi(z) = zi−1 +
∑

k>1−i

ϕi,kz
−k. (1.84)

Obviously, for each W there exists a unique basis for which ϕi,k = 0 for k < 1 (that is the basis
of the form (1.82)). This basis is called canonical.

Let us denote a point of Gr
(0)
+ , corresponding to a group element G, byWG. Then, the Baker–

Akhiezer function (1.31) belongs to the space WG for all values of t, for which the corresponding
tau-function is not equal to zero [16]. Then, from the expansion (1.30) it follows that

〈λ, 1|ψ(z)G |0〉 ∈ WG (1.85)

for arbitrary λ. Thus

〈0|Xψ(z)G |0〉 ∈ WG (1.86)

for any X from the Clifford algebra such that the correlation function does not vanish.

For any group element G = exp
(∑

i,k∈ZBik
•
•
ψ∗
i ψk

•
•

)
the matrix (1.83) defines a group

element, which is equivalent to G in the following sense. Consider

G̃ = exp




∞∑

i,k=1

ϕi,kψ
∗
−kψi−1


 , (1.87)

where ϕi,k are the coefficients of the canonical basis (1.82). It can be shown (see, e.g., (3.37)
in [4]) that

G |0〉 = 〈0|G |0〉 × G̃ |0〉 . (1.88)
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Relation (1.12) implies that G̃ |∞〉 = |∞〉, thus

G̃ |0〉 = ψ̃∗
0 ψ̃

∗
1 ψ̃

∗
2 . . . |∞〉 , (1.89)

where

ψ̃∗
k ≡ G̃ψ∗

kG̃
−1 = ψ∗

k +
∞∑

i=1

ϕk+1,iψ
∗
−i = resz

(
z−1ϕk+1(z)ψ

∗(z)
)
. (1.90)

We see that the fermionic operators ψ̃∗
k, which describe the state G |0〉, are defined by the

canonical basis vectors (1.79).
Let us consider an operator Wa ∈W1+∞, related to some differential operator a ∈ w1+∞ by

(1.45). Then, an action of the operators from the algebra W1+∞ as well as the corresponding
group elements on the space of tau-functions can be translated to the action of algebra elements
w1+∞ and corresponding group elements on the Grassmannian [9]. Indeed, relation (1.88) yields

eWaG |0〉 = 〈0|G |0〉 × eWaG̃ |0〉 , (1.91)

where

eWaG̃ |0〉 = ψ̃∗
0 [a] ψ̃

∗
1 [a] ψ̃

∗
2 [a] . . . e

Wa |∞〉 , (1.92)

and, for any operator Ψ we define

Ψ[a] ≡ eWaΨe−Wa . (1.93)

From (1.12) it follows that eWa |∞〉 is proportional to |∞〉. Taking into account (1.90) and (1.47)
we have

ψ̃∗
k[a] ≡ eWa ψ̃∗

k e
−Wa = resz

(
z−1ϕk+1(z)e

Waψ∗(z)e−Wa
)

= resz

(
z−1ϕk+1(z)e

a∗ψ∗(z)
)

= resz
(
z−1ψ∗(z)eaϕk+1(z)

)
.

(1.94)

This observation justifies the identification (1.45) between two types of operators.
We see that the action of the group element eWa is equivalent to the action of the operator

ea on the set of basis vectors. The problem is that, in general, for operators Wa, which have
components with non-positive energy, the vectors eaϕn are not of the form (1.84), but are
Laurent series infinite in both directions. In spite of this difficulty, these vectors can sometimes
constitute an admissible basis.

This can also be shown in a slightly different way. Namely, let us denote by ϕn
i (z) the

canonical basis vectors corresponding to the group element eWaG. Then, by definition,

ϕn
i (z) ≡

〈0|ψ∗
i−1ψ(z)e

WaG |0〉
〈0| eWaG |0〉 =

〈0|ψ∗
i−1e

Waψ(z)[−a]G |0〉
〈0| eWaG |0〉 , (1.95)
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where, from (1.47) we have

ψ(z)[−a] ≡ e−Waψ(z)eWa = eaψ(z).

Thus,

ϕn
i (z) = ea 〈0|Xψ(z)G |0〉 (1.96)

for

X =
ψ∗
i−1e

Wa

〈0| eWaG |0〉 .

From (1.86) it follows that WeWaG ⊂ eaWG. On the other hand

eaϕi(z) =
〈0|ψ∗

i−1e
−Waψ(z)eWaG |0〉
〈0|G |0〉 = 〈0| X̃ψ(z)eWaG |0〉 (1.97)

for

X̃ =
ψ∗
i−1e

−Wa

〈0|G |0〉 ,

so that eaWG ⊂ WeWaG. This means that eaWG coincides with WeWaG.
We have seen that the vectors eaϕi(z) belong to WeWaG. Do they constitute an admissible

basis? The answer depends on the energy of the operator Wa. If it has positive energy, then

eaϕi(z) =
〈0|ψ∗

i−1e
−Waψ(z)eWaG |0〉
〈0|G |0〉 =

〈0|ψ∗
i−1[a]ψ(z)e

WaG |0〉
〈0| eWaG |0〉 =

i∑

k=1

γikϕ
n
k(z), (1.98)

where

γik = resz

(
z−keazi−1

)
. (1.99)

We see that γii = 1, so (1.98) are basis vectors, but not necessary the canonical ones. For Wa

with energy equal to zero we have the same expression as in (1.98), but only diagonal elements
of the matrix γik are not equal to zero. Thus, eaϕi(z) in this case is proportional to the basis
vector ϕn

i (z) with the coefficient of proportionality

γii = resz
(
z−ieazi−1

)
. (1.100)

If the operator Wa has components of negative energy then, in general, the vectors eaϕi(z) do
not constitute an admissible basis.

For another sign convention in the Miwa parametrization:

tk =
1

k
TrZ−k (1.101)
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a tau-function is again given by the ratio of determinants

τ
([
Z−1

])
=

〈0| eJ+([z−1
1 ])+···+J+([z−1

N
])G |0〉

〈0|G |0〉

=
〈0|ψ−1 . . . ψ−Nψ

∗(zN ) . . . ψ∗(z1)G |0〉
det(Z) 〈0|G |0〉∆(z)

=
detNi,j=1ϕ

∗
i (zj)

∆(zk)
,

(1.102)

where

ϕ∗
i (z) = z−1 × 〈0|ψ−iψ

∗(z)G |0〉
〈0|G |0〉 . (1.103)

These basis vectors define the orthocomplement W⊥ of the subspace W. Obviously, they can
also be expressed in terms of the matrix ϕi,k

ϕ∗
i (z) = zi−1 −

∑

k=1

ϕk,iz
−k

(1.104)

and the adjoint BA function (1.32) belongs to W⊥. Repeating the argument for ϕk(z) one can
show that the action of the operator exp(Wa) on the space of tau-functions is equivalent to the
action of the operator exp(−z−1a∗z) on the sets of the adjoint basis vectors ϕ∗

k(z).
In the next chapter we will work with the Miwa parametrization, which uses an inverse

matrix variable

tk =
1

k
TrZk. (1.105)

We denote by Φi(z) the basis vectors in this parametrization, namely

Φi(z) ≡ ϕ∗
i (z

−1) = z1−i + . . . (1.106)

For this choice of the sign convention we have the following expression for a tau-function:

τ ([Z]) =
deti,j Φi(zj)

∆(z−1)
. (1.107)

Corresponding identification between operators from W1+∞ and operators from w1+∞, acting
on families of the basis vectors Φi(z), is

Wzk∂m
z

7→ −(z2∂z)
mz−k. (1.108)

This allows us to introduceW1+∞ operators, which are the counterparts of the w1+∞ operators,
acting in this Miwa parametrization. For operators (1.108) we define

Y−(z2∂z)mz−k ≡Wzk∂m
z
. (1.109)
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Thus, action of the operator a ∈ w1+∞ on the set of basis vectors Φk(z) is equivalent to the
action of the operator

Ya = resz
(
z−1 •

•
ψ
(
z−1
)
z−1 a z ψ∗(z−1) •

•

)
(1.110)

from the algebra W1+∞ on the group element. The corresponding bosonic operators are defined
by

Ŷ(z2∂z)mzk = resz

(
z−k ∗

∗

(Ĵ(z) + ∂z)
m

m+ 1
Ĵ(z) ∗

∗

)
. (1.111)

In particular, in this parametrization the operators (1.55), (1.57) and (1.62) correspond to
the following operators from w1+∞3

Jk = Yjk ↔ jk = z−k, k 6= 1,

Lk = Ylk ↔ lk = z−k

(
z∂z −

k + 1

2

)
,

Mk = Ymk
↔ mk = z−k

(
z2∂2z − kz∂z +

(1 + k)(2 + k)

6

)
.

(1.112)

A constant from w1+∞ corresponds to the operator J0, which we can identify with zero as far
as we consider the KP hierarchy.

1.5 Kac–Schwarz operators

Let a ∈ w1+∞ be an operator such that

aW ⊂ W (1.113)

for some point of the Grassmannian Gr
(0)
+ . Then, for the corresponding tau-function it holds

that

Ŵaτ = C τ (1.114)

for some constant C. Indeed,

Ŵaτ =
〈0| eJ+(t)WaG |0〉

〈0|G |0〉 (1.115)

3The operators used in [1] are related to our operators by a conjugation w = z wKazz−1, just because M.
Kazarian uses another normalization of the basis vectors, Φk = zΦKaz

k .
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and, from (1.88) we have

WaG |0〉 = 〈0|G |0〉 ×WaG̃ |0〉 = 〈0|G |0〉
( ∞∑

i=0

ψ̃∗
0ψ̃

∗
1 . . . ψ̃

∗
i−1

[
Wa, ψ̃

∗
i

]
−
ψ̃∗
i+1 . . . |∞〉

+ ψ̃∗
0ψ̃

∗
1 . . .Wa |∞〉

)
. (1.116)

Since
[
Wa, ψ̃∗

i

]
−
= resz

(
z−1ψ∗(z)aϕk+1(z)

)
(1.117)

is a linear combination of ψ̃∗
i for any a satisfying (1.113), and the totally occupied space is the

eigenstate of any algebra element (1.10), we have

WaG |0〉 = C G |0〉 (1.118)

for some constant C. Thus,

Ŵaτ = C
〈0| eJ+(t)G |0〉

〈0|G |0〉 = Cτ. (1.119)

Operators a satisfying (1.113), or similar relations forW⊥, we call the Kac–Schwarz operators
[17]. Obviously, the Kac–Schwarz operators form an algebra. However, general properties of such
an algebra for arbitrary KP solutions are unknown (see, e.g., [18] and [19] for recent discussion).

1.6 Virasoro group action

In this subsection we describe how the subgroups Vir± of the Virasoro group act on different
spaces important for our construction. In particular, we consider an action on the space of func-
tions of times (the main example here, of course, is an action on the space of tau-functions), on
the Heisenberg–Virasoro algebra and an action of the corresponding groups of diffeomorphisms
on the space H.

With any operator exp (
∑
akLk) from either Vir+ or Vir−, according to the rule (1.112),

we identify an operator exp (
∑
aklk). This operator is defined in terms of the formal series

g(z) =
∑
akz

1−k:

∑
aklk = g(z)∂z −

1

2
g′(z)− z−1g(z). (1.120)

This series allows us to define two formal Laurent series in z:

f(z) ≡ exp
(∑

akl+k

)
z exp

(
−
∑

akl+k

)
(1.121)

and

f̃(z) ≡ exp
(∑

akl−k

)
z exp

(
−
∑

akl−k

)
=

1

f−1(z−1)
. (1.122)
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For an operator from Vir+ the series f and f̃ are of the form

f(z) = z + b−1 + b−2z
−1 + b−3z

−2 + b−4z
−3 + · · ·

and

f̃(z) = z + b−1z
2 +

(
b−2 + b−1

2
)
z3 +

(
3 b−2b−1 + b−3 + b−1

3
)
z4

+
(
4 b−3b−1 + 2 b−2

2 + 6 b−2b−1
2 + b−4 + b−1

4
)
z5 + · · ·

(1.123)

For an operator from Vir− we have

f(z) = z + b1z
2 + b2z

3 + b3z
4 + b4z

5 + · · ·

and

f̃(z) = z + b1 +
b2 − b1

2

z
+

2 b1
3 − 3 b2b1 + b3

z2
+

10 b2b1
2 + b4 − 5 b1

4 − 4 b3b1 − 2 b2
2

z3
+ · · ·

Here bk’s are polynomials in the coefficients ak.
Notations we use can be confusing, because it is not always clear if we consider a product of

two operators (one of which can be an operator of order zero), or an operation of the operator on
the function (so that the result is a function). To avoid possible confusion, when necessary we
will denote the product of two operators as a · b, while an action of the operator on the function
as a [b]. For example:

f(z) = exp
(∑

aklk

)
· z · exp

(
−
∑

aklk

)
= exp (g(z)∂z) [z] .

We use this notation for operators of all types.
Series f(z) and f̃(z) play an important role in our constructions. Thus, in what follows we

need

Lemma 1.1 For any constant α and a series f(z) defined by (1.121) we have

exp
(
g(z)∂z + αg′(z)

)
=
(
f ′(z)

)α · exp (g(z)∂z) (1.124)

and

exp

(
g(z)∂z − α

g(z)

zk

)
=





exp

(
α

k − 1

(
1

f(z)k−1
− 1

zk−1

))
· exp (g(z)∂z) for k 6= 1

(
z

f(z)

)α

· exp (g(z)∂z) for k = 1.

(1.125)
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Proof. Both relations follow from the Baker–Campbell–Hausdorff formula. From this formula
we know that for any h(z) and g(z) we have

exp (αh(z) + g(z)∂z) = exp(αn(z)) exp (g(z)∂z) , (1.126)

where n(z) is a formal Laurent series in z:

n(z) =
eg(z)∂z − 1

g(z)∂z
[h(z)] = h(z) +

1

2
g(z) ∂zh(z) + . . . (1.127)

In particular, if h(z) = g′(z), then

n(z) =
eg(z)∂z − 1

g(z)∂z

[
g′(z)

]
=
(
eg(z)∂z − 1

)
[log(g(z))] = log(g(f(z))) − log(g(z)). (1.128)

Moreover, we have

g(f(z)) = eg(z)∂z [g(z)] =
(
eg(z)∂z · g(z) ∂z

)
[z]

=
(
g(z)∂z · eg(z)∂z

)
[z] = g(z)f ′(z)

(1.129)

so that

n(z) = log(f ′(z)) (1.130)

and (1.124) follows from (1.126).
For (1.125) we have instead of (1.128)

n(z) =
eg(z)∂z − 1

g(z)∂z

[
−g(z)
zk

]
, (1.131)

which, for k 6= 1, is equal to

n(z) =
(
eg(z)∂z − 1

) [ 1

(k − 1)zk−1

]
=

1

k − 1

(
1

f(z)k−1
− 1

zk−1

)
, (1.132)

and for k = 1

n(z) =
(
eg(z)∂z − 1

)
[− log(z)] = log

(
z

f(z)

)
, (1.133)

which establishes (1.125). This completes the proof.

From this lemma and (1.120) we immediately arrive at the following expression for the
operator (1.120):

exp
(∑

aklk

)
=

z

f(z)

√
f ′(z) exp (g(z)∂z) . (1.134)
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In what follows we will also use the formula (1.125) for k = 4:

exp

(
g(z)∂z −

g(z)

z4

)
= exp

(
1

3f(z)3
− 1

3z3

)
exp (g(z)∂z) . (1.135)

Let us show, how the groups Vir± act on the algebra W1+∞. For the current J(z) from the
commutation relation (1.59) we have:

[Lk, J(z)]− = zk (z∂z + (k + 1)) [J(z)] . (1.136)

Thus

e
∑

akLk · J(z) · e−
∑

akLk = exp
(∑

akz
k (z∂z + (k + 1))

)
[J(z)] . (1.137)

From the definition of the series f̃(z) (1.122) it follows that (see, e.g., [20]):

exp
(∑

akz
k (z∂z + (k + 1))

)
[J(z)] = f̃ ′(z)J(f̃ (z)). (1.138)

For the generating series of the Virasoro algebra W (2)(z) from (1.58) we have

[
Lk,W

(2)(z)
]
−
= zk (z∂z + 2(k + 1))

[
W (2)(z)

]
+

1

12
(k3 − k)zk−2, (1.139)

so that

e
∑

akLk ·W (2)(z) · e−
∑

akLk =
(
f̃ ′(z)

)2
W (2)(f̃(z)) +

eD − 1

D

[∑
ak(k

3 − k)zk−2
]
, (1.140)

where

D =
∑

akz
k (z∂z + 2(k + 1)) . (1.141)

More generally, under conjugation the operator ∗
∗
J(z)k ∗

∗
behaves like a k-differential:

e
∑

akLk ∗
∗
J(z)k ∗

∗
e−

∑
akLk =

(
f̃ ′(z)

)k
∗
∗
J(f̃(z))k ∗

∗
+ · · · . (1.142)

Of course, the above formulas are central extensions of the conjugation relations for the
algebra w1+∞. For example, let us consider the operators lm from (1.112). Since

exp
(∑

akz
1−k∂z

)
· ∂z · exp

(
−
∑

akz
1−k∂z

)
=

1

f ′(z)
∂z (1.143)

we have

exp
(∑

aklk

)
· lm · exp

(
−
∑

aklk

)
= r(z)∂z −

1

2
r′(z)− z−1r(z), (1.144)
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where r(z) = f(z)1−m/f ′(z).
Let us show how an element of the Virasoro group Vir+ acts on an arbitrary function of

times (not necessary a tau-function) Z(t):

e
∑

akL̂k [Z(t)] = e
∑

akL̂k · Z(t) · e−
∑

akL̂k · e
∑

akL̂k [1] . (1.145)

Let us assume that the function Z(t) is given by a correlation function

Z(t) =
〈
e
∑

k>0 k tkSk

〉
(1.146)

in some model with some commuting operators Sk. Then, since the operators L̂k for positive k
annihilate constants, for an operator from Vir+ we have

e
∑

k>0 akL̂k [Z(t)] =

〈
exp

(∑

k>0

k Sk e
∑

k>0 akL̂k · tk · e−
∑

k>0 akL̂k

)
[1]

〉

=

〈
exp

(∑

k>0

(
k tk S̃k + S̃−k

∂

∂tk

))
[1]

〉

=

〈
exp

(∑

k>0

k

(
tk S̃k +

1

2
S̃kS̃−k

))〉
,

(1.147)

where

S̃k = resz

(
z−k−1Q

)
(1.148)

for

Q =

∞∑

k=1

Sk f(z)
k. (1.149)

Here f(z) is the series (1.121). The last line of (1.147) can also be represented as

e
∑

k>0 akL̂k [Z(t)] =

〈
exp

(∑

k>0

k tk resz

(
Q

zk+1

)
− 1

2
resz (Q∂z Q−)

)〉
. (1.150)

If Sk = 1
kTrX

k for some X (in particular, it can be a matrix in some matrix integral), then one
can say even more. In this case (1.150) reduces to

e
∑

k>0 akL̂k

〈
exp

(∑

k>0

tk TrX
k

)〉
=

〈√

det
f̃(X)⊗ 1− 1⊗ f̃(X)

X ⊗ 1− 1⊗X
× det

(
X

f̃(X)

)N

exp

(∑

k>0

tk Tr f̃(X)k

)〉
,

(1.151)
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where f̃ is given by (1.122). We see that if the correlation function in the l.h.s. of (1.151) is
a tau-function, then this formula gives an infinite dimensional family of tau-functions given by
correlation functions with double-trace interaction.

Action of the group Vir− can be derived from the action of Vir+ and from the following
observation: for operators (1.43) with m = 1, 2, 3 we have

Ŵ
(m)
k (t)

[
e
∑

k>0 k tkSk

]
= Ŵ

(m)
−k (S)

[
e
∑

k>0 k tkSk

]
, (1.152)

where an operator Ŵ
(m)
k (S) acts in the space of function of Sk’s. In particular, for the Virasoro

operators we have an identity

exp

(∑

k<0

akL̂k(t)

)[
e
∑

k>0 k tkSk

]
= exp

(∑

k>0

a−kL̂k(S)

)[
e
∑

k>0 k tkSk

]
. (1.153)

Thus, to describe an action of Vir− we can take the expression (1.150) for an action of Vir+,
interchange tk and Sk, and substitute f(z) with f̃(z):

e
∑

k<0 akL̂kZ(t) = exp

(
−1

2
resz P ∂z P−

)
×
〈
exp

(∑

k>0

k Sk resz

(
P

zk+1

))〉
, (1.154)

where

P =

∞∑

k=1

tkf̃(z)
k. (1.155)

For the operators Sk = 1
kTrX

k this expression reduces to

e
∑

k<0 akL̂kZ(t) = exp

(
−1

2
resz P ∂z P−

)
×
〈
exp

(∑

k>0

tk Tr
[
f̃(X)k

]
+

)〉
, (1.156)

where we use the notation [. . . ]+ for the part, which contains only strictly positive degrees of
X.

Since operators from the algebra V ir− are of the first order, operators from Vir− define a
linear change of variables when act on an arbitrary function:

e
∑

k<0 akL̂kZ(t) = e−
1
2

∑
i,j Aijtitj Z

(
t̃
)
, (1.157)

where

t̃k = resz

(
z−k−1 P

)
, (1.158)

and

Aij = resz

(
f̃(z)i ∂z

[
f̃(z)j

]
−

)
. (1.159)
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For tau-functions this transformation is known as a transformation between equivalent hierar-
chies [20–22].

1.7 Matrix models

Any formal series in an infinite set of variables tk can be expanded in a sum of the Schur
functions. Expansions of the tau-functions of the KP hierarchy are quite special, namely the
coefficients cλ parametrized by the Young diagrams λ:

τ(t) =
∑

λ

cλsλ(t) (1.160)

satisfy the Plücker relations [8]. From the expansion (1.30) the fermionic correlation function
expression for the coefficients easily follows:

cλ = (−1)b(λ) 〈λ, 0|G |0〉 . (1.161)

Let us denote by τN (t) a restricted sum

τN (t) =
∑

l(λ)≤N

cλsλ(t), (1.162)

where l(λ) is the length of the partition, so that τ(t) = τ∞(t). This restricted sum is also a KP
tau-function for any N (see, e.g., [4]). Since for any N ×N matrix Z the Schur function labeled
by λ vanishes if l(λ) > N

sλ

(
tk =

1

k
trZk

)
= 0, (1.163)

one has

τN ([Z]) = τN+1 ([Z]) = · · · = τ ([Z]) . (1.164)

The restricted sums (1.162) naturally appear in the expansion of the matrix integrals. Let us
consider classes of the matrix models, which are most important for our purposes.

Unitary matrix integrals are of primary interst for us. We use the Haar measure normalized
in such a way that the integral over the unitary group is equal to unity:

∫

U
[dU ] = 1. (1.165)

Integration rules for the Schur functions are particularly simple:

∫

U
[dU ] sλ

([
UAU †B

])
=
sλ([A])χλ([B])

dim λ
, (1.166)
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∫

U
[dU ] sλ ([UA]) sµ

([
U †B

])
=
sλ ([AB])

dim λ
δλ,µ, (1.167)

where dim λ is a value of the Schur polynomial in the Miwa parametrization with the unity
matrix I = diag (1, 1, . . . , 1):

dim λ = sλ ([I]) =
∏

0<i<j≤N

λi − λj + j − i

j − i
. (1.168)

With the help of the Cauchy–Littlewood identity, this leads us to the following expansion of the
unitary matrix model:

∫

U
[dU ] exp

( ∞∑

k=0

tkTrU
k + t̄kTrU

†k
)

=
∑

l(λ)≤N

sλ(t)sλ(t̄). (1.169)

To restore the explicit time dependence for any tau-function in the Miwa parametrization
one can use the unitary matrix integral:

τN (t) =

∫

U
[dU ] exp

( ∞∑

k=1

tkTrU
†k
)
τ ([U ]) . (1.170)

The Itzykson–Zuber (IZ) integral for diagonal matrices A and B is a simple symmetric
combination of the eigenvalues of A and B :

∫

U
[dU ] exp

(
Tr
(
UAU †B

))
=

(
N−1∏

k=1

k!

)
det eaibj

∆(a)∆(b)
. (1.171)

In what follows we will mostly work with the eigenvalue integrals. For example, for A = B = I
the orthogonality condition (1.167) in terms of eigenvalues reduces to:

N∏

j=1

1

2πi

∮

|uj |=1

duj
uj

|∆(u)|2 sλ(u)sµ(ū) = N !δλ,µ. (1.172)

Another important class of matrix integrals is given by integrals over Hermitian matrices.
A Hermitian matrix can be decomposed into the product Φ = UXU † with unitary U and real
diagonal X. Then the element of the volume in the Hermitian matrix integral

∫
H[dΦ] . . . is:

[dΦ] = [dU ] ∆(x)2
N∏

i=1

dxi. (1.173)

The normal matrix integral is an integral over normal matrices (that is over matrices com-
mutating with their conjugate,

[
Z,Z†] = 1). A normal matrix can be diagonalized

Z = UZU †, (1.174)
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with the unitary matrix U and the diagonal matrix Z with complex entries. Then the measure
in the normal matrix integral

∫
N [dZ] . . . is

[dZ] = [dU ] |∆(z)|2
N∏

i=1

d2zi. (1.175)
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2 Three tau-functions and relations between them

In this section we investigate the properties of several generating functions of enumerative ge-
ometry and relations between them. All considered partition functions are tau-functions of the
KP integrable hierarchy, and, in what follows, we focus on their integrable properties.

2.1 Tau-functions and enumerative geometry

This section is devoted to a brief reminder of the geometric origin of the considered tau-functions,
for more details see, e.g., [1, 23–25].

The first of the partition functions we consider is the generating function of linear Hodge
integrals. Let Mp;n be the Deligne–Mumford compactification of the moduli space of stable
complex curves with n marked points. We consider linear Hodge integrals

∫

Mp;n

λjψ
m1
1 ψm2

2 · · ·ψmn
n = 〈λjτm1 . . . τmn〉 , (2.1)

where ψi is the first Chern class of the line bundle corresponding to the cotangent space of
the curve at the i-th marked point and λi is the i-th Chern class of the Hodge bundle. These
integrals are trivial, unless the corresponding complex dimensions coincide:

j +
n∑

i−1

mi = dim
(
Mp;n

)
, (2.2)

where dim
(
Mp;n

)
= 3p− 3 + n.

Let us introduce the generating function of linear Hodge integrals:

F̃ (to;u) =
∑

j≥0

(−1)j

〈
λj exp


∑

k≥0

(2k + 1)!! t2k+1τk



〉
u2j, (2.3)

where λ0 = 1 and to denotes a set of odd times t2k+1.
4 The change of variables

T1(t) = t1,

T2k+3(t) =
1

2k + 3

∑

m≥1

(
mu2tm + 2(m+ 1)u tm+1 + (m+ 2)tm+2

) ∂

∂tm
T2k+1(t)

=
1

2k + 3

(
u2L̂0 + 2u L̂−1 + L̂−2

)
T2k+1(t),

(2.4)

such that T2k+1(t) = t2k+1 +O(u), allowed M. Kazarian to relate the generating function (2.3)
(which is a solution of integrable hierarchy of topological type [26] but not a solution of the KP)

4Here we want to stress that the chosen normalization of the variables tk does not coincide with the one
generally accepted in the enumerative geometry, but is natural for matrix models and integrable systems.
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to the KP hierarchy. Namely, in [1] it was proved that the exponential of the function

FHodge(t;u) ≡ F̃ (To(t);u) (2.5)

is a tau-fucntion of the KP hierarchy for arbitrary u:

τHodge(t;u) ≡ exp (FHodge(t;u)) . (2.6)

This function, as opposed to (2.3), depends on both even and odd times.
For u = 0 only ψ-classes survives in (2.3):

FKW (to) ≡
〈
exp

(∑

k>0

(2k + 1)!! t2k+1τk

)〉
= FHodge(t; 0) = F̃ (to; 0) (2.7)

and (2.6) reduces to the profound Kontsevich–Witten (KW) tau-function

τKW (to) = exp (FKW (to)) = τHodge(t; 0). (2.8)

It is known that linear Hodge integrals can be expressed through the intersection numbers
of the ψ-classes [27,28]. Namely,

eF̃ (to;u) = eQ̂τKW (to), (2.9)

where

Q̂ =

∞∑

k=1

B2ku
4k−2

2k(2k − 1)
Q̂k. (2.10)

Here

Q̂k =
∑

i≥0

(2i+ 1)!!

(2i+ 4k − 1)!!
t̃2i+1

∂

∂t2i+4k−1
− 1

2

∑

i+j=2k−2

(−1)i

(2i+ 1)!!(2j + 1)!!

∂2

∂t2i+1∂t2j+1
(2.11)

and t̃k = tk − δk,3
3 are the times subject to the dilation shift and B2k are the Bernoulli numbers

xex

ex − 1
= 1 +

x

2
+

∞∑

k=1

B2kx
2k

(2k)!
.

Operator Q̂ does not belong to the ̂gl(∞) symmetry algebra of the KP hierarchy.
Hurwitz numbers count ramified coverings of Riemann surfaces. More specifically, the Hur-

witz number h(p|m1, . . . ,mn) gives the number of the Riemann sphere coverings with N sheets,
M fixed simple ramification points and a single point with ramification structure given by {mi},
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a partition of N . The number of double ramification points M , the genus p of the cover and the
partition {mi} are related:

M = 2p− 2 +
∑

i=1

(mi + 1). (2.12)

The generating function of the Hurwitz numbers

FH(t;β) =
∑

n>1

1

n!

∑

p;m1,...,mn

h(p;m1, . . . ,mn)

M !
βMm1 . . . mntm1 . . . tmn (2.13)

defines the Hurwitz tau-function

τH(t;β) = exp (FH(t;β)) . (2.14)

τH is known to be a tau-function of the KP hierarchy (moreover, its generalization for double
Hurwitz numbers is a tau-function of the 2D Toda lattice [29]).

The Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula [23] relates the Hurwitz num-
bers h(p;m1, . . . ,mn) with linear Hodge integrals

h(p;m1, . . . ,mn)

M !
=

n∏

i=1

mmi

i

mi!

∫

Mp;n

1− λ1 + λ2 − . . . ± λp∏n
i=1(1−miψi)

. (2.15)

This formula allowed M. Kazarian [1] to find a relation between the Hurwitz tau-function (2.14)
and the Hodge tau-function (2.6). These two tau-functions are related with each other by the
̂GL(∞) group element. Our goal is to extend this connection and to include the KW tau-function

into it.

2.2 Heisenberg–Virasoro group and three tau-functions

From [1,2] we know that the ELSV formula allows us to connect the generating function for the
Hodge integrals (2.6) and the Hurwits tau-function (2.14) in a simple way:

τHodge(t, u) = Ĝ0 Ĝ− τH(t, β), (2.16)

where

Ĝ− = eL̂−e−
∑

k>0
kk−1βk−1tk

k! ,

Ĝ0 = β−
4
3
L̂0

(2.17)

are the elements of the Heisenberg–Virasoro group. In what follows we put β = u3. The operator
L̂− belongs to the Virasoro algebra V ir− and is described below.

In [30] we have claimed that the relation (2.16) can be naturally extended to include the
KW tau-function. Here we clarify this extension. Namely
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Conjecture 2.1

τKW (to) = Ĝ+ τHodge(t, u), (2.18)

where

Ĝ+ = β−
4
3
L̂0eL̂+β

4
3
L̂0 ∈ Vir+, (2.19)

and operator L̂+ is defined by the series f+ from (2.27).

In Section 2.8 we prove (2.18) up to a constant prefactor. Namely,

Theorem 2.1

τKW (to) = C(u) Ĝ+ τHodge(t, u), (2.20)

where C(u) is a Taylor series in u with constant coefficients of the form

C(u) = 1 +

∞∑

k=1

cku
6k. (2.21)

Explicit calculations show that, at least, C(u) = 1 +O(u30).
From Conjecture 2.1 it follows that the KW and Hurwitz tau-functions are related by an

operator from the Heisenberg–Virasoro group:

τKW (to) = Ĝ+ Ĝ0 Ĝ−τH(t, β). (2.22)

Let us describe the operators L̂± in more detail. Namely,

L̂± =
∑

k>0

a±kβ
∓kL̂±k (2.23)

belong to the algebras V ir±. Coefficients a±k can be described by two formal Laurent series
(see Section 1.6)

f±(z) ≡ exp

(∑

k>0

a±kz
1∓k∂z

)
z. (2.24)

These two series are of different complexity: while f−(z) is relatively simple

f−(z) =
z

1 + z
e−

z
1+z = z − 2z2 +O(z3), (2.25)

with an inverse series

f−1
− (z) =

∞∑

k=1

kk

k!
zk, (2.26)
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the series f+(z) is given implicitly as a solution of the equation

f+(z)

1 + f+(z)
exp

(
− f+(z)

1 + f+(z)

)
= E exp(−E), (2.27)

where

E = 1 +

√(
1

1 + f+(z)

)2

+
4

3z3
. (2.28)

The solution of the equation (2.27) is uniquely specified by the asymptotics for large |z|:

f+(z) = z − 2

3
+O

(
z−1
)
. (2.29)

Let us stress that both f+ and f− can be represented as compositions of two intermediate
series:

f±(z) = f±1 (f±2(z)) , (2.30)

where

f±i(z) ≡ exp

(∑

k>0

a
(i)
±kz

1∓k∂z

)
z (2.31)

for i = 1, 2. This factorization corresponds to the factorization of the Virasoro group operators:

exp
(
L̂±
)
= exp

(
L̂
(2)
±
)
· exp

(
L̂
(1)
±
)
. (2.32)

For (2.25) the factorization is obvious:

f−1(z) = z e−z

f−2(z) =
z

1 + z
.

(2.33)

Factorization of the series f+ is less trivial. Namely, f+ can be expressed as a composition of

f+1(z) =
1

z exp (z−1) sinh (z−1)− 1

= z − 2

3
+

1

9
z−1 +

2

135
z−2 − 1

405
z−3 − 2

1701
z−4 − 2

127575
z−5 +

4

54675
z−6

+
13

1148175
z−7 − 614

189448875
z−8 − 958

795685275
z−9 +

668

14105329875
z−10 +O

(
z−11

)

(2.34)

and f+2, satisfying the equation

1

(f+2(z))
2 coth

(
1

f+2(z)

)
− 1

f+2(z)
=

1

3z3
. (2.35)
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The series

f+2(z) = z − 1

45
z−1 +

1

1575
z−3 +

1

273375
z−5 − 1658

1326142125
z−7 +

251

15962821875
z−9

+
1952908

523660371609375
z−11 − 10945903

80120036856234375
z−13 +O

(
z−15

) (2.36)

contains only odd terms, so that the Virasoro constraints for the KW tau-function allow us to
get rid of the corresponding operator (see Section 2.7).

2.3 Kontsevich–Witten tau-function

The Kontsevich–Witten tau-function [31, 32] is one of the most important objects of modern
mathematical physics. It is given by a formal series in times with rational coefficients:

τKW (t) = 1 +
1

6
t1

3 +
1

8
t3 +

1

72
t1

6 +
25

48
t3t1

3 +
25

128
t3

2 +
5

8
t5t1 +

1

1296
t1

9

+
49

576
t1

6t3 +
1225

768
t1

3t3
2 +

35

48
t1

4t5 +
1225

3072
t3

3 +
245

64
t5t3t1 +

35

16
t1

2t7 +
105

128
t9 + . . .

(2.37)

In the Miwa parametrization it is equal to the asymptotic expansion of the Kontsevich matrix
integral over the Hermitian matrix Φ:

τKW

([
Λ−1

])
=

∫

H
[dΦ] exp

(
−Tr

(
Φ3

3!
+

ΛΦ2

2

))

∫

H
[dΦ] exp

(
−Tr

ΛΦ2

2

) . (2.38)

This integral depends on the external matrix Λ, which is assumed to be a positive defined
diagonal matrix. The times tk are given by the Miwa transform of the matrix Λ:

tk =
1

k
TrΛ−k. (2.39)

After the shift of the integration variable

Φ = X − Λ (2.40)

the numerator of (2.38) can be represented as

e−
1
3
TrΛ3

∫

H
[dX] exp

(
−Tr

(
X3

3!
− Λ2X

2

))
. (2.41)

The Itzykson–Zuber integral (1.171) allows us to reduce the r.h.s. of (2.38) to the ratio of
determinants

τKW ([Z]) =
detNi,j=1Φ

KW
i (zj)

∆ (z−1)
, (2.42)
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where Z ≡ Λ−1 and the basis vectors are given by integrals

ΦKW
k (z) =

e−
1

3z3√
2πz

∫ ∞

−∞
dy yk−1 exp

(
−y

3

3!
+

y

2z2

)

=
1√
2πz

∫ ∞

−∞
dy (y + z−1)k−1 exp

(
−y

3

3!
− y2

2z

)
.

(2.43)

The coefficients of the basis vectors can be found explicitly, in particular

ΦKW
1 (z) =

∞∑

k=0

2k Γ
(
3k + 1

2

)

9k (2k)! Γ
(
1
2

)z3k,

ΦKW
2 (z) = −

∞∑

k=0

6k + 1

6k − 1

2k Γ
(
3k + 1

2

)

9k (2k)! Γ
(
1
2

)z3k−1.

(2.44)

The first line of (2.43) allows us to find the Kac–Schwarz operators of the KW tau-function
[17,33]. Indeed, we have:

ΦKW
k+1 (z) =

e−
1

3z3√
2πz

(
−z3 ∂

∂z

)∫ ∞

−∞
dy yk−1 exp

(
−y

3

3!
+

y

2z2

)
= aKW ΦKW

k (z), (2.45)

where

aKW =
1

z
− z3

∂

∂z
− z2

2
. (2.46)

Thus,

aKW

{
ΦKW

}
⊂
{
ΦKW

}
(2.47)

and the operator aKW is the Kac–Schwarz operator.
To construct another Kac–Schwarz operator we use the identity5

(
a2KW − z−2

)
ΦKW
1 (z) = 0. (2.48)

From this identity and the recursion relation (2.45) it follows that

z−2ΦKW
k = ΦKW

k+2 − 2(k − 1)ΦKW
k−1 . (2.49)

Thus,

bKW = z−2 (2.50)

5Corresponding operator generates the D-module describing the tau-function [34].
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is also the Kac–Schwarz operator. Kac–Schwarz operators (2.46) and (2.50) satisfy the canonical
commutation relation

[aKW , bKW ]− = 2 (2.51)

and generate an algebra of the Kac–Schwarz operators for the KW tau-function.
The Kac–Schwarz operators that have been constructed allow us to find two infinite series

of operators, which annihilate the tau-function. Let us consider the operators

ĴKW
k ≡ Ŷ(bKW )k = Ŷz−2k =

∂

∂t2k
, for k ≥ 1. (2.52)

where we have used (1.109). From the general properties of the Kac–Schwarz operators it follows
that the KW tau-function is an eigenfunction of the operators (2.52). The same is true for the
Virasoro operators

L̂KW
k ≡ ŶlKW

k
+

1

16
δk,0 =

1

2
L̂2k −

1

2

∂

∂t2k+3
+

1

16
δk,0, (2.53)

where

lKW
k ≡ −1

4

[
(bKW )k+1, aKW

]
+
=

1

2

(
l2k − z−2k−3

)
(2.54)

for k ≥ −1.
To find corresponding eigenvalues it is enough to check that these operators satisfy the

commutation relations of the algebra V+:

[
ĴKW
k , ĴKW

m

]
−
= 0, for k,m ≥ 1,

[
L̂KW
k , ĴKW

m

]
−
= −mĴKW

k+m, for k ≥ −1 and m ≥ 1,

[
L̂KW
k , L̂KW

m

]
−
= (k −m)L̂KW

k+m, for k,m ≥ −1.

(2.55)

Since all generators of the algebra can be obtained as commutators of some other generators,
the eigenvalues of all of them are equal to zero:

ĴKW
m τKW = 0, m ≥ 1 (2.56)

and

L̂KW
m τKW = 0, m ≥ −1. (2.57)

Obviously, the first identity is just another way to say that the KW tau-function does not depend
on even times (and is a tau-function of the KdV hierarchy).
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Then, for any function Z(to) depending only on the odd times t2m+1, we have

L̂kZ(t
o) =

(
L̂2k +

1

8
δk,0

)
Z(to), k ≥ −1, (2.58)

where the operators

L̂m =
∞∑

k=1

(2k + 1) t2k+1
∂

∂t2k+2m+1
+

1

2

m−1∑

k=0

∂2

∂t2k+1∂t2m−2k−1
+
t21
2
δm,−1 +

1

8
δm,0, m ≥ −1

(2.59)
constitute the same subalgebra of the Virasoro algebra:

[
L̂n, L̂m

]
−
= 2(n −m)L̂n+m, n,m ≥ −1. (2.60)

Thus, the Virasoro constraints from (2.57) are equivalent to the standard Virasoro constraints
for the KW tau-function

L̂mτKW =
∂

∂t2m+3
τKW , m ≥ −1. (2.61)

The Virasoro operators L̂m are combinations of the even part of the current (1.66):

Ĵ (z) =
Ĵ(z)− Ĵ(−z)

2
=

∞∑

k=1

(
(2k + 1)t2k+1z

2k +
1

z2k+2

∂

∂t2k+1

)
, (2.62)

namely

∗
∗
Ĵ (z)2 ∗

∗
= 2

∞∑

k=−∞

L̂k

z2k+2
− 1

4z2
. (2.63)

2.4 Hurwitz tau-function

According to [13, 14] the Hurwitz tau-function, given by (2.14) can be represented in terms of
the cut-and-join operator (1.73):

τH(t;β) = exp

(
β

2
M̂0

)
exp (t1)

= 1 + t1 +
eβ

2

(
t21 + t2

)
+
e−β

2

(
t21 − t2

)
+ · · ·

(2.64)
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The coefficients of the parameter β expansion are polynomials in tk (up to an exponential
prefactor):

τH(t;β) = et1
(
1 + t2β +

1

4

(
t1

2 + 2 t2
2 + 6 t3

)
β2

+
1

12

(
3 t1

2t2 + 2 t2
3 + 18 t3t2 + 16 t2t1 + 2 t2 + 32 t4

)
β3 + · · ·

)
.

(2.65)

From (2.64) we can easily derive an expression for the basis vectors [1]: using the notations
of Section 1 we get

ΦH
k (z) = (γkk )

−1 exp

(
β

2
m0

)
exp(j−1) z

1−k, (2.66)

where γkk = resz

(
z−k exp

(
β
2m0

)
zk
)
= exp

(
β
24 + β

2

(
k − 1

2

)2)
, so that

ΦH
k (z) = e

β
2

(
(z∂z− 1

2)
2−(k− 1

2)
2
)

ezz1−k =

∞∑

i=0

e
β
2

(
(i−k+ 1

2)
2−(k− 1

2)
2
)
zi−k+1

i!
. (2.67)

This basis is not a canonical one. It is convenient to rewrite the basis vectors ΦH
k in terms of

integrals in one variable [35]. Namely, for any operator A we have

e
β
2
A2

=
1√
2πβ

∫ ∞

−∞
dy exp

(
− y2

2β
+ yA

)
, (2.68)

so that, since m0 =
(
z∂z − 1

2

)2
+ 1

12 , we have

ΦH
k (z) =

exp
(
−β

2

(
k − 1

2

)2)

√
2πβ

∫ ∞

−∞
dy (zey)1−k exp

(
− y2

2β
− y

2
+ zey

)
, (2.69)

or, combining terms in a different way,

ΦH
k (z) =

z1−k

√
2πβ

∫ ∞

−∞
dy exp

(
− 1

2β

(
y +

(
k − 1

2

)
β

)2

+ zey

)
. (2.70)

This integral can diverge (for example, it diverges for any real nonzero z) and should be only
considered as a formal Laurent series. The tau-function in the Miwa parametrization is

τH ([Z] ;β) =
detNi,j=1Φ

H
i (zj)

∆ (z−1)

=
e
β
(

N
24

−N3

6

)

(2πβ)
N
2 ∆(z−1)

N∏

i=1

∫ ∞

−∞
dyi ∆

(
z−1e−y

)
exp

(
−

N∑

i=1

WH(zi, yi)

) (2.71)
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with the potential

WH(z, y) =
y2

2β
+
y

2
− zey. (2.72)

This eigenvalue integral representation allows us to construct several matrix model repre-
sentations. First of all, one can introduce additional integration variables, given by the unitary
matrix. As a result, the Hurwitz tau-function can be represented as a Hermitian matrix inte-
gral [35, 36]:

τH ([Z] ;β) = P−1
H

∫

H
[dµ(Φ)] exp

(
− 1

2β
TrΦ2 +Tr

(
eΦ−Nβ/2Z

))
, (2.73)

where the measure of integration [dµ(Φ)] is non-flat and can be represented in terms of the
standard measure on the space of Hermitian matrices, given by (1.173), as follows:

[dµ(Φ)] =

√
det

sinh
(
Φ⊗1−1⊗Φ

2

)
(
Φ⊗1−1⊗Φ

2

) [dΦ] . (2.74)

The coefficient PH =
∫
H [dµ(Φ)] exp

(
− 1

2βTrΦ
2
)
does not depend on the external matrix Z.

The same tau-function can be given by an integral over normal matrices [35]. Namely, the
integral (1.170) in the eigenvalue form gives

τNH (t;β) =

∫

U
[dU ] exp

( ∞∑

k=1

tkU
†k
)
τH ([U ] ;β)

=
1

N !

N∏

i=1

(
1

2πi

∮
dzi
zi

)
∆(z)∆(z−1) exp




∞∑

k=1

N∑

j=1

tkz
−k
j


 τH ([Z] ;β) .

(2.75)

On substitution of (2.71) into this relation we get an integral of the form

N∏

i=1

(∫ ∞

−∞
d yi

∮
dzi
2πizi

)
∆(z)∆(z−1e−y) exp

(
N∑

i=1

W (zi, yi)

)
(2.76)

for some known function W (z, y). This integral can be reduced to a normal matrix integral
with the measure (1.175). Indeed, let us assume that zi integral is taken over the circle |zi| =
exp(−yi/2), so that |z−1

i | = exp(−yi/2). Then

(2.76) = π−N
N∏

i=1

∫

C

d2zi
|zi|2

∆(z)∆(z̄) exp

(
N∑

i=1

W (zi,− log |zi|2)
)
, (2.77)

where d2z = d (ℜ z) d (ℑ z), so that the tau-function is given by a normal matrix integral

τNH (t;β) = P−1

∫

N
[dZ] exp

(
−Tr W̃H +

∞∑

k=1

tkTrZ
−k

)
, (2.78)
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where

W̃H =
1

2β

(
logZ†Z

)2
+

1

2
logZZ† − (Z†)−1 (2.79)

and P, again, does not depend on times.

2.5 Kac–Schwarz description of the Hurwitz tau-function

Let us find the Kac–Schwarz operators for the Hurwitz tau-function. First of all, from (2.70)
we see that

exp

(
±βz ∂

∂z

)
ΦH
k (z)

=

(
ze±β

)1−k

√
2πβ

∫ ∞

−∞
dy exp

(
− 1

2β

(
y +

(
k − 1

2

)
β

)2

+ zey±β

)

=

(
ze±β

)1−k

√
2πβ

∫ ∞

−∞
dy exp

(
− 1

2β

(
y +

(
k ∓ 1− 1

2

)
β

)2

+ zey

)
,

(2.80)

where we have shifted the integration variable y 7→ y ∓ β. Therefore, operator

bH = z−1 exp

(
−βz ∂

∂z

)
(2.81)

is the Kac–Schwarz operator

bH ΦH
k = eβ(k−1)ΦH

k+1. (2.82)

Combining relation (2.80) with an identity

z
∂

∂z
ΦH
k (z) =

exp
(
−β

2

(
k − 1

2

)2)

√
2πβ

∫ ∞

−∞
dy (1− k + zey)

× (zey)1−k exp

(
− y2

2β
− y

2
+ zey

)
(2.83)

we get

(
z exp

(
βz

∂

∂z

)
− z

∂

∂z

)
ΦH
k = (k − 1)ΦH

k . (2.84)

Thus, the operator

aH = z exp

(
βz

∂

∂z

)
− z

∂

∂z
(2.85)
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is the Kac–Schwarz operators for the Hurwitz tau-function.6 It is easy to check that these
Kac–Schwarz operators satisfy the commutation relation

[aH , bH ]− = bH . (2.87)

The operators aH and bH completely define a point of the Grassmannian. Indeed, on sub-
stitution of the first basis vector

ΦH
1 = 1 +

∑

m=1

ϕH
m,1z

m
(2.88)

into (2.84) for k = 1 we obtain the first coefficient, ϕH
1,1 = 1, and a recursive relation, which

allows us to find all other ϕH
m,1:

ϕH
m+1,1 =

emβ

m+ 1
ϕH
m,1. (2.89)

This yields ΦH
1 , while all higher basis vectors can be obtained with the help of (2.82).

The operators aH and bH can be quantized via (1.109), and for the obtained operators ŶaH
and ŶbH the Hurwitz tau-function is an eigenfunction

ŶaH = t1 − L̂0 + βL̂−1 +
β2

2
M̂−1 + . . . ,

ŶbH =
∂

∂t1
− β

(
L̂1 +

∂

∂t1

)
+
β2

2

(
M̂1 + 2L̂1 +

∂

∂t1

)
+ . . . .

(2.90)

It is easy to find the corresponding eigenvalue for the operator ŶaH . Indeed, it is obvious that

the operator Ŷz exp(βz∂z) has positive energy. Thus, Ŷz exp(βz∂z)Z(t)|t=0 = 0 for all functions
Z(t), and we have

ŶaH τH(t)|t=0 = −Ŷz∂zτH(t)|t=0 = 0, (2.91)

so that

ŶaH τH(t) = 0. (2.92)

To find the eigenvalue of the operator ŶbH let us consider a commutator of the operators
(2.90). It is a deformation of the commutation relation (2.87):

[
ŶaH , ŶbH

]
−
= ŶbH + CH , (2.93)

6The operators aH and bH can be obtained by a conjugation of the Kac–Schwarz operators z − z∂z and z−1

for the tau-function exp(t1)

aH = e
β
2
m0 (z − z∂z) e

−β
2
m0 ,

bH = e
−β

e
β
2
m0 z

−1
e
−

β
2
m0 .

(2.86)
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where CH is a constant. Since the Hurwitz tau-function is an eigenfunction for both operators,
for the commutator we have

[
ŶaH , ŶbH

]
−
τH(t) = 0, (2.94)

so that

ŶbH τH(t) = −CH τH(t). (2.95)

From the definition of operators Ya and Rk in (1.49) and (1.110) we have

Ŷz−kqz∂z = −qk+1R̂k(q). (2.96)

Thus,

ŶaH = −Φ̂−1(e
β)− L̂0,

ŶbH = −e−2βΦ̂1(e
−β),

(2.97)

so that the commutation relation (1.53) yields

[
ŶaH , ŶbH

]
−
=
[
Φ̂−1(e

β) + L̂0, e
−2βΦ̂1(e

−β)
]
−
= ŶbH − e−β. (2.98)

Thus, CH = −e−β and

ŶbH τH(t) = e−β τH(t). (2.99)

Let us consider two families of operators

jHk = (bH)k for k ≥ 1,

lHk = − (bH)k aH for k ≥ −1.
(2.100)

It is obvious that all these operators (maybe except for lH−1) belong to the Kac–Schwarz algebra.
For lH−1 this statement can be checked explicitly:

lH−1Φ
H
k = (1− k)e(2−k)βΦk−1. (2.101)

Our notations reflect the fact that these operators are the deformations of the standard operators
(1.112):

jHk = jk +O(β),

lHk = lk +
k + 1

2
jk − jk−1 +O(β).

(2.102)
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where we assume that j0 = 1. From the commutation relation (2.87) one can easily derive the
commutation relations

[
jHk , j

H
m

]
− = 0,

[
lHk , j

H
m

]
− = −mjHk+m,

[
lHk , l

H
m

]
− = (k −m)lHk+m,

(2.103)

which coincide with the commutation relations of the subalgebra V+ of the Heisenberg–Virasoro
algebra. We have the following explicit expressions:

jHk = e
k2−k

2
βz−k exp

(
−kβz ∂

∂z

)
,

lHk = −ek2−3k
2

βz1−k exp

(
(1− k)βz

∂

∂z

)
+ e

k2−k
2

βz−k exp

(
−kβz ∂

∂z

)
z
∂

∂z
.

(2.104)

From (2.96) for k > 0 we have

Ŷz−ke−kβz∂z = −e−(k+1)kβ Φ̂k

(
e−kβ

)
,

Ŷz−ke−kβz∂zz∂z =
1

k

∂

∂β

(
e−(k+1)kβ Φ̂k

(
e−kβ

))
.

(2.105)

Thus,

ŶjH
k

= −e− k2+3k
2

βΦ̂k

(
e−kβ

)
, (2.106)

and for ŶlH
k

we have

ŶlH0
= L̂0 + Φ̂−1(e

β) = −ŶaH ,

ŶlH1
=

∂

∂β
e−2βΦ̂1(e

−β) = − ∂

∂β
ŶbH ,

ŶlHk
= e−

k2+k
2

βΦ̂k−1

(
e(1−k)β

)

+
1

k
e

k2−k
2

β ∂

∂β

(
e−(k+1)kβ Φ̂k

(
e−kβ

))
, for k = −1 and k > 1.

(2.107)

An expansion of these operators follows for the expansion (2.102)

ŶjH
k
= Ĵk +O(β),

ŶlH
k
= L̂k +

k + 1

2
Ĵk − Ĵk−1 +O(β).

(2.108)
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The relations (1.52), (1.53) and the commutation relation

[
L̂0, Φ̂k(q)

]
−
= −k Φ̂k(q) (2.109)

allow us to find the commutation relations between the operators ŶjH
k

and ŶlH
k

[
ŶjHk

, ŶjHm

]
−
= 0,

[
ŶlH

k
, ŶjHm

]
−
= −m

(
ŶjH

k+m
− δm+k,1e

−β
)
,

[
ŶlH

k
, ŶlHm

]
−
= (k −m)

(
ŶlH

k+m
− e−βδk+m,1 +

1

2
e−2βδk+m,2

)
.

(2.110)

Thus, the operators

ĴH
k = ŶjH

k
− δk,1e

−β, k ≥ 1

L̂H
k = ŶlH

k
− e−βδk,1 +

1

2
e−2βδk,2, k ≥ −1.

(2.111)

satisfy the commutation relations of the algebra V+:

[
ĴH
k , Ĵ

H
m

]
−
= 0, for k,m ≥ 1,

[
L̂H
k , Ĵ

H
m

]
−
= −mĴH

k+m, for k ≥ −1 and m ≥ 1,

[
L̂H
k , L̂

H
m

]
−
= (k −m)L̂H

k+m, for k,m ≥ −1.

(2.112)

Since τH is an eigenfunction of the operators ĴH
k and L̂H

k , from these commutation relations it
follows that the Hurwitz tau-function satisfies the constraints

ĴH
m τH = 0, for m ≥ 1,

L̂H
mτH = 0, for m ≥ −1.

(2.113)
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2.6 Hodge tau-function

The Hodge tau-function (2.6) is a deformation of the KW tau-function:

τHodge(t;u) = τKW (t)

+

(
1

6
t2 +

5

3
t4t1 +

25

48
t3t2 +

25

36
t2t1

3 +
35

8
t8 +

1225

768
t2t3

2 +
35

18
t1

4t4 +
35

4
t1

2t6

+
245

48
t5t1t2 +

49

432
t1

6t2 +
1225

288
t2t1

3t3 +
245

24
t3t1t4 + · · ·

)
u

+

(
25

72
t2

2 +
1

6
t1

4 +
3

2
t3t1 +

2737

288
t7 +

245

18
t4t1t2 +

133

48
t3t1

4 +
175

12
t5t1

2 +
1225

432
t2

2t1
3

+
1

36
t1

7 +
147

16
t3

2t1 +
1225

576
t3t2

2 + · · ·
)
u2

+

(
1

2
t2t1 +

1225

1296
t2

3 +
343

32
t6 +

245

16
t3t1t2 +

77

6
t1

2t4 +
35

18
t1

4t2 + · · ·
)
u3 + · · · .

(2.114)
It is related to the Hurwitz tau-function by (2.16), or, in other words, by a linear change of
variables accomplished by cancelation of proper linear and quadratic terms in free energy. Let
us describe this relation in more detail.

The prefactor exp
(
−∑k>0

kk−1βk−1tk
k!

)
in (2.17) is responsible for genus zero one-point con-

tributions from the non-stable maps. On the level of basis vectors it corresponds to the multi-
plication:

Φ
(0)
k (z) = exp

(
−

∞∑

k=1

kk−2

k!
βk−1zk

)
ΦH
k (z). (2.115)

The next step in the chain of transformations (2.16) is given by the operator L̂
(1)
− , which,

according to (1.134), on the level of basis vectors yields

Φ
(1)
k (z) =

βz

f−1(βz)

√
1

β

∂f−1(βz)

∂z
Φ
(0)
k

(
f−1(βz)

β

)

=
√

1− βz e
βz(1+z)

2
−z

∞∑

i=0

e
β
2

(
(i−k+ 1

2)
2−(k− 1

2)
2
) (
ze−βz

)i−k+1

i!

=

√
1− βz

2πβ
e−

β
2 (k−

1
2)

2
+βz(1+z)

2
−z

∫ ∞

−∞
dy (zey−βz)1−ke−

y2

2β
− y

2
+zey−βz

,

(2.116)

where f−1(z) is the series (2.33). After a change of integration variable y 7→ y + βz these basis
vectors can be represented as

Φ
(1)
k (z) =

√
1− βz

2πβ
e−

β
2 (k−

1
2)

2
∫ ∞

−∞
dy (zey)1−k exp

(
− y2

2β
− y

2
+ z (ey − 1− y)

)
. (2.117)
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Corresponding tau-function in the Miwa parametrization is

τ(1) ([Z]) =
detNi,j=1Φ

(1)
i (zj)

∆ (z−1)

=
e
β
(

N
24

−N3

6

)

(2πβ)
N
2 ∆(z−1)

N∏

i=1

√
1 + βzi

∫ ∞

−∞
dyi ∆

(
z−1e−y

)
exp

(
−

N∑

i=1

W(1)(zi, yi)

)
,

(2.118)

where the potential is

W(1)(z, y) =
y2

2β
+
y

2
− z (ey − y − 1) . (2.119)

Independent time variables can be introduced with the help of (1.170):

τN(1)(t) =
1

N !

N∏

i=1

(
1

2πi

∮
dzi
zi

)
∆(z)∆(z−1) exp




∞∑

k=1

N∑

j=1

tkz
−k
j


 τ(1) ([Z])

=
e
β
(

N
24

−N3

6

)

(2πβ)
N
2 N !

N∏

i=1

(
1

2πi

∮
dzi
zi

∫ ∞

−∞
dyi

)
∆(z)∆

(
z−1e−y

)

× det(1− βZ)
1
2

N∏

i=1

e−W(1)(zi,yi)+
∑∞

k=1 tkz
−k
i . (2.120)

Using the change of variables from the previous section we reduce the tau-function to the normal
matrix integral

τN(1)(t) = P−1
(1)

∫

N
[dZ] exp

(
−Tr W̃(1) +

∞∑

k=1

tkTrZ
−k

)
, (2.121)

where the normalization factor P(1) =
∫
N [dZ] exp

(
−Tr W̃1

)
does not depend on the variables

tk and

W̃(1) =
1

2β

(
logZ†Z

)2
+

1

2
logZ†Z − (Z†)−1 + Z − Z logZ†Z − 1

2
log (1− βZ) . (2.122)

Let us check this matrix integral formula for N = 1 and the Miwa parametrization of times
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tk = 1
ky

k. From (2.120) we have

τ(1)([y]) =
1

π

e−
β
8√

2πβ

∫

C

d2z

√
1− βz

1− y/z
e−

1
2β (log |z|2)

2− 1
2
log |z|2+z̄−1−z+z log |z|2

= 1 + β y +
1

2

(
eβ − 1− β +

1

2
β2
)
y2 +

1

2

(
1

3
e3β − eβ +

1

6
β3 − eββ + β +

2

3

)
y3

+

(
5

24
β3 − 1

8
+

3

4
eββ − 1

3
e3 ββ − 1

6
e3β +

1

8
eββ2 +

1

24
e6 β − 1

96
β4 +

1

4
eβ − 5

12
β

)
y4

+O(y5).

(2.123)

It is easy to check that this expression coincides with an expansion of the first basis vector Φ
(1)
1

from (2.116) as it should be according to (1.164). Other basis vectors can also be obtained in
the form of integrals over C.

The next step in the transformation from τH to τHodge is given by the operator L̂
(2)
− , corre-

sponding to the series f−2(z) from (2.33). The operator L̂
(2)
− is very simple:

L̂
(2)
− = −βL̂−1. (2.124)

Indeed, consider an operator l−1 = z2 ∂
∂z which shifts the variable z−1. Then

exp

(
−βz2 ∂

∂z

)
[z] = exp

(
β

∂

∂z−1

)[
1

z−1

]
=

1

z−1 + β
=

z

1 + βz
= f−2(z). (2.125)

Since for a constant a the conjugation with the operator eaL̂−1 yields

eaL̂−1

(∑

k>0

tkz
k

)
e−aL̂−1 =

∑

k>0

tkz
k + a

∑

k>0

k tkz
k−1 +

a2

2

∑

k>0

k(k − 1) tkz
k−2 + . . .

=
∑

k>0

tk

(
(z + a)k − ak

)
,

(2.126)

we can construct a matrix model, which describes the Hodge tau-function, when N tends to
infinity:7

τ̃NHodge ≡ β−
4
3
L̂0eL̂

(2)
− τN(1)(t)

= P−1

∫

N×N
[dZ] exp

(
−Tr W̃(1) +

∞∑

k=1

β−
4
3
ktk Tr

((
Z−1 − β

)k − (−β)k
))

,
(2.127)

where the potential W̃(1) is given by (2.122).

7This can also be considered as a consequence of (1.156).
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One can take another route and obtain the basis vectors for the Hodge tau-function (they
were obtained in [1]) directly from the Hurwitz basis vectors ΦH

k :

ΦHodge
k (z) = u4(1−k) u−1z

f−(u−1z)

√
f ′−(u−1z) e

− 2zu+z2

2(u+z)2u3 ΦH
k

(
u−3f−(u−1z)

)

=
u4(1−k)

√
1 + u−1z

e
z

2(u+z)
− 2zu+z2

2(u+z)2u3

∞∑

i=0

e
u3

2

(
(i−k+ 1

2)
2−(k− 1

2)
2
)
(

z
(u+z)u3 e

− z
u+z

)i−k+1

i!
,

(2.128)

or as a transformation of the vectors Φ
(1)
k and their integral representation (2.117):

ΦHodge
k (z) = β−

4
3
(z ∂

∂z
+k−1)e−βz2 ∂

∂z Φ
(1)
k (z)

=

(
z−1 + u−1

)k−1

√
2πu3(1 + zu−1)

∫ ∞

−∞
dy exp

(
− 1

2u3

(
y +

(
k − 1

2

)
u3
)2

+
z

(u+ z)u3
(ey − 1− y)

)
.

(2.129)
The change of integration variable y 7→ y + log(1 + u−1z) yields

ΦHodge
k (z) =

e−
u3

2 (k−
1
2)

2

√
2πu3(1 + zu−1)

∫ ∞

−∞
dy (z ey)1−k exp(−wHodge), (2.130)

where

wHodge =
1

2u3
(
y + log(1 + u−1z)

)2 − z

u4
ey +

z

(u+ z)u3
(
1 + y + log(1 + u−1z)

)
. (2.131)

Thus we can again introduce times with the help of the unitary matrix integral

τNHodge(t, u) = P−1
Hodge

∫

N
[dZ] exp

(
−TrWHodge +

∞∑

k=1

tkTrZ
−k

)
, (2.132)

where

WHodge =
1

2u3

(
log

(
Z†Z

1 + u−1Z

))2

+
1

2
logZ†Z + log

(
1 + u−1Z

)
− 1

u4Z†

+
Z

(Z + u)u3

(
1− log

(
Z†Z

1 + u−1Z

))
.

(2.133)
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In particular, for the Miwa parametrization with N = 1 we get

τHodge([y] , u) =
1

π

e−
u3

8√
2πu3

∫

C

d2z
e
− 1

2u3

(
log

(
u |z|2

u+z

))2

+ 1
2
log |z|2+ 1

u4 z̄
− z

(u+z)u3

(
1−log

(
u |z|2

u+z

))

(1− z−1y)(1 + u−1z)

= 1 +
2 eu

3 − 2− 2u3 − u6

4u8
y2 +

2 + e3 u
3
+ 12u3 + 9u6 − 3 eu

3
+ 2u9 − 12 eu

3
u3

6u12
y3 +O

(
y4
)
,

(2.134)

which coincides with the first basis vector ΦHodge
1 from (2.128). Let us stress that it is not

obvious that the matrix models (2.127) and (2.132) (which do not coincide with each other for
finite N) have finite limits, when u tends to zero, while the corresponding tau-function in this
limit reduces to the KW tau-function.

In what follows we need the properties of the series ΦHodge
k (z). Namely, let us show that

Lemma 2.2

ΦHodge
k (z) =

(
1

z
+

1

u

)k−1

× (formal Taylor series both in z and u). (2.135)

Proof. The statement of the lemma follows from the integral representation (2.129). Indeed,
let us change the variable of integration y 7→ y u

√
u+ z. Then

ΦHodge
k (z) =

(
z−1 + u−1

)k−1

√
2πe(k−

1
2)

2 u3

2

∫ ∞

−∞
dy e−

1
2
y2−(k− 1

2)
√
u+z u y+z

∑∞
k=3(u+z)

k
2−1uk−3 yk

k! (2.136)

In the expansion of the integral about the Gaussian potential only even powers of y survive.
The coefficient in front of each of them is a polynomial in u and z. Thus, the only source of
negative powers of z and u is the prefactor, which completes the proof.

Thus, among all basis vectors ΦHodge
k only the first one has a finite limit at u = 0:

ΦHodge
1 (z)

∣∣∣
u=0

=
1√
2πz

∫ ∞

−∞
dy exp

(
−y

2

2z
+
y3

3!

)
= ΦKW

1 (z). (2.137)

However, it is easy to construct another admissible basis, regular at u = 0:

Φ̃Hodge
1 = ΦHodge

1 ,

Φ̃Hodge
2 = ΦHodge

2 − u−1ΦHodge
1 ,

Φ̃Hodge
3 = ΦHodge

3 − 2u−1ΦHodge
2 + u−2ΦHodge

1 ,

Φ̃Hodge
4 = ΦHodge

3 − 3u−1ΦHodge
3 + 3u−2ΦHodge

2 − u−3ΦHodge
1 ,

. . .

(2.138)
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2.7 Simplified relation

In this section, we simplify the relation (2.18). Let us denote

V̂i = β−
4
3
L̂0L̂

(i)
+ β

4
3
L̂0 =

∑

k>0

a
(i)
k ukL̂k (2.139)

for i = 1, 2. Then, the relation (2.18) connecting two tau-functions can be represented as

τHodge(t;u) = e−V̂1e−V̂2τKW (to). (2.140)

This relation can be simplified with the help of the Virasoro constraints for the KW tau-
function (2.57). Indeed, from (2.35) it follows that the series f+2(z) includes only odd powers

of z, so that the operator L̂
(2)
+ and, as a consequence, V̂2, contain only positive even Virasoro

operators:

V̂2 =

∞∑

k=1

a
(2)
2k u

2kL̂2k. (2.141)

Let us forget for a while that the coefficients a
(2)
2k are defined by (2.35), and consider the

operator V̂2 for arbitrary a
(2)
2k . Then, from the Baker–Campbell–Hausdorff formula it follows

that for any such operator there exists a unique first order operator

N̂ =

∞∑

k=1

bku
2k ∂

∂t2k+3
(2.142)

such that

exp
(
N̂
)
· exp

(
−V̂2

)
= exp

(
−2

∞∑

k=1

a
(2)
2k u

2kL̂KW
k

)
. (2.143)

Virasoro operators L̂KW
k annihilate the KW tau-function, thus from (2.143) it follows that

exp
(
−V̂2

)
τKW (t) = exp

(
−N̂

)
τKW (t). (2.144)

To find N̂ we switch to the ordinary differential operators (1.112). Then identity (2.143) is
equivalent to

exp(n(z)) · exp
(
−

∞∑

k=1

a
(2)
2k l2k

)
= exp

(
−

∞∑

k=1

a
(2)
2k

(
l2k − z−2k−3

))
, (2.145)

where n(z) is a formal Taylor series in z−1 (it is obvious that there are no central terms
which would modify the relation). Lemma 1.1 allows us to restore n(z). Indeed, if g(z) =

51



−∑∞
k=1 a

(2)
2k z

1−2k, then (2.145) is equivalent to (1.125) for k = 4 and α = 1, that is to (1.135):

n(z) =
1

3(f(z))3
− 1

3z3
. (2.146)

Finally, we come back to the particular coefficients a
(2)
2k . If the coefficients a

(2)
2k are as in

Section 2.2, then f(z) coincides with f−1
+2 (z), and from (2.35) we have

n(z) =
1

3(f−1
+2 (z))

3
− 1

3z3
=

1

z2
coth

(
1

z

)
− 1

z
− 1

3z3
=

∞∑

k=2

22kB2k

(2k)!

1

z2k+1

= − 1

45
z−5 +

2

945
z−7 − 1

4725
z−9 +

2

93555
z−11 − 1382

638512875
z−13 +O

(
z−15

)
(2.147)

where Bk are the Bernoulli numbers. Coming back to the operators from W1+∞ we have

N̂ =

∞∑

k=2

22kB2k

(2k)!
u2(k−1) ∂

∂t2k+1
. (2.148)

This operator shifts all KdV times.8 Thus we have proved

Lemma 2.3 The relation (2.18) holds if and only if

τHodge(t, u) = e−V̂1e−N̂τKW (t). (2.149)

In the next section we will show that this relation is satisfied, at least up to a constant factor.

2.8 Proof of Theorem 2.1

As it was shown in the previous section, the statement of Theorem 2.1 is equivalent to the
relation

τKW (t) = C(u)eN̂eV̂1τHodge(t, u). (2.150)

Let us prove it using the description of the Grassmannian considered in Section 2. Namely, we
will show that the vectors

Ωk = uk−1eñev1ΦHodge
k , k > 0 (2.151)

belong to the KW space of the Grassmannian

Ωk ∈ WKW . (2.152)

8An operator of this type in the context of the Kontsevich–Witten tau-function appears in the description of
the Weil–Petersson volume of the moduli spaces of bordered Riemann surfaces [37].
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Here

v1 =
∑

k>0

a
(1)
k uklk (2.153)

and

ñ = u−3 n(u−1z). (2.154)

are the counterparts of the operators V̂1 and N̂ . According to Section 1.4, the relation (2.152)
guarantees that two tau-functions coincide up to a constant factor.

For small k the relation (2.152) can be checked perturbatively. For example,

Ω1 =

(
1 +

4

15z2
u2 +

(
47

1620
− 2

135z6

)
u3 +

(
1

4050z10
+

1

63z4

)
u4 + · · ·

)
ΦKW
1 (z)

+

(
2

3
u− 1

45z4
u2 +

4

45z2
u3 −

(
23

5670z6
+

673

68040

)
u4 + · · ·

)
ΦKW
2 (z)

Ω2 =

(
1 +

4

3z2
u2 +

(
1361

1620
− 1

27z6

)
u3 +

(
1

4050z10
+

1097

4725z4

)
u4 + · · ·

)
ΦKW
1 (z)

+

(
5

3
u− 1

45z4
u2 +

32

45z2
u3 +

(
− 787

28350z6
+

10877

68040

)
u4 + · · ·

)
ΦKW
2 (z)

(2.155)

and, since bKW = z−2 is the Kac–Schwarz operator for the KW tau-function, the relation (2.152)
for k = 1 and k = 2 holds at least up to u4. The main idea of the proof is to show that all Ωk

can be represented in a similar way to all orders in u.
To prove (2.152) we use Lemma 2.2. It shows that the vector uk−1ΦHodge

k can be considered
as a formal series in variable u. Let us introduce a new variable η = u/z. Then, in the variables

u and η the basis vector ΦHodge
k from (2.128) is given by

uk−1ΦHodge
k =

eG√
2πu3η−1

∫ ∞

−∞
dy exp

(
− y2

2u3
+

(
1

2
− k

)
(y − T ) +

ey−T

u3

)
, (2.156)

where

T =
1

1 + η
+ log(1 + η) (2.157)

and

G = −u
3

2

(
k − 1

2

)2

+
1

2u3

(
η2

(1 + η)2
− 1

)
− log(1 + η). (2.158)

Let us change the variable of integration y 7→ u y + T :

uk−1ΦHodge
k =

eG− T2

2u3√
2πuη−1

∫ ∞

−∞
dy exp

(
− y2

2u
− y u

(
k − 1

2
+
T

u3

)
+
eyu

u3

)
. (2.159)
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Action of the operator exp(v1) on the basis vectors is defined by (1.134). It maps the variable
η to

η 7→ 1

f+1(η−1)
=
eη sinh(η)

η
− 1, (2.160)

so that T maps to

T̃ = exp (v1) T exp (−v1) =
2η

e2η − 1
+ log

(
e2η − 1

2η

)
= 1 +

1

2
η2 +O(η4). (2.161)

Combining it with expression

ñ =
1

u3

(
η2 coth η − η − η3

3

)
(2.162)

after some calculations we obtain

Ωk =
eG̃− η3

3u3√
2πuη−1

∫ ∞

−∞
dy exp

(
−W̃

)
, (2.163)

where

G̃ = −u
3

2

(
k − 1

2

)2

+
1

u3

(
η2

e4η + 1

(e2η − 1)2
− η

e2η + 1

e2η − 1
− T̃ 2

2

)

+ log

((
η−1

f+1(η−1)

)3
2 √

f ′+1(η
−1)

2η

e2η − 1

) (2.164)

and

W̃ = − y2

2u
− y u

(
k − 1

2
+
T̃

u3

)
+
eyu

u3
. (2.165)

Since both v1 and ñ are series in u, the vectors (2.163) are still the formal Taylor series in the
variable η with coefficients depending on both positive and negative powers of z.

The series T̃ is invariant under a sign change of η:

T̃
η→−η7−→ − 2η

e−2η − 1
+ log

(
−e

−2η − 1

2η

)
=

2η e2η

e2η − 1
+ log

(
e2η − 1

2η

)
− 2η = T̃ . (2.166)

Thus, it contains only even powers of η. It is easy to show that G̃ is also invariant under the
change η 7→ −η so that its expansion is

G̃ = −u
3

2

(
k − 1

2

)2

− 1

u3

(
1 +

1

24
η4 − 13

3240
η6 + . . .

)
− 1

18
η2 +

7

1620
η4 − 137

382725
η6 + . . .

(2.167)
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Since

W̃ =
1

u3
+
y3

3!
− yη2

2u2
+

∞∑

m=4

ym

m!
um−3 − yu

(
k − 1

2
− 1

u3

(
1

36
η4 − 1

405
η6 + . . .

))
, (2.168)

also contains only even powers of η, coming back to variables u and z, we have

G̃+ W̃ =
y3

3!
− y

2z2
+ u

∞∑

i,j=0

κij(u)y
iz−2j , (2.169)

where κij(u) are some polynomials in u.9

Thus,

Ωk =
e−

1
3z3√
2πz

∫ ∞

−∞
dy




∞∑

i,j=0

κ̃ij(u)y
iz−2j


 exp

(
y3

3!
− y

2z2

)
, (2.171)

where κ̃ij(u) are some other polynomials in u; or, using expression (2.43) of the basic vectors
for the KW tau-function, we have

Ωk =
∞∑

i,j=0

κ̃ij(u)z
−2j(−1)iΦKW

i (z). (2.172)

Because z−2 is the Kac–Schwarz operator, this is a combination of the basis vectors for the KW
tau-function, which completes the proof of Theorem 2.1.

2.9 Kac–Schwarz description of the Hodge tau-function

The relation (2.149) (or, equivalently, relation (2.150)) allows us to obtain the Kac–Schwarz
operators for the Hodge tau-function. Indeed, the Kac–Schwarz operators for two tau-functions

9More specifically

κ00 = −
u2

2

(

k −
1

2

)2

,

κ10 = −

(

k −
1

2

)

,

κ20 = κ30 = 0,

κi0 =
ui−4

4!
, for i > 3,

κi1 = −
1

18
u δi,0,

κi2 =

(

7

1620
u
3
−

1

24

)

δi,0 +
u

36
δi,1,

(2.170)

and, for general j > 2 we have κij =
((

aju
3 + bj

)

δi,0 + cj u δi,1
)

u2(j−2) for some rational aj , bj , and cj .
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are related by the conjugation:

aHodge = e−v1 e−ñ aKW eñ ev1 ,

bHodge = e−v1e−ñ bKW e−ñev1 .
(2.173)

Since both n(z) and bKW are series in z with constant coefficients, they commute. Thus, we
have

bHodge =
( q
u

)2
, (2.174)

where

q ≡ u e−v1 z−1 ev1 = f̃+1(η) = η − 2

3
η2 + · · · (2.175)

with η ≡ u/z and the series f̃+1 is related to f+1 by (1.122). Thus, the series q is defined by an
equation, which follows from (2.34):

η =
eq sinh (q)

q
− 1. (2.176)

To solve it we use the ansatz

q =
S− − 1

1+η

2
. (2.177)

On substitution of this ansatz into (2.176) we get an equation

S−e−S− =
1

1 + η
e−

1
1+η , (2.178)

where S− is the solution, which corresponds to the asymptotic (2.175) for small η. Thus,

q =
S− − S+

2
, (2.179)

where S± are two solutions of the equation

Se−S =
1

1 + η
e−

1
1+η (2.180)

in the vicinity of the the ramification point η = 0, S = 1. They are

S+ =
z

u+ z
=

∞∑

k=0

(−1)kηk,

S− = 1 + η − 1

3
η2 +

1

9
η3 − 1

135
η4 − 19

405
η5 +

43

567
η6 − 3827

42525
η7 +O(η8),

(2.181)
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so that

q(z) = η − 2

3
η2 +

5

9
η3 − 68

135
η4 +

193

405
η5 − 262

567
η6 +

19349

42525
η7 +O(η8). (2.182)

Therefore, the Kac–Schwarz operator

bHodge = z−2 − 4

3
uz−3 +

14

9
u2z−4 − 236

135
u3z−5 +

29

15
u4z−6 − 6008

2835
u5z−7 +O

(
z−8
)

(2.183)

define an infinite family of the Kac–Schwarz operators jHodge
k = (bHodge)

k. This family corre-

sponds to the family of operators ĴHodge
k :

ĴHodge
k = Ŷ

jHodge
k

= e−V̂1e−N̂ ∂

∂t2k
eN̂eV̂1 = resz

(
Q2kĴ (z)

)
(2.184)

where Q = u−1f̃+1(uz). They are u-deformations of the operators ĴKW
k , which define the KdV

reduction of the KW tau-function:

ĴHodge
k =

∂

∂t2k
+O(u), (2.185)

for example, the coefficients of the first operator from this family coincide with the coefficients
of bHodge

ĴHodge
1 =

∂

∂t2
− 4

3
u
∂

∂t3
+

14

9
u2

∂

∂t4
− 236

135
u3

∂

∂t5
+

29

15
u4

∂

∂t6
− 6008

2835
u5

∂

∂t7
+O(u6). (2.186)

The operators ĴHodge
k , by construction, annihilate τHodge:

ĴHodge
k τHodge = 0, k > 0. (2.187)

Since bHodge is not a polynomial, one can consider other combinations of bHodge and its
powers. For example, another combination will appear in case of conjugation described by the
relation (2.18) instead of (2.149). It seems that there is no canonical choice. This corresponds
to the fact that according to (2.173), both aHodge and bHodge are “gap-infinity” operators in the
notations of [18].

Let us describe the Kac–Schwarz operator aHodge. Namely, the conjugation with eñ in (2.173)
yields

e−ñ aKW eñ = aKW − z3
(
∂

∂z
ñ

)
= aKW +

z

u2

(
2 η coth (η)− η2 coth (η)2 − 1

)
. (2.188)

From the conjugation relation (1.144) it follows that conjugation with ev1 yields

aHodge = gHodge ∂z −
1

2
g′Hodge − z−1gHodge − hHodge, (2.189)
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where

hHodge =
2(1− S−)(1− S+)

u(S− − S+)
=

1

qu

u

u+ z

(
u

u+ z
− 2q

)
(2.190)

and

gHodge = −2z2u

q

(
1 +

u

z

(
1− 1

2q

))
. (2.191)

By construction, the Kac–Schwarz operators aHodge and bHodge satisfy the same canonical com-
mutation relation (2.192) as operators for the KW tau-function

[aHodge, bHodge]− = 2. (2.192)

Explicit expressions for operators lHodge
k = −1

4

[
(bHodge)

k+1, aHodge

]
+

allow us to construct
the Virasoro constraints for the Hodge tau-function. Namely, the operators

L̂Hodge
k = Ŷ

lHodge
k

− u2

36
δk,−1 +

1

16
δk,0 (2.193)

annihilate the Hodge tau-function:

L̂Hodge
k τHodge = 0, k ≥ −1. (2.194)

Here the operators Ŷ
lHodge
k

can be represented as residues

Ŷ
lHodge
k

=
1

2
resz=0

(
Q2k−1

(
AŴ (2)(z) +B Ĵ(z)

))
, (2.195)

where

A = 2 + zu

(
2− 1

uQ

)
,

B =

(
z

1 + uz

)2

− 2Q
z

1 + uz
.

(2.196)

Operators L̂Hodge
k are deformations of the Virasoro operators for the KW tau-function

L̂Hodge
k = e−V̂1e−N̂ L̂KW

k eN̂eV̂1 = L̂KW
k +O(u), (2.197)
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in particular

2L̂Hodge
−1 = L̂−2 −

∂

∂t1
+ u

(
2L̂−1 −

2

3

∂

∂t2

)
+ u2

(
8

9
L̂0 −

4

9

∂

∂t3
− 1

18

)

−u3
(

2

27
L̂1 +

38

135

∂

∂t4

)
+ u4

(
11

405
L̂2 −

64

405

∂

∂t5

)
+O(u5),

2L̂Hodge
0 = L̂0 −

∂

∂t3
+

1

8
+ u

(
2

3
L̂1 + 2

∂

∂t4

)
− u2

(
2

9
L̂2 +

26

9

∂

∂t5

)

+u3
(

14

135
L̂3 +

494

135

∂

∂t5

)
− u4

(
22

405
L̂4 +

1751

405

∂

∂t6

)
+O(u5).

(2.198)

By construction, the operators L̂Hodge
k and ĴHodge

k belong to W1+∞ and satisfy the commu-
tation relations of the Heisenberg–Virasoro algebra

[
ĴHodge
k , ĴHodge

m

]
−
= 0,

[
L̂Hodge
k , ĴHodge

m

]
−
= −mĴHodge

k+m ,

[
L̂Hodge
k , L̂Hodge

m

]
−
= (k −m)L̂Hodge

k+m .

(2.199)

The Virasoro constraints for the Hodge tau-function should be equivalent to the polynomial
recursion formula for the Hodge integrals, which can be considered as a Laplace transform of
the cut-and-join equation [24].

There is another possibility to construct the Kac–Schwarz operators for the Hodge tau-
function. Namely, they can be obtained by a conjugation of the operators aH and bH , which
were obtained in Section 2.4. While operators aHodge and bHodge obtained here are of zeroth
and first order, conjugation of aH and bH yields operators of infinite order (which, nevertheless
belong to the same algebra of the Kac–Schwarz operators).

2.10 Quantum spectral curve

In this section we discuss quantum (spectral) curves for the three tau-functions, considered
in this paper. In the literature, there are different notations for quantum spectral curve, see
e.g., [34, 38–43]. Here we take the point of view similar to the one adopted in [44,45]. If

A(x, y) = 0, x, y ∈ C (or C∗) (2.200)

is the spectral curve, which describes the partition function Z(t) of the model, then an operator
such that:10

A∗
(
z,

∂

∂z

)
Z ([z]) = 0 (2.201)

10We put h̄ = 1.
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which is a deformation (quantization) of the spectral curve (2.200), defines quantum spectral
curve. The partition function in the Miwa parametrization tk = 1

kz
k, which is annihilated by

the operator A∗, is known as the principal specialization of this partition function.
If the partition function is a tau-function of an integrable hierarchy, the principal specializa-

tion coincides with the first basis vector

τ ([z]) = Φ1(z). (2.202)

Thus, quantum curves for tau-functions are closely related to the Kac–Schwarz operators. If the
operator A∗ (z, ∂

∂z

)
describing a quantum curve is the Kac–Schwarz operator, one can “quantize”

it once again using (1.110) and the boson-fermion correspondence. As a result one obtains an
operator D̂ ≡ ŶA∗ , for which the full tau-function is an eigenfunction:

D̂ τ(t) = C τ(t) (2.203)

for some eigenvalue C.
For the Hurwitz tau-function the quantum curve was constructed in [44]. Namely, the

quantum curve operator is a quantization of the Lambert curve, and coincides with the Kac–
Schwarz operator aH (2.85):

A∗
H = aH = z exp

(
βz

∂

∂z

)
− z

∂

∂z
(2.204)

so that, as follows from (2.84),

A∗
H ΦH

1 (z) = 0. (2.205)

Then, quantization (1.110) and the boson-fermion correspondence yields an operator D̂H = ŶA∗
H

such that

D̂H τH(t) = 0. (2.206)

Here

D̂H = t1 − L̂0 + βL̂−1 +
β2

2
M̂−1 + · · · . (2.207)

Equation (2.48) defines the quantum curve equation for the KW tau-functions:

A∗
KW = a2KW − bKW =

e−
1

3z3√
2πz

((
z3

∂

∂z

)2

− z−2

) √
2πz

e−
1

3z3

, (2.208)

where, after the change of variables x = z−2, the operator in the brackets is given by a quanti-
zation of the Airy spectral curve 4∂2x − x. The corresponding operator

D̂KW = M̂−4 − 2L̂−1 + t4 (2.209)
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annihilates the KW tau-function

D̂KW τKW (t) = 0. (2.210)

This equation is a combination of the constraints (2.56) and (2.57).
The action of W1+∞ operators with positive energy can be translated to the action of op-

erators from w1+∞ on the quantum curves. Thus, we claim that the quantum curve for the
Hodge tau-function can be obtained by a conjugation from the quantum curve for the Hurwitz
tau-function:

A∗
Hodge = β−

4
3
l0ev−e−

∑∞
k=1

kk−2

k!
βk−1zk A∗

H e
∑∞

k=1
kk−2

k!
βk−1zke−v−β

4
3
l0 , (2.211)

where

v− =

∞∑

k=1

a−kβ
kl−k. (2.212)
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3 Concluding remarks

In this paper we have proved a relation, which connects three tau-functions of enumerative
geometry by operators from GL(∞). However, there are still many open questions. First of all,
Conjecture 2.1 remains unproven. An approach we adopt in this paper seems to be not suitable
to prove that the constant C(u) from Theorem 2.1 is equal to one.

It is natural to consider some relatively small subgroups of the GL(∞) and to investigate the
corresponding families of tau-functions. The simplest subgroup corresponds to the Heisenberg–
Virasoro algebra. However, all tau-functions, that can be obtained by the action of the group
elements of the Heisenberg–Virasoro group on the trivial tau-function are too simple to describe
partition functions that are interesting for applications. Namely, they are of the form

τ(t) = exp


∑

i,j

Aijtitj +
∑

j

Bjtj




for some constant Aij and Bj . We claim that to obtain a family of tau-functions that is im-
portant for applications, it is enough to consider the group elements, which include also an
operator M̂k from the W (3) algebra. Examples of such tau-functions are given by the three
tau-functions considered in this paper. The method used for construction of the normal matrix
model, developed here, can be generalized to other tau-functions, which are described by the
group elements of the Heisenberg-W (3) algebra. It would also be interesting to find a relation
between the operator representation for the KW tau-function obtained here and the similar (but
essentially different) representation, obtained in [46].

Another question, which remains beyond the scope of this work, is the relation between ob-
tained Virasoro constraints and corresponding matrix models. Usually the Virasoro constraints
are related to simple symmetries of matrix integrals [47], but we are unable to derive the Virasoro
constraints for the obtained matrix integrals in this simple way.

It would be natural to try to continue the chain of conjugations (2.173) and to construct
the Kac–Schwarz operators of the zeroth and first orders for the Hurwitz tau-function. Unfor-
tunately, the naive conjugation seems to give divergent results.

The developed approach can be applied to the so-called r-spin Hurwitz numbers. To describe
them, one should consider the generalized Kontsevich models instead of the KW tau-function
[48].
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