
ar
X

iv
:1

40
4.

40
68

v1
  [

q-
fi

n.
G

N
] 

 1
5 

A
pr

 2
01

4

Directed Random Market: the equilibrium

distribution

Guy Katriel

Department of Mathematics, ORT Braude College,

Karmiel, Israel

Abstract

We find the explicit expression for the equilibrium wealth distribution
of the Directed Random Market process, recently introduced by Mart́ınez-
Mart́ınez and López-Ruiz [9], which turns out to be a Gamma distribution
with shape parameter 1

2
. We also prove the convergence of the discrete-

time process describing the evolution of the distribution of wealth to the
equilibrium distribution.

1 Introduction

In recent years a variety of kinetic exchange models have been investigated
within the emerging discipline of Econophysics (see reviews [5, 12]). These mod-
els involve a population of agents, each possessing a certain amount of wealth,
undergoing random pairwise exchanges of wealth according to certain predefined
rules. One is mainly interested in the evolution of the wealth distribution as the
process unfolds, and in particular in its convergence to a limiting distribution
and in the characteristics of this equilibrium distribution.

In this work we study the Directed Random Market process, recently introduced
by Mart́ınez-Mart́ınez and López-Ruiz [9]. In this model, when two agents
interact, one of them is randomly chosen and transfers a fraction ǫ of its wealth
to the other agent, where ǫ ∈ [0, 1] is a uniformly distributed random number.
Thus if agents i, j with wealths mi,mj , interact, and if j is the ‘winner’, then
the agents’ wealth following the interaction is given by

m′
i = (1− ǫ)mi, m′

j = mj + ǫmi. (1)

This process should be contrasted with the well-known Drăgulescu - Yakovenko
process [3], in which the two agents’ wealths are pooled and then randomly
re-divided, so that

m′
i = ǫ(mi +mj), m′

j = (1− ǫ)(mi +mj).

Thus in Directed Random Market, exchanges are always uni-directional rather
than bi-directional as in the Drăgulescu - Yakovenko model. As we shall see
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below, this leads to a significant difference in the eventual distribution of wealth
at the macro-level. It should be noted that kinetic exchange models with uni-
directional exchanges are already present in the pioneering work of J. Angle
[1, 2], but in Angle’s Inequality Process the fraction ǫ is either fixed for all
agents, or a fixed number associated to each agent, rather than a random number
independently drawn in each exchange, as in the Directed Random Market.

Mart́ınez-Mart́ınez and López-Ruiz [9] derived the functional iterations for the
discrete-time evolution of the probability density describing the wealth distribu-
tion pt(x), in the limit of infinitely many agents, so that pt(x)dx is the fraction
of the population whose wealth is in the interval [x, x+dx] at time t = 0, 1, 2, ....
It is assumed that in each time step all agents are randomly paired, and inter-
act according to (1). The functional iterations are given (in slightly different
notation than used in [9]) by

pt+1(x) = T [pt](x), (2)

where

T [p](x) =
1

2

∫ x

0

pt(x− u)

∫ ∞

u

1

v
pt(v)dvdu +

1

2

∫ ∞

x

1

u
pt(u)du. (3)

Based on numerical evaluation of these iterations, Mart́ınez-Mart́ınez and López-
Ruiz [9] noted that the wealth distribution ‘piles up’ at low values of wealth.

Here we will find an explicit expression for the equilibrium distribution, that is
the solutions of p∗w(x) of the fixed-point problem

T [p∗w] = p∗w,

parameterized by the mean wealth w, which is a conserved quantity of the
iterations (2).

Theorem 1 The equilibrium distributions for the Directed Random Market pro-
cess are given by the probability density (w > 0):

p∗w(x) =
1√

2wπx
e−

x

2w . (4)

Note that the density (4) corresponds to the Gamma distribution with shape pa-
rameter 1

2
and mean w. This can be compared with the equilibrium distribution

for the Drăgulescu - Yakovenko process, which is an exponential (Boltzmann-
Gibbs) distribution:

p∗∗w (x) =
1

w
e−

x

w . (5)

The equilibrium density (4), in contrast with (5), goess to infinity as x goes
to zero, which accounts for the ‘piling up’ at low values of wealth noted in [9]
(see figure 1 for plots of the two densities). We note also that the coefficient
of variation (standard deviation divided by mean) of (5) is CV = 1, while that
of (4) is CV =

√
2, which shows that the Directed Random Market leads to a

higher degree of inequality.

2



Figure 1: Density of the equilibrium distributions for the Directed Random
Market and the Drăgulescu - Yakovenko process (dashed line). In both cases
the mean wealth is w = 1.

In section 3 we prove the convergence of the wealth distribution to the equi-
librium distribution, that is, starting with an arbitrary distribution p0(x) with
mean wealth

w =

∫ ∞

0

xp0(x)dx, (6)

the distributions with densities pt given by (2) converge, as t → ∞, to the
distribution with density p∗w given by (4).

2 Equilibrium distribution for the Directed Ran-

dom Market

Equilibrium distributions for the Directed Random Market are fixed points of
the operator T given by (3), that is solutions of the functional equation

p(x) =
1

2

∫ x

0

p(x− u)

∫ ∞

u

1

v
p(v)dvdu +

1

2

∫ ∞

x

1

u
p(u)du. (7)

To solve (7) we will use the Laplace transform

p̂(s) = L[p](s) =

∫ ∞

0

e−sxp(x)dx.

Using standard properties of the Laplace transform, we have

L

[ 1

x
p(x)

]

(s) =

∫ s

0

p̂(s′)ds′ ⇒ L

[

∫ ∞

x

1

v
p(v)dv

]

(s) =
1

s

∫ s

0

p̂(s′)ds′

3



⇒ L

[

∫ x

0

p(x− u)

∫ ∞

u

1

v
p(v)dvdu

]

(s) = p̂(s) · 1
s

∫ s

0

p̂(s′)ds′,

L

[

∫ ∞

x

1

u
p(u)du

]

(s) =
1

s

∫ s

0

p̂(s′)ds′,

hence

L[T [p]](s) =
1

2s
· [p̂(s) + 1] ·

∫ s

0

p̂(s′)ds′, (8)

so that the Laplace-transformed version of (7) is

p̂(s) =
1

2s
· [p̂(s) + 1] ·

∫ s

0

p̂(s′)ds′. (9)

This equation can now be readily solved. Isolating the integral and differenti-
ating both sides, we obtain

[ sp̂(s)

p̂(s) + 1

]′
=

1

2
p̂(s),

that is

p̂′(s) =
1

2s
[(p̂(s))2 − 1]p̂(s),

a separable differential equation which is solved to yield:

p̂(s) =
1√

1 + Cs
,

and the inverse Laplace transform gives:

p(x) =
1√
Cπx

e−
x

C ,

and determining C by the condition
∫∞
0

p(x)dx = w we obtain C = 2w, giving
the result of Theorem 1.

3 Convergence to the equilibrium distribution

In this section we prove that the functional iterations given by (2), starting from
a general wealth distribution p0, indeed converge to the equilibrium distribution
p∗w given by Theorem 1, where w is the initial mean-wealth given by (6).

The proof uses the framework and ideas that we used in [6], following earlier
work of López, López-Ruiz, and Calbet [7, 8], where an analogous result was
proved for the iterations arising from the Drăgulescu - Yakovenko process. The
method employs some key ideas used in the study of related continuous-time
Boltzmann-type equations describing exchange processes, see works of Düring,
Matthes and Toscani [4, 10].

We define by P the set of all probability densities on [0,∞), that is the set of
a.e. non-negative functions p ∈ L1[0,∞), with ‖p‖L1 = 1. For any real α ≥ 0
the α-moment of p is defined as

Mα(p) =

∫ ∞

0

xαp(x)dx.
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In particular M1(p) is the mean wealth corresponding to the density p. For
α ≥ 1, w > 0 we define

Pα,w = {p ∈ P | Mα(p) < ∞, M1(p) = w}.

Convergence to the equilibrium density p∗w will be proven for initial distributions
p0 ∈ Pα,w for some α > 1, although we conjecture that the result is also true
for p0 ∈ P1,w.

To each of the probability densities pt we associate its cumulative probability
function

Ft(x) =

∫ x

0

pt(u)du. (10)

We also define the cumulative probability functions associated with the equilib-
rium densities p∗w:

F ∗
w(x) =

∫ x

0

p∗w(u)du =
1√
2wπ

∫ x

0

1

u
e−

u

2w du = Φ
(

√

x

2w

)

,

where Φ(x) = 2√
π

∫ x

0
e−z2

dz is the error function.

Our convergence result is

Theorem 2 Assume α > 1, let p0 ∈ Pα,w be an arbitrary initial wealth distri-
bution, and let the sequence pt be defined by (2). Then the sequence Ft defined
by (10) satisfies

lim
t→∞

Ft(x) = F ∗
w(x), ∀x ≥ 0.

We begin by showing that the classes Pα,w are invariant under the action of T .

Lemma 1 If α ≥ 1 and p ∈ Pα,w then T [p] ∈ Pα,w.

Proof : We first need to prove the finiteness of

Mα(T [p]) =

∫ ∞

0

xαT [p](x)dx (11)

=
1

2

∫ ∞

0

xα

∫ x

0

p(x− u)

∫ ∞

u

1

v
p(v)dvdudx +

1

2

∫ ∞

0

xα

∫ ∞

x

1

u
p(u)dudx.

By changing order of integration and using the inequality (x+u)α ≤ 2α−1(xα+

5



uα) (for α ≥ 1) we obtain
∫ ∞

0

xα

∫ x

0

p(x− u)

∫ ∞

u

1

v
p(v)dvdudx

=

∫ ∞

0

∫ ∞

u

xαp(x− u)dx

∫ ∞

u

1

v
p(v)dvdu

=

∫ ∞

0

∫ ∞

0

(x+ u)αp(x)dx

∫ ∞

u

1

v
p(v)dvdu

≤ 2α−1

∫ ∞

0

∫ ∞

0

xαp(x)dx

∫ ∞

u

1

v
p(v)dvdu +

∫ ∞

0

uα

∫ ∞

0

p(x)dx

∫ ∞

u

1

v
p(v)dvdu

= 2α−1Mα(p)

∫ ∞

0

∫ ∞

u

1

v
p(v)dvdu +

∫ ∞

0

uα

∫ ∞

u

1

v
p(v)dvdu

= 2α−1Mα(p)

∫ ∞

0

1

v
p(v)

∫ v

0

dudv +

∫ ∞

0

1

v
p(v)

∫ v

0

uαdudv

= 2α−1Mα(p)

∫ ∞

0

p(v)dv +
1

α+ 1

∫ ∞

0

vαp(v)dv = 2α−1 · α+ 2

α+ 1
·Mα(p). (12)

We also have
∫ ∞

0

xα

∫ ∞

x

1

u
p(u)dudx =

∫ ∞

0

1

u
p(u)

∫ u

0

xαdxdu

=
1

α+ 1

∫ ∞

0

uαp(u)du =
1

α+ 1
Mα(p). (13)

Combining (11),(12) and (13) we conclude that

Mα(T [p]) ≤
1

2(α+ 1)
·
(

2α−1 · (α+ 2) + 1
)

·Mα(p), (14)

and in particular we have Mα(T [p]) < ∞.

Taking α = 1, the inequality in (12), and hence the one in (14), is in fact an
equality, so that we getM1(T [p]) = M1(p) = w, and we have shown T [p] ∈ Pα,w.
■

We now define the following metric on the set Pα,w, where we now assume
α ∈ (1, 2).

p, q ∈ Pα,w ⇒ dα(p, q) = sup
s>0

|L[p](s)− L[q](s)|
sα

.

The finiteness of dα,w is ensured by the following Lemma (we refer to [6], Lemma
2.3, for the proof):

Lemma 2 If 1 < α < 2, w > 0, p, q ∈ Pα,w, then dα(p, q) < ∞.

We now prove that the map T : Pα,w → Pα,w is contracting.

Lemma 3 If 1 < α < 2, w > 0, p, q ∈ Pα,w, then

dα(T [p], T [q]) ≤
(1

2
+

1

α+ 1

)

dα(p, q).
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Proof : We set p̂(s) = L[p](s), q̂(s) = L[q](s). Making a change of variable
s′ = sξ in the integral in (8) we have

L[T [p]](s) =
1

2
[p̂(s) + 1]

∫ 1

0

p̂(sξ)dξ.

Therefore

L[T [p]](s)−L[T [q]](s) =
1

2
[p̂(s)−q̂(s)]

∫ 1

0

p̂(sξ)dξ+
1

2
[q̂(s)+1]

∫ 1

0

[p̂(sξ)−q̂(sξ)]dξ

and using the fact that, since ‖p‖L1 = ‖q‖L1 = 1 we have |p̂(s)| ≤ 1, |q̂(s)| ≤ 1,
we can estimate

|L[T [p]](s)− L[T [q]](s)|
sα

≤ 1

2

|p̂(s)− q̂(s)|
sα

∫ 1

0

p̂(sξ)dξ

+
1

2
[q̂(s) + 1]

∫ 1

0

ξα
|p̂(sξ)− q̂(sξ)|

(sξ)α
dξ

≤ 1

2
dα(p, q) + dα(p, q)

∫ 1

0

ξαdξ =
(1

2
+

1

α+ 1

)

dα(p, q),

and taking the supremum over s > 0 we obtain the result. ■

We therefore have

Lemma 4 If 1 < α < 2, w > 0, p0 ∈ Pα,w, and the sequence {pt}∞t=0 is defined
by (2), then

lim
t→∞

dα(pt, p
∗
w) = 0. (15)

Proof : We show that

dα(pt, p
∗
w) ≤ dα(p0, p

∗
w)

(1

2
+

1

α+ 1

)t

, (16)

which implies the result since α > 1 implies 1

2
+ 1

α+1
< 1. For t = 0, (16) is

trivial. We proceed by induction, using Lemma 3 and the fact that p∗w is a fixed
point of T :

dα(pt+1, p
∗
w) = dα(T [pt], T [p

∗
w]) ≤

(1

2
+

1

α+ 1

)

dα(pt, p
∗
w)

≤ dα(p0, p
∗
w)

(1

2
+

1

α+ 1

)t+1

.

■

Convergence in the metric dα implies pointwise convergence of the Laplace trans-
form,

lim
t→∞

L[pt](s) = L[p∗w](s), s > 0. (17)

We note that the assumption α < 2 is irrelevant for the validity of (17), since
Pα,w ⊂ Pβ,w when α > β, so we have (17) whenever p0 ∈ Pα,w for some α > 1.

Mukherjea et al. [11] proved that pointwise convergence of a sequence of Laplace
transforms p̂t(s) of probability densities pt to the Laplace transform p̂(s) of a
probability density p, for all s in some interval, implies the pointwise convergence
of the corresponding cumulative probability functions. Therefore the pointwise
convergence of p̂t to p̂∗w, which we have established, implies Theorem 2.
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