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Abstract

The isotropic constant LK is an affine-invariant measure of the spread of a con-
vex body K. For a d-dimensional convex body K, LK can be defined by L2d

K =
det(A(K))/(vol(K))2, where A(K) is the covariance matrix of the uniform distribu-
tion on K. It is an outstanding open problem to find a tight asymptotic upper bound
of the isotropic constant as a function of the dimension. It has been conjectured that
there is a universal constant upper bound. The conjecture is known to be true for
several families of bodies, in particular, highly symmetric bodies such as bodies having
an unconditional basis. It is also known that maximizers cannot be smooth.

In this work we study the gap between smooth bodies and highly symmetric bodies
by showing progress towards reducing to a highly symmetric case among non-smooth
bodies. More precisely, we study the set of maximizers among simplicial polytopes and
we show that if a simplicial polytope K is a maximizer of the isotropic constant among
d-dimensional convex bodies, then when K is put in isotropic position it is symmetric
around any hyperplane spanned by a (d − 2)-dimensional face and the origin. By a
result of Campi, Colesanti and Gronchi, this implies that a simplicial polytope that
maximizes the isotropic constant must be a simplex.

1 Introduction

Let a d-dimensional convex body be a compact convex set in Rd with non-empty interior. For a
d-dimensional convex body K, let A(K) be the covariance matrix of the uniform distribution
on K, that is, for X random in K, let µK = E(X) and let A(K) = EK

(
(X − µK)(X −

µK)T
)
. The isotropic constant LK of K can be defined by L2d

K = det
(
A(K)

)
/(vol(K))2. An

outstanding open problem in asymptotic geometric analysis, the slicing problem, is to find
a tight asymptotic upper bound of the isotropic constant as a function of the dimension
only. The slicing conjecture (also known as the hyperplane conjecture) states that there is a
universal constant upper bound of the isotropic constant. The slicing problem seems to be
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mentioned for the first time by Bourgain [3] and some equivalent formulations are discussed
by Ball in [1]. Milman and Pajor [11] studied the problem systematically. It is one of the
outstanding open problems in convex geometry; among the reasons are its connections with
classical problems in convexity, like the Busemann-Petty problem and Sylvester’s problem
[11, 6, 4].

The isotropic constant is invariant under affine transformations. About the asymptotic
behavior, it is known that LK is bounded below by a universal constant and this is tight [3].
Bourgain also showed that LK ≤ O( 4

√
d log d). The best known upper bound at this time is

by Klartag, who showed that LK ≤ O( 4
√
d) [8].

A natural question is to understand bodies that maximize LK in every dimension. We
review now some results that give a partial understanding of the nature of maximizers. There
are subfamilies of all convex bodies where universal constant upper bounds to LK are known:

• zonoids, that is, limits of zonotopes (which are Minkowski sums of segments),

• bodies having an unconditional basis, that is, convex bodies K such that (x1, . . . , xd) ∈
K ⇐⇒ (|x1|, . . . , |xd|) ∈ K. [3, 11]

Also, [5] showed (using RS-movements) that if K has a non-empty subset of its boundary
of class C2 with positive principal curvatures, then it cannot be a maximizer of LK . It also
showed using Blaschke’s Schüttelung (shakedown) that if K = {(x, y) ∈ Rd−1 × R : x ∈
πH(K),−f(x) ≤ y ≤ f(x)} (i.e. K has a hyperplane of symmetry) and f is not affine, then
K is not a maximizer of the isotropic constant (see Theorem 3 in this paper for a formal
statement).

The results above tell us that for bodies having certain symmetries or having a smooth
boundary we have some understanding of the behavior of the isotropic constant. This leaves
unexplored bodies that are not smooth and have no symmetries. Can we argue that maxi-
mizing bodies must have certain symmetries?

A polytope is simplicial if every facet is a simplex. The first result of this paper is the
following necessary condition on simplicial polytopes that are local extrema of the isotropic
constant, Theorem 1. We first recall a few definitions and basic facts. In the context of
this paper, a d-dimensional convex body is a local extremum of a functional iff the body
is a local maximum or a local minimum of the functional in the space of all convex bodies
with respect to the Hausdorff topology. A d-dimensional polytope is called isohedral or a
isohedron iff it is facet-transitive, that is, for any pair of facets F1, F2 there is an element of
the (full) symmetry group of the polytope that maps F1 to F2. (The full symmetry group of
a polytope is the group (under composition) of all isometries of Rd that map the polytope
to itself.) A d-dimensional convex body K is isotropic iff µK = 0 and A(K) = I. Given any
d-dimensional convex body, there is an affine transformation that maps it to an isotropic
convex body. As the isotropic constant is invariant under affine transformations, it is enough
to study it over isotropic convex bodies.

Theorem 1. Let P be a d-dimensional isotropic simplicial polytope that is a local extremum
of P 7→ LP . Let H be any hyperplane spanned by a (d − 2)-dimensional face of P and the
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origin. Then P is symmetric around H. In particular, P is isohedral and all facets are
congruent.

The second and main result of this paper is Theorem 2, a corollary of Theorem 1 and
the result from [5] mentioned before (stated in this paper as Theorem 3):

Theorem 2. Let P be a d-dimensional simplicial polytope that is a maximizer of P 7→ LP .
Then P is a simplex.

It is worth mentioning a parallel situation for Mahler’s problem: a similar gap between
smooth bodies and symmetric bodies. For simplicity, we only discuss the symmetric Mahler
problem: Given a centrally symmetric convex body K, define the volume product as f(K) =
vol(K) vol(K◦), where K◦ is the polar body of K, given by

K◦ := {x ∈ Rd : x · y ≤ 1 ∀y ∈ K}.

The problem is to determine the minimizers of the volume product. The cube is conjectured
to be a minimizer. This conjecture has been verified among unconditional bodies [16, 10]
(which correspond to symmetries around coordinate hyperplanes) and this result has been
extended to more general symmetries [2]. On the other hand, [13] (improving earlier work,
[19]), showed that if a convex body K has a boundary point with positive generalized Gauss
curvature, then K cannot minimize the volume product.

The rest of the paper is devoted to the proofs of Theorems 1 and 2.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}.
A polytope in Rd is the convex hull of a finite number of points. For a polytope P

with non-empty interior, the unique irredundant H-representation of P is the unique set of
closed halfspaces {Hi : i = 1, . . . , n} such that P = ∩ni=1Hi. See [20, Chapters 0,1,2] for
background.

We use a result from [5] that rules out many bodies having a hyperplane of symmetry as
potential maximizers of the isotropic constant. We state the result, Theorem 3, after a few
definitions. Let K be a d-dimensional convex body. Let H ⊆ Rd be a hyperplane through
the origin. Let πH : Rd → Rd be the orthogonal projection onto H. Let fH , gH : πH(K)→ R
be convex functions such that

K = {(x, y) ∈ Rd−1 × R : x ∈ πH(K), fH(x) ≤ y ≤ −gH(x)}. (1)

Theorem 3 ([5]). If a d-dimensional convex body K is symmetric with respect to a hyper-
plane through the origin H and the corresponding functions fH , gH are not affine, then K
is not a maximizer of the isotropic constant.

(Note that in this case we have fH = gH .)
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Proof. Immediate from [5, Theorem 3.2], [5, Theorem 3.6] and the fact that

L2d
K =

detA(K)

vol(K)2
=

d!

d+ 1
M2(K; d+ 1)

where M2(K; d+1) is the second moment of the volume of a random simplex in K, normalized
so that it is affinely invariant. That is,

M2(K; d+ 1) =
1

vol(K)d+3

∫
x1∈K

· · ·
∫
xd+1∈K

(
vol conv(x1, . . . , xd+1)

)2
dxd+1 · · · dx1.

3 Derivative with respect to hinging

In this section we compute the derivative of the isotropic constant of a polytope with respect
to hinging of one of its facets. The first step (the next lemma) is to show conditions under
which integrals of functions over polytopes are differentiable as a facet hinges. This is slightly
non-trivial; similar differentiability issues have been discussed before [9, Lemma 2.4].

Lemma 4. Let P ⊆ Rd be a closed polyhedron with non-empty interior such that the origin
is on the boundary of P . Let Z be an (d − 2)-dimensional subspace that does not intersect
the interior of P . Let θ : Rd → [−π, π) be an angle in a system of polar coordinates (see
Figure 1) on Z⊥ so that

1. There are a, b ∈ (−π, π) satisfying θ(P ) = [a, b] and a < 0 < b.

2. P ∩ {x : a ≤ θ(x) ≤ 0} is bounded.

Let f : P → R be a continuous function. Let Kt = {x ∈ P : θ(x) ∈ [−π, t]}. Then
g(t) =

∫
Kt
f(x)dx is differentiable at 0.

Proof. Let r : Sd−1 → [0,∞] be the radial function of P . That is, r(u) = max{a ∈ [0,∞] :
au ∈ P}.

Write g(t) in hyperspherical coordinates:

g(t) =

∫ t

θ=−π

∫ π

φd−2=0

· · ·
∫ π

φ1=0

∫ r(v(φ,θ))

ρ=0

f
(
ρv(φ, θ)

)
J(ρ, φ, θ)dρdφ1dφ2 · · · dφd−2dθ, (2)

where φ = (φ1, . . . , φd−1), J(ρ, φ, θ) is the volume element, given by

J(ρ, φ, θ) = ρd−1 sind−2(φ1) sind−3(φ2) · · · sin(φd−2),

and v(φ, θ) is the change of variable that gives a point on Sd−1 given the angles, that is,
v(φ, θ)1 = cos(φi), v(φ, θ)2 = sin(φ1) cos(φ2), . . . , v(φ, θ)d−1 = sin(φ1) · · · sin(φd−2) cos(θ),
v(φ, θ)d = sin(φ1) · · · sin(φd−2) sin(θ).
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θ

P

O

Z⊥

Figure 1: Coordinates for the proof of Lemma 4.

Let h(θ) be the integrand of the outermost integral in (2). To establish that g is differ-
entiable at 0, it is enough to show that h(θ) is continuous in a neighborhood of 0.

To simplify the argument we can go to a fixed domain of integration for h by the change
of variable λ = ρ/r

(
v(φ, θ)

)
so that

h(θ) =

π∫
φd−2=0

· · ·
π∫

φ1=0

1∫
λ=0

f
(
λr(v(φ, θ))v(φ, θ)

)
·

J
(
λr(v(φ, θ)), φ, θ

)
r
(
v(φ, θ)

)
dλdφ1dφ2 · · · dφd−2.

We first prove that h(θ) is finite in a neighborhood of 0. To see this, it is enough to show
that r

(
v(φ, θ)

)
is bounded for θ in a neighborhood of 0 and any φ ∈ [0, π]d−2.

The behavior of r(v) on Sd−1 is as follows: r(v) = ∞ iff v is in the recession cone of
P (denoted rec(P ) and given by rec(P ) = {x ∈ Rd : x + P ⊆ P}, see [18, Section 1.4]
or [14, Section 8]). Assumption 2 implies that r(v) is finite for θ = 0 and any φ. As P
is a closed convex body, its recession cone is closed. On Sd−1, {θ = 0} ∩ Sd−1 is compact
and rec(P ) ∩ Sd−1 is also compact, and they are disjoint. Therefore, there is an open
neighborhood A ⊆ Sd−1 containing {θ = 0} ∩ Sd−1 such that A∩ rec(P ) = ∅. Moreover, r is
continuous in A (see footnote1). There is also a smaller compact neighborhood C satisfying
{θ = 0}∩Sd−1 ⊆ C ⊆ A, so that r is not only continuous but also bounded in C. Therefore,
for θ in a neighborhood of 0 we have that h(θ) is the integral of a bounded function on a
compact domain of integration. This implies that h(θ) is finite in a neighborhood of 0.

We now establish that h(θ) is continuous in the same neighborhood of 0. This follows
from Lebesgue’s dominated convergence theorem after observing that h is the integral of a

1Let D ⊆ Sd−1 be the set where r(v) ∈ (0,∞). Then r(v) is continuous in intD. To see this, note that
r(v) = 1/f(v), where f(v) = inf{λ > 0 : v ∈ λP} is the (slightly generalized) Minkowski functional of P .
We have f : Rd → [0,∞] and f is convex. Therefore f is continuous in int dom f [15, Theorem 2.35], where
dom f is the effective domain of f , that is, dom f = {x ∈ Rd : f(x) <∞.}. Clearly intD ⊆ int dom f .
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Z⊥

Figure 2: Cylindrical coordinates for the proof of Lemma 5.

continuous integrand over a compact domain, and the integrand is (uniformly) bounded in
that domain for θ in a neighborhood of 0.

Lemma 5 (derivative with respect to hinging). Let K ⊆ Rd be an isotropic simplicial
polytope with unique irredundant H-representation {Hi : i = 1, . . . ,m} so that K = ∩mi=1Hi.
Fix a facet i′ and let P be the polyhedron obtained by relaxing Hi′, that is:

P =
⋂
i 6=i′

Hi.

Let v1, . . . , vd be the vertices of facet i′. Let vj′ be one of those vertices. Consider a system of
cylindrical coordinates as follows (see Figure 2): A point x ∈ Rd is parameterized by (ρ, θ, z).
Let Z = aff{vj : j 6= j′}. The origin of the new system of coordinates is an arbitrary point
in Z ∩ K. Parameters ρ ∈ [0,∞), θ ∈ [−π, π) are polar coordinates in the 2-dimensional
plane orthogonal to Z. Parameter z is a vector in Z. Polar coordinates ρ, θ are oriented so
that points in facet i′ have θ = 0 and all of K has θ ∈ (−π, 0]. Let

Kt = {x ∈ P : θ(x) ∈ [−π, t]},
St = P ∩ {x : θ(x) = t}.

Let D be the distribution of a random vector X supported on S0 with density proportional to
ρ(X). Then

d

dt
L2d
Kt

∣∣∣∣
t=0

=
(
EX←D(‖X‖2)− d− 2

) d
dt

volKt

∣∣
t=0

(volK)3
.

Proof. We have L2d
Kt

= detA(Kt)/ vol(Kt)
2. Given this formula, the differentiability of t 7→

L2d
Kt

and of the varied integrals below at t = 0 follows from Lemma 4.
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We first compute d
dt

detA(Kt)
∣∣
t=0

. Part of the argument is the same as the proof of [12,

Proposition 15]: An identical argument shows that d
dt

detA(Kt)
∣∣
t=0

= d
dt
EX∈Kt(‖X‖

2)
∣∣
t=0

,
then we compute this last expression for the current lemma. To make the argument more
readable and self-contained, we repeat the relevant parts of the argument from [12] here.

We have

A(Kt) = EX∈Kt
(
(X − µKt)(X − µKt)T

)
= EX∈Kt(XXT )− µKtµTKt .

By isotropy, µK = 0 and this implies

d

dt
A(Kt)

∣∣∣∣
t=0

=
d

dt
EX∈Kt(XXT )

∣∣∣∣
t=0

. (3)

Use the identity
d

dM
detM =

(
M−1)T detM

to conclude

d

dt
detA(Kt)

∣∣∣∣
t=0

=
d

dM
detM

∣∣∣∣
M=A(Kt)

· d
dt
A(Kt)

∣∣∣∣∣
t=0

= det
(
A(Kt)

) (
A(Kt)

−1)T · d
dt
A(Kt)

∣∣∣∣
t=0

where the dot “·” represents the Frobenius inner product of matrices, M ·N =
∑

ijMijNij.
This, isotropy and (3) give

d

dt
detA(Kt)

∣∣∣∣
t=0

= I · d
dt

EX∈Kt(XXT )

∣∣∣∣
t=0

=
d

dt
EX∈Kt(‖X‖

2)

∣∣∣∣
t=0

.

Let Sr,t = P ∩ {x : ρ(x) = r, θ(x) = t}. We have:

EX∈Kt(‖X‖
2) =

1

volKt

∫ t

−π

∫ ∞
0

EX∈Sρ,θ(‖X‖
2) vold−2(Sρ,θ)ρ dρ dθ.

Differentiating at t = 0:

d

dt
EX∈Kt(‖X‖

2)

∣∣∣∣
t=0

=

−
d
dt

volKt

volKt

EX∈Kt(‖X‖
2) +

1

volKt

∫ ∞
0

EX∈Sρ,t(‖X‖
2) vold−2(Sρ,t)ρ dρ

∣∣∣∣∣
t=0

.

(4)
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We have
d

dt
vol(Kt)

∣∣∣∣
t=0

=
d

dt

∫ t

−π

∫ ∞
0

vold−2(Sρ,θ)ρdρdθ

∣∣∣∣
t=0

=

∫ ∞
0

vold−2(Sρ,0)ρdρ,

(5)

EX←D(‖X‖2) =

∫
S0
‖x‖2ρ(x)dx∫
S0
ρ(x)dx

=

∫∞
ρ=0

∫
Sρ,0
‖x‖2ρdxdρ∫∞

ρ=0
vold−2(Sρ,0)ρdρ

(6)

and

EX∈Sρ,t(‖X‖
2) =

∫
Sρ,t
‖x‖2dx

vold−2(Sρ,t)
. (7)

That is, using (5), (6), (7) we get∫ ∞
0

EX∈Sρ,0(‖X‖
2) vold−2(Sρ,0)ρ dρ =

∫ ∞
ρ=0

∫
Sρ,0

‖x‖2dxρ dρ

= EX←D(‖X‖2)
∫ ∞
ρ=0

vold−2(Sρ,0)ρ dρ

= EX←D(‖X‖2) d

dt
vol(Kt)

∣∣∣∣
t=0

.

This in (4) and isotropy give

d

dt
EX∈Kt(‖X‖

2)

∣∣∣∣
t=0

=
d
dt

volKt

∣∣
t=0

volK

[
−d+ EX←D(‖X‖2)

]
.

This implies,
d

dt
detA(Kt)

∣∣∣∣
t=0

=
(
EX←D(‖X‖2)− d

) d
dt

volKt

∣∣
t=0

volK
.

Thus,

d

dt
L2d
Kt

∣∣∣∣
t=0

=
d

dt

detA(Kt)

(volKt)2

∣∣∣∣
t=0

=
−2 detA(Kt)

(volKt)3
d

dt
volKt +

1

(volKt)2
d

dt
detA(Kt)

∣∣∣∣
t=0

=
−2

(volK)3
d

dt
volKt

∣∣∣∣
t=0

+
1

(volK)2
(
EX←D(‖X‖2)− d

) d
dt

volKt

∣∣
t=0

volK

=
(
EX←D(‖X‖2)− d− 2

) d
dt

volKt

∣∣
t=0

(volK)3
.
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4 Proof of Theorem 1

Proof idea: For a given facet F of P , we compute the derivative of L2d
P as F “hinges” around

one of its (d − 2)-dimensional facets. To preserve convexity, this is done by hinging the
halfspace inducing that facet. Setting those derivatives to zero gives d non-linear equations
on the d vertices of F . We will show that, if we fix d− 1 vertices v1, . . . , vd−1, the system of
equations determines the last vertex uniquely up to reflection around the span of v1, . . . , vd−1.
This implies that the two facets of P sharing v1, . . . , vd−1 are reflections of each other around
that span. Applying the same argument to all pairs of adjacent facets, we conclude that all
of P is invariant under reflection around that span.

Proof. Let P be a polytope as in the theorem. Let F and F ′ be two adjacent facets of P
with common vertices {v2, . . . , vd} and additional vertices v1 and v′1, respectively. The first
order necessary condition from Lemma 6 implies conditions on v1 and v′1 given v2, . . . , vd.
Let v1 be denoted x in those equations, with v2, . . . , vd as parameters. We get two types of
equations: For k = 1 we get

(d+ 1)(d+ 2)2

2
= 3‖x‖2 + 2

d∑
i=2

x · vj +
∑

2≤i≤j≤d

vi · vj.

For k = 2, . . . , d we get

(d+ 1)(d+ 2)2

2
= ‖x‖2 +

d∑
i=2

x · vj +
∑

2≤i≤j≤d

vi · vj + x · vk +
∑
k≤j≤d

vk · vj + ‖vk‖2.

Decompose x into its components in the span of {v2, . . . , vd} and orthogonal to that span.
That is, let x = xIN +xOUT , with xIN ∈ span{v2, . . . , vd} and xOUT ∈ span{v2, . . . , vd}⊥. To
get that F and F ′ are reflections of each other around span{v2, . . . , vd}, it is enough to show
that the equations on x determine xIN uniquely and ‖xOUT‖ uniquely. In the new variables,
the equations on x become:

(d+ 1)(d+ 2)2

2
= 3‖xIN‖2 + 3‖xOUT‖2 + 2

d∑
i=2

xIN · vj +
∑

2≤i≤j≤d

vi · vj (8)

and k = 2, . . . , d we get

(d+ 1)(d+ 2)2

2
= ‖xIN‖2+‖xOUT‖2+

d∑
i=2

xIN ·vj+
∑

2≤i≤j≤d

vi ·vj+xIN ·vk+
∑
k≤j≤d

vk ·vj+‖vk‖2.

(9)
Note that the only non-linear part is ‖xIN‖2 + ‖xOUT‖2 = ‖x‖2. Use (8) in (9) to eliminate
‖x‖2. We get

‖x‖2 =
1

3

(d+ 1)(d+ 2)2

2
− 2

3

d∑
i=2

xIN · vj −
1

3

∑
2≤i≤j≤d

vi · vj.

9



and for k = 2, . . . , d,

1

3
xIN ·

d∑
j=2

vj + xIN · vk +
2

3

∑
2≤i≤j≤d

vi · vj +
∑
k≤j≤d

vk · vj + ‖vk‖2 =
2

3

(d+ 1)(d+ 2)2

2
. (10)

As xIN lies in span{v2, . . . , vd}, we can write the linear system of equations (10) in the basis
{v2, . . . , vd}, and xIN will be unique as long as the matrix of the linear system is invertible.
The matrix of the system in this basis is 11T/3 + I, which is invertible. Therefore, there is
at most one xIN . Given xIN , (8) determines ‖xOUT‖ uniquely, as claimed.

Lemma 6 (First order necessary condition). Let P be a d-dimensional simplicial polytope
that is a local extremum of P 7→ LP . Let F be a facet of P with vertices v1, . . . , vd. Then,
for k = 1, . . . , d we have ∑

1≤i≤j≤d

(1 + δik + δjk)vi · vj =
(d+ 1)(d+ 2)2

2
.

Proof idea: To first order terms and after taking care of preserving convexity, the infinitesimal
hinging of a facet F = conv(v1, . . . , vd) around one of its facets F ′′ = conv(v2, . . . , vd) is
the same as adding or removing an infinitesimal layer of mass on the facet with weight
proportional to barycentric coordinate x1 (that is, 0 at F ′′, 1 at v1 and interpolate affinely in
F ). On the other hand, the derivative of L2d

P , when adding infinitesimal mass to an isotropic
convex body P , is proportional to

E(‖X‖2)− d− 2

where X is random according to the added mass. This is show in Lemma 5 for our particular
case. An explicit computation of E(‖X‖2) completes the argument.

Proof. Lemma 5 implies the necessary condition

EX←D(‖X‖2) = d+ 2

We now compute EX←D(‖X‖2) using the known representation of the uniform distribution
over a simplex using exponential random variables. Let Y be a random vector, uniformly
in the standard simplex ∆d−1 = conv{ei}di=1. Let T be an independent random scalar
distributed as the sum of d exponential random variables with rate 1. (An exponential
random variable with rate 1 has density e−t supported on t ∈ [0,∞).) It is known that
Z := TY is a random vector with independent coordinates, each distributed as exponential
with rate 1. Let V be the matrix having columns v1, . . . , vd. Then V Y is a uniformly random
vector on conv{vi}.

We have

EX←D(‖X‖2) =
E(‖V Y ‖2Yk)

E(Yk)
,

10



where E(Yk) = 1/d. Also,

E(‖V Y ‖2Yk) =
E(‖V Z‖2Zk)

E(T 3)
,

where E(T 3) = d(d+ 1)(d+ 2). Finally,

E(‖V Z‖2Z1) = E

(∥∥∥∑
i

Zivi

∥∥∥2Z1

)

= E
( d∑
i=1

Z2
i vi · viZ1 + 2

∑
i<j

ZiZjvi · vjZ1

)
= E(Z3

1)v1 · v1 +
d∑
i=2

E(Z1Z
2
i )vi · vi

+ 2
d∑
j=2

E(Z2
1Zj)v1 · vj + 2

∑
1<i<j≤d

E(Z1ZiZj)vi · vj

= 6v1 · v1 + 2
d∑
i=2

vi · vi + 4
d∑
j=2

v1 · vj + 2
∑

1<i<j≤d

vi · vj

= 2
(

3v1 · v1 + 2
d∑
j=2

v1 · vj +
∑

1<i≤j≤d

vi · vj
)

= 2
∑

1≤i≤j≤d

(1 + δ1i + δ1j)vi · vj.

We get

E(‖V Y ‖2Yk) =
2

d(d+ 1)(d+ 2)

∑
1≤i≤j≤d

(1 + δki + δkj)vi · vj.

The lemma follows.

5 Proof of Theorem 2

Proof idea: An extremal isotropic simplicial polytope has a hyperplane of symmetry by
Theorem 1. Given that the polytope is simplicial but not a simplex, one can show (Theorem
3, a restatement of results in [5]) that in this case Blaschke’s Schüttelung process strictly
increases the isotropic constant.

Proof. Assume, without loss of generality, that P is in isotropic position. By Theorem 1,
P has a hyperplane of symmetry H containing the origin. Let fH , gH be a representation
of P as in (1). The hyperplane of symmetry H implies gH = fH . By Theorem 3, fH is
linear in πH(P ). This implies that {(x, fH(x)) : x ∈ πH(P )} is a facet of P , and therefore
a (d − 1)-dimensional simplex. Thus, πH(P ) is a (d − 1)-dimensional simplex. If d ≤ 2 the

11



argument below does not work (as being simplicial is no restriction for d = 2), but the claim
of the theorem is obvious for d = 1 and known to be true for d = 2, as triangles are the
only maximizers of the isotropic constant in that case (see e.g. [5] for a proof that triangles
are maximizers, and [17] for a proof that they are the only maximizers, which generalizes a
result from [7]). If d > 2, the result follows from Lemma 7, with S = πH(P ) and f = fH .

Lemma 7. Let d ≥ 3. Let P be a d-dimensional simplicial polytope of the form {(x, y) ∈
Rd−1 ×R : x ∈ S,−f(x) ≤ y ≤ f(x)} where S ⊆ Rd−1 is a (d− 1)-dimensional simplex with
vertices v1, . . . , vd ∈ Rd−1 and f : S → R is an affine function. Then P is a simplex.

Proof. It is enough to show that f(vi) is non-zero for exactly one value of i. We will show
this now. Let F1, . . . , Fd be the facets of S, where Fi = conv({v1, . . . , vd} \ {vi}). Let
H = {(x, 0) ∈ Rd−1×R}. For i ∈ [d], let Hi be the affine hull of π−1H (Fi). In other words, Hi

is the affine hyperplane orthogonal to H and containing Fi. Now for every i, P ∩Hi is a face
of P . If dimP ∩Hi < d− 1, then f(vj) = 0 for all j different from i. If dimP ∩Hi = d− 1,
then P ∩Hi is a facet and therefore a simplex, and this implies that f(vj) is non-zero for at
most one value of j in [d] \ {i}. In any case, for every set of d− 1 values in [d], there can be
at most one j in it such that f(vj) 6= 0. Assuming d ≥ 3, this necessarily implies that there
is at most one i ∈ [d] such that f(vi) 6= 0.
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