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Abstract

We address the problem of finding the capacity of noisy networks with either independent point-

to-point compound channels (CC) or arbitrarily varying channels (AVC). These channels model the

presence of a Byzantine adversary which controls a subset of links or nodes in the network. We derive

equivalence results showing that these point-to-point channels with state can be replaced by noiseless

bit-pipes without changing the network capacity region. Exact equivalence results are found for the CC

model, and for some instances of the AVC, including all nonsymmetrizable AVCs. These results show

that a feedback path between the output and input of a CC can increase the equivalent capacity, and

that if common randomness can be established between the terminals of an AVC (either by feedback,

a forward path, or via a third-party node), then again the equivalent capacity can increase. This leads

to an observation that deleting an edge of arbitrarily small capacity can cause a significant change in

network capacity. We also analyze an example involving an AVC for which no fixed-capacity bit-pipe

is equivalent.

I. INTRODUCTION

One fundamental problem in wireless and wireline networks is to achieve robustness against

active adversaries. A common assumption is to consider Byzantine adversaries who observe all

transmissions, messages, and channel noise values and interfere with the transmitted signals, i.e.,

by replacing a subset of the channel output values or by injecting additional noise to a specific
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Fig. 1. Two-node networks with a capacity C channel and (a) a symmetrizable AVC, (b) a CC. In general, the upper channel

can be replaced with a single-source single-sink network having the same rate.

subset of communication channels or nodes (the adversarial set) in the network. For example, for

the adversarial noiseless case both in-network error correction approaches and capacity results

under network coding have been presented, e.g., in [1]–[4].

The underlying uncertainty in the network due to the action of the adversary leads to channels

with varying state in the adversarial set [5]. One possible model is to assume that the correspond-

ing nodes have no knowledge about the exact channel state, but only that the state is selected

from a finite set. In the case of a compound channel (CC) [6], [7] the selected state is fixed over

the whole transmission of a codeword. In contrast, if the channel state varies from symbol to

symbol in an unknown and arbitrary manner we have the case of an arbitrarily varying channel

(AVC) [8]–[11].

Note that the AVC has a (deterministic) capacity which is either zero or equals the random

coding capacity [9]. The former case holds for a symmetrizable AVC, since such a channel can

mimic a valid input sequence in such a way that it is impossible for the decoder to decide on

the correct codeword. Even though transmission is not possible if such an AVC is considered

in isolation, the situation changes in a network setting, as exemplarily depicted in Fig. 1(a). In

this two-node network, source and destination nodes are connected via two parallel channels, a

(fixed) channel with capacity C and a symmetrizable AVC. Here, communication over the AVC

is possible with a non-zero rate since common randomness with negligible rate ε > 0 can be

shared between both nodes [9]–[11] via the upper channel in Fig. 1(a). In a more general setup,

in Fig. 1 this channel can be replaced with a single-source single-sink network of positive rate

C.

In the following we consider the problem of reliable communication over a network of

independent noisy point-to-point channels in the presence of active adversaries. A subset of
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the channels either consists of AVCs or CCs. This is in contrast to the model in [12], where the

action of the adversary is directly modeled by injecting an arbitrary vector to the network edges

in the adversarial set. By building on the results in [13] we identify cases where the adversarial

capacity of the network equals the capacity of another network in which each channel is replaced

by a noise-free bit-pipe. For a CC, the bit-pipe has capacity equal to the standard CC capacity if

there is no feedback path from the output to the input; if there is, then the equivalent bit-pipe has

higher capacity, because the state can be estimated at the output and relayed back to the input

(see Fig. 1(b)). For an AVC, the equivalent bit-pipe has capacity equal to the random coding

capacity if it is possible to establish common randomness between the input and output. This

can be accomplished if any of the following hold: (i) the AVC is non-symmetrizable, (ii) there

is a parallel forward path as in Fig. 1(a), (iii) there is a feedback path as for the CC in Fig. 1(b),

or (iv) a third-party node can transmit to both the input and output nodes. If none of these hold,

it appears to be difficult to obtain an equivalence result, as the strong converse does not hold for

symmetrizable AVCs. Indeed, we illustrate in Sec. IX that there exist AVC networks in which

no equivalent bit-pipe with fixed capacity exists.

These observations are related to the concept of super-activation [14] which for two channels

C1 and C2 is defined by the observation that these channels can only be used for reliable

communication if they are used jointly, but not in isolation. Super-activation has for example

been studied in the context of arbitrarily-varying wiretap channels [15], [16], where it has been

shown that there exist pairs of symmetrizable arbitrarily-varying wiretap channels which can be

super-activated.

The structure of the paper is as follows. In Sec. II, we formally introduce the problem for

both CC and AVC models. In Sec. III we describe the concept of stacked networks, introduced

in [13], and state two preliminary lemmas. In Sec. IV, we introduce a lemma demonstrating

that training sequences can be used for the CC model to reliably estimate the channel state. In

Sec. V, we prove a lemma for the AVC model showing that having access to unlimited shared

randomness among certain sets of nodes does not change the capacity region. In Sec. VI, given

a channel model and a pair of nodes u and v, we determine whether it is possible to transmit

information at any positive rate from u to v. These results will be used in the equivalence results

for both state models: for the CC model, to determine whether feedback is possible, and for the

AVC model, whether common randomness can be established (cf. Fig. 1). In Sec. VII we present

our main equivalence results for the CC model, and in Sec. VIII for the AVC model. In Sec. IX
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we analyze an example AVC network that we show has no equivalent bit-pipe. In Sec. X we

relate our results to the edge removal problem, which has proved difficult for state-less networks

but we prove has a simple solution for both CC and AVC models. We conclude in Sec. XI.

II. MODEL

Consider a network of nodes V := {1, . . . ,m} with state, given by

N =

(
m∏
v=1

X (v),S, p(y|x, s),
m∏
v=1

Y(v)

)
. (1)

Herein, X (v) and Y(v) denote the input and output alphabets of the node v and S the set of

network states, respectively. This network may represent either a CC or an AVC model. These

both assume that the state is chosen not randomly but adversarially; in the CC model the adversary

chooses a single state s ∈ S that remains constant throughout the code block, whereas in the

AVC model the adversary chooses an arbitrary state sequence sn ∈ Sn. We assume that the

adversary is blind, i.e., that it does not know the transmitted messages, but only the employed

codebooks. In this paper we are interested in both CC and AVC problems, but only one at a

time. Studying networks with both CC-type state and AVC-type state is beyond our scope.

We also assume that nodes may use private randomness, independently generated at each

node, in their coding operations. This will be important for our results on the AVC achievability

arguments, in which nodes generated random quantities and transmit them across the network.

In our model we allow each node an unlimited amount of private randomness (in particular,

a uniform random variable on the interval [0, 1]), although our achievability arguments require

no more than O(log n) bits of private randomness are required at each node. Note that private

randomness is quite different from shared randomness, which is a significant asset that trivializes

many AVC problems; we do not assume that any shared randomness is available in this model.

In Sec. V we show that certain forms of shared randomness have no effect on the capacity region

of the AVC model, but this is not true for unrestricted shared randomness.

We further assume that there is an independent point-to-point channel from node 1 to node 2

with independent state. That is, X (1) = X (1,0) × X (1,1), Y(2) = Y(2,0) × Y(2,1), S = S(0) × S(1),

and

p(y|x, s) = p(y(0)|x(0), s(0))p(y(2,1)|x(1,1), s(1)) (2)

where x(1,1) ∈ X (1,1), y(2,1) ∈ Y(2,1), and s(1) ∈ S(1) represent the input, output, and state

respectively for the point-to-point channel, and x(0) ∈ X (1,0) × ∏v 6=1X (v), y(0) ∈ Y(2,0) ×
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Fig. 2. Decomposition of a network N into a point-to-point channel between node 1 and 2 with conditional pmf

p(y(2,1)|x(1,1), s(1)) and the channels specified by the rest of the network with pmf p(y(0)|x(0), s(0)).

∏
v 6=2 Y(v), and s(0) ∈ S(0) represent the input, output, and state respectively for the remainder

of the network. This decomposition is visualized in Fig. 2. The point-to-point channel itself is

given by

C = (X (1,1),S(1), p(y(2,1)|x(1,1), s(1)),Y(2,1)). (3)

Our main goal is to relate the capacity region of N to that when point-to-point channel C is

replaced by a noiseless link of fixed capacity (i.e. a bit-pipe). In particular, for any R ≥ 0, let

NR be the network in which C is replaced by a rate-R noiseless (and state-less) bit-pipe CR

given by

CR = ({0, 1}R, δ(y(2,1) − x(1,1)), {0, 1}R).

With other words, the noiseless bit-pipe of capacity R transmits bnRc bits over each block of

n channel uses with zero error probability for any integer n ≥ 1.

In general, CCs and AVCs can be quite pathological, so we assume that alphabets X (v), S,

and Y(v) are all finite sets. Most of our results apply for more general alphabets under mild

regularity conditions, but to avoid edge cases and complications we restrict ourselves to finite

alphabets. We believe that the interesting consequences of the CC and AVC network models are

captured with finite alphabets models, and that the complications that arise for general alphabets

are unlikely to make a difference in practice.
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Notation: Let [k] = {1, . . . , k}. A rate vector R consists of multicast rates R({v}→U) from

each source node v to each destination set U ⊆ V . With a singleton destination set U = {u}, we

sometimes write simply R(v→u). For each (v, U) pair, there is a message W ({v}→U) ∈ W({v}→U) =

[2nR
({v}→U)

]. Let W (V→∗) denote the vector of all messages originating at nodes v ∈ V , and let

W(V→∗) denote the corresponding message set. Also let W denote the vector of all messages.

For a set A ⊂ V , we write X(A) = (X(v) : v ∈ A), and similarly for Y (A). We also write x for

X(V) and y for Y (V), as in (1). For each node v, the private randomness generate at node v is

given by a random variable Qv drawn uniformly from the interval [0, 1].

A blocklength-n solution S(N ) for network N is given by:

• for each v ∈ V and t ∈ [n], an encoding function

X
(v)
t : (Y(v))t−1 ×W({v}→∗) × [0, 1]→ X (v) (4)

by which node v determines channel input symbol X(v)
t given previously received data

Y
(v)

1:t−1, messages W ({v}→∗), and private randomness Qv

• for each (v, U) pair and each u ∈ U , a decoding function

Ŵ ({v}→U),u : (Y(u))n ×W({u}→∗) × [0, 1]→W({v}→U) ∪ {e} (5)

by which node u determines a message estimate Ŵ ({v}→U),u of W ({v}→U) given received

data Y (u)
1:n , messages W ({u}→∗), and private randomness Qu. Here, e is a special symbol that

denotes declaring an error.

Let Ŵ be the complete vector of message estimates, and denote by {Ŵ 6= W} the event that

at least one message is incorrectly decoded. Note that the probability of this event depends on

the state sequence Sn.

Definition 1: The CC-capacity region RCC(N ) of network N is given by the closure of the

set of rate vectors R for which there exists a sequence of blocklength-n solutions for which

max
s∈S

Pr(Ŵ 6= W |Sn = (s, s, . . . , s))→ 0. (6)

Definition 2: The AVC-capacity region RAVC(N ) of network N is given by the closure of the

set of rate vectors R for which there exists a sequence of blocklength-n solutions for which

max
sn∈Sn

Pr(Ŵ 6= W |Sn = sn)→ 0. (7)

It is easy to see that neither RCC(N ) nor RAVC(N ) change if the state is allowed to be

randomized instead of deterministic, as long as this random choice is independent of the message

and the operation of the channel, and for the CC model the state is fixed across the coding block.
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Our goal is to prove achievability-type results of the form R(NR) ⊆ R(N ) and converse-type

results of the form R(N ) ⊆ R(NR) for both CC and AVC models.

III. STACKED NETWORKS

We adopt the notion from [13] of stacked networks, wherein we denote by N a network

with N independent copies of the network N . Each copy (layer) contains an instance of every

channel input and every channel output, all operating independently1. Underlines denote stacked

variables and vectors, and the argument ` refers to layer `, where ` ∈ [N ]. That is, X(v)(`) is the

symbol transmitted by node v in layer `, and Y (v)(`) is the symbol received by node v in layer

`. Moreover, we denote X(v) = (X(v)(`) : ` ∈ [N ]) and similarly for Y (v). The corresponding

alphabets are given by X (v), etc. Message sets are correspondingly increased by a factor of N ;

that is,W({v}→U) = (W({v}→U))N . Rates are therefore defined by R({v}→U) = |W({v}→U)|/(nN).

We need to differentiate between the CC and AVC models for stacked networks, because for

the CC model the state remains constant across time and across layers, whereas for the AVC

model the state may vary between layers. For the CC model, the distribution of channel outputs

Y = (Y (v) : v ∈ V) given channel inputs X = (X(v) : v ∈ V) and state s ∈ S is

p(y|x, s) =
N∏
`=1

p(y(`)|x(`), s) (8)

where X(`) and Y(`) are the vectors of transmitted and received symbols respectively in layer

`. For the AVC model, there is a different state in each layer denote S(`) for layer `. The

distribution of Y given X and state vector S = (S(`) : ` ∈ [N ]) is

p(y|x, s) =
N∏
`=1

p(y(`)|x(`), s(`)). (9)

Solutions for stacked networks are defined similarly to those for unstacked networks, the only

difference being that each coding function has access to all stacks from prior time instances.

In particular, the transmitted symbols for all layers at node v and time t are determined by the

causal encoding function

X
(v)
t : (Y(v))t−1 ×W({v}→∗) → X (v) (10)

and the decoding function for message W ({v}→U) at node u ∈ U is given by

Ŵ
({v}→U),u

: (Y(u))n ×W({u}→∗) →W({u}→U) ∪ {e}. (11)

1With the exception that in the CC model, the state is constant across all layers of the network and all time.
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Note that node v has access to its received symbols and messages in all layers when deciding its

transmissions. The capacity regions for the stacked networks RCC(N ) and RAVC(N ) are defined

analogously as above for unstacked networks.

The following two preliminary lemmas are simple extensions of Lemmas 1 and 4 respectively

from [13] to include state.

Lemma 1: For any network N , RCC(N ) = RCC(N ) and RAVC(N ) = RAVC(N ).

Proof: The proof for the two state models are largely the same, so we describe them both

simultaneously and discuss differences only when they arise. We first prove RCC(N ) ⊆ RCC(N )

and RAVC(N ) ⊆ RAVC(N ). Consider any rate R in the interior of the capacity region for N ,

and we prove that R is achievable for N . This is sufficient because of the closure operation

in the definition of the capacity regions. Given any λ > 0, for n sufficiently large there exists

a blocklength-n solution S(N ) on network N with rate R and probability of error λ/N . We

construct a solution for stacked network N by repeating S(N ) identically and independently

on each layer of N . Note that the independence refers to the encoding operations at the nodes,

wherein layers are independent of each other, but not necessarily to the input and output random

variables at different layers, which may be made dependent via the adversarial state. However,

it is still the case that the probability of error for each layer is at most λ/N , because each layer

looks like an ordinary CC or AVC-type model.2 Thus, by the union bound, the probability of

error for the stacked solution is at most λ.

We now prove RCC(N ) ⊇ RCC(N ) and RAVC(N ) ⊇ RAVC(N ). Given any blocklength-n

solution on N , it may be “unraveled” to form a blocklength-nN solution on N with identical

rate and probability of error. In particular, the symbols transmitted at time t by the N layers of

N are transmitted at times (t − 1)N + 1, . . . , tN on N . Thus causality is maintained at each

node. For the AVC model, the same unraveling operation forms an equivalence between state

sequences selections for the length-n solution on N and the length-nN solution on N . Thus the

worst case probability of error is unchanged. For the CC model, since the state is required to be

constant across layers in N , the state selection is unchanged and fixed over the blocklength-nN

solution. This means that again the state selections are equivalent between the two models, so

the probability of error is unchanged.

2In the CC model, the adversary is restricted to maintain a constant state across layers, but this assumption is not necessary

for this direction of proof.
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Lemma 2: The capacity regions RCC(NR) and RAVC(NR) are continuous in R for all R > 0.

Proof: We employ a very similar proof technique as that of Lemma 4 in [13]. By Lemma 1,

it is equivalent to prove continuity for RCC(NR) and RAVC(NR). Fix any δ ∈ (0, R) and rate

vector R ∈ int(RCC(NR+δ)) (resp. R ∈ int(RAVC(NR+δ))). Assume that NR+δ has N layers.

Let NR−δ be an N ′-fold stacked network with

N ′(R− δ) ≥ N(R + δ). (12)

For all λ > 0, there exists solution S(NR+δ) with rate vector R and probability of error λ.

We define a solution S(NR−δ) based on S(NR+δ) as follows. Use precisely the same coding

operations aside from the bit-pipe CR+δ for the first N layers of the stack, and send the bN(R+δ)c
bits to be sent across CR+δ instead across the bit-pipe CR−δ. This can be done because of (12).

Note that the resulting rate vector for S(NR−δ) is

R′ = RN
N ′

> R N

N(R + δ)/(R− δ) + 1
. (13)

Thus the difference between R and R′ vanishes as N →∞ and δ → 0.

Recall that for the CC-model (resp. AVC-model), the state does not affect operation of the bit-

pipes. Meanwhile, as the rest of the network is operated identically in the two solutions—aside

from the N ′ − N unused layers in the solution on NR−δ—the effect of the state is precisely

the same. Thus the modified solution on NR−δ has precisely the same probability of error λ.

Therefore R′ ∈ RCC(NR−δ) (resp. R′ ∈ RAVC(NR−δ)).

IV. COMPOUND CHANNEL TRAINING LEMMA

The following lemma will be used several times in CC results. It asserts that CC states can

be estimated using training sequences.

Lemma 3: Fix a point-to-point CC (X ,S, p(y|x, s),Y). For any input sequence x1:n ∈ X n

and output sequence y1:n ∈ Yn, define the set of maximum likelihood state estimates as

Ŝ(x1:n, y1:n) = {ŝ ∈ S : p(y1:n|x1:n, ŝ) = max
s′∈S

p(y1:n|x1:n, s
′)}. (14)
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For any state s ∈ S, let the set of states equivalent to s be3

S̄(s) = {s̄ ∈ S : p(y|x, s̄) = p(y|x, s) for all x ∈ X , y ∈ Y}. (15)

Then, for any s ∈ S,

lim
n→∞

Pr
(
Ŝ(α1:n, Y1:n) 6= S̄(s)

)
= 0 (16)

where α1:n is a random training sequence drawn uniformly i.i.d. from X n, and Y1:n ∼ p(y1:n|α1:n, s).

Proof: Fix s ∈ S. Note that if s̄ ∈ S̄(s), then by definition all probabilities for s̄ are identical

to those for s, so s̄ ∈ Ŝ(x1:n, y1:n) if and only if s ∈ Ŝ(x1:n, y1:n). Thus, to prove (16) we need

to show that with probability approaching 1,

p(Y1:n|α1:n, s) > p(Y1:n|α1:n, s
′) for all s′ ∈ S̄(s)c (17)

where S̄(s)c = S \ S̄(s).

Note that Ŝ(α1:n, Y1:n) consists of the set of ŝ that minimize

− 1

n

n∑
t=1

log p(Yt|αt, ŝ). (18)

For any s′ ∈ S, the quantities − log p(Yt|αt, s′) are i.i.d. with expected value

1

|X |
∑
x,y

−p(y|x, s) log p(y|x, s′) = H(Y |X,S = s) + ∆s,s′ (19)

where

∆s,s′ :=
∑
x∈X

1

|X |D
(
p(y|x, s)‖p(y|x, s′)

)
. (20)

Note that ∆s,s′ = 0 if and only if s′ ∈ S̄(s). Let δs = min{∆s,s′ : ∆s,s′ > 0}. We have δs > 0

since S is finite. Let τs = H(Y |X,S = s) + δs/2. Hence

E [− log p(Yt|αt, s)] > τs (21)

E [− log p(Yt|αt, s′)] < τs for any s′ ∈ S̄(s)c. (22)

3In many cases, each state induces a distinct channel distribution, so we would have S̄(s) = {s}. However, there are important

scenarios when this is not the case, such as when S is the full network channel state, and the channel from X to Y represents

just part of the overall network channel model. Different states might induce the same behavior from X to Y but different

behaviors elsewhere in the network. For example, consider two BSCs and a ternary network state S such that the crossover

probabilities of the two channels are (0, 0) if S = 0, (0, 1) if S = 1, or (1, 0) if S = 2. Thus S = 0 and S = 1 induce exactly

the same behavior in the first channel, but are materially different when considering the entire network.
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Thus, by the Law of Large Numbers,

Pr

(
− 1

n

n∑
t=1

log p(Yt|αt, s) > τs

)
→ 1 (23)

Pr

(
− 1

n

n∑
t=1

log p(Yt|αt, s′) < τs for all s′ ∈ S̄(s)c
)
→ 1. (24)

Therefore (17) holds with probability approaching 1.

V. ARBITRARILY VARYING SHARED RANDOMNESS LEMMA

A key element of proving AVC equivalence results, and indeed of many existing AVC results,

is the role of shared randomness between nodes. This is the essence of the difference between

the classical deterministic and random coding models for the point-to-point AVC, and so one

may ask exactly when does having shared randomness between nodes change or not change the

capacity region. In this section, we prove a generic lemma stating that the capacity region of

an AVC network does not change if certain groups of nodes have access to shared randomness.

This lemma will be used several times in proving our equivalence results. For the no adversary

model, it was shown in [17] that the capacity region for average probability of error does not

change even if all nodes have access to a single infinite entropy source of common randomness

(modeled as a uniform random variable on the unit interval). This strong result does not hold

for the AVC model, but, as stated below, for a given node v, if node v is allowed to share an

infinite entropy source of randomness with all other nodes to which it can communicate at any

positive rate, then the capacity region does not change.

The proof is a generalization of the random code reduction Lemma 12.8 from [11]. This

lemma proves that for the point-to-point AVC an arbitrary amount of shared randomness between

encoder and decoder can be reduced to an asymptotically negligible amount (in particular,

O(log n) bits). This leads to Theorem 12.11 of [11], stating that the capacity of an AVC is

either 0 or the random coding capacity, because if the capacity is positive, than a small amount

of shared randomness can be set up, and thus full shared randomness can be simulated. We use

essentially the same technique here.

To be precise, we define the following variant on our coding model.

Definition 3: Let R̃AVC(N ) be the capacity region for the AVC network N for the following

shared randomness coding model. For each node v, let Q̃v be a uniform random variable on the

interval [0, 1], independent from each other, from the messages, from channel noise, and from
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the state sequence. Assume Q̃v is available at node v and at all nodes u for which there exists

a rate vector R ∈ RAVC(N ) with R(v→u) > 0.

Lemma 4: For any network N , R̃AVC(N ) = RAVC(N ).

Before proving Lemma 4, we need the following lemma, which is the essence of the random

code reduction.

Lemma 5: Let Q and Z be independent random variables with (not necessarily finite) alphabets

Q and Z respectively. Let f(q, z, sn) ∈ [0, 1] be a function defined for q ∈ Q, z ∈ Z and sn ∈ Sn.

Suppose for some η > 0,

Ef(Q,Z, sn) ≤ η for all sn ∈ Sn. (25)

Then for sufficiently large n, there exist q1, . . . , qn2 ∈ Q such that

1

n2

n2∑
j=1

Ef(qj, Z, s
n) ≤ 2η for all sn. (26)

Proof: Let Q1, . . . , Qn2 be i.i.d. random variables with the same distribution as Q, all

independent of Z. We have

P

(
1

n2

n2∑
j=1

E[f(Qj, Z, s
n)|Qj] > 2η for any sn

)
(27)

≤
∑
sn

P

(
1

n2

n2∑
j=1

E[f(Qj, Z, s
n)|Qj] > 2η

)
(28)

=
∑
sn

P
(

2
∑n2

j=1 E[f(Qj ,Z,s
n)|Qj ] > 2n

22η
)

(29)

≤
∑
sn

2−n
22η E2

∑n2

j=1 E[f(Qj ,Z,s
n)|Qj ] (30)

=
∑
sn

2−n
22η
(
E2E[f(Q,Z,sn|Q)]

)n2

(31)

≤
∑
sn

2−n
22η(1 + Ef(Q,Z, sn))n

2

(32)

≤ |S|n2−n
22η(1 + η)n

2

(33)

≤ |S|n2−n
2η(2−log e) (34)

where (28) follows from the union bound, (30) from Markov’s inequality, (31) from the fact

that Qj for j ∈ [n2] are i.i.d. with the same distribution as Q, (32) follows from the fact that

f(q, z, sn) ∈ [0, 1] and 2x ≤ 1 + x for any x ∈ [0, 1], (33) follows from the assumption in (25),
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and (34) follows because 1 + η ≤ eη. As 2 > log e, the quantity in (34) is vanishing in n. Thus,

for sufficiently large n the probability in (27) is strictly less than 1, meaning there exists at least

one set of constants {qj}j∈[n2] satisfying (26).

Proof of Lemma 4: It is obvious that RAVC(N ) ⊆ R̃AVC(N ). To prove R̃AVC(N ) ⊆
RAVC(N ), let R be a rate vector in the interior of R̃AVC(N ), and we prove that R ∈ RAVC(N ).

For sufficiently large n there exists an n-length solution S(N ) for the random coding model with

rate R and probability of error 2−mε. Given q1, . . . , qm ∈ [0, 1] and sn ∈ Sn, let e(q1, . . . , qm, s
n)

be the probability of error for S(N ) conditioned on Q̃i = qi for i ∈ V , and Sn = sn. Note that

this quantity is averaged over the random choice of messages, the random channel noise, and

any private randomness. Thus

Ee(Q̃1, . . . , Q̃m, s
n) ≤ 2−mε for all sn. (35)

We next prove that there exist qij ∈ [0, 1] for i ∈ V and j ∈ [n2] such that

1

n2m

∑
j1,...,jm∈[n2]

e(q1j1 , . . . , qmjm , s
n) ≤ ε for all sn. (36)

We now apply Lemma 5 m times to the initial random coding probability of error in (35). In

particular, by (35), applying Lemma 5 with particularizations e→ f , Q̃1 → Q, and (Q̃2, . . . , Q̃m)→
Z, there exists q1j ∈ [0, 1] for j ∈ [n2] where

1

n2

n2∑
j=1

Ee(q1j, Q̃2, . . . , Q̃m) ≤ 2−m+1ε for all sn. (37)

Let A1 be a random variable uniformly distributed on {q11, . . . , q1n2}. Thus (37) may be rewritten

Ee(A1, Q̃2, . . . , Q̃m) ≤ 2−m+1ε for all sn. (38)

Now applying Lemma 5 again with particularizations e→ f , Q̃2 → Q, and (A1, Q̃3, . . . , Q̃m)→
Z allows us to conclude that there exist q2j ∈ [0, 1] for j ∈ [n2] such that

1

n2

n2∑
j=1

Ee(A1, q2j, Q̃3, . . . , Q̃m) ≤ 2−m+2ε for all sn. (39)

Repeating this argument m times proves (36).

We now construct a solution on network N using only private randomness as follows. At each

node v, from private randomness Qv generate a random variable Jv uniformly distributed in [n2],

independent of all messages and received signals. By definition, for each node u for which there

exists R ∈ RAVC(N ) with R(v→u) > 0, there is a positive rate solution with arbitrarily small
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probability of error that conveys data from node v to node u. Using these positive rate solutions,

Jv may be transmitted to all such nodes u essentially for free, because log(n2) bits is sub-linear

in n. Subsequently, all nodes proceed with the original code as if Q̃v = qvJv . Since in the shared

randomness coding model, Q̃v is only available at these nodes u, Jv has been successfully

delivered to all the nodes that require it. For state sequence sn, the resulting probability of error

is given by
1

n2m

∑
j1,...,jm∈[n2]

e(q1j1 , . . . , qmjm , s
n) (40)

which is at most ε by (36). This proves that the probability of error for code using only private

randomness can be made arbitrarily small.

Note that the above argument works equally well for stacked networks; therefore we also have

R̃AVC(N ) = RAVC(N ).

VI. POSITIVE RATE CONDITIONS

For both CC and AVC models, it will be important to know whether any information at all

can be sent between nodes. This positive (but arbitrarily small) rate will be used for feedback

in the CC model and generating shared randomness in the AVC model (see Fig. 1). Thus in this

section we investigate the set of node pairs (u, v) for which positive rate can be sent from u to

v. We do this first without state, and then extend it for the CC and AVC models.

A. Positive Rate Without State

Assume for now that S contains only a single element, in which case RCC(N ) = RAVC(N ),

and we denote both by R(N ). We form a set P ⊂ V × V and subsequently show that P is

precisely the set of node pairs that can sustain positive rate. For the CC model, we will be

interested in whether (2, 1) ∈ P; i.e. whether feedback is possible with respect to the point-to-

point channel from node 1 to node 2. On the other hand, for the AVC model, we care whether

there exists a node u such that (u, 1), (u, 2) ∈ P .

The set P is formed via the following steps:

1) Initialize P as {(u, u) : u ∈ V}.
2) If there is a pair of nodes (u, v) /∈ P , and a set A ⊂ V such that (j, v) ∈ P for all j ∈ A,

and

max
p(x(u)),x({u}c)

I(X(u);Y (A)|X({u}c) = x({u}c)) > 0, (41)
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then add (u, v) to P .

3) Repeat step 2 until there are no additional such pairs (u, v).

Note that the condition in step (2) on a pair of nodes (u, v) is monotonic in the sense that if it

holds at any point in the procedure, adding other pairs to P cannot cause it to cease holding.

Thus, no matter the order in which pairs are added to P , any pair that satisfies the condition at

any point will eventually be added. Thus, the above procedure defines P uniquely.

The mutual information in (41) represents the capacity of a point-to-point channel with input

X(u) and output Y (A), even though Y (A) represents all received values by nodes in A, which

are not available at any single receiver. Additionally, we maximize over constants x({u}c) in case

the channel from X(u) to Y (A) only has positive capacity for certain transmissions by the other

nodes.

Theorem 6: If (u, v) ∈ P , then there exists an R ∈ R(N ) with R(u→v) > 0.

Proof: A detailed proof is given by the proof of the stronger result Lemma 9, to be stated

below. Roughly, the solution is visualized in Fig. 3 and derived as follows. A node may trivially

send arbitrary amounts of information to itself; thus R(u→u) > 0 is achievable for any u ∈ V .

We proceed by induction to prove the theorem for pairs (u, v) ∈ P with u 6= v. Consider the

specific step in the construction of P at which (u, v) is added, and let A satisfy (41). We assume

that for all j ∈ A, positive rate can be sent from j to v. To send positive rate from u to v, we

employ a point-to-point channel code from X(u) to Y (A). A message is chosen at node u, and

the corresponding codeword is transmitted by node u and received by nodes in A. Next, the

received sequences are transmitted from nodes in A to node v using positive-rate solutions that

are assumed to exist by the induction hypothesis and since by construction (j, v) ∈ P for all

j ∈ A. Finally, node v decodes the point-to-point code.

The following theorem gives the converse result, stating that if (u, v) /∈ P , then values received

at node v are conditionally independent of values sent from node u given messages that originate

outside node u. This indicates that all information known at node v originates outside of node

u; i.e., the input at node u cannot influence the output at node v. This is a much stronger

statement than a simple converse, and indeed even stronger than a usual “strong” converse, but

it is necessary to prove equivalence results.

Theorem 7: If (u, v) /∈ P , then for any solution S(N ), X(u)
1:n → W ({u}c→∗) → Y

(v)
1:n forms a

Markov chain.
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u vp(y(A)|x(u))

A

Fig. 3. Positive rate can be established between the pair of nodes (u, v) if (41) is satisfied and for all j ∈ A, positive rate can

be sent from j to v.

Proof: Fix (u, v) /∈ P . Let A := {i : (i, v) ∈ P}. By the definition of P , for any i /∈ A,

max
p(x({i})),x({i}c)

I(X({i});Y (A)|X({i}c) = x({i}c)) = 0. (42)

In other words, the conditional distribution p(y(A)|x) does not depend on x({i}). As this holds

for all i /∈ A, it must be that p(y(A)|x) = p(y(A)|x(A)). Hence, for any solution S(N ), we have

the Markov chain

X
(Ac)
t → X

(A)
t → Y

(A)
t (43)

for each time t. We may now write

p
(
y

(A)
1:n

∣∣∣w(A), x
(Ac)
1:n

)
=

n∏
t=1

p
(
y

(A)
t

∣∣∣w(A), x
(Ac)
1:n , y

(A)
1:t−1

)
(44)

=
n∏
t=1

∑
x
(V)
t

p
(
x

(V)
t

∣∣∣w(A), x
(Ac)
1:n , y

(A)
1:t−1

)
p
(
y

(A)
t

∣∣∣x(V)
t

)
(45)

=
n∏
t=1

∑
x
(V)
t

p
(
x

(V)
t

∣∣∣w(A), x
(Ac)
1:n , y

(A)
1:t−1

)
p
(
y

(A)
t

∣∣∣x(A)
t

)
(46)

=
n∏
t=1

∑
x
(A)
t

p
(
x

(A)
t

∣∣∣w(A), x
(Ac)
1:n , y

(A)
1:t−1

)
p
(
y

(A)
t

∣∣∣x(A)
t

)
(47)

=
n∏
t=1

∑
x
(A)
t

p
(
x

(A)
t

∣∣∣w(A), y
(A)
1:t−1

)
p
(
y

(A)
t

∣∣∣x(A)
t

)
(48)

=
n∏
t=1

p
(
y

(A)
t

∣∣∣w(A), y
(A)
1:t−1

)
= p

(
y

(A)
1:n

∣∣∣w(A)
)

(49)
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where (46) follows from (43), and (48) follows by the dependency requirements of the coding

at nodes in A. From this derivation, we conclude that X(Ac)
1:n → W (A) → Y

(A)
1:n forms a Markov

chain. This completes the proof since v ∈ A and u ∈ Ac.
Theorems 6 and 7 completely determine when any positive rate is achievable, as stated in the

following corollary.

Corollary 8: There exists a rate vector R ∈ R(N ) with R({v}→U) > 0 if and only if (v, i) ∈ P
for all i ∈ U .

Note that the “only if” direction of Corollary 8 is weaker than Theorem 7, because even if

R(v→u) cannot be positive, it does not mean that the strong statement of Theorem 7 holds.

B. Positive Rate for the CC Model

We now extend the above results for CC-type state. For each s ∈ S, define Ps as above for

P , but with fixed state S = s. Let PCC =
⋂
s∈S Ps.

For any state s such that (u, v) ∈ Ps, the following lemma establishes the existence of solutions

for the CC model with positive rate from u to v such that (i) if the state is s, node v can reliably

decode the message; and (ii) if the state is not s, node v either decodes correctly or declares

an error. Recall that we use the symbol e to signify a decoder declaring an error. We construct

these solutions using training sequences (cf. Lemma 3), wherein node v only decodes if s is

among the most likely states. Thus if the true state is not s, either node v will discover this

and declare an error, or the channel is indistinguishable from that with state s, so node v will

decode reliably. The solutions from this lemma will be used to prove that positive rate can be

transmitted from u to v for (u, v) ∈ PCC.

Lemma 9: For any state s ∈ S, and all (u, v) ∈ Ps, there exist a sequence of solutions

S
(n)
u,v,s(N ) with rate R(u→v) > 0 such that

1) if S = s then the probability of error vanishes with n, and

2) if S 6= s then the probability of making an error without declaring an error (i.e. that

Ŵ (u→v) /∈ {W (u→v), e}) vanishes with n.

Proof: We adopt the convention that a node may send arbitrary amounts of information to

itself; thus the lemma is immediate if u = v. We proceed by induction to prove the theorem for

pairs (u, v) ∈ Ps with u 6= v. Consider the specific step in the construction of Ps at which (u, v)

was added. There is a set A ⊂ V such that for some distribution p(x(u)) and constant x({u}c),

I(X(u);Y (A)|X({u}c) = x({u}c), S = s) > 0 (50)
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and (j, v) for all j ∈ A has already been added to Ps. We assume there exist sequences of

solutions S
(nj)
j,v,s(N ) for all j ∈ A, with rates R(j→v) > 0, satisfying the probability of error

constraints in the statement of the lemma. Fix a length n to be determined later.

We now describe the coding procedure. Initially node u chooses a message W (u→v) ∈ W(u→v) =

[2nR̃
(u→v))], where R̃(u→v) is any positive number strictly smaller than the mutual information in

(50). Coding proceeds in 3 sessions, described as follows. The lengths of the first two sessions

are n, and that of the third session is
∑

j∈A nj . Thus the quantity R̃(u→v) is not the rate achieved

by the code, because the overall blocklength is longer than n.

Session 1: Node u transmits a training sequence α1:n drawn randomly and uniformly from

(X (u))n while other nodes transmit the constant x({u}c). The training sequence constitutes part

of the codebook and is revealed to all nodes prior to coding. For each j ∈ A, let Y (j)
1:n be the

received sequence at node j for each j ∈ A.

Session 2: Node u transmits W (u→v) via an n-length point-to-point channel code from X(u)

to Y (A) with input distribution p(x(u)) and distribution conditioned on X({u}c) = x({u}c) and

S = s, while all other nodes transmit the constant x({u}c). Let Y (j)
n+1:2n be the received sequence

at node j at each j ∈ A.

Session 3: Dividing into |A| sub-sessions, we run one sub-session for each j ∈ A, in which

S
(nj)
j,v,s(N ) is employed to transmit Y (j)

1:2n from j to v, where the blocklength is given by

nj =

⌈
2n log |Y(j)|

Rj→v

⌉
(51)

so that 2njR
(j→v) ≥ |Y(j)|2n. Let Ŷ (j)

1:2n be the decoded sequence at node v.

Decoding: If any of the solutions S
(nj)
j,v,s(N ) declares an error, then node v declares an error.

Otherwise, given Ŷ
(A)

1:n node v determines whether s is among the most likely states given the

training sequence; that is

p(Ŷ
(A)

1:n |α1:n, X
({u}c)
1:n = x

({u}c)
1:n , S = s) = max

s′
p(Ŷ

(A)
1:n |α1:n, X

({u}c)
1:n = x

({u}c)
1:n , S = s′). (52)

If (52) does not hold, then node v declares an error. If it does, then node v decodes the message

from Ŷ
(A)
n+1:2n using the point-to-point channel decoder. Let Ŵ (u→v) be the decoded message.
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Achieved rate: Recall that all we need to show is that the achieved rate R(u→v) is positive.

The total blocklength for the code is 2n+
∑

j∈A nj , so the overall rate is given by

R(u→v) =
nR̃(u→v)

2n+
∑

j∈A nj
(53)

≥ R̃(u→v)

2 +
∑

j∈A
2 log |Y(j)|
Rj→v + |A|

n

. (54)

Note that R(u→v) is bounded above 0 for sufficiently large n.

Probability of error analysis: First consider the case that S = s. We need to show that

Pr(Ŵ (u→v) 6= W (u→v)) can be made arbitrarily small. Define the error events

E1 :=
{
Ŷ

(A)
1:2n 6= Y

(A)
1:2n

}
(55)

E2 :=

{
s /∈ arg max

s′
p(Ŷ

(A)
1:n |α1:n, X

({u}c) = x({u}c), S = s′)

}
(56)

E3 :=
{
Ŵ (u→v) 6= W (u→v)

}
. (57)

The overall error event is E3, and we can upper bound its probability by

Pr(E3|S = s) ≤ Pr(E1|S = s) + Pr(Ec1 ∩ E2|S = s) + Pr(E3|Ec1 , Ec2 , S = s). (58)

By the inductive assumptions that S(nj)
j,v,s(N ) have vanishing probability of error given state s for

each j ∈ A, Pr(E1)→ 0. By Lemma 3, Pr(Ec1 ∩E2|S = s)→ 0. Finally, Pr(E3|Ec1 , Ec2 , S = s) is

merely the probability of error of the point to point code from u to A, so it vanishes as n→∞.

Thus the overall probability of error may be made arbitrarily small.

Now consider the case that S = s̄ 6= s. Define the additional error events

E4 :=
{

solution S
(nj)
j,v,s(N ) declares an error for some j ∈ A

}
(59)

E5 :=
{
Ŵ (u→v) /∈ {W (u→v), e}

}
. (60)

We need to show Pr(E5) → 0 as n → ∞. If either E2 or E4 occurs, then node v declares an

error, so E5 ⊂ Ec2 ∩ Ec4 . In addition, E5 ⊂ E3, so

Pr(E5|S = s̄) ≤ Pr(E3 ∩ Ec2 ∩ Ec4 |S = s̄) (61)

≤ Pr(E1 ∩ Ec4 |S = s̄) + Pr(E3 ∩ Ec1 ∩ Ec2 ∩ Ec4 |S = s̄). (62)

The first term in (62) vanishes by the inductive assumption on S
(nj)
j,v,s(N ) for all j ∈ A. To bound

the second term, we consider two cases. First, that p(y(A)|x(u), x({u}c), s̄) 6= p(y(A)|x(u), x({u}c), s)
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for any x(u) ∈ X (u) and y(A) ∈ Y(A). Then Pr(Ec1 ∩Ec2 |S = s̄)→ 0 by Lemma 3. Otherwise, the

channel from x(u) to Y (A) conditioned on X({u}c) = x({u}c) is identical for S = s̄ and S = s.

Hence the operation of the point-to-point code from X(u) to Y (A) works just as well for S = s̄

as for S = s, so Pr(E3 ∩ Ec1 ∩ Ec2 |S = s̄)→ 0.

The following theorem gives the positive rate result (equivalent to Theorems 6 and 7) for the

CC model.

Theorem 10: If (u, v) ∈ PCC, then there exists a rate vector R ∈ RCC(N ) with R(u→v) > 0.

Conversely, if (u, v) /∈ PCC, then for any solution S(N ) there exists s ∈ S such that with

Sn = (s, s, . . . , s), X(u)
1:n → W ({u}c→∗) → Y

(v)
1:n forms a Markov chain.

Proof: To prove the converse, note that if (u, v) /∈ PCC then (u, v) /∈ Ps for some s ∈ S.

With this fixed state, the proof follows exactly as that of Theorem 7.

Now we prove achievability. Suppose (u, v) ∈ PCC. Thus (u, v) ∈ Ps for all s ∈ S . Let

S
(n)
u,v,s(N ) be the sequence of solutions asserted by Lemma 9. Let R(u→v)

s > 0 be the rate for

code S
(n)
u,v,s(N ). Let R̃(u→v) = mins∈S R

(u→v)
s .

We construct a solution to send positive rate from u to v as follows. First node u chooses a

message W (u→v) ∈ [2nR̃
(u→v)

]. Coding proceeds in |S| sessions. In the session associated with

s ∈ S, we employ S
(n)
u,v,s(N ) to send W (u→v) from u to v. After all sessions are complete, node

v decodes by choosing Ŵ (u→v) to be the output of the first solution that did not declare an error.

By Lemma 9, with high probability the solution associated with the true state will not make an

error, and any solution associated with a false state will not make an error without declaring an

error. Thus the probability of error is small. As the total blocklength for the code is n|S|, the

achieved rate is R̃(u→v)/|S| > 0.

C. Positive Rate for the AVC Model

Recall that, as defined in [10], an AVC p(y|x, s) is symmetrizable if there exists a probability

transition matrix p(s|x) such that∑
s∈S

p(y|x, s)p(s|x′) =
∑
s∈S

p(y|x′, s)p(s|x), for all x, x′ ∈ X , y ∈ Y . (63)

As shown in [10], a point-to-point AVC has positive capacity if and only if it is non-symmetrizable.

Now define PAVC using the same procedure as above for P , but replace (41) with the condition

that there exists x({u}c) ∈ X ({u}c) such that the channel from X(u) to Y (A), conditioned on

X({u}c) = x({u}c), is non-symmetrizable.
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Theorem 11: If (u, v) ∈ PAVC, then there exists a rate vector R ∈ RAVC(N ) with R(u→v) > 0.

Proof: The proof follows from the same argument as for Theorem 6, except that we replace

the point-to-point channel code from X(u) to Y (A) with an AVC code. By the assumption that

this channel is non-symmetrizable, positive rate can be achieved by the results in [10].

VII. COMPOUND CHANNEL EQUIVALENCE

In this section and the next we simplify notation by writing X for X(1,1), Y for Y (2,1), and

S for S(1). Since we are primarily interested in the independent channel C, there should be no

confusion.

There are two relevant capacities for the compound channel: first, the standard capacity

expression for a compound channel

C = max
p(x)

min
s∈S

I(X;Y |S = s), (64)

and second, the capacity of a compound channel if the state is known at the encoder and the

decoder, wherein the min and max are reversed:

C̄ = min
s∈S

max
p(x)

I(X;Y |S = s). (65)

In other words, C̄ and C represent the capacities of the independent channel C depending on

whether compound state knowledge is available at the encoder or not.

Of course, C ≤ C̄. Let PCC be defined as above for N . As stated in the following theorem,

the compound channel is equivalent to a bit-pipe with rate either C or C̄, depending on whether

the rest of the network can sustain any positive feedback rate from node 2 to node 1.

Theorem 12:

RCC(N ) =

RCC(N C̄) if (2, 1) ∈ PCC

RCC(NC) if (2, 1) /∈ PCC.
(66)

We prove this theorem in several lemmas, which in combination with continuity from Lemma 2

prove the theorem.

Lemma 13: For all networks with links (2, 1) ∈ PCC if R < C, then RCC(NR) ⊆ RCC(N ).

Proof: The proof follows an almost identical argument as that of Lemma 5 from [13], which

proved that a bit-pipe may simulate a point-to-point noisy channel via a traditional channel code.

Recalling that C is the usual compound channel capacity, R < C implies the existence of a

reliable compound channel code at rate R. Replacing the channel code in the proof of Lemma 5

from [13] with such a compound channel code proves our result.
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Fig. 4. The structure of the proof of Lemma 15. Training is used in Session 1 to learn the state; in Session 2 the estimated

state is sent back to the transmitter; in Session 3 a point-to-point channel code is used based on the estimated state.

Lemma 14: For all networks with links (2, 1) ∈ PCC if R > C̄, then RCC(N ) ⊆ RCC(NR).

Proof: Let s∗ = arg mins maxp(x) I(X;Y ). We may use Theorem 6 in [13], which proves

that a bit-pipe can simulate a noisy channel with less capacity, to simulate the channel p(y|x, s∗)
over the bit-pipe of rate R, since R > I(X;Y ) for this channel and any input distribution.

Lemma 15: For all networks with links (2, 1) ∈ PCC if R < C̄, then RCC(NR) ⊆ RCC(N ).

Proof: By Theorem 6, since (2, 1) ∈ PCC, there exists a solution S0(N ) such that R(2→1) >

0. Given a solution S(NR), we construct a solution S(N ) with three sessions. In session 1,

node 1 sends a training sequence so that node 2 can learn the state. In session 2, this estimated

state is transmitted back to node 1 using S0(N ). In session 3, node 1 uses this estimated state to

transmit a message across C while the rest of S(NR) is conducted. This technique is illustrated

in Fig. 4. We give more details as follows.

Session 1: We employ a random coding argument wherein we choose a training sequence

α1:n1 randomly and uniformly from X n1 . This sequence forms the codebook for session 1, and

it is revealed to nodes 1 and 2. Node 1 transmits α1:n1 into C while the inputs to all other

channels are arbitrary. Let Y1:n1 be the output of C. Node 2 forms a state estimate by choosing

Ŝ arbitrarily from the set of ŝ ∈ S such that p(Y1:n1|α1:n1 , ŝ) = maxs′ p(Y1:n1|α1:n1 , s
′).

Session 2: Employ S0(N ) with blocklength n2 to transmit Ŝ from node 2 to node 1. Let Š

be the recovered value at node 1. Assume n2 is large enough such that 2n2R(2→1) ≥ |S|.
Session 3: The network conducts S(NR), but signals to be sent along the bit-pipe CR are

instead transmitted across the noisy link C by encoding them at node 1 using an encoder point-
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to-point channel with state Š, while node 2 employs a decoder for the channel with state Ŝ. Let

n3 be the blocklength of this session. Denote by Z(1→2) ∈ [2n3R] the signal to be sent across

bit-pipe CR, and Ẑ(1→2) the estimate at node 2.

Probability of error analysis: Assume the state is s. Define the following error events:

E1 := {p(y|x, s) 6= p(y|x, Ŝ) for any x, y} (67)

E2 := {Š 6= Ŝ} (68)

E3 := {Ẑ(1→2) 6= Z(1→2)}. (69)

We may bound the probability of error by

Pr(E1) + Pr(E2) + Pr(Ec1 ∩ Ec2 ∩ E3). (70)

By Lemma 3, Pr(E1)→ 0 as n1 →∞. By Theorem 6, Pr(E2)→ 0 as n2 →∞. The effective

rate of the point-to-point code in Session 3 is nR
n3

, where the total blocklength is n = n1+n2+n3.

Since by assumption R < C̄, for sufficiently large n3/(n1 + n2) the effective rate is bounded

below C̄. Moreover, C̄ ≤ maxp(x) I(X;Y |S = s), so the effective rate is bounded below the

capacity of the point-to-point channel with state s. As long as E1 and E2 do not hold, then Ŝ = Š

are a state for which the operation of the channel is identical to that of s, so the channel with

this state has the same capacity as with s. Hence Pr(Ec1 ∩ Ec2 ∩ E3)→ 0 as n3 →∞.

The following theorem is essentially equivalent to Theorem 4 in [13], but with a compound

channel instead of a standard channel without state.

Lemma 16: For all networks with links (2, 1) /∈ PCC if R > C, then RCC(N ) ⊆ RCC(NR).

Proof: By Lemma 1 it suffices to show that RCC(N ) ⊆ RCC(NR). Fix anyR ∈ int(RCC(N ))

and λ > 0.

Choose code and define distributions: Let S(N ) be a rate-R solution on network N for some

blocklength n. By Theorem 10, for solution S(N ), X(2)
1:n → W ({2}c→∗) → Y

(1)
1:n forms a Markov

chain. Moreover, the state S only has direct impact on Y (2)
1:n , which in turn only has direct impact

on X
(2)
1:n. Thus S → X

(2)
1:n → (W ({2}c→∗), Y

(1)
1:n ) forms a Markov chain.4 Combining these two

chains yields

S → X
(2)
1:n → W ({2}c→∗) → Y

(1)
1:n . (71)

4We have written S as a random variable even though it is arbitrary rather than random. By S → A → B we mean that

p(b|a, s) = p(b|a).
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Since W ({2}c→∗) is drawn uniformly from W({2}c→∗) and independently from S, the distribution

of (W ({2}c→∗), Y
(1)

1:n ) does not depend on S. Thus the distribution of X(1)
1:n also does not depend

on S, as it is a function of (W ({1}→∗), Y
(1)

1:n ). Therefore, for each time t we may define pt(x) to

be the distribution of X(1)
t independent of S. Let p(x) = 1

n

∑n
t=1 pt(x) and let

s∗ = arg min
s∈S

I(X;Y |S = s) (72)

where X is drawn from p(x). Let pt(x, y) = pt(x)p(y|x, s∗).

Typical set: Define Â(N)
ε,t to be the N -length typical set according to distribution pt(x, y) as

in [13, Appendix II].

Design of channel emulators: By concavity of mutual information with respect to the input

variable,

1

n

n∑
t=1

I(Xt;Yt|S = s∗) ≤ I(X;Y |S = s∗) = min
s
I(X;Y |S = s) ≤ C < R. (73)

Let Rt := I(Xt;Yt|S = s∗) + ∆ where ∆ > 0 is chosen so that 1
n

∑n
t=1 Rt = R.

Randomly design decoder βN,t : [2NRt ] → Y by drawing codewords βN,t(1), . . . , βN,t(2
NRt)

from the i.i.d. distribution with marginal pt(y). Define encoder αN,t : X → [2NRt ] as

αN,t(x) =

k if (x, βN,t(k)) ∈ Â(N)
ε,t

1 if 6 ∃k s.t. (x, βN,t(k)) ∈ Â(N)
ε,t .

(74)

Note that the number of bits required to send (αN,t(X))nt=1 is
∑n

t=1NRt = nNR, so we may

send all these encoded functions via a bit-pipe of rate R.

The rest of the proof follows essentially that of Theorem 6 in [13]. This involves creating a

stacked solution for N with exponentially decreasing probability of error, and then converting

it into a solution for NR by employing the channel emulators at nodes 1 and 2 to simulate the

noisy channel over the rate-R bit-pipe. Finally, the error probability can be bounded provided

correct parameters are chosen for the typical set Â(N)
ε,t , which can be done for our problem by

virtue of the fact that Rt − I(Xt;Yt|S = s∗) = ∆ > 0.

VIII. ARBITRARILY VARYING CHANNEL EQUIVALENCE

The random coding capacity of a point-to-point AVC is defined as the maximum rate that can

be achieved if the encoder and decoder have access to shared randomness (inaccessible to the

adversary). It is given by

Cr = max
p(x)

min
p(s)

I(X;Y ). (75)
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Moreover, the max and min may be interchanged without changing the quantity, because of

the convexity properties of the mutual information. Without shared randomness, as shown in

[10], the capacity of an AVC is 0 if the channel is symmetrizable, and Cr if not. Thus, in all

cases, Cr is an upper bound on the capacity. The following theorem provides the corresponding

network-level converse.

Theorem 17: RAVC(N ) ⊆ RAVC(NCr).

The proof of this theorem requires a slightly different approach to network equivalence than

that of [13]. In particular, we use the following Universal Channel Simulation lemma; a version

of this result was stated in [17] and used for an alternative proof of the network equivalence

result. The advantage of this result is that it shows that the difference in distribution (as measured

by total variational distance) between a DMC and a simulated channel over a noiseless bit-pipe

may be arbitrarily small for any input sequence. That is, no assumptions need to be made on the

distribution of the input, which is important because in the AVC setting, this input distribution

may be influenced by the adversary, and hence unknown. While [17] did not give a complete

proof of this lemma, we have provided a proof in Appendix A.5

Lemma 18: Consider a DMC (X , q(y|x),Y) with capacity C. Given a rate R > C, a noiseless

channel simulation code (f, g) consists of

• f : X n × [0, 1]→ {0, 1}nR,

• g : {0, 1}nR × [0, 1]→ Yn.

Let p(yn|xn) be the conditional pmf of Y n given Xn where Q ∼ Unif[0, 1] and

Y n = g(f(Xn, Q), Q).

Let dTV(p, q) be the total variational distance between two distributions p and q. There exists a

sequence of length-n channel simulation codes where

lim
n→∞

max
xn

dTV(p(yn|xn), q(yn|xn)) = 0. (76)

Proof of Theorem 17: By the continuity property from Lemma 2, it will be enough to

show that RAVC(N ) ⊆ RAVC(NR) for all R > Cr. Let

p?(s) := arg min
p(s)

max
p(x)

I(X;Y ). (77)

5 In fact, the result stated in [17] is slightly different: it states that one DMC can be simulated by another; here we only

show that a DMC can be simulated by a noiseless bit-pipe. The result of [17] can be recovered from ours by concatenating an

ordinary channel code for the DMC to be simulated to the simulation code.
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Let p?(y|x) =
∑

s p
?(s)p(y|x, s). Note that Cr is the capacity of the ordinary channel with

transition matrix p?(y|x). Since the probability of error for the AVC model is maximized over

all choices for Sn, it cannot increase if we assume Sn is drawn i.i.d. from p?(s). Thus, the

capacity region can only enlarge if the AVC is replaced by the ordinary channel p?(y|x) in N .

In particular, if we let Ñ be the network in which the AVC is replaced by this channel, we have

RAVC(N ) ⊆ RAVC(Ñ ). Thus it will be enough to show RAVC(Ñ ) ⊆ RAVC(NR). Moreover, by

Lemmas 1 and 4 it will be enough to show RAVC(Ñ ) ⊆ R̃AVC(NR), where as in Sec. V R̃

refers to the capacity region under the shared randomness model from Definition 3. Take any

rate vector R in the interior of RAVC(Ñ ), and let S(Ñ ) be a solution with rate vector R and

probability of error at most λ. We convert this to a randomized solution on NR as follows. By

assumption R > Cr ≥ 0, so it is certainly possible to transmit data at some positive rate from

node 1 to node 2 on network NR; thus, by Definition 3, the shared randomness coding model

allows arbitrary shared randomness between nodes 1 and 2.

By Lemma 18, for sufficiently large N , there exists a length-N channel simulation code (f, g)

with rate R where the induced distribution p(y|x) satisfies

max
x

dTV

(
p(y|x),

N∏
`=1

p?(y(`)|x(`))

)
≤ λ/n. (78)

Note that in the network Ñ , X1:n and Y 1:n are related by

p(y
1:n
|x1:n) =

n∏
t=1

N∏
`=1

p?(y
t
(`)|xt(`)). (79)

We form a randomized code on network NR by replacing the noisy channel p?(y|x) with the

channel simulation code used across the layers and repeated n times, once for each time t ∈ [n].

This causes Xn and Y n to be related by
n∏
t=1

p(y
t
|xt). (80)

While we have eliminated the state for the channel from node 1 to node 2, the state s(0) for the

rest of the network remains. Fix a complete state sequence s(0)
1:n, and consider the distribution of

random variables

W, Ŵ ,X
(0)
1:n,Y

(0)
1:n, X1:n, Y 1:n. (81)

conditioned on s
(0)
1:n. In particular, we wish to bound the total variational distance between the

above distribution for the original code on Ñ , and that for the randomized code on NR. Let P0
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be the probability law for the distribution of the original code, and for each t ∈ [n], let Pt be

the probability law in which the original noisy channel distribution is replaced by the induced

distribution of the channel simulation code for all times t′ ≤ t. Thus Pn is the probability law

for the code on NR, and the difference between Pt−1 and Pt is only the distribution at time t.

Using the generic fact about total variational distance that

dTV
(
p(a, b)p(c|b)p(d|a, b, c), p(a, b)q(c|b)p(d|a, b, c)

)
≤ max

b
dTV(p(c|b), q(c|b)). (82)

we have, for any t ∈ [n],

dTV(Pt−1,Pt) ≤ max
xt

dTV

(
p(y

t
|xt),

N∏
`=1

p?(y
t
(`)|xt(`))

)
≤ λ/n (83)

where we have applied (78). By the triangle inequality,

dTV(P0,Pn) ≤ λ. (84)

In particular,

dTV(P0(w, ŵ),Pn(w, ŵ)) ≤ λ (85)

meaning the probability of error for the randomized code on NR is at most λ more than the

original probability of error for the code on Ñ . Note that the state sequence s(0)
1:n affects channel

outputs, and thus, via coding operations, may subsequently affect channel inputs. However,

because the total variation bound in (78) holds for all input sequences, the effect of the state

sequence on the distribution of the channel inputs is irrelevant. Therefore, for any state sequence

the resulting randomized code on NR has probability of error at most 2λ. Since λ may be

arbitrarily small, this implies R ∈ R̃(NR).

Theorem 12.11 from [11] states that the capacity of a point-to-point AVC is either 0 or Cr.

This is shown by proving that a small header can be transmitted from encoder to decoder that

allows the encoder and decoder to simulate common randomness. This small header can be sent

using any code that achieves positive rate. The following is an extension of this result to the

network setting wherein the header may originate at any node and be transmitted to both nodes

1 and 2.

Theorem 19: If for some node u, there exists a rate vector R1 ∈ RAVC(N ) with R
(u→1)
1 > 0

and a rate vector R2 ∈ RAVC(N ) with R(u→2)
2 > 0, then RAVC(N ) = RAVC(NCr).

Proof: In light of Theorem 17, we have only to prove that R(NCr) ⊆ R(N ). Applying

Lemmas 1, 2, and 4, it is enough to prove R(NR) ⊆ R̃(N ) for all R < Cr. By the assumption
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Fig. 5. Example network with a symmetrizable AVC from node 1 to node 2 that does not satisfy the conditions of Corollary 20.

The network also contains a rate R1 bit-pipe between nodes 1 and 3 and a rate R2 bit-pipe between nodes 2 and 3. Proposition 21

gives the complete capacity region for this network, which cannot be equated to the capacity region of a network in which the

AVC is replaced by any bit-pipe of fixed capacity.

of the theorem, there exists node u that can transmit data to both nodes 1 and 2; thus by

Definition 3, in the shared randomness coding model, Qu is available at both nodes 1 and 2.

By Lemma 12.10 of [11], there exists a randomized point-to-point AVC code achieving any rate

R < Cr with arbitrarily small probability of error. Given any solution on R(NR), we adapt

it into a randomized code on N be employing an N -length randomized point-to-point channel

code across layers, once for each time t ∈ [n], using the shared randomness Qu. Since the

probability of error of the AVC code is vanishing, for sufficiently large N the probability of the

overall code is also vanishing.

The following corollary provides a sufficient condition for equivalence for the AVC. It follows

immediately from Theorem 11 and Theorem 19.

Corollary 20: If there exists a node u such that (u, 1) ∈ PAVC and (u, 2) ∈ PAVC, then

RAVC(N ) = RAVC(NCr).

IX. AVC EXAMPLE NETWORK

This section examines the example network shown in Fig. 5. This network illustrates that

when a point-to-point AVC does not satisfy the condition of Corollary 20, it is not necessarily

equivalent to a zero-capacity bit-pipe, or indeed any bit-pipe with fixed capacity. The channel

from node 1 to node 2 is a symmetrizable AVC given by p(y|x, s), with random code capacity

Cr. The channel from node 1 to node 3 is a bit-pipe with capacity R1, where we assume R1 > 0,

and that from node 2 to node 3 is a bit-pipe with capacity R2. We first determine the capacity

region of this network, and then find the capacity region if the AVC were replaced by a bit-pipe

of capacity fixed capacity R̃; these two regions do not coincide for any R̃. Roughly, equivalence
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cannot hold because the symmetrizable AVC leads to a situation in which node 2 can determine

that the data sent by node 1 is one of a small number of possibilities. All of these possibilities

can be sent along link (2, 3), where node 3 can determine which is the correct one using side

information from link (1, 3). Thus, as long as R2 is not too large, each bit sent on link (2, 3)

for message W (1→3) contributes only a fraction of a bit of useful data; no such phenomenon can

occur with a fixed-capacity bit-pipe, since an additional bit would add either a full bit or zero

bits to the overall capacity.

It was shown in [18] that with list decoding—even for quite short lists—the capacity of

a symmetrizable AVC is given by its random code capacity. In particular, [18] defines the

symmetrizability of an AVC p(y|x, s) as the largest integer M for which there exists a stochastic

matrix p(s|x1, . . . , xM) such that ∑
s∈S

p(y|x, s)p(s|x1, . . . , xM) (86)

is symmetric in x, x1, . . . , xM . A channel is symmetrizable, in the sense formulated in [10]

and discussed above in (63), if and only if M ≥ 1. It is shown in [18] that for an AVC with

symmetrizability M , the decoder can reliably list-decode at rate Cr with list size M + 1. This

result will be instrumental in our examination of the example network.

For the network shown in Fig. 5, the only positive achievable rates for this network are R(1→3)

and R(2→3). The following proposition characterizes the capacity region for this network.

Proposition 21: The capacity region for the network shown in Fig. 5 is given by the pairs

(R(1→3), R(2→3)) satisfying

R(2→3) ≤ R2 (87)

R(1→3) ≤ R1 + Cr (88)

R(2→3) + (M + 1)R(1→3) ≤ (M + 1)R1 +R2. (89)

Proof: Achievability: The basic idea of our achievability proof is as follows: node 2 makes

use of the list decoding scheme from [18], and then transmits along link (2, 3) the entire list

of M + 1 potential messages, in addition to message W 2→3. Along link (1, 3), we send part of

message W 1→3, in addition to a small hash that allows node 3 to determine which of the M + 1

messages is the true one. That this is possible with a hash of negligible rate is not quite proved

by [18], since in neither scenario is there a list decoding followed by a determination of the true

message via side information. Here we use a random linear hash to achieve essentially the same
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effect as the random choice of channel codes in [11, Lemma 12.8], but in the context of a list

code, as we will show in the following.

Fix rates R(1→3), R(2→3) satisfying (87)–(89), but with strict inequalities. Fix an integer q

and a blocklength n. Let F2q be the finite field of order 2q. We express W (1→3) as a vector

of elements of F2q as follows. Let R̃(1→3) be the largest multiple of q
n

no larger than R(1→3).

Clearly R̃(1→3) ≥ R(1→3) − q
n

. Define integers

K1 =

⌊
nR1

q

⌋
− 1, (90)

K2 =
nR̃(1→3)

q
−K1. (91)

By the assumption that R1 > 0, for n sufficiently large we have K1 ≥ 1. Message W (1→3) is

chosen from the alphabet [2nR̃
(1→3)

] and message W (2→3) from the alphabet [2nR
(2→3)

], respec-

tively. We may denote W (1→3) = (W1, . . . ,WK1+K2) where Wj ∈ F2q for all j ∈ [K1 + K2],

where we for the sake of brevity drop the superscript (1 → 3) for the vector elements. Note

that the Wj are independent and each drawn uniformly from F2q . For convenience, we write

WK1+K2
K1+1 = (WK1+1, . . . ,WK1+K2).

At the start of encoding, node 1 generates a hash of the vector WK1+K2
K1+1 . The symbol W1 is

used as the random seed for the hash, and the hash itself is given by

h =

K2∑
j=1

(W1)j−1WK1+j. (92)

where (W1)j−1 represents exponentiation in the field F2q . Encoding and decoding proceeds as

follows:

1) (h,W1, . . . ,WK1) is transmitted along link (1, 3).

2) WK1+K2
K1+1 is encoded using an (M + 1)-list code from [18] and the resulting codeword is

transmitted into the AVC (1, 2).

3) After receiving the output sequence from the AVC, node 2 decodes the (M + 1)-length

list, denoted ŴK1+K2
i,K1+1 = (Ŵi,K1+1, . . . , Ŵi,K1+K2) for i ∈ [M + 1].

4) (W (2→3), ŴK1+K2
i,K1+1 : i ∈ [M + 1]) is transmitted across link (2, 3).

5) Node 3 receives the vectors transmitted on links (1, 3) and (2, 3) without error. It decodes

W (2→3) from its received vector on link (2, 3). Given ŴK1+K2
i,K1+1 for each i ∈ [M + 1]

received on link (2, 3), node 3 computes

ĥi =

K2∑
j=1

(W1)j−1Ŵi,K1+j. (93)
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For the smallest i for which ĥi = h, node 3 declares

Ŵ (2→3) = (W1, . . . ,WK1 , Ŵi,K1+1, . . . , Ŵi,K1+K2). (94)

where h and W1, . . . ,WK1 were received on link (1, 3).

Bit-pipe capacity limits: We first confirm that in the coding procedure described above, the

vectors sent along links (1, 3) and (2, 3) do not exceed the capacities of these bit-pipes. The

number of bits sent along link (1, 3) is (K1 + 1)q ≤ nR1, so its capacity constraint is satisfied.

From (91) we obtain

K2q = nR̃(1→3) −K1q ≤ nR̃(1→3) − nR1 + 2q ≤ nR(1→3) − nR1 + 2q (95)

where the first inequality is due to qK1 ≤ nR1 − 2 from (90). Using the r.h.s. from (95), the

number of bits sent along link (2, 3) is now given as

(M + 1)K2q + nR(2→3) ≤ n(M + 1)R(1→3) − n(M + 1)R1 + 2q + nR(2→3). (96)

Since (89) holds with a strict inequality, this quantity is at most nR2 for sufficiently large n.

Probability of error: There are two potential sources of error: (i) the decoded list from the

AVC at node 2 does not include the true intended message, and (ii) there exists i ∈ [M + 1]

such that ĥi = h even though ŴK1+K2
i,K1+1 6= WK1+K2

K1+1 . For the first source of error, note that the

number of bits in WK1+K2
K1+1 is K2q, so the rate of the list code on the AVC can be obtained from

(95) as
K2q

n
= R̃(1→3) − K1q

n
≤ R(1→3) −R1 +

2q

n
(97)

Since (88) holds with a strict inequality, the quantity on the l.h.s. in (97) is less than Cr for

sufficiently large n. Thus, by the results in [18], the probability that the decoded list does not

include the true message vanishes with n.

Now consider the second source of error. The content of the decoded list depends only on

WK1+K2
K1+1 , the state sequence Sn, and the random operation of the AVC. In particular, the list is

independent of W1. Thus, for any wK1+K2
K1+1 , ŵK1+K2

K1+1 ∈ FK2
2q

Pr(ĥi = h|WK1+K2
K1+1 = wK1+K2

K1+1 , ŴK1+K2
K1+1 = ŵK1+K2

K1+1 ) = Pr

(
K2∑
j=1

(W1)j−1(ŵj − wj) = 0

)
.

(98)



32

If wK1+K2
K1+1 6= ŵK1+K2

K1+1 then the polynomial in W1 inside the probability is a nonzero polynomial

of degree at most K2 − 1, so it has at most K2 − 1 roots. Since WK2+1 is chosen uniformly

from F2q , if wK1+K2
K1+1 6= ŵK1+K2

K1+1

Pr(ĥi = h|WK1+K2
K1+1 = wK1+K2

K1+1 , ŴK1+K2
K1+1 = ŵK1+K2

K1+1 ) ≤ K2 − 1

2q
. (99)

Therefore, the probability that ĥi = h for any i satisfying ŴK1+K2
i,K1+1 6= WK1+K2

K1+1 is at most

(K2 − 1)M

2q
. (100)

This can be made arbitrarily small for sufficiently large q.

Converse: Let (R(1→3), R(2→3)) be an achievable rate pair. Thus there exists a sequence of

solutions Sn(N ) of length n, rates R(1→3), R(2→3) and probability of error going to 0 as n→∞.

In this argument, we use the fact that the capacity region does not change if the state Sn is chosen

randomly, as long as this random choice is independent of the message (but it may depend on

the code). We consider two specific distributions for Sn under Sn(N ) for some n. First, that

Sn is chosen randomly from the i.i.d. distribution with marginal p?(s) defined in (77) as the

saddle-point in the random coding capacity. With this choice, the AVC behaves as a (stateless)

stationary memoryless channel with transition probability

p?(y|x) =
∑
s

p?(s)p(y|x, s). (101)

Note that the channel p?(y|x) has capacity Cr. Simple applications of the cutset bound yield

(87) and (88).

To prove (89), we consider a different distribution on the state. Let pXn(xn) be the distribution

of the input sequence to the AVC (1, 2) under solution Sn(N ). Note that this distribution depends

only on the code at node 1, so it is independent of the state S of the AVC. The state sequence

Sn is drawn from the distribution∑
xn1 ,...,x

n
M

pXn(xn1 ) · · · pXn(xnM)
n∏
i=1

p(si|x1i, . . . , xMi) (102)

where the distribution p(s|x1, . . . , xm) is one for which (86) is symmetric. Let z1 ∈ [2nR1 ] and

z2 ∈ [2nR2 ] with the corresponding random variables Z1 and Z2 denote the input symbols of

links (1, 3) and (2, 3) respectively. Since these links are bit-pipes, these variables also represent

the output symbols of the respective links. We also write Xn and Y n for the input and output
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sequences of the AVC (1, 2). We may now write the distribution of all relevant random variables,

conditioned on state sequence Sn = sn, by

p(w(1→3), w(2→3), xn, yn, z1, z2, ŵ
(1→3), ŵ(2→3)|sn)

=
1

2nR(1→3)2nR(2→3)
p(xn|w(1→3)) p(z1|w(1→3))

·
[

n∏
i=1

p(yi|xi, si)
]
p(z2|yn, w(2→3))

· p(ŵ(1→3)|z1, z2) p(ŵ(2→3)|z1, z2)

(103)

where the encoding and decoding operations are written as conditional distributions because

randomized coding is allowed. Let V (y|x, x1, . . . , xM) be the symmetric distribution in (86).

The distribution of Xn, Y n may be written as

pXn(xn)
∑

xn1 ,...,x
n
M

pXn(xn1 ) · · · pXn(xnM)
n∏
i=1

V (yi|xi, x1i, . . . , xMi). (104)

Thus, the distribution of Xn, Y n is unchanged if we let Xn
1 , . . . , X

n
M be random sequences, each

distributed according to pXn , and independent from each other, from Xn, and from the messages,

and where Y n is drawn from
n∏
i=1

V (yi|x1i, . . . , xMi). (105)

This induces a probability law on all variables other than Sn given by

p(w(1→3), w(2→3), xn, xn1 , . . . , x
n
M , y

n, z1, z2, ŵ
(1→3), ŵ(2→3))

=
1

2nR(1→3)2nR(2→3)
p(xn|w(1→3)) p(z1|w(1→3))

· pXn(xn1 ) · · · pXn(xnM)

[
n∏
i=1

V (yi|x1i, . . . , xMi)

]
· p(z2|yn, w(2→3))p(ŵ(1→3)|z1, z2) p(ŵ(2→3)|z1, z2).

(106)

Note in particular that Xn, Xn
1 , . . . , X

n
M , Y

n are distributed according to

pXn(xn)pXn(xn1 ) · · · pXn(xnM)
n∏
i=1

V (yi|xi, x1i, . . . , xMi). (107)

By Fano’s inequality and the data processing inequality,

nR(2→3) ≤ I(W (2→3);Z2) + nεn (108)
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where εn → 0 as n→∞. Applying Fano’s inequality again, we have

nR(1→3) = H(W (1→3)) (109)

≤ I(W (1→3);Z1, Z2) + nεn (110)

= I(W (1→3);Z2) + I(W (1→3);Z1|Z2) + nεn (111)

≤ I(W (1→3);Z2) + nR1 + nεn (112)

≤ I(Xn;Z2) + nR1 + nεn (113)

where in (113) we have used the fact that W (1→3) → Xn → Z2 is a Markov chain. By symmetry

of (Xn, Xn
1 , . . . , X

n
M), we have I(Xn

k ;Z2) = I(Xn;Z2) for all k ∈ [M ]. Thus, defining ε′n =

(M + 2)εn and Xn
0 = Xn,

nR(2→3) + (M + 1)nR(1→3) (114)

≤ I(W (2→3);Z2) +
M∑
k=0

I(Xn
k ;Z2) + (M + 1)nR1 + nε′n (115)

≤ I(W (2→3);Z2) +
M∑
k=0

I(Xn
k ;Z2|W (2→3), Xn

0 , . . . , X
n
k−1) + (M + 1)nR1 + nε′n (116)

= I(W (2→3), Xn
0 , . . . , X

n
M ;Z2) + (M + 1)nR1 + nε′n (117)

≤ nR2 + (M + 1)nR1 + nε′n (118)

where in (116) we have used the fact that (W (2→3), Xn
0 , . . . , X

n
M) are mutually independent.

Dividing by n and taking the limit as n→∞ yields (89).

Suppose that in the example network the AVC were replaced by a bit-pipe of capacity R̃. It

is easy to see that the resulting set of achievable (R(1→3), R(2→3)) pairs is given by

R(2→3) ≤ R2 (119)

R(1→3) ≤ R1 + R̃ (120)

R(1→3) +R(2→3) ≤ R1 +R2. (121)

This region does not correspond to (87)–(88) for any value of R̃, as long as M ≥ 1 (i.e., the

AVC is symmetrizable). Therefore, the AVC in Fig. 5 is not equivalent to any fixed capacity

bit-pipe.
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X. RELATION TO THE “EDGE REMOVAL” PROBLEM

Consider two networks N and N ′ with identical topologies except for a single edge, which

has capacity Ce in network N , but capacity C ′e = Ce−δ in network N ′. Herein, δ > 0 is a small

constant. Particular attention has been devoted recently to the so called edge removal problem

which describes the special case of this scenario for Ce = δ. It has been shown in [19], [20]

that for a variety of demand types for which the network coding capacity can be described by

the cut-set bound, the capacity of every cut is reduced by at most δ for each dimension. This

means that if a rate vector R is achievable in network N , a rate vector R − δI is achievable

in N ′, where I denotes the unit rate vector. Examples include single and multisource multicast

and single source cases with non-overlapping demands, but also scenarios for which the cut-

set bound is not tight, for example a specific class of multiple unicast networks [20]. Further,

in [21] the edge removal problem has also been connected to the problem whether a network

coding instance allows a reconstruction with ε and zero error, respectively. However, so far only

various special cases have been considered, and it is not clear how to formulate the edge removal

problem for general demands and topologies.

In the following, based on the discussion in Sections VII and VIII, we extend the edge removal

problem to networks with state. We formulate our result for both the CC and the AVC case in

the following theorem.

Theorem 22: Given a network N with state according to (1) and assume that a non-zero

rate vector R(N ) is achievable. Further, assume that there exists a single edge with capacity δ

in the network. Let the network N ′ be defined as the network N with the δ-capacitated edge

removed. Then, there exists a network N such that for the corresponding edge-removed network

N ′, R(N ′) < R(N )− δ I, where I denotes the identity matrix.

Proof: We show this by considering the example in Fig. 6, where two networks N1 and N2

are connected via a CC or a symmetrizable point-to-point AVC, resp., and an edge of capacity δ.

Suppose that this connection also represents the min-cut of the overall network N . For the AVC

case, as the capacity of the symmetrizable AVC is either 0 or Cr, removing the δ-capacitated

edge leads to a network capacity of RAVC(N ′) = 0 according to Theorem 19. For the CC case

the capacity of the CC is either C or C̄ (see (64) and (65)). By removing the δ-capacitated

feedback edge the network capacity is reduced from RCC(N ) = C̄ to RCC(N ′) = C, where

C̄ − C can be larger than δ.
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CC / 
Symm. AVC 

N1 N2

�

Fig. 6. The network N consists of two arbitrary networks N1 and N2 connected by an edge with capacity δ > 0 and a CC or

alternatively, a symmetrizable AVC.

XI. CONCLUSION

We have considered reliable communication over noisy network in the presence of active

adversaries. This is modeled by a subset of independent point-to-point channels consisting

of AVCs or CCs. For these cases we have identified scenarios for which the capacity of the

corresponding noisy state-dependent network equals the capacity of another state-less network

in which the AVCs or CCs are replaced by noiseless bit-pipes. Our results indicate that, in

the network setting, the equivalent capacity of these channels is not necessarily equal to their

capacity in an isolated point-to-point scenario. For example, the point-to-point AVC represents

a pessimistic model for the action of an adversary, leading to zero capacity in some cases. We

have shown that in a network setting such a pessimistic model becomes much more optimistic

and leads to a positive rate if additional network connectivity exits between the head and the

tail node of the AVC or CC under consideration. As most modern communication is performed

in an underlying networking framework, this suggests that existing results may be insufficient

for characterizing networks in the presence of active adversaries.

APPENDIX A

PROOF OF LEMMA 18

We make use of the method of types, adopting notation from [22]. Specifically, given a

sequence xn, define its type as

Pxn(x) =
|{i : xi = x}|

n
. (122)

Similarly define the joint type of a pair of sequences (xn, yn) as Pxn,yn . Given a type PX , define

the type class T (PX) as the set of sequences xn with Pxn = PX .
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Fix ε > 0, and define P̃n to be the set of n-length types PXY such that

|PXY (x, y)− PX(x)q(y|x)| ≤ εPX(x)q(y|x) for all x ∈ X , y ∈ Y (123)

where q(y|x) is the channel to be simulated. Observe that Pxn,yn ∈ P̃n if and only if (xn, yn) is

robustly typical [23] with respect to the distribution Pxn(x)q(y|x). By the Conditional Typicality

Lemma from Chapter 2 of [24], since xn is trivially robustly typical with respect to Pxn (indeed,

with parameter ε = 0), if Y n ∼∏n
i=1 q(yi|xi), then with probability approaching 1, Pxn,Y n ∈ P̃n.

Let I(PX , PY |X) be the mutual information between X and Y where (X, Y ) ∼ PXPY |X . By

continuity of mutual information, for any γ > 0, there exists ε small enough so that for all

PXY ∈ P̃n,

I(PX , PY |X) ≤ I(PX , q(y|x)) + γ ≤ C + γ. (124)

In particular, if we choose γ = (R− C)/2, then for sufficiently small ε,

I(PX , PY |X) ≤ R− γ. (125)

We construct a noiseless channel simulation code out of a number of codebooks, one for each

type PXY ∈ P̃n. A codebook of joint type PXY , denoted C(PXY ), is a subset of T (PY ). We

say a codebook with joint type PXY is feasible if, for all xn ∈ T (PX), there exists a sequence

yn ∈ C(PXY ) where Pxn,yn = PXY . Define

M = 2n(R−δ) (126)

where 0 < δ < γ. We claim that for sufficiently large n, for all PXY ∈ P̃n there exists a

feasible codebook of size at most M . To prove this, consider a random choice of codebook

C(PXY ) consisting of M sequences chosen uniformly and independently from T (PY ). Note that

the codebook will contain fewer than M unique sequences if the same sequence is chosen more

than once. We show that with positive probability this codebook is feasible. For each xn ∈ T (PX)

define the event

E(xn) := {Pxn,yn 6= PXY for all yn ∈ C(PXY )}. (127)

Note that the only random variable in this event is the codebook itself. Define the conditional

type class

TPXY
(xn) := {yn : Pxn,yn = PXY }. (128)

Note that

E(xn) = {TPXY
(xn) ∩ C(PXY ) = ∅}. (129)
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By using standard bounds on the size of type classes, for any xn ∈ T (PX)

|TPXY
(xn)|

|T (PY )| ≥
1

(n+ 1)|Y|−1
2−nI(PX ,PY |X). (130)

For any xn ∈ T (PX), we may bound the probability of event E(xn) by

P(E(xn)) =

(
1− |TPXY

(xn)|
|T (PY )|

)M
(131)

≤
(

1− 1

(n+ 1)|Y|−1
2−nI(PX ,PY |X)

)M
(132)

≤ exp

{
− 1

(n+ 1)|Y|−1
M2−nI(PX ,PY |X)

}
. (133)

Thus, by the union bound

P

 ⋃
xn∈T (PX)

E(xn)

 ≤ |X |n exp

{
− 1

(n+ 1)|Y|−1
M2−nI(PX ,PY |X)

}
(134)

= |X |n exp

{
− 1

(n+ 1)|Y|−1
2n(R−I(PX ,PY |X)−δ)

}
(135)

≤ |X |n exp

{
− 1

(n+ 1)|Y|−1
2n(γ−δ)

}
(136)

This quantity is vanishing in n since δ < γ, so for sufficiently large n there exists at least one

feasible codebook C(PXY ) of size at most M .

We now describe a channel simulation code. Assume n is large enough such there exists at

least one feasible codebook for each PXY ∈ P̃n.

Encoder: Given input sequence xn, randomly choose a sequence

Ỹ n ∼
n∏
i=1

q(yi|xi). (137)

Let PXY = Pxn,Ỹ n . If PXY ∈ P̃n, randomly choose a codebook C(PXY ) uniformly from among

all feasible codebooks of size at most M for this type. If PXY /∈ P̃n, declare an error. Of the

sequences yn ∈ C(PXY )∩TPXY
(xn) (there must be at least one, since the codebook is feasible),

choose one uniformly at random, which we denote Y n. The encoder outputs two bit-strings:

1) A string of length dlog |P̃n|e denoting the type PXY .

2) A string of length logM denoting the index of Y n in C(PXY ).

Note that for sufficiently large n, the total number of bits is at most nR, since |P̃n| ≤ 2nγ for

sufficiently large n and γ > 0.
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Decoder: Upon learning PXY , the decoder can determine the chosen feasible codebook C(PXY ),

since it has access to the same randomness as the encoder, and thus it can recover Y n.

To bound the variational distance, we first note that, for a given joint type PXY , if there is

at least one feasible codebook of size at most M , then each sequence yn ∈ T (PY ) appears in

exactly the same number of such codebooks. Indeed, consider two sequences yn1 , y
n
2 ∈ T (PY ).

There exists a permutation that takes yn1 to yn2 . Applying this permutation to the codebook

preserves feasibility, because both the input type class T (PX) and the output type class T (PY )

are unchanged by permutation. Thus, the permutation constitutes a bijection between feasible

codebooks containing yn1 and feasible codebooks containing yn2 . This implies that they are equal

in number. Thus, if PXY = Pxn,Ỹ n ∈ P̃n, then the randomly chosen codebook C(PXY ) is equally

likely to contain any sequence yn ∈ TPXY
(xn), and hence Y n is uniformly distributed among

TPXY
(xn). Hence, for any pair of sequences xn, yn where Pxn,yn ∈ P̃n, the induced distribution

from the simulation code is given by

p(yn|xn) = P(Pxn,Ỹ n = Pxn,yn)
1

|TPxn,yn
(xn)| . (138)

Now, for the discrete memoryless channel q(y|x), the probability q(yn|xn) depends only on

the joint type of (xn, yn). Thus, conditioning on a particular joint type, the output sequence is

uniformly distributed among the conditional type class. In other words, the right-hand side of

(138) is precisely equal to q(yn|xn) for all xn, yn. Since (138) only holds if Pxn,yn ∈ P̃n, the total

variational distance between p(yn|xn) and q(yn|xn) is at most the probability that Pxn,Ỹ n /∈ P̃n,

which, as argued above, vanishes as n→∞.
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