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Abstract

We study synchronization in a Kuramoto model of globally coupled phase oscil-
lators with a bi-harmonic coupling function, in the thermodynamic limit of large
populations. We develop a method for an analytic solution of self-consistent
equations describing uniformly rotating complex order parameters, both for
single-branch (one possible state of locked oscillators) and multi-branch (two
possible values of locked phases) entrainment. We show that synchronous states
coexist with the neutrally linearly stable asynchronous regime. The latter has
a finite life time for finite ensembles, this time grows with the ensemble size as
a power law.

Keywords: Kuramoto model, Bi-harmonic coupling function, Multi-branch
entrainment, Synchronization

1. Introduction

Large systems of coupled nonidentical oscillators are of general interest in
various branches of science. They describe Josephson junction circuits [1, 2, 3],
electrochemical [4] and spin-torque [5, 6] oscillators, as well as variety of in-
terdisciplinary applications including pedestrian induced oscillations of foot-
bridges [7], applauding persons [8], and others. Similar models are also used
in biology, for example in studying of neural ensembles dynamics [9, 10] and
systems describing circadian clocks in mammals [11, 12]. In many cases the
analysis of large ensembles consisting of heterogeneous oscillators can be success-
fully performed in the phase approximation [13, 14]. Indeed, if the interaction
between the elements is weak, the amplitudes are enslaved, and the dynamics
of self-sustained oscillators can be effectively described by a relatively simple
system of coupled phase equations. The special case of a globally coupled net-
work of phase oscillators (so-called Kuramoto model [13, 15]) attracted a lot
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of attention [16] and has been established as a paradigmatic model describing
transitions from incoherent to synchronous states in the ensembles of coupled
oscillators.

Quite a complete analysis of the Kuramoto model can be performed in the
case of a harmonic sin-coupling function [13, 17, 18], although even here non-
trivial scenaria of transition to synchrony have been reported [19]. Less studied
is the case of more general coupling functions, containing many harmonics. Here
we perform a systematic study of the synchronous regimes for a bi-harmonic cou-
pling function (see [20] for a short presentation of these results which have been
later confirmed in [21]). We introduce the model and discuss previous findings
in Section 2. Then in Section 3 we give a general solution of the self-consistent
equations describing rotating-wave synchronous solutions. In Section 4 we give
a detailed analysis of the simplest symmetric case (no phase shifts in the cou-
pling), while a general situation is illustrated in Section 5. In Conclusion we
summarize the results and outline open questions. In this paper we focus on the
deterministic oscillator dynamics, the case of noisy oscillators will be considered
elsewhere [22].

2. Kuramoto Model and Bi-Harmonic Coupling

The general Kuramoto model is formulated as a system of differential equa-
tions for the phases φk of N oscillators:

φ̇k = ωk +
1

N

N
∑

n=1

Γ(φn − φk), k = 1, .., N. (1)

All the oscillators are identical, except for diversity of the natural frequencies
ωk, distributed according to a certain distribution function g(ω). The level of
coherence in the network of phase oscillators can be essentially described by
order parameters Rn defined by:

Rne
iΘn =

1

N

N
∑

k=1

einψk , n ∈ N.

The state with Rn = 0 for all n corresponds to a purely incoherent dynamics
(uniform distribution of the phases), while non-zero values of at least some order
parameters indicate for certain synchrony in the ensemble. In the case of pure
sinusoidal coupling, Γ(x) = ε sin(x+ α), the original analysis by Kuramoto [15,
13] and its subsequent extensions [23, 24, 25, 17, 18] revealed a clear picture of
a transition from asynchronous state to coherence in the thermodynamical limit
N → ∞. It was shown that above certain critical value of the coupling (ε > εc),
the system undergoes a transition from disordered behavior to synchronous
collective motion via a supercritical bifurcation with the main order parameter
obeying R1 ∼ (ε− εc)

1

2 .
The situation is much less trivial for more general coupling functions Γ. The

presence of higher harmonics in coupling function [26, 24, 25, 27] may change
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scaling of the order parameter to linear law R1 ∼ ε − εc. Moreover, as has
been already mentioned in an early paper by Winfree [28] and in subsequent
numerical studies by Daido in [29, 30], sufficiently strong higher modes in the
coupling function Γ may cause a so-called multibranch entrainment, in which a
huge number of stable or multistable phase-locked states exists. In certain cases
the interplay between synchronizing action of one coupling mode and repelling
force from another one can be a reason for an oscillatory behavior of macroscopic
order parameters [31].

This paper is devoted to a systematic study of the Kuramoto model in the
case of a general bi-harmonic coupling function

Γ(x) = ε sin(x− β1) + γ sin(2x− β2) (2)

in the thermodynamic limit N → ∞. In Section 3 we formulate an analytic
self-consistent approach [15, 13, 32] which allows us to calculate stationary or
uniformly rotating order parameters R1,2 (including all possible multi-branch
entrainment states) depending on the parameters of the bi-harmonic coupling
function Γ. Based on the self-consistent method, we present in Section 4 a
complete diagram of uniformly rotating states with constant order parameters,
for a special case of symmetric coupling function Γ (β1,2 = 0). Surprisingly,
(i) synchronous solutions appear prior to the stability threshold of incoherent
state; (ii) these regimes have order parameters that can take values anywhere in
the range (0, Rmax] for some Rmax < 1; (iii) there is a huge multiplicity of these
states for fixed coupling parameters (multi-branch entrainment) which can also
appear for relatively weak second mode (when parameter γ is small compare
to absolute value of ε) in the coupling. Here we also illustrate the multiplicity
of solutions, and, combining the self-consistent approach and a perturbative
analysis, we derive the scaling laws of R1,2(ε, γ) near the transition points where
coherent state appears.

For a general case of non-zero β1,2, consideration of the self-consistent equa-
tions becomes rather tedious due to a large number of parameters involved.
We restrict our attention in Section 5 to several examples with multibranch
entrainment and to already mentioned oscillatory states [31].

Before proceeding with the analysis, we mention three examples of realistic
physical systems where the second harmonics term in the coupling function is
strong or even dominating. The first example is the classical Hyugens’ setup
with pendulum clocks suspended on a common beam (common platform). The
horizontal displacement of the beam leads to the first harmonics coupling ∼ ε,
while the vertical mode produces the second harmonics term ∼ γ [33]. We give a
derivation of the phase equations for the case where both horizontal and vertical
displacements of the platform are present, in Appendix 6, where Eq. (29) is in
fact the Kuramoto model with bi-harmonic coupling. Another example are re-
cently experimentally realized ϕ−Josephson junctions [34], where the dynamics
of a single junction in the array is governed by a double-well energy potential.
Therefore one can expect strong effects caused by the second harmonics in the
interaction. The third example are experiments with globally coupled electro-
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chemical oscillators [35, 36], where a pronounced second harmonics has been
observed in the coupling function inferred from the experimental data.

3. Self-consistent equations and their solution

We start our analysis with reformulation of equation (1) for the bi-harmonic
coupling as

ϕ̇k = ωk + εIm

[

e−iβ1−iϕk
1

N

∑

n

eiϕn

]

+ γIm

[

e−iβ2−i2ϕk
1

N

∑

n

ei2ϕn

]

.

In the thermodynamical limit, using the two relevant order parametersR1,2e
iΘ1,2 ,

we obtain:

ϕ̇ = ω + εR1 sin(Θ1 − ϕ− β1) + γR2 sin(Θ2 − 2ϕ− β2) . (3)

We assume the natural frequencies ω to be distributed according to a symmet-
ric, single-maximum function g(ω). In the thermodynamical limit the complex
order parameters Rme

iΘm can be represented using the conditional distribution
function ρ(ϕ|ω):

Rme
iΘm =

∫∫

dϕdω g(ω)ρ(ϕ|ω)eimϕ, m = 1, 2 . (4)

Let us perform a following transformation of variables to the rotating (with
some frequency Ω) reference frame:

Θ1 = Ωt+ θ1; Θ2 = Ωt+ θ2; ϕ = Ωt+ θ1 − β1 + ψ . (5)

Then equation (3) changes as follows:

ψ̇ = ω − Ω+ εR1 sin(−ψ) + γR2 sin(θ2 − 2θ1 + 2β1 − β2 − 2ψ) . (6)

It is convenient to introduce a set of parameters {R, u, v, z} = P in the
following way:

εR1 = R sinu, γR2 = R cosu, Ω = zR, v = θ2 − 2θ1 + 2β1 − β2 . (7)

Now equation (6) takes the form:

ψ̇ = R (x− z − sinu sinψ − cosu sin(2ψ − v)) = R (x− z − y(u, v, ψ)) . (8)

Here we denoted x = ω/R and y(u, v, ψ) = sinu sinψ + cosu sin(2ψ − v).
Setting parametersP to some constant values in (8) [this means thatR1,2, θ1,2

are constants, i.e. the order parameters are uniformly rotating with velocity Ω],
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one can find a stationary distribution function ρ(ψ|x,P) and then calculate
corresponding complex order parameters as:

R1e
iθ1 = ei(θ1−β1)R

∫∫

dxdψρ(ψ|x,P)eiψg(Rx) = ei(θ1−β1)RF1(P)eiQ1(P)

R2e
iθ2 = ei2(θ1−β1)R

∫∫

dxdψρ(ψ|x,P)ei2ψg(Rx) = ei2(θ1−β1)RF2(P)eiQ2(P)

Fm(P)eiQm(P) ≡

∫∫

dxdψρ(ψ|x,P)eimψg(Rx) m = 1, 2 .

(9)
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Figure 1: (a) Regions V1 and V2 in the plane of parameters (u, v): Domain V1 corresponds to
a double-well form of function y(u, v, ψ) (Fig. 1(b,d)), while in V2 y(u, v, ψ) has a single-well
form like sown in Fig. 1(c). (b) Example of function y(u, v, ψ) with 4 extrema is presented.
There are two stable branches (solid curves) for stationary phases of locked oscillators. The left
branch ψ = Ψ1(x,P) is larger than the right one ψ = Ψ2(x,P). (ψ1,2, x1,2) denote coordinates
of the extrema corresponding to the branch Ψ1, while (ψ3,4, x3,4) denotes extrema at Ψ2. (c)
Example of function y(u, v, ψ) with only two extrema and one stable branch ψ = Ψ1(x,P)
(solid curve). (d) Example of function y(u, v, ψ) in the special case v = 0.

Our next goal is to calculate the integrals Fm(P), for this we need to find,
using the dynamical equation (8), the distribution function ρ(ψ|x,P). Let Ymin
and Ymax denote the global minimum and the global maximum of function
y(u, v, ψ), correspondingly (Fig.1(b)). All the oscillators can be separated into
locked ones (for Ymax ≥ |x−z| ≥ Ymin) or rotating, unlocked ones (x−z > Ymax
or x − z < Ymin). The distribution function of rotating oscillators (index r) is
inversely proportional to their phase velocity:

ρr(ψ|x,P) = g(Rx)ρ(ψ|x,P) =
C(x)

|x− z − y(ψ, u, v)|
, (10)

5



where C(x) is the normalization constant to which we included also the distri-
bution of frequencies:

C(x) =
g(Rx)

∫ 2π

0
dψ

|x−z−y|
.

The stationary phases of locked oscillators (index l) can be found from the
following relation:

x− z = y(u, v, ψ) . (11)

When finding ψ as a function of x, we have to satisfy an additional stability con-

dition ∂y(u,v,ψ)
∂ψ > 0 that follows from the dynamical equation (8). In the (u, v)

plane there are two regions V1 and V2 (Fig. 1(a)) which produce qualitatively
different properties of system (8) and different types of distribution function
ρl(ψ|x,P):

(i) {u, v} ∈ V1. In this case function y(u, v, ψ) has a double-well form like shown
in Fig.1(b). According to (11), oscillators can be located on two possible stable
branches highlighted by solid curves in Fig.1(b): the first branch is ψ = Ψ1(x,P)
in the range ψ ∈ [ψ1, ψ2] and another branch is ψ = Ψ2(x,P) for ψ ∈ [ψ3, ψ4].
Here and below we assume Ψ1(x,P) to be the biggest stable branch. In the range
(x − z) ∈ (xb1, x

b
2) (Fig. 1(b)) there is an area of bistability on the microscopic

level: the oscillators with the same natural frequency x can be locked at two
different phases Ψ1(x,P) and Ψ2(x,P). Therefore, the distribution function has
the following form:

ρl(ψ|x,P) =















(1 − S(x))δ(ψ −Ψ1(x,P)) + S(x)δ(ψ −Ψ2(x,P))
for (x − z) ∈ (xb1, x

b
2)

δ(ψ −Ψ1(x,P)) for (x− z) ∈ [x1, x2] \ (x
b
1, x

b
2)

δ(ψ −Ψ2(x,P)) for (x− z) ∈ [x3, x4] \ (x
b
1, x

b
2)

(12)

Here 0 ≤ S(x) ≤ 1 is an indicator function describing the redistribution over
the stable brunches; this function is arbitrary.

(ii) {u, v} ∈ V2. In the second case, function y(u, v, ψ) has only two extrema
(Fig. 1(c)) and there is only one stable branch ψ = Ψ1(x,P). The distribution
function is:

ρl(ψ|x,P) = δ(ψ −Ψ1(x,P)) for x ∈ (z + x1, z + x2) (13)

Taking into account the obtained expressions for the distribution function
(10,12,13), the integrals in (9) can be rewritten as follows:

Fm(P)eiQm(P) =

∫ ψ2

ψ1

dψeimψg (R(z + y))
∂y

∂ψ
−

∫ ψb
2

ψb
1

dψeimψS(z + y)g (R(z + y))
∂y

∂ψ
+

∫ ψ4

ψ3

dψeimψg (R(z + y))
∂y

∂ψ
−

∫ ψb
4

ψb
3

dψeimψ (1− S(z + y)) g (R(z + y))
∂y

∂ψ
+

∫

X

∫ 2π

0

dxdψ
C(x)eimψ

|x− z − y|

(14)
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Here in the last integral we denote the interval X = (−∞, z + Ymin)
⋃

(z +
Ymax,∞).

Now, using the integrals (14), one can calculate the absolute values of the
complex order parameters R1,2 and the frequency Ω as functions of introduced
parameters R, u, v, z:

R1,2(P) = RF1,2(P), Ω(P) = Rz . (15)

Then, from relations (7), (9) and (15) it follows that:

ε(P) =
sinu

F1(P)
, γ(P) =

cosu

F2(P)
, β1(P) = Q1(P), β2(P) = Q2(P) − v . (16)

All together equations (15) and (16) determine the stationary amplitudes of the
order parameters R1,2 and the frequency of their rotation Ω in dependence on
model parameters ε, γ, β1,2 in an analytic, albeit parametric form. Note that
this solution fully accounts to multi-branch entrainment, due to presence of the
indicator function S. Arbitrariness of this functions means that there is a huge
multiplicity of microstates.

We stress, that in the solution (15,16) parametersR, u, v, z and the indicator
function are independent, while the order parameters R1,2 and the coupling
parameters ε, γ, β1,2 are functions of them. If, on the other hand, one wants to
fix the coupling parameters, then one should adjust some of the parameters R,
u, v, z and the indicator function, which will be now not independent. This is
a standard procedure in a parametric representation of a solution.

4. Symmetric bi-harmonic coupling function

Here we consider the simplest case where β1 = β2 = 0, what corresponds to
a symmetric coupling function Γ(x) = ε sin(x) + γ sin(2x).

4.1. General solution of self-consistent equations

Due to the symmetry of the coupling function, it is possible to perform the
self-consistent approach in the special case z = v = 0 (see however Section 4.7
for a more general situation). First we will simplify equations (14,15,16) taking
into account the relation z = v = 0.

A typical form of function y(u, v = 0, ψ) is presented in Fig. 1(d). For v = 0,
the critical value u = ± arctan(2) separates double-well and single-well shapes
of function y(u, 0, ψ). If | tan(u)| < 2, the function y(u, 0, ψ) contains two stable
branches Ψ1 and Ψ2 (see Fig. 1(d)), otherwise only one branch Ψ1 exists like it
is shown in Fig. 1(c). The stable branches Ψ1 and Ψ2 (if exists) are always
centered in the intervals

Ψ1 : [−ψ1,+ψ2] and Ψ2 : [π − ψ2, π + ψ2],

where the values ψ1,2 can be calculated explicitly:

ψ1,2 = arccos

(

∓ sinu+
√

sin2 u+ 32 cos2 u

8 cosu

)

7
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Figure 2: Illustration of the spectra of incoherent state in two different regions: (a) continuous
part of the spectrum lies on the imaginary axes revealing neutral stability in the region
γ < γlin, ε < εlin, (b) when on of the couplings exceeds threshold ε > εlin or γ > γlin
the eigenvalue with positive real part appears in the discrete part of the spectrum. Both

calculation were made for the Gaussian distribution of frequencies g(ω) = 1

2π
e−ω2/2, εlin =

γlin = 2
√

2

π
.

Moreover, the branches Ψ1,2 are symmetric (see Fig.1(d)):

y(u, 0, ψ) = −y(u, 0,−ψ), y(u, 0, π + ψ) = −y(u, 0, π − ψ).

Taking all this into account, the relations (14) can be radically simplified:

Fm(R, u)eiQm(R,u) =

∫ ψ1

−ψ1

dψeimψS(y)g (R(y))
∂y

∂ψ
+

∫ π+ψ2

π−ψ2

dψeimψ(1− S(y))g (R(y))
∂y

∂ψ
+

∫

|x|>x1

∫ 2π

0

dxdψ
C(x)eimψ

|x− z − y|
.

(17)

Here we assumed that S(y) = 1 everywhere outside interval [−ψ2, ψ2] (see
Fig. 1). If the functions S(x) and g(x) are even, then it is easy to see that
the imaginary part in all of the integrals in (17) vanishes (recall that y(u, 0, ψ)
is odd). Thus, for any S(x) = S(−x) and g(x) = g(−x) we obtainQ1,2(R, u) = 0
and automatically β1,2 = 0. (See Section 4.7 below for discussion of an asym-
metric indicator function S.)

In summary, for the case z = v = 0 and even S(x), g(x) we have Ω = β1,2 = 0
and the following expressions for the parameters ε, γ and real order parameters
R1,2 as functions of two introduced parameters R, u:

R1,2(R, u) = RF1,2(R, u), ε(R, u) =
sinu

F1(R, u)
, γ(R, u) =

cosu

F2(R, u)
. (18)

4.2. Stability of the incoherent state

Before proceeding with presentation of the main results we recall that an
issue of linear stability of the incoherent state (with uniform distribution of
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Figure 3: (a) Diagram of different synchronous states in dependence on parameters (ε, γ),
resulting from the analytical solution Eqs. (17,18). Bold (blue) line L1: border of synchronous
states, inside area A there is only the incoherent solution; bold dashed (blue) line L2: order
parameters vanish. Between lines L1 and L2 there are two solutions (stable and unstable)
with non-zero R1,2 and the transition to synchrony is hard (see region between points S and P
in Fig. 4(a)). Dotted (red) lines: onset of synchrony for σ = 0.2, 0.4, 0.5, 0.6, 0.8, 1 (from left
to right). Inset shows the domain ε < 0 in more details (with the same axes). (b) The same
as in Fig. 3(a) but in the area ε, γ > 0. An additional line L3 is drawn from the condition
tanu = 2, dividing domains B (single synchronous state) and C (multiple synchronous states).
Above L3 multiplicity of synchronous states due to multi-branch entrainment occurs (beyond
point Q in Fig. 4(a)).

phases) was a milestone in almost all preceding mathematical studies [37, 24, 25,
27] of Kuramoto-type models. This analysis of the partial differential equation
for the density distribution function revealed the following stability properties
of the incoherent state [37, 24, 25, 27]: (i) the continuous part of the spectrum
always lies on the imaginary axis; (ii) when one of the couplings exceeds certain
threshold ε > εlin or γ > γlin, in the discrete spectrum appears an eigenvalue
(λε or λγ correspondingly) with a positive real part revealing instability of the
asynchronous state. We illustrate this in Fig. 2. In the linear theory, the
modes of the perturbation corresponding to the harmonics of the coupling are
independent on each other, and one gets εlin = γlin = 2

πg(0) . Below in this paper

we use a Gaussian distribution of frequencies g(ω) = (2π)−1/2 exp(−ω2/2), thus

εlin = γlin = 2
√

2
π . In presentation of the results, we will always normalize the

values of the coupling parameters ε, γ by the linear stability thresholds.

4.3. Diagram of synchronous states

In Figs. 3 we illustrate the diagram of the states on the plane of parameters
(ε, γ), and in Fig. 4 some cuts of it, for the simplest case, where the indicator
function S(ω) = σ is a constant. This diagram is obtained by application of
analytic formulas (18).

We start the description with an even simpler case σ = 0 (so that all the
phases are on one stable branch). Setting in (17),(18) R = 0+ and varying u, we
find a curve on the plane of parameters (ε, γ) where the order parameters R1,2

vanish (line L2 in Fig. 3, see Section 4.8 below for the details of calculation of
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Figure 4: (a) Dependence of the order parameters R1,2 on coupling strength γ at fixed value
of ε = 0.9εlin (see also vertical arrow in Fig. 3(b)). Markers are results of direct simulation
of a population of N = 2 · 104 oscillators. Different curves correspond to different values of
σ, as depicted on the panel. For γ . 0.6γlin there is a unique synchrony state, for larger
couplings multiplicity is observed. Point S denotes a “saddle-node bifurcation” at which
coherent states appear (curve L1 in Fig. 3). At point P the order parameters at the unstable
branch of coherent solution vanish (curve L2 in Fig. 3). Between points S and P a finite
perturbation of the incoherent state is needed to come to a synchronous regime. Point Q, the
onset of multiplicity, corresponds to curve L3 in Fig. 3(b). (b) The same as in Fig. 4(a) but
for γ = 0.9γlin, and varying ε. For ε & 1.6εlin the solution is unique, for smaller ε there are
multiple states with different σ appearing at different critical couplings. (c) Detailed view of
curves R1,2(ε) for σ = 0 (left panels) and σ = 0.2 (right panels). For both cases γ = 0.9γlin.
Here markers denote averaged values of stationary order parameters of different independent
numerical simulations (see text). (d) Enlargement of the curves R1,2(ε) (σ = 0, γ = 0.9γlin,
panel(b)) for small values of order parameters, indicating a first-order type of the transition
hardly seen in (b).
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this line). Remarkably, solutions R1,2(ε, γ) behavior characteristic for first-order
phase transitions, as the coupling strengths (ε, γ) increase (Fig. 4a; exception
are the pure cases ε = 0 and γ = 0, see Section 4.8 below). Therefore, in the
plane (ε, γ) also exists the curve L1 which corresponds to the line of a “saddle-
node bifurcation” where two branches of coherent solutions first appear (point
S in Fig. 4a). This line L1 split the plane (ε, γ) in two different regions: in
area A in Fig. 3(a,b) only incoherent solution of self-consistent equations exists,
outside area A (regions B and C in Fig. 3(b)) synchronous solution(s) exist.
Between curves L1 and L2 there are two solutions with σ = 0. We also show a
curve L3 corresponding to the parameter value tanu = 2, which separates the
two-branch (Fig. 1(a,d)) and the one-branch (Fig. 1(b)) situations (marked as
C and B on panel Fig. 3(b) correspondingly).

Below L3 there is a solution with S(ω) = 0 only, above it, multiplicity due
to arbitrariness of the indicator function S(ω) occurs. We depict also curves
corresponding to synchronous solutions with R1,2 = 0+ at several fixed values
of σ (red curves in Fig. 3), to the right of these curves synchronous states with
corresponding values of σ exist.

We illustrate different synchronous regimes as functions of coupling param-
eters (ε, γ) in Figs. 4(a,b). Fig. 4(a) shows dependence of synchronous states on
the coupling parameter γ for fixed ε = 0.9εlin (vertical arrow in Fig. 3(b)). As
it has been mentioned above, two branches of coherent solutions arise at point
S. With increase of γ, the lower branch merge with incoherent solution at point
P . The upper branch is unique until the border of multiplicity tanu = 2 (point
Q) is crossed. Multiple solutions exist for all larger values of γ.

A special symmetric solution appears at the linear threshold γ = γlin. This
regime contains only the second harmonic (R1 = 0) and has symmetric redis-
tribution of oscillators (σ = 0.5) between the two symmetric stable branches.

This regime appears as a square root of supercriticality R2 ∼ (γ− γc)
1

2 (see the
branch of R2 starting at γ/γlin = 1 for σ = 0.5 in Fig. 4(a)) and corresponds to
the bifurcation from the asynchronous state as described in [24, 25].

In Fig. 4(b) the order parameters are shown as functions of ε for fixed γ =
0.9γlin(horizontal arrow in Fig. 3(b)). As here almost everywhere we are in the
region of multiplicity, the synchrony arises at different values of ε for different σ,
and immediately beyond the threshold (which corresponds to σ = 0) multiple
synchrony states with σ > 0 are possible (as here tanu < 2). With further
increase of ε, when the line L3 is crossed (at large values of ε not shown in
Fig. 3(b)), multiplicity disappears.

In contrast to Fig. 4(a), the first synchronous solution σ = 0 in Fig. 4(b) looks
like arising via a second-order phase transition. However a detailed analysis of
the situation in Fig. 4(d) shows that it is not the case (as was erroneously
stated in [20]). With decrease of parameter u to zero (decrease of ε), lines
L1 and L2 come close to each other but they merge only in the point u = 0
which corresponds to the pure second-harmonics Kuramoto model (ε = 0). In
the Section 4.8 below, using a combination of the self-consistent approach and
of a perturbative analysis, we will show that at L2 the dependence of R1,2
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on coupling strengths ε and γ is linear with negative slope, everywhere except
singular points u = 0 and u = π/2 which correspond to the pure cases of
second-harmonic and first-harmonic Kuramoto models, respectively.

4.4. Stability properties

Unfortunately, we cannot perform analytically, and even numerically, a thor-
ough stability analysis of the constructed solutions. The only analytic results we
can rely on, are outlined in Section 4.2 stability calculations of the asynchronous
state R1,2 = 0, yielding instability for ε > εlin or γ > γlin, and neutral stability
due to a continuous spectrum otherwise [37, 24, 25, 27]. This conclusion can be
easily reproduced numerically, see Fig. 2. However, we could not study in the
same manner stability of found self- consistent solutions, because these solutions
have a singular component (delta-function in Eqs. (12,13)).

Therefore, we checked for stability via direct numerical simulation of large
ensembles (see also [21]). They follow the theoretically predicted curves, as
show markers in Figs. 4(a,b). At low values of R1,2 these solutions however can
be hardly confirmed due to finite-size effects.

In order to study these finite-size effects in the vicinity of “bifurcation
points”, i.e. for small values of the order parameters, we performed additional
simulations with large ensemble size N = 218 = 262144. Two theoretical curves
with σ = 0 and σ = 0.2 for γ = 0.9γlin (Fig. 4(b)) have been tested for sta-
bility. In each simulation we independently generated random distribution of
frequencies for N = 262144 oscillators and prepared initial conditions according
to the distribution function, obtained from our self-consistent analysis at given
parameters. As a result, Fig. 4(c) shows the averaged values of R1,2 (obtained
from the numerical simulation of more than 32 independent runs for each point).
One can see that the markers are slightly below the curves, indicating that on
average synchronization is weaker than the analytically predicted level. Nev-
ertheless, certain level of coherence is always present and it is in a reasonable
agreement with analytically predicted curves.

Next, we simulated the linearly neutrally stable asynchronous state, in the
region beyond the curve L2, where also synchronous solutions exist. In simula-
tions this state appears to be only metastable. After a transient, which becomes
longer for very large ensembles, the ensemble evolves abruptly to one of the syn-
chronous states, we illustrate this in the Fig. 5(a). Remarkably, the averaged
time that the system spends in the vicinity of incoherent metastable state grows
as a power low of number of oscillators N (Fig. 5(b)).

Thus, although the curves in Fig. 4(b) look like for a standard hysteretic
transition, it is not the case: on line L2 (at point P ) the incoherent steady state
does not become linearly unstable, instead it remains linearly neutrally stable
in the thermodynamic limit, but is metastable due to finite-size effects. This
neutral stability/metastability allows also synchronous states to appear with
arbitrary small amplitudes R1,2 (see on Fig. 3(a,b) curve L2 and corresponding
curves for different values of σ, which occupy the whole region on this diagram,
and also Fig. 4(b)). Therefore, the points in Fig. 4(b) where R1,2 vanish, do not
correspond to a usual bifurcation from an equilibrium, and cannot be described
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Figure 5: (a) Examples of time evolution of the order parameter R1 in direct simulations
of an ensemble (1) for γ = 0.85γlin, ε = 0.6εlin and different N (from left to right, N =
5 · 104, 105, 2 · 105, 5 · 105, 106). (b) Averaged transition times from the incoherent state to
a synchronous solution, in dependence on the ensemble size N for γ = 0.85γlin, ε = 0.6εlin.
Error bars show standard deviations. Each point was obtained from a statistics of 128 different
simulations. Inset shows the same plot in log-log scale. One can see a power low with exponent
≈ 0.7151.

as the points where the incoherent state becomes linearly unstable. While this
issue requires further investigation, we attribute it to singularity of the appear-
ing states: as one can see from Eq. (12),(13), the density includes a combination
of delta-functions for any small R1,2, similar to the Van Kampen modes in plas-
mas [38], while in the stability analysis [24, 25] one operates with modes which
apparently cannot straightforwardly describe constructed singular solutions.

4.5. Illustration of multi-branch entrainment states

Here we discuss the issue of multiplicity and illustrate different multi-branch
entrainment states [29, 30]. As mentioned above, in the thermodynamic limit
any indicator function S(x) admittable, so that for fixed parameters ε, γ, to
a macro-state with given order parameters ε, γ, R1,2 belong many micro-states
with different redistributions between the stable branches. In Fig. 6 we show
several multi-branch states for a certain choice of coupling parameters. If both
branches are occupied, one observes a two-hump distribution of locked phases
which can be also interpreted as a two-cluster state (cf. [35]).

In fact, we can easily estimate the degree of the multiplicity. We can view
the locked oscillators in the bistability range as “uncoupled spins”. Assuming
for simplicity that the phases of two branches differ by π, we conclude that the
order parameter R2 does not depend on the “spin orientation”, i.e. on which
branch they are sitting, while R1 can be interpreted as a “magnetization”. Then
finding the number of different micro-states at prescribed values of the order
parameters reduces to a textbook problem of calculating the entropy

S(R1) = Nbist

[

−

(

1−R1

2

)

ln

(

1−R1

2

)

−

(

1 +R1

2

)

ln

(

1 +R1

2

)]
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Figure 6: Illustration of multiplicity of states (ε = γ = 1.25εlin, N = 2 · 104). In all cases one
can see two stable branches of locked phases and the corresponding coarse-grained indicator
function S(ω).
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for a constant magnetization for Nbist non-interacting spins (the latter is the
number of locked oscillators in the range of bistability; it is less than N but is a
macroscopic quantity for R1,2 not too small). Correspondingly, the number of
micro-states grows exponentially with the number of locked oscillators ∼ eS(R1)

(cf. [30]).

4.6. Competition of the coupling terms
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Figure 7: (a) Dependence of order parameters R1,2 on coupling strength γ at ε = −9.29γlin.
(b,c) Phases of oscillators versus internal frequencies are plotted. For both cases γ = 1.18γlin.
In the plot (a) ε = 0.16εlin, in (b) ε = −9.29εlin. Markers are result of direct simulation for
N = 2× 104.

A non-trivial consequence of the multi-branch entrainment occurs in the re-
gion of negative ε. When ε < 0, the coupling due to the first mode in the
coupling function is repulsive (or desynchronizing); it tends to stabilize the in-
coherent state and to destroy synchrony. With the second harmonic in coupling
function, one might expect that the repulsion for large negative ε should be
compensated by a strong attractive second-harmonic coupling with large posi-
tive γ, for synchronization in the system to occur. However, following the curve
L1 in Fig. 3(a) one can see that the critical value of γ decreases and tends to
some constant value below γlin as ε→ −∞. This means that the effect of very
strong repulsive coupling via the first harmonic can be compensated by a rela-
tively weak synchronizing force ∼ γ. Figure 7(a) shows dependencies R1,2(γ) at
ε = −9.29εlin. Remarkably, the presented solutions are characterized by rather
low values of R1. The plots of φ(ω) in Fig. 7(b,c) shed light onto this effect. In
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Figure 8: Dependence of the order parameters R1,2 and their frequency Ω on coupling
strength ε at γ = 0.9γlin and β1,2 = 0 for non-even indicator function: S(x) = σ for x <
(xb

1
+ xb

2
)/2 (see Fig. 1(b)) and S(x) = 0 otherwise.

the region ε > 0 the solutions appearing on the line L1 have simple structure of
single-branch entrainment states (Fig. 7(b)). On the contrary, in the region of
repulsing first-harmonic coupling ε < 0, the appearing solutions represent two-
cluster states with indicator function S = 1, like in Fig. 7(c). The oscillators are
distributed among the branches in such a way that the value of R1 is minimal,
so that effective repulsive force εR1 (see eq.(3)) is sufficiently weak.

4.7. Non-symmetric solutions

Until now we considered the cases where the functions S(x) (indicator func-
tion) and g(x) (distribution of frequencies) were even S(x) = S(−x), g(x) =
g(−x). Such symmetric indicator and frequency distribution functions yield so-
lutions with β1,2 = 0 and Ω = 0 at zero values of parameters z = v = 0 in the
self-consistent equations (14,15,16). However in the general case of non-even
S(x) or g(x) zero values of β1,2 correspond to certain non-zero z and v. For
example, asymmetric redistribution of oscillators between stable branches (a
non-even indicator function S(x) 6= S(−x)) gives rise to a non-zero frequency
shift Ω = Rz 6= 0 even in the case of β1,2 = 0 and symmetric distribution of
frequencies g. The example is presented in the figure 8 where we use S(x) = σ
for x < (xb1 + xb2)/2 (see Fig. 1(b)) and S(x) = 0 otherwise.

4.8. Perturbative analysis near critical points

In this section we combine the self-consistent approach (17,18) with a per-
turbative analysis, to derive the scaling law of macroscopic order parameters in
the vicinity of bifurcation line L2 (Fig. 3) where coherent solution appears. The
idea is to consider (17,18) in the limit R → 0 and to find dependence of R1,2

on criticalities (ε− εc) and (γ − γc) in this limit of vanishing order parameters.
For simplicity of presentation we will assume below S(x) = 0 (all oscillators are
on the same branch and εc, γc are on the curve L2) and shortly discuss other
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possibilities at the end of this section. In this case (17) reads

Fm =

∫ 2π

0

dψ cosmψg(Ry)
∂y

∂ψ
+

∫ 2π

0

∫ ±∞

|x|>x1

dxdψ
g(Rx)C′(x) cos(mψ)

|x− y(u, ψ)|

≡ Am(R, u) +Bm(R, u) , m = 1, 2 .

(Here C′ is the normalization constant). Because g(x) is a symmetric one-hump
function, its expansion for small arguments reads g(x) = g(0) − G2x

2 + . . ..
Suppose that R ≪ 1, than the first term in equation for Fm can be represented
using this series for g as follows:

Am =

∫ 2π

0

dψ cosmψ(g(0)−G2R
2y2)

∂y

∂ψ
= Am0 −Am2R

2 . (19)

For calculation of the second term Bm we first compute

Φm(x) =

∫ 2π

0
dψ cos(mψ)
|x−y(u,ψ)|

∫ 2π

0
dψ

|x−y(u,ψ)|

With notation z = 1/x we get

Φm(z) =

∫ 2π

0
dψ cos(mψ)
|1−zy(u,ψ)|

∫ 2π

0
dψ

|1−zy(u,ψ)|

=

∫ 2π

0
dψ cos(mψ)[1 + zy(u, ψ) + z2y2(u, ψ) + . . .]
∫ 2π

0 dψ[1 + zy(u, ψ) + z2y2(u, ψ) + . . .]
.

Substituting here expression for y we get

Φ1(z) =
z2π sinu cosu

2π + z2π
≈ z2

1

2
sinu cosu = z2Φ12 ,

Φ2(z) =
z2π(− sin2 u/2

2π + z2π
≈ −z2

1

4
sin2 u = z2Φ22 ,

or in the old notation

Φ1(x) = x−2Φ12, Φ2(x) = x−2Φ22, Φ12 =
sinu cosu

2
, Φ22 = −

sin2 u

4
.

(20)
The last expressions are valid for x ≫ 1. For small x, Φm are bounded from
above Φm(x) ≤ Φ̄m.

Now we can rewrite the integrals in the expression for Bm as

Bm =

∫ ±∞

|x|>x1

dxg(Rx)Φm(x) = 2

∫ ∞

x1

dxg(Rx)Φm(x) =

= 2

∫ ∞

x1

dxg(0)Φm(x) + 2

∫ ∞

x1

dx[g(Rx) − g(0)]Φm(x) ≡ Bm0 − B̃m .
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To calculate the last term, we divide the integration range into two subintervals

B̃m = 2

∫ ∞

x1

dx[g(0)− g(Rx)]Φm(x)

= 2

∫ R−1/6

x1

dx[g(0)− g(Rx)]Φm(x) + 2

∫ ∞

R−1/6

dx[g(0)− g(Rx)]Φm(x)

In the first interval we use the upper bound for Φm, and because here Rx≪ 1,
we use the expansion g(x) = g(0)−G2x

2:

2

∫ R−1/6

x1

dx[g(0)− g(Rx)]Φm(x) < 2Φ̄mG2R
2

∫ R−1/6

x1

x2dx =

2/3Φ̄mG2R
2(R−1/2 − x31) = O(R3/2)

In the second integral, because x≫ 1, we use the expansion (20) for Φm(x)

2

∫ ∞

R−1/6

dx[g(0)− g(Rx)]Φm(x) = 2Φm2

∫ ∞

R−1/6

dx[g(0)− g(Rx)]x−2 =

= 2Φm2R

∫ ∞

R5/6

dz[g(0)− g(z)]z−2 =

2Φm2R

∫ ∞

0

dz[g(0)− g(z)]z−2 − 2Φm2R

∫ R5/6

0

dz[g(0)− g(z)]z−2 ≈

Φm2RΓ− 2Φm2RG2

∫ R5/6

0

dz ≈ Φm2RQ

where

Q = 2

∫ ∞

0

dz[g(0)− g(z)]z−2

characterizes the frequency distribution, and we neglected terms having higher
orders in R. Summing together we get

Bm = Bm0 −RQΦm2 .

Thus, in the leading order, we obtain the following expressions for the func-
tions Fm:

Fm(R, u) = Am0 +Bm0 −RΓΦm2 = Fm0(u)−RQΦm2(u) . (21)

Here we can immediately identify cases where the expansion (21) is not sufficient:
these are situations where Φm2 = 0. For u = 0 we have Φ12 = Φ22 = 0;
according to Eqs. (18) this corresponds to ε = 0, i.e. to pure second harmonic
coupling. For u = π/2 only one coefficient vanishes Φ12 = 0, this corresponds
to the standard Kuramoto model with γ = 0. In both cases the dependencies
of the order parameters on the coupling constants follow the square-root law
R1 ∼ (ε− εlin)

1/2, R2 ∼ (γ − γlin)
1/2 [13].
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Using general expression (21) we can find how the order parameters depend
on the coupling constants for any crossing of the critical curve. Suppose we
consider a critical point εc, γc corresponding to uc, and we choose some direction
q of crossing the criticality, so that u = uc + qR. Then

ε =
sinu

F10(u)−RΓΦ12(u)
=

sinuc + cosucqR

F10(uc) + (F ′
10q − ΓΦ12(uc))R

=

sinuc
F10(uc)

+R[q
cosuc
F10(uc)

−
sinuc(F

′
10q − ΓΦ12(uc))

F 2
10(uc)

] =

= εc + ε1(q)R

γ =
cosu

F20(u)−RΓΦ22(u)
=

cosuc − sinucqR

F20(uc) + (F ′
20q − ΓΦ22(uc))R

=

cosuc
F20(uc)

+R[q
− sinuc
F20(uc)

−
cosuc(F

′
20q − ΓΦ22(uc))

F 2
20(uc)

] =

= γc + γ1(q)R

This yields

Rm =
Fm0(uc)

ε1(q)
(ε− εc) =

Fm0(uc)

γ1(q)
(γ − γc) (22)

Choosing parameter q = q0 in such a way that γ1(q0) = 0 we have:

Rm = κεm(ε− εc), γ ≡ γc; (23)

γ1(q0) = 0 implies that:

q0 =
cosucΓΦ22(uc)

sinucF20(uc) + cosuc
∂F20

∂q

The same for ε1(q1) = 0:

Rm = κγm(γ − γc), ε ≡ εc (24)

with

q1 =
sinucΓΦ12(uc)

sinuc
∂F10(uc)

∂q − F10(uc) cosuc

Here we denote

κεm(uc) =
Fm0(uc)

ε1(q0)
, κγm(uc) =

Fm0(uc)

γ1(q1)
(25)

Equations (22,23,24) show that generally the order parameters R1,2 scale
linearly at the “bifurcation points”, in contradistinction to the situations ε = 0
and γ = 0, see also [39] for the first discovery of this scaling.

For the Gaussian distribution of frequencies g(ω) = 1√
2π
e−

x2

2 the constant Q

can be evaluated explicitly and it is equal to one. In the latter case calculations
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Figure 9: Dependences of κε,γ
1,2 on uc.

of (25) show (Fig. 9) that κε,γ1,2(uc) are finite and non-zero everywhere except
for mentioned above singular points uc = 0 and uc = π/2, which correspond
to the one-harmonic Kuramoto model where the transition has a continuous
second-order type form.

5. Asymmetric coupling function
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Figure 10: Dependences of the order parameters R1,2 and their frequency Ω on coupling
strength ε at fixed values of β1,2 and γ = 1.5. In the panel (a) β1,2 = π/8, in the panel (b)
β1,2 = π/4. Here no normalization on the linear stability thresholds is performed.

In this section we present several examples of application of our general
theory for calculation of uniformly rotating synchronous states for the case of
non zero phase shifts β1,2 in the coupling function, see Eqs. (15,16). Here the
number of control parameters (ε, γ, β1, β2) is large, thus we do not perform a
comprehensive analysis but just illustrate applicability of the method.

The main general feature at non-zero phase shifts β1, β2 is a general appear-
ance of a frequency shift Ω, so that coherent solutions rotate with the frequency
different from the mean frequency of the distribution g(ω). Figure 10 shows
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dependences of the order parameters R1,2 and of frequency Ω on coupling con-
stants ε and γ, for fixed values of β1,2 = π/8 (Fig. 10(a)) and β1,2 = π/4
(Fig. 10(b)). These curves have been obtained from Eqs. (15,16) by adjusting
free parameters P to achieve the given values of β1, β2/

Another interesting example is motivated by work by Hansel et.al. [31] In
this paper the authors consider an ensemble of identical (with equal natural
frequencies) phase oscillators with a bi-harmonic coupling function. At π/3 <
β1 < π/2, β2 = π, ε/γ = 4 the authors describe slow periodic oscillations
of the order parameters and show that these variations arise due to a closed
heteroclinic cycle in the phase space of the model. In order to model identical
oscillators in our setup, one has to consider a delta-distribution of frequencies
g(ω) = δ(ω). However, we have normalized the width of this distribution to one.
Because normalization of frequencies is equivalent to normalization of time, in
our approach the limit of identical oscillators corresponds to the limit ε, γ → ∞
at a fixed width of the distribution g(ω). Thus, we applied our method for the
parameters β1,2 as in [31], for very large values of the coupling constants.

Figure 11(a) shows the solutions of equations (14-16) at β1 = π/2.5 β2 = π
and ε/γ = 4, together with the results of direct numerical simulations of a large
ensemble with N = 2 × 104. At small values of coupling (ε < 650), the sta-
tionary state obtained from our self-consistent approach is reproduced by direct
numerical simulations of (1) (the time series is shown in Fig. 11(b)). At larger
values of the coupling, this stationary solution loses stability via (presumably)
a supercritical Andronov-Hopf bifurcation at which slow oscillatory variations
of the order parameters appear (Fig. 11(c)). This example shows that while we
always can find a uniformly rotating solution with constant order parameters,
this solution can be unstable in some parameter range, where a more complex
dynamics establishes.

6. Conclusion

In this paper we have described nontrivial synchronous states that appear in
the Kuramoto model with a bi-harmonic coupling function. Here we summarize
essential novel features compared to the standard Kuramoto setup.

1. Due to a possibility to have two stable branches of phase-locked oscil-
lators, one observes a multi-branch locking with a multiplicity of micro-
states [28, 30]. On the macro-level, this multiplicity manifests itself as
existence of a whole range of possible order parameters for given coupling
constants. We have incorporated this multiplicity of multi-branch states
into an analysis of self-consistent equations for the order parameters, and
presented a general analytic solution.

2. Appearance of the synchronous states is not related to a standard bifurca-
tion, as the asynchronous state does not change its neutral linear stability.
We have found domains on the plane of basic coupling constants for the
existence of such solutions, for different distributions of the locked phases
between the branches (Fig. 3).
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Figure 11: (a) Solutions of self-consistent equations (14-16) at β1 = π/2.5, β2 = π and
ε/γ = 4 are shown. Markers (showing maximum, minimum and mean values of R1,2 calculated
from time series after some transient period) depict results of direct numerical simulation of
equations (1) at the same parameters for N = 2× 104. The stationary state loses stability at
a large coupling strength ε ≈ 650, beyond which stable oscillations appear. (b,c) Time series
of R1,2 at different coupling strength are presented: in the panel (b) ε = 323, in (c) ε = 1420.

3. When a synchronous state is present, numerical experiments with finite
ensembles show that the asynchronous state lives a finite time that scales
like T ∼ N0.7, after which an abrupt transition to synchrony occurs.
Similarly, we checked numerically stability of the states with single- and
multi-branch entrainment through simulations of finite ensembles (Fig. 4).

4. At asymmetric distribution between the branches, the frequency of the
order parameters deviates from the central frequency of the distribution,
even if the latter and the coupling are symmetric.

Below we outline some open questions deserving further analysis. In the
case of a general multi-harmonic coupling function Γ, one can expect existence
of more than two stable brunches for oscillators at a particular frequency, with
more possibilities for different redistributions of the oscillators phases. Another
feature not addressed in this paper is related to a possibility of non-standard
transitions to synchrony for particular distributions of the natural frequencies,
similar to the analysis presented in Ref. [19] for the one-harmonic coupling.
Detailed theoretical understanding of stability of the asynchronous states con-
structed via the self-consistency approach in this paper, is still missing. Finally,
noise regularizes the multiplicity of the micro-states and turns neutral stabil-
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ity into an asymptotic one [40, 20]; these effects will be discussed in details
elsewhere [22].
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Appendix

Let us consider a system of N pendulums (with mass m and length l, de-
scribed by angles θj) suspended on a beam of mass M , which can move ver-
tically (axis y) and horizontally (axis x) without rotation. These motions are
controlled by two springs kx and ky. This conservative system is described by
the Lagrangean (cf. [41, 33])

L =
M

2

(

ẋ2 + ẏ2
)

+
m

2

∑

j

(

ẋ2 + ẏ2 + lẋθ̇j cos θj − lẏθ̇j sin θj + l2θ̇j
2
)

+

+mgl
∑

j

cos θj + gy (Nm+M)−
kxx

2

2
−
kyy

2

2

The equations are two equations for the degrees of freedom of the beam (where
we shift y to the steady position g(Nm+M)/ky), and for each pendulum:

(M +Nm)ẍ+ kxx =
∑

j

−
ml

2
θ̈j cos θj +

∑

j

ml

2
θ̇j

2
sin θj

(M +Nm)ÿ + kyy =
∑

j

ml

2
θ̈j sin θj +

∑

j

ml

2
θ̇j

2
cos θj

ml2θ̈j +mgl sin θj =
ml

2
ÿ sin θj −

ml

2
ẍ cos θj

In order to model self-sustained oscillations of the pendulum clocks, we add dis-
sipation terms (∼ γx,y) to beam equations, and van-der-Pol-type self-exciation
terms ∼ σ, together with cubic saturation, to the pendula dynamics. In the
case of small deviations θ1,2 (i.e. for σ/rho≪ 1) we have:

(M +Nm)ẍ+ γxẋ+ kxx =
∑

j

−
ml

2
θ̈j +

∑

j

ml

2
θ̇j

2
θj (26)

(M +Nm)ÿ + γyẏ + kyy =
∑

j

ml

2
θ̈jθj +

∑

j

ml

2
θ̇j

2
(27)

θ̈j − (σ − ρθ2j )θ̇j + ω2θj =
1

2l
ÿθj −

1

2l
ẍ (28)
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where ω2 = g/l.
For small σ ≪ ω we can apply the averaging (van der Pol) method. We will

seek for a solution of the form:

θj = Aje
iωt +A∗

je
−iωt, θ̇j = iω(Aje

iωt −A∗
je

−iωt)

where Aj are slowly varying in time amplitudes.
Using this represntation, we can express the driving terms in the equations

for the beam as follows:

ml

2
θ̈j = −

mlω2

2

(

Aje
iωt + A∗

je
−ωt)

ml

2
θ̇j

2
θj = −

mlω2

2

(

A3
je

3ωt − |A|2jAje
iωt −A∗

j |A|
2
je

−iωt + (A∗
j )

3e−3ωt
)

ml

2
θ̈jθj = −

mlω2

2

(

A2
je

2iωt + 2|A|2j + (A∗
j )

2e−2ωt
)

ml

2
θ̇2j = −

mlω2

2

(

A2
je

2iωt − 2|Aj |
2 + (A∗

j )
2e−2iωt

)

Now the response of the beam to this driving can be expressed via solution of
the linear equations, where the amplitudes A are considered as constants:

x(t) =
∑

j

mlω2

2
[Hx(ω)Aj(1 + |A|2j )e

iωt +H∗
x(ω)A

∗
j (1 + |Aj |

2)e−iωt−

−
(

Hx(3ω)A
3
je

3ωt +H∗
x(3ω)(A

∗
j )

3e−3ωt
)

]

y(t) =
∑

j

−mlω2
[

Hy(2ω)A
2
je

2iωt +H∗
y (2ω)(A

∗
j )

2e−2iωt
]

and for the second derivatives we get

ẍ(t) =
∑

j

−
mlω4

2
[Hx(ω)Aj(1 + |A|2j)e

iωt +H∗
x(ω)A

∗
j (1 + |Aj |

2)e−iωt−

−9
(

Hx(3ω)A
3
je

3ωt +H∗
x(3ω)(A

∗
j )

3e−3ωt
)

]

ÿ(t) =
∑

j

4mlω4
[

Hy(2ω)A
2
je

2iωt +H∗
y (2ω)(A

∗
j )

2e−2iωt
]

Here Hx,y(ω) are the response functions for the linear oscillators:

Hx,y(ω) =
1

−ω2(M +Nm) + iγx,yω + kx,y

Equations for the complex amplitudes Aj(t) follow from the rewriting Eq. (28)
in terms of Aj and averaging it over the fast time (basic period 2π/ω):

Ȧj =
1

2
Aj
(

σ − ρ|Aj |
2
)

+
1

4iωl
〈ÿθje

−iωt〉 −
1

4iωl
〈ẍe−iωt〉
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After averaging only the terms with ÿθj ∼ eiωt and ẍ ∼ eiωt survive:

Ȧj =
1

2
Aj
(

σ − ρ|Aj |
2
)

+DA∗
j

∑

k

A2
k + S

∑

k

Ak

where

D = −imω3Hy(2ω), S = −
imω3

8
Hx(ω)

[here we neglected terms containing higher orders in Aj , due to smallness of the
amplitudes]. Terms ∼ D arise from the vertical motion of the beam ÿ, while
terms ∼ S are due to the horizontal motion ẍ.

In the phase approximation we assume that the amplitudes |Aj | are nearly

constants |Aj | =
√

σ/ρ and the interaction does not affect their dynamics.
Therefore for phases φj (Aj = |Aj |e

iφj ) we have the following equations:

φ̇j = Ω+ d
∑

k

sin(2(φk − φj) + β) + s
∑

k

sin(φk − φj + α) (29)

where d = σρ−1|D|, s = |S|, β = arg(D) and α = arg(S). The freqeuncy is
determined as Ω = Im

(

σρ−1D + S
)

. The obtained system is the Kuramoto
model with bi-harmonic coupling.
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