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Abstract

Smooth Kähler–Einstein metrics have been studied for the past 80 years. More recently,
singular Kähler–Einstein metrics have emerged as objects of intrinsic interest, both in
differential and algebraic geometry, as well as a powerful tool in better understanding their
smooth counterparts. This article is mostly a survey of some of these developments.
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1 Introduction

The Kähler–Einstein (KE) equation is among the oldest fully nonlinear equations in modern
geometry. A wide array of tools have been developed or applied towards its understanding,
ranging from Riemannian geometry, PDE, pluripotential theory, several complex variables,
microlocal analysis, algebraic geometry, probability, convex analysis, and more. The interested
reader is referred to the numerous existing surveys on related topics [10, 28, 33, 34, 40, 41, 62,
99, 115, 116, 117, 118, 119, 120, 125, 200, 226, 199, 234, 236, 245, 246, 247].

In this article, which is largely a survey, we do not attempt a comprehensive overview, but
instead focus on a rather subjective bird’s eye view of the subject. Mainly, we aim to survey
some recent developments on the study of singular Kähler–Einstein metrics, more specifically, of
Kähler–Einstein edge (KEE) metrics, and while doing so to provide a unified introduction also
to smooth Kähler–Einstein metrics. In particular, the new tools that are needed to construct
KEE metrics give a new perspective on construction of smooth KE metrics, and so it seemed
worthwhile to use this opportunity to survey the existence and non-existence theory of both
smooth and singular KE metrics. We also put an emphasis on understanding concrete new
geometries that can be constructed using the general theorems, concentrating on the complex
2-dimensional picture, and touch on some relations to algebraic geometry and non-compact
Calabi–Yau spaces.

As noted above, most of the material in this article is a survey of existing results and
techniques, although, of course, sometimes the presentation may be different than in the original
sources. For the reader’s convenience, let us also point out the sections that contain results
that were not published elsewhere. First, some of the treatment of energy functionals in §5.3
and §5.6 extends some previous results of the author from the smooth setting to the edge
setting, although the generalization is quite straightforward and is presented here for the sake
of unity. The section on Bott–Chern forms §5.4 is essentially taken from the author’s thesis,
again with minor modifications to the singular setting. Second, some of the treatment of the a
priori estimates in §7 is new. In particular, the reverse Chern–Lu inequality introduced in §7.5
is new, as is the proof in §7.6 that the classical Aubin–Yau Laplacian estimate follows from
it. Finally, we note the minor observation made in §7.7 that some of the classical Laplacian
estimates can be phrased also for Kähler metrics that need not satisfy a complex Monge–
Ampère equation. Third, Proposition 8.14 is a very slight extension of the original result of Di
Cerbo.

Many worthy vistas are not surveyed here, including: toric geometry; quantization; log
canonical thresholds, Tian’s α-invariant, and Nadel multiplier ideal sheaves [62, 237, 189];
noncompact Kähler–Einstein metrics; Berman’s probabilistic approach to the KE problem [19];
Kähler–Einstein metrics on singular varieties, as, e.g., in [108, 24]; recent work on algebraic
obstruction to deforming singular KE metrics to smooth ones [63, 248]; the GIT related aspects
of the Kähler–Einstein problem, that we do not discuss in any detail in this article, instead
referring to the survey of Thomas [236] and the articles of Paul [194, 195].

Organization

Historically, the Kähler–Einstein equation was first phrased locally as a complex Monge–
Ampère equation. This, and the corresponding global formulation, are discussed in Section
2. Section 3 is a condensed introduction to Kähler edge geometry, describing aspects of the
theory that are absent from the study of smooth Kähler manifolds: new function spaces, a
different notion of smoothness (polyhomogeneity), a theory of (partial) elliptic regularity, and
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new features of the reference geometry (e.g., unbounded curvature). We use these tools to
describe the structure of the Green kernel of Kähler edge metrics, and the proof of higher regu-
larity of KEE metrics [141]. Section 4 summarizes the main existence and non-existence results
on KE(E) metrics. First, it describes the classical obstructions due to Futaki and Mastushima
coming from the Lie algebra of holomorphic vector fields (and their edge counterparts), and
their more recent generalization to various notions of “degenerations”, that capture more of the
complexity of Mabuchi K-energy, the functional underlying the KE problem. Second, it states
the main existence and regularity theorems for KE(E) metrics. The strongest form of these
results appears in [141, 175], generalizing the classical results of Aubin, Tian, and Yau from
the smooth setting, and those of Troyanov from the conical Riemann surface setting, to the
edge setting. We also describe other approaches to this problem. The main objective of §6–§7
is to describe the analytic tools needed to carry out the proof of these theorems, in a unified
manner, both in the smooth and the edge settings, and regardless of the sign of the curvature.
We describe this in more detail below; before that, however, Section 5 reviews the variational
theory underlying the Monge–Ampère equation in this setting. In particular, it reviews the
basic properties of the Mabuchi K-energy and the functionals introduced by Aubin, Mabuchi,
and others. The alternative definition of these via Bott–Chern forms is described in detail. A
relation to the Legendre transform due to Berman is also described. Finally, we describe the
properness and coercivity properties of these functionals. The former is needed for the actual
statement of the existence theorem in the positive case from §4.

Section 6 describes a new approach, the Ricci continuity method, developed by Mazzeo and
the author in [141] to prove existence of KE(E) metrics in a unified manner, and with only one-
sided curvature bounds. This approach works in a unified manner for all cases (negative, zero,
and positive Einstein constant) and for both smooth and singular metrics. Section 7 describes
the a priori estimates needed to carry out the Ricci continuity method. In doing so, this section
also provides a unified reference for a priori estimates for a wide class of singular Monge–Ampère
equations. Section 8 describes work of Cheltsov and the author [60] on classification problems
in algebraic geometry related to the KEE problem. Here, the notion of asymptotically log Fano
varieties is introduced. This is a class of varieties much larger than Fano varieties, but where we
believe there is still hope of classification and a complete picture of existence and non-existence
of KEE metrics. Section 9 then builds on these classification results to phrase a logarithmic
version of Calabi’s conjecture. We then briefly describe a program to relate this conjecture
concerning KEE metrics to Calabi–Yau fibrations and global log canonical thresholds. Finally,
some progress towards this conjecture is described, in particular giving new KEE metrics on
some explicit pairs, and proving non-existence on others.

2 The Kähler–Einstein equation

A Kähler manifold is a complex manifold (M,J) equipped with a closed positive 2-form ω
that is J-invariant, namely ω(J · , J · ) = ω( · , · ). Here M is a differentiable manifold, and J
is a complex structure on M , namely an endomorphism of the tangent bundle TM satisfying
J2 = −I and [T 1,0M,T 1,0M ] ⊆ T 1,0M , where TM ⊗R C = T 1,0M ⊕ T 0,1M , with T 1,0M the√
−1-eigenspace of J , and T 0,1M the −

√
−1-eigenspace of J . Associated to (M,J, ω) is a

Riemannian metric g, defined by g( · , · ) = ω( · , J · ), whose Levi-Civita connection we denote
by∇. Equivalently, one may also define (M,J, g) to be a Kähler manifold when g is J-invariant,
J2 = −I, and ∇J = 0 (i.e., g-parallel transport preserves T 1,0M).

Schouten called this new type of geometry “unitary,” [218] and this can be understood from
the fact that not only does one obtain a reduction of the structure group to U(n) (this merely
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characterizes almost-Hermitian manifolds) but also the holonomy is reduced from O(2n) to
U(n). In retrospect this name seems quite fitting, on a somewhat similar footing to “symplectic
geometry,” a name first suggested by Ehresmann. However, only a few authors in the 1940’s
and 1950’s were familiar with Schouten-van Dantzig’s work. The first few accounts of Hermitian
geometry, mainly by Bochner, Eckmann and Guckenheimer referred only to Kähler’s works,
and the name “Kähler geometry” became rooted (for more on this topic, see [216, §2.1.4]).

One of Schouten–van Dantzig’s and Kähler’s discoveries was that on the eponymous mani-
fold the Einstein equation is implied, locally, by the complex Monge–Ampère equation

det[uij̄ ] := det

[
∂2u

∂zi∂z̄j

]
= e−µu, on U, (2.1)

where µ ∈ R is the Einstein constant [144, 219]. Here u is a plurisubharmonic function defined
on some coordinate chart U ⊂ M , with holomorphic coordinates z1, . . . , zn : U → Cn; Indeed,
if we let gH|U =

√
−1uij̄dz

i⊗dzj denote the Hermitian metric associated to u (with summation
over repeated indices), then the Riemannian metric g = 2Re gH is Einstein if (2.1) holds because

Ric g = 2Im((log det[uij̄ ])kl̄dz
k ⊗ dzl). Thus, in the “unitary gauge”, the Einstein system of

equations reduces to a single, albeit fully nonlinear, equation.
For some time though, it was not clear how to patch up these equations globally. The

crucial observation is that both sides of (2.1) are the local expressions of global Hermitian
metrics on two different line bundles: the anticanonical line bundle ΛnT 1,0M on the left hand
side, and the line bundle associated to µ[ω] on the right. In particular this implies that these
line bundles must be isomorphic, and

c1(M,J)− µ[ω] = 0. (2.2)

This of course puts a serious cohomological restriction on the problem. But assuming this, the
local Monge–Ampère equation can be converted to a global one. Let dz := dz1 ∧ · · · ∧ dzn.
The expressions

√
−1

n2

det[uij̄ ]dz ∧ dz = e−µu
√
−1

n2

dz ∧ dz

represent globally defined volume forms on M , appropriately interpreted. We choose a repre-
sentative Kähler form ω of [ω]. Since

√
−1∂∂̄u is the curvature of e−u it lies in [ω]. On each

U ,
√
−1∂∂̄u = ω +

√
−1∂∂̄ϕ for a globally defined ϕ ∈ C∞(M): this follows from the Hodge

identities [124, p. 111] by setting ϕ = trωGω(
√
−1∂∂̄u − ω), where Gω denotes the Green

operator associated to the Laplacian (on the exterior algebra).
Thus,

(ω +
√
−1∂∂̄ϕ)n = ωne− log det[vij̄ ]−µv−µϕ

where locally ω =
√
−1vij̄dz

i∧dzj . But by (2.2) e− log det[vij̄ ]−µv is the quotient of two Hermitian

metrics on the same bundle, hence a globally defined positive function that we denote by efω .
We thus obtain the Kähler–Einstein equation,

ωnϕ = ωnefω−µϕ, on M (2.3)

for a global smooth function ϕ (called the Kähler potential of ωϕ relative to ω). The function
fω, in turn, is given in terms of the reference geometry and is thus known. It is called the
Ricci potential of ω, and satisfies

√
−1∂∂̄fω = Ric ω − µω, where it is convenient to require

the normalization
∫
efωωn =

∫
ωn. Equivalently, (2.3) says that fωϕ = 0. Thus, in the

language of the introduction to §4, the KE problem has a solution precisely when the vector
field f : φ 7→ fωφ on the space of all Kähler potentials has a zero.
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3 Kähler edge geometry

This section introduces the basics of Kähler edge geometry. First, we describe some general
motivation for introducing these more general geometries in §3.1. The one-dimensional ge-
ometry of a cone is the topic of §3.2. It is fundamental, since a Kähler edge manifold looks
like a cone transverse to its ‘boundary’ divisor. Subsection 3.3 phrases the KEE problem as
a singular complex Monge–Ampère equation, generalizing the discussion in §2. What is the
appropriate smooth structure on a Kähler edge space? This is discussed in §3.4 where the
notion of polyhomogeneity is introduced. The edge and wedge scales of Hölder function space
are defined in §3.5. Next, the various Hölder domains relevant to the study of the complex
Monge–Ampère equation are introducted in §3.6.

3.1 A generalization of Kähler geometry

The cohomological obstruction (2.2) is necessary for the local KE geometries to patch up to a
global one. However, the condition (2.2) is very restrictive. Is there a way of constructing a
KE metric at least on a large subset of a general Kähler manifold? Of course, such a question
makes sense and is very interesting also in the Riemannian context. The interpretation of the
local KE equation in terms of Hermitian metrics on line bundles, though, distinguishes between
these two settings.

Thus, suppose that c1(M,J) − µ[ω] is not zero (nor torsion) but that this difference, or
‘excess curvature’ can be decomposed as follows: there exist divisors D1, . . . , DN and numbers
βi > 0 such that

c1(M,J)− µ[ω] =

N∑
i=1

(1− βi)c1(LDi),

with LF denoting the line bundle associated to a divisor F . At least when M is projective, by
the Lefschetz theorem on (1,1)-classes [124, p. 163] this can always be done when the left hand
side belongs to H2(M,Z) ↪→ H2(M,R), and therefore also when it is merely a rational class,
or a real class. Of course this means that we might need to take a non-reduced divisor on the
right hand side, and limits the usefulness of such a generalization to the case when the divisor
D =

∑
Di is not too singular, and the βi are not too large.

Thus, necessarily any KE potential u must satisfy locally,

det[uij̄ ] = e−µu
N∏
i=1

|ei|2βi−2, on U, (3.1)

where ei denotes a local holomorphic section of Di. This equation is then quite similar to the
local KE equation (2.1) on neighborhoods U contained in the complement of the Di. However,
if U intersects any of the Di nontrivially, the equation becomes singular or degenerate.

To understand this equation better, it is helpful to consider the model case with N = 1,
M = Cn and D = {e1 = z1 = 0} = {0} ×Cn−1. Then, u = 1

2( 1
β2 |z1|2β + |z2|2 + . . .+ |zn|2) is a

solution of (3.1) with µ = 0. Note that u corresponds to a singular, but continuous, Hermitian
metric e−u. We call the associated curvature form the model edge form on (Cn,Cn−1),

ωβ = −
√
−1∂∂̄ log e−u =

1

2

√
−1
(
|z1|2β−2dz1 ∧ dz1 +

n∑
j=2

dzj ∧ dzj
)
, (3.2)
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and also denote by

gβ = |z1|2β−2|dz1|2 +
n∑
j=2

|dzj |2, (3.3)

the model edge metric on (Cn,Cn−1). More generally, if D = D1 + . . . + DN is the union
of N coordinate hyperplanes in Cn which intersect simply and normally at the origin, we set
β = (β1, . . . , βN ) and denote the model edge form on (Cn, D) by

ωβ =
1

2

√
−1
( N∑
i=1

λi|zε(i)|2βi−2dzε(i) ∧ dzε(i) +
∑

j∈{1,...,n}\{ε(i)}Ni=1

dzj ∧ dzj
)
,

where λi = 1 if 0 ∈ Di and λi = 0 otherwise, and where ε(i) = 0 if λi = 0, and otherwise
ε(i) ∈ {1, . . . , n} is such that {zε(i) = 0} = Di.

This model case motivates the following generalization of a Kähler manifold. Some visual
references are given in Figure 5 in §4.4 below.

Definition 3.1. A Kähler edge manifold is a quadruple (M,D, β = (β1, . . . , βN ), ω), with M
a smooth Kähler manifold, D = D1 + . . . DN ⊂ M a simple normal crossing (snc) divisor,
βi : Di → R+ a function for each i = 1, . . . , N , and, finally, ω a Kähler current on M that is
smooth on M \D and asymptotically equivalent to ωβ(p) near each point p of D.

For the notion of a Kähler current (also called a positive (1, 1) current) we refer to [124,
Chapter 3]. One could make the definition more general, e.g., by allowing D to be more
singular, but we do not explore that here. Furthermore, in our discussion below, we will always
assume that βi is constant on each component Di. (This assumption is present in essentially all
works on the subject so far.) Lastly, for the moment, we are deliberately vague on the meaning
of “asymptotically equivalent.” Several working definitions are given in §3.7 (see in particular
Lemma 3.11).

The study of Kähler edge metrics was initiated by Tian [242] motivated in part by the pos-
sibility of endowing more Kähler manifolds with a generalized KE metric, when the obstruction
(2.2) does not vanish. Of course, the possibility of uniformizing more Kähler manifolds is ex-
citing in itself, and there are many possible applications of such metrics in algebraic geometry
(see, e.g., [260, 242]). However, as we will see later, this generalization sheds considerable light
also on the theory of smooth KE metrics. Finally, Kähler edge manifolds are also a natural
generalization of conical Riemann surfaces, who were first systematically studied by Troyanov
[259]; see §4.4 for more on this topic.

3.2 The geometry of a cone

In the previous subsection we arrived at a generalization of Kähler geometry by seeking a
generalization of the Kähler–Einstein equation. Before going back to the latter, let us first say
a few words on the geometry described by (3.2).

The basic observation is that

Cβ := (C, |z|2β−2
√
−1dz ∧ dz) (3.4)

is a cone with tip at the origin. For instance, when β = 1/k with k ∈ N, we obtain an orbifold.
We emphasize that here we equip the smooth manifold C with a singular metric, and we are
claiming that thus equipped it is isometric to a singular metric space, a cone. Perhaps the
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z = ρe
√
−1θ

−→
2πβ

ζ = re
√
−1βθ

Figure 1: The map z 7→ zβ =: ζ maps the disc to a wedge of angle 2πβ (the inverse map
identifies the two ‘sides’ of the wedge). This map pulls-back the flat metric |dζ|2 on the wedge
to the singular metric β2|z|2β−2|dz|2 on the disc.

simplest way to see this is to recall the construction of a cone out of a wedge. Starting with
a wedge of angle 2πβ one identifies the two sides of the boundary. This can of course be done
in many ways, in other words there are many maps of the form (r, θ) 7→ (f(r, θ), θ/β) (so the
angle in the target indeed varies between 0 and 2π, or in other words, the target indeed ‘closes
up’ and is homeomorphic to R+×S1(2π)). However, there is a unique such map that preserves
angles, or in other words is holomorphic. By the Cauchy–Riemann equations (i.e.,

r∂r(ReF, ImF ) = ∂θ(ImF,−ReF )

for a holomorphic function F ) it must be of the form f(r, θ) = Cr1/β, for some constant C.
The inverse of this map, from the cone to the wedge, is given by (ρ, φ) 7→ (ρβ, βφ), or simply

z = ρe
√
−1φ 7→ zβ =: ζ (see Figure 1). Declaring this map to be an isometry determines the

geometry of the cone; pulling back the Euclidean metric |dζ|2 =
√
−1∂∂̄|ζ|2 endows the cone

with the metric
√
−1∂∂̄|z|2β = β2|z|2β−2

√
−1dz ∧ dz.

3.3 The Kähler–Einstein edge equation

We now return to our discussion of the generalized local Kähler–Einstein equation (3.1).
To turn (3.1) into a global equation we seek, at least formally (in the case we are not

dealing with Q-line bundles), an equality of two continuous Hermitian metrics: one on µΩ and
the other on −KM +

∑
i(1 − βi)LDi . In analogy with the discussion of §2, we now choose a

reference metric that is locally asymptotic to the model edge geometry, instead of the Euclidean
geometry on Cn that was implicitly the model there. Suppose that hi is a smooth Hermitian
metric on LDi , and that si is a global holomorphic section of LDi , so that Di = s−1

i (0). We let

ω := ω0 +
√
−1∂∂̄φ0, (3.5)

with
φ0 := c

∑
(|si|2hi)

βi . (3.6)

An easy computation shows that ω is locally equivalent to ωβ and that for small enough c > 0
it defines a Kähler metric away from D [141, Lemma 2.2]. Moreover, in the coordinates above,
near a smooth point of D1, for example, |z1|2β1−2 detψij̄ is continuous, as desired. Similar
properties hold near crossing points of D. Thus, we may proceed exactly as in §2 to obtain an
(seemingly!) identical equation,

ωnϕ = ωnefω−µϕ, on M \D, (3.7)

8



only now away from D, and with respect to the reference form ω, where ϕ is required to lie in
the space of Kähler edge potentials

Hω := {ϕ ∈ C∞(M \D) ∩ C0(M) : ωϕ := ω +
√
−1∂∂̄ϕ > 0 on M

and ωϕ is asymptotically equivalent to ωβ}. (3.8)

Equation (3.7) is the Kähler–Einstein edge (KEE) equation.
By construction, the twisted Ricci potential of ω, fω, satisfies

√
−1∂∂̄fω = Ric ω − (1− β)[D]− µω, (3.9)

where it is again convenient to require the normalization
∫
efωωn =

∫
ωn. Differentiating (3.7)

leads to the following equivalent formulation of the KEE equation.

Definition 3.2. With all notation as above, a Kähler current ωKE is called a Kähler–Einstein
edge current with angle 2πβ along D and Ricci curvature µ if ωKE ∈ Hω (see (3.8)), and if

RicωKE − (1− β)[D] = µωKE, (3.10)

where [D] is the current associated to integration along D, and where Ricω denotes the Ricci
current (on M) associated to ω, namely, in local coordinates Ricω = −

√
−1∂∂̄ log det[gij̄ ] if

ω =
√
−1gij̄dz

i ∧ dzj.

The KEE equation may also be rewritten in terms of the background smooth geometry.
We carry this out for pedagogical purposes, since it allows to unravel the difference between
equations (3.7) and (2.3), that are formally the same but involve different geometric objects.

Let e be a local holomorphic frame for LD valid in a neighborhood intersecting D, such
that s = z1e on that neighborhood, and denote by

ai := |ei|2hi

a smooth positive function on that neighborhood. Define Fω0 (up to a constant, for the moment)
by
√
−1∂∂̄Fω0 = Ricω0 − µω0 +

∑
i(1 − βi)

√
−1∂∂̄ log ai. Setting ϕ̃ := φ0 + ϕ, it easy to see

that
(ω0 +

√
−1∂∂̄ϕ̃)n =

∏
i

|si|2βi−2
hi

ωn0 e
Fω0−µϕ̃, (3.11)

where we think of this equation as determining a normalization of Fω0 such that both sides
have equal integrals (cf. [141, (53)]).

For much of the rest of this article we will be concerned with solving this equation with
optimal estimates on the solution. In this regard, we note that global solutions, smooth away
from D, of this (when µ ≤ 0) and quite more general Monge–Ampère equations were con-
structed already in much earlier work of Yau [267, §7–9]. Our goal though, is to explain how
to go beyond such weak solutions and obtain estimates that show the metric in fact has edge
singularities near the ‘boundary’ D. To start, we define the appropriate function spaces to
prove such estimates.

Remark 3.3. A point we glossed over in the discussion is the fact that a necessary condition
for the existence of a KEE metric is that the first Chern class of the adjoint bundle,

−KM +
∑
i

(1− βi)LDi , is µ times an ample class. (3.12)
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This is obvious in the smooth case (βi = 1) from the KE equation. In general, the KEE
equation only guarantees that this class is represented by (µ times) a Kähler current. But the
edge singularities are sufficiently mild that the divisor D has zero volume [141, §6], and the
Lelong numbers of this current along D are zero. As observed by Di Cerbo [87] this implies
that the class is actually (µ times) an ample class, i.e., represented by a smooth Kähler metric.

3.4 Three smooth structures, one polyhomogeneous structure

Naturally, if one’s goal is to obtain existence and regularity of certain geometric objects (such
as KEE metrics) on a Kähler edge manifold, then understanding the differentiable structure
underlying such a space should play a key rôle.

First, let us consider the simplest compact closed example, that of M = P1 with a single
cone point D = p. Then M of course has its natural conformal structure, and there is a
corresponding smooth structure. The former is represented locally near p by the holomorphic
coordinate z, and the latter can be represented by the associated polar coordinates (ρ, θ), where
of course all the points (0, θ) are identified with p.

Recall from §3.2 that an alternative conformal structure is represented locally by the coor-
dinate ζ := zβ. Of course, ζ is multi-valued, and one must choose a branch of the Riemann
surface associated to z 7→ zβ. Whenever we work with ζ, we assume such a choice was made.
More specifically we slit the disc, and work with the associated polar coordinates denoted by
(r, θ), where now θ ∈ [0, 2πβ), and these represent the associated smooth structure. That is,
smooth functions are smooth functions of r, θ. Clearly, this smooth structure is incompatible
with the one of the previous paragraph.

Which smooth structure should we work with? The point of view stressed in [141], following
Melrose’s general framework [181], is that it is rather the polyhomogeneous structure that is
central to the problem, and not either of these smooth structures. The purpose of this section
is to explain what is meant by this. To carry this out, it will be preferable to work with a
bona fide singular space associated to M (recall M itself is smooth). That is, we consider the
singular metric space Msing obtained as the metric completion from the underlying distance
function associated to M equipped with its Kähler edge metric. It is readily seen that this
space is homeomorphic to M (since the divisor is at finite distance from any point by (3.3)).
What is important to the development of the theory described below is that the smooth locus
of this singular space Msing is precisely the complement of a simple normal crossing divisor in
a nonsingular space. Thus, as we describe below, it will admit an edge structure.

The first step we take is actually to desingularize Msing, i.e., resolve its singularities to obtain
a manifold with boundary. The edge structure we will define shortly, will, by definition, be on
this desingularized space. The desingularization is done, as usual, by a series of resolutions by
real blow-ups; when D is smooth and connected a single such blow-up suffices. In the simplest
example of (P1, p) considered just above this amounts to a single real blow-up at p, resulting in
the manifold with boundary X consisting of the disjoint union of P1 \ {p} and S1 (see Figure
2). In other words, the smallest manifold with boundary on which the polar coordinates are
well-defined, without identifying the points {(0, θ) : θ ∈ [0, 2π)}. In general, the manifold X
is the real blow-up of Msing at D, i.e., the disjoint union M \D and the circle normal bundle
of D in M , endowed with the unique smallest topological and differential structure so that the
lifts of smooth functions on M and polar coordinates around D are smooth.

The advantage of working with functions on X rather than on M or Msing is convenience.
For instance, it is much easier to keep track of singularities of distributions (such as the Green
kernel) on the desingularization–this is explained in detail in §3.9. When D has crossings this
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−→

Figure 2: The real blow-up of the tear-drop space

desingularization also serves to give a reasonable description for distributions near crossing
points [175, 176].

The relevant coordinates on X are (r, θ, y) where y = (y1, . . . , y2n−2) denotes the ‘conormal’
coordinates, i.e., coordinates on D. The relevant smooth structure to our problem turns out
to be the smooth structure of X as a manifold with boundary. Namely, smooth functions are
smooth functions of r, θ, and y1, . . . , y2n−2.

Next, we defined the associated ‘edge structure’ of X in the sense of Mazzeo [172, §3].

Definition 3.4. The edge structure on the smooth compact manifold with boundary X is the
Lie algebra of vector fields Ve(X) generated by the smooth vector fields on X that are tangent
to the S1 fibers on ∂X. That is,

Ve(X) = spanR

{
r
∂

∂r
,
∂

∂θ
, r

∂

∂y1
, . . . , r

∂

∂y2n−2

}
.

The space C∞e is defined to be the space of C∞ functions on X with respect to this edge
structure, i.e., functions that are infinitely-differentiable with respect to the vector fields in
Ve(X); see §3.5 for an alternative, somewhat more geometric, definition of this space. Note
that a function on X can be pushed-forward, using the blow-down map, to a function on
M \ D, and, by abuse of notation, we often make this identification without mention. Much
care is needed here, however, since a function in C∞e need not correspond even to a continuous
function on M (consider, e.g., the function sin(log r))!

In Kähler edge geometry there is a clear distinction between differentiation in the direction
normal to the edge and in the complementary directions. Thus, it is convenient to define the
Lie algebra Vb(X) of all smooth vector fields on X that are tangent to ∂X, i.e.,

Vb(X) = spanR

{
r
∂

∂r
,
∂

∂θ
,
∂

∂y1
, . . . ,

∂

∂y2n−2

}
,

and introduce the following terminology.

Definition 3.5. The space of bounded conormal functions on X is

A0 = A0(X) := {f ∈ L∞(X) : for all k ∈ N and V1, . . . , Vk ∈ Vb(X), V1 · · ·Vkf ∈ L∞(X)}.

In other words, these are bounded functions on X that are infinitely differentiable with
respect to vector fields in Vb(X). Thus, they are infinitely-differentiable in directions tangent
to D (the ‘conormal directions’), but still potentially rather badly behaved with respect to the
vector field ∂

∂r . Another geometric description of A0 is given in §3.5 below.
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Now, let us finally define the polyhomogeneous structure of X. For that we first set

Aγ,p := rγ(log r)pA0.

Definition 3.6. The space of bounded polyhomogeneous functions on X is

A0
phg :=

{
f ∈ A0(X) : f ∼

∞∑
j=0

Nj∑
p=0

ajp(θ, y)rσj (log r)p
}
,

with Reσj increasing to ∞, and Reσj ≥ 0 with Nj = 0 if Reσj = 0.

Similarly, one defines Aγ,pphg := rγ(log r)pA0
phg, and the polyhomogeneous structure of X is

defined as the union
A∗phg :=

⋃
γ,p

Aγ,pphg.

For later use, we define the index set associated to a function u ∈ A0
phg to be the set

Eu := {(σj , p) : ajp 6≡ 0}. (3.13)

In Definition 3.6, the ∼ symbol means that f admits an asymptotic expansion in powers of r
and log r. By definition, this means that for every k ∈ N and m ∈ {0, . . . , Nk},

f −
k−1∑
j=0

Nj∑
p=0

ajp(θ, y)rσj (log r)p −
Nk−m∑
p=0

akp(θ, y)rσk(log r)p ∈

{
Aσk,Nk+1−m

phg if m ∈ N,
Aσk+1,Nk+1

phg if m = 0,
(3.14)

and moreover that corresponding remainder estimates hold whenever any number of vector
fields in Vb(X) are applied to the left hand side of (3.14). These are referred to as remainder
estimates since if a function u lies in Aγ,p, it satisfies |u| ≤ Crγ(log r)p on X.

Several remarks are in order. First, on a smooth space, Taylor’s theorem implies that
any smooth function admits a Taylor series expansion. In our setting, however, there is a
certain ‘gap’ between the space C∞e (or even A0) and the space of functions admitting a bi-
graded expansion as in Definition 3.6. Second, the push-forward of a function in A0

phg (unlike
a function in C∞e ) can be considered as a continuous function on M , provided its leading term
is independent of θ (and not just on M \D). Third, expansions of polyhomogeneous functions
are rarely convergent, but only give ‘order of vanishing’ type estimates, as described above.
Fourth, the remainder estimate (3.14) can be written as an equality

f −
k−1∑
j=0

Nj∑
p=0

ajp(θ, y)rσj (log r)p −
Nk−m∑
p=0

akp(θ, y)rσk(log r)p = u, (3.15)

with u belonging to one of the two spaces in the right hand side of (3.14), and this equality
is understood to hold on some ball (in the coordinates r, y, θ) centered at a point on D. It is
usually difficult to control the size of this ball, i.e., to give lower bounds for its radius. However,
since such a positive radius exists for each p ∈ D and D is compact, the equality (3.15) actually
holds on some tubular neighborhood (of positive distance—as r is uniformly equivalent to the
distance function close enough to D) of D. Finally, note that the polyhomogeneous structure
associated to either the (ρ, θ, y) or the (r, θ, y) coordinates is the same, precisely because we
are allowing fractional powers of r and β log ρ = log r.
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3.5 Edge and wedge function spaces

There are two distinct scales of function spaces naturally associated to a Kähler edge metric,
that we will denote by Ck,αs

with s equal to either w or e.

We consider both of these as subspaces of L∞(M).

The first, the wedge spaces Ck,αw , are the usual Ck,α spaces on M \D with respect to a(ny)
Kähler edge metric, intersected with L∞(M) (and, in fact, are contained in C0(M)). That is,
we consider M \D as an incomplete Riemannian manifold with the usual distance to the edge
being a distance function.

The second, the edge spaces Ck,αe [172], are the intersection of L∞(M) with the usual Ck,α

spaces on M \ D with respect to a conformal deformation of a Kähler edge metric for which
the logarithm of the usual distance to the edge is now a distance function. Thus, we consider
M \D as a complete Riemannian manifold. Equivalently, Ck,αe consists of functions on M \D
that are push-forwards of functions on X that are Ck,α with respect to the edge differentials
Ve(X) of §3.4.

Let us now explain how to define these function spaces explicitly in the model edge Cβ ×
R2n−2. In the notation of §3.2, the flat metric on a cone Cβ takes the form dr2 + r2dθ2,
with θ ∈ [0, 2πβ). Thus the flat model edge metric ωβ is given by dr2 + r2dθ2 + dy2, with

y = (y1, . . . , y2n−2) coordinates on R2n−2, and it is this metric that defines the spaces Ck,αw .

The conformally rescaled metric (d log r)2+dθ2+r−2dy2 defines the spaces Ck,αe . It follows that

the defining vector fields for the spaces Ck,αs are rδe(s){ ∂∂r ,
1
r
∂
∂θ ,

∂
∂yj
}, where δe(e) = 1, δe(w) = 0.

We will say a bit more about these function spaces below, but for a thorough discussion of
these function spaces as well as the different coordinate choices involved we refer to [141, §2].

For the moment we observe the obvious inclusion Ck,γw ⊂ Ck,γe ; the wedge spaces are in fact
much smaller than their edge counterparts. E.g., as noted earlier, sin log r ∈ C∞e shows that
C∞e 6⊂ C0(M) (though it is contained in L∞(M)), and rk+ε ∈ Ck,εw ∩ C∞e but is not contained
in any higher wedge space.

Note, finally, that the space A0 defined in §3.4 admits a similar geometric description.
Namely it is the space of bounded functions that are C∞ space with respect to the metric
d(log r)2 + dθ2 + dy2, namely the product metric obtained by conformally rescaling the flat
metric on the cone together with the standard (non-rescaled) Euclidean metric on R2n−2.

3.6 Various Hölder domains

Perhaps surprisingly, it turns out that the complex Monge–Ampère equation, and, as a special
case, the Poisson equation, cannot be solved in general in C2,α

w . In fact, as already noted,

Re z1 is pluriharmonic and belongs merely to C
1, 1
β
−1

w , which fails to lie in C2,α
w when β > 1/2.

On the other hand, C2,α
e is certainly a large enough space to find solutions; however, it is not

even contained in C0 and so seems to give too little control/regularity to develop a reasonably
strong existence theory for the Monge–Ampère equation.

First, we introduce the maximal Hölder domains

D0,γ
s (∆ω) = D0,γ

s := {u ∈ C0,γ
s : ∆ωu ∈ C0,γ

s }.

These are Banach spaces with associated norm

||u||D0,γ
s (∆ω)

:= ||∆ωu||C0,γ
s

+ ||u||
C0,γ
s
.
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We also define the little Hölder domains

D̃0,γ
s (∆ω),

as the closure of the space A0
phg of polyhomogeneous functions in the D0,γ

s (∆ω) norm. The
name ‘maximal’ comes from the analogy with the usual definition of the maximal domain of
the Laplacian in L2, namely Dmax(∆) := {u ∈ L2 : ∆u ∈ L2}. On the other hand, the ‘little’
spaces are defined similarly to the usual little Hölder spaces (see, e.g., [164]). The latter are
separable, unlike the former, and of course D̃0,γ

s (∆ω) ⊂ D0,γ
s (∆ω).

The space D0,γ
w was introduced by Donaldson [102] (where it is denoted C2,γ,β); it gives

wedge Hölder control of the wedge Laplacian, which is a sum of certain second wedge derivatives
of type (1,1). Motivated by this, the space D0,γ

e was introduced in [141], and gives edge Hölder
control of the wedge Laplacian. Thus, unlike D0,γ

w , it is a sort of hybrid space. In fact, D0,γ
s can

be characterized by requiring the (1,1) wedge Hessian (and not only its trace!) to be Hölder
(in fact, a slightly stronger characterization holds, see Theorem 3.7 below). When β ≤ 1/2
an even sharper characterization holds for s = e: the full (real) wedge Hessian is Hölder. Let
P11̄ := ∂2

r + 1
r∂r + 1

β2r2∂
2
θ , and define

Q := {∂r, r−1∂θ, ∂ya , ∂
2
yayb

, ∂r∂ya , ∂r∂θ, r
−1∂θ∂ya , P11̄, a, b = 1, . . . 2n− 2}.

Theorem 3.7. (i) There exists a constant C > 0 independent of u such that

||Tu||s;0,γ ≤ C(||∆ωu||s;0,γ + ||u||s;0,γ),

for all T ∈ Q. Thus, u ∈ D0,γ
s if and only if Tu ∈ C0,γ

s for all T ∈ Q.
(ii) If β ∈ (0, 1/2], the previous statement holds with Q replaced by

Q∪ {∂2
r , r
−1∂r, r

−2∂2
θ , r
−1∂r∂θ, r

−1∂r∂ya , a, b = 1, . . . 2n− 2}.

Also, D0,γ
w ⊂ C

2,min{ 1
β
−2,γ}

w .

Remark 3.8. Part (ii) quantifies the difference between the “orbifold” regime β ∈ (0, 1/2] and
the harder β ∈ (1/2, 1) regime. In fact, one can write down stronger and stronger character-
izations of D0,γ

e under mild assumptions when β ∈ (0, β0) as β0 ≤ 1/2 approaches 0, however

these will not involve any new second order operators beyond those in (ii) except r
1− 1

β0 ∂r∂θ

and r
− 1
β0 ∂ya∂θ. For instance, when β ∈ (0, 1/3), the operators T = r−3∂θ, r

−2∂r∂θ, r
−3∂ya∂θ

are also allowed.

For the proof of (i) and (ii) with s = e, we refer to [141, Proposition 3.3], and for (i) and (ii)
with s = w to [141, Proposition 3.8]. The key ingredient in the proofs is a precise description
of the singularities (or, in other words, of the the polyhomogeneous structure) of the Green
kernel of the Laplacian of the (curved) reference metric ω (3.5), considered as a distribution
on certain blow-up of X × X. This is explained in §3.9. For the proof of (i) with s = w for
most of the operators in Q, we also refer to Donaldson [102, Theorem 1]; the verification for
the remaining operators is straightforward from his arguments. Donaldson’s approach is more
elementary in that he only obtains the polyhomogeneous structure of the Laplacian of the flat
model metric ωβ (3.2) (which can be done by separation of variables arguments, and also goes
back to the work of Mooers [183]); using the Schauder estimate for this flat model he then
obtains (i) with s = w by a partition of unity argument. The advantage of the extra work
done in [141] is that the polyhomogeneous structure of the Green kernel of the curved metric
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itself allows much more refined information, e.g., (ii), and also leads eventually to the higher
regularity of solutions of the Monge–Ampère equation—see §3.10—that does not seem to be
accessible using the arguments of [102].

Next, similarly to the definition of the spaces Ck,αs , also the spaces D0,γ
s can be defined with

respect to any Kähler edge metric of the form ωϕ with ϕ ∈ D̃0,γ
s . This property is absolutely

crucial in applications to ‘openness’ along the continuity method (§6.4), and to higher regularity
(§3.10).

Theorem 3.9. Suppose that u ∈ D̃0,γ
s . Then

D0,γ
s (∆ω) = D0,γ

s (∆ωu) := {v ∈ C0,γ
s : ∆ωuv ∈ C0,γ

s }.

This is proved in [141, Corollary 3.5]; Donaldson [102] does not state any such result
explicitly, but briefly sketches related ideas in the case s = w in [102, p. 64]. This result is
crucial in our approach and we describe the proof in some detail below.

The goal is to show that D0,γ
s (∆ω) = D0,γ

s (∆ωu). First, one observes that this is true
when u is polyhomogeneous, by the explicit polyhomogeneous structure of the Green kernel of
polyhomogeneous elliptic edge operators (see Theorem 3.15 below). Next, note that

∆ωuf =
ωn

ωnu

n
√
−1∂∂̄f ∧ ωn−1

u

ωn
.

Thus, if u ∈ D0,γ
s then |∆ωuf | ≤ C1(|∆f | + (

√
−1∂∂̄f, α)ω), where |α|ω ≤ C2, and C1, C2 are

both controlled by a polynomial function of
∑

i,j [uij̄ ]s;0,γ . By Theorem 3.7 (i) these constants

are then also controlled by ||u||D0,γ
s

. Thus, D0,γ
s (∆ω) ⊂ D0,γ

s (∆ωu).

Since ∆ωu is injective on the L2-orthogonal complement to the constants in D0,γ
s (∆ωu), that

we denote by D0,γ
s (∆ωu)′, it is also injective on D0,γ

s (∆ω)′. The main point is that it is also
surjective when restricted to the latter space; since ∆ωu : D0,γ

s (∆ωu)′ → C0,γ
s is by definition a

bijection, this immediately gives the reverse inclusion and concludes the proof. We now explain
the proof of the surjectivity statement.

The surjectivity follows in several steps. First, given any nonzero f ∈ C0,γ
s there is a unique

solution φ ∈ D0,γ
s (∆ωu)′ to ∆ωuφ = f . Approximate u in D0,γ

s (∆ω) by polyhomogeneous u(k),
and let φ(k) be the associated solution of ∆ω

u(k)
φ(k) = f . Since u(k) are polyhomogeneous, there

is a unique constant ck such that φ(k) − ck ∈ D0,γ
s (∆ω)′, and by Theorem 3.7 (i) (which, as

remarked in the beginning of the proof, applies to ω replaced by any polyhomogeneous metric)
this implies an estimate∑

Q∈Q
||Qφ(k)||s;0,γ ≤ C(k)(||f ||e;0,γ + ||φ(k)||e;0,γ). (3.16)

We claim that the constant C(k) in (3.16) is locally uniform in the C0,γ
s norm of u

(k)

ij̄
(i.e., that if

u(k) were supported in some small ball then the constant on the right hand side of (3.16) would

be controlled uniformly in terms of the C0,γ
s norm of u

(k)

ij̄
). Of course, since ||u(k)

ij̄
− uij̄ ||s;0,γ is

uniform in k, this would imply also that the C(k) are locally uniformly controlled, independently
of k, by the C0,γ

s norm of uij̄ . The claim is true for polyhomogeneous u by the Green kernel

construction of Theorem 3.15. For a more general u ∈ D̃0,γ
s , we freeze coefficients of ∆ωu

only in a small neighborhood of any point in M and approximate this operator by a global
polyhomogeneous operator. The estimate above follows for such a concatenated operator by
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the standard method of proof that makes clear that the constant in the estimate depends only
on the local C0,γ

s norm of uij̄ . Using a partition of unity to paste these estimates then concludes
the proof of the claim (since both D and M are compact).

Thus, the φ(k) are uniformly in D0,γ
s (∆ω)′ (note that the constants ck are uniformly con-

trolled). When s = w we can now take a subsequence converging in D0,γ′
w (for any γ′ ∈ (0, γ))

to a function φ ∈ D0,γ
w (∆ω)′ that solves ∆ωuφ = f . When s = e, we cover M \D by a countable

collection of Whitney cubes so that on each such cube Tφ(k) converges in C0,γ′
e to Tφ, for all

γ′ ∈ (0, γ). Taking a diagonal sequence then produces a solution φ to ∆ωuφ = f that belongs
to D0,γ

s (∆ω)′, by Theorem 3.7 (i). In either case (s = e or s = w), (iii) follows.
Finally, we mention several further basic regularity properties of the Hölder domains.

Theorem 3.10. (i) For any T ∈ Q \ {P11}, T maps D0,γ
e into C0(M). In particular, if

u ∈ D0,γ
e , then Tu is continuous up to D, and has a well-defined restriction to D, independent

of θ.
(ii) Let γ ≥ 0. Then, D0,γ

e ⊂ C1,α
w for α ∈ (0, 1

β − 1] ∩ (0, 1).

(iii) If u ∈ D̃0,γ
e then u has the partial expansion near D

u = a0(y) + (a01(y) sin θ + b01(y) cos θ)r
1
β +O(r2).

For (i) refer to [141, Corollary 3.6], for some of the operators mentioned, while the proof
for the remaining ones follows from (ii). Part (ii) is the singular analogue for the usual C1,α

estimates for a function in W 2,∞, and can be proved using [141, Proposition 3.8]—we sketch
the proof in Lemma 3.12. In fact, (ii) implies the statement of (i) holds for a larger class of
operators. Finally, (iii) is a corollary of Theorem 3.9 and the polyhomogeneous structure of
the Green kernel stated in Theorem 3.15.

3.7 Kähler edge metrics

We start with a completely elementary, yet important, lemma.

Lemma 3.11. Let g be a continuous Kähler metric on M \ D, and such that in any local

holomorphic coordinate system near D where D = {z1 = 0}, and z1 = ρe
√
−1θ,

g11̄ = Fρ2β−2, g1j̄ = gi1̄ = O(ρβ−1+ε), and all other gij̄ = O(1), (3.17)

for some ε ≥ 0, where F is a bounded nonvanishing function which is continuous at D. Then
there exists some C > 0 such that in any such coordinate chart

1

C
gβ ≤ g ≤ Cgβ. (3.18)

Moreover, the converse implication holds.

Proof. This amounts to showing that 1
C Iβ ≤ [gij̄ ] ≤ CIβ, where Iβ := diag(ρ2β−2, 1, . . . , 1).

Let v = (v1, . . . , vn) ∈ Cn be any vector. Then,

n∑
i,j=1

gij̄vivj ≤ g11̄|v1|2 +

n∑
i,j=2

gij̄vivj +

n∑
j=2

|g1j̄ |2|v1|2 +

n∑
j=2

|vj |2 ≤ Cρ2β−2|v1|2 + C

n∑
j=2

|vj |2,

for some C > 0, proving the second inequality. The first inequality follows similarly, since
(3.17) implies that

g11̄ = Fρ2−2β, g1j̄ , gi1̄ = O(ρ1−β+ε), and all other gij̄ = O(1). (3.19)
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Conversely, choosing v = (0, v′) shows that CI ≤ g′ := [gij̄ ]
n
i,j=2 ≤ C ′I, and thus gij̄ = O(1),

for all i, j ≥ 2. (3.18) implies C−nωnβ ≤ ωn ≤ Cnωnβ , but

det[gij̄ ] = g11̄ det[gij̄ ]
n
i,j=2 − |(g12̄, . . . , g1n̄)|2g′ ,

where |v|2g′ := vH [gij̄ ]
n
i,j=2v. It follows that |g1j̄ | ≤ Cρβ−1, for all j ≥ 2.

We define

Hεω := {ϕ ∈ C∞(M \D) ∩ C0(M) : ωϕ > 0 on M, and ωϕ satisfies (3.17)}. (3.20)

We call
Heω := ∪ε>0Hεω

the space of Kähler edge metrics.
We note that another, simpler, way of deriving the preceeding lemma, but which conceals

some of what is going on, is by working in the singular coordinate chart (ζ, z2, . . . , zn). In a
nutshell, in terms of the singular coordinates, the definition of a Kähler edge metric simply
means that the cross terms in the matrix [gij̄ ] (i.e., terms for which precisely one of i and j equals

1) have a fixed rate of decay O(rε/β) near D, so that the metric is asymptotically a product.
In particular, this means the corresponding Laplacian is also approximated in a certain precise
sense by the Laplacian of the product of a flat cone and Cn−1 (i.e., the Laplacian of ωβ). This
is very important in proving existence of asymptotic expansions, and structure results for the
Green kernel, as we discuss later. In fact, as will follow from the general theory we explain
later, in essentially all of the discussion below one may take concretely ε = min{1−β, β}. To be
more precise, we will show that solutions to essentially any reasonable complex Monge–Ampère
equation always lie in Heω, and KEE metrics in fact even lie in Hβω.

We end this subsection with a lemma that shows that Heω is a natural choice of space of
Kähler metrics in this context. Indeed, once we have found one reference Kähler edge metric,
we may produce many other such metrics by adding a Kähler potential with merely bounded
complex Hessian. This fact may seem counterintuitive at first. It is absolutely crucial for all
that follows. Its proof relies crucially on the fact that β < 1, or ultimately on the fact that no
nonzero 2πβ-periodic function b can satisfy bθθ + b = 0, i.e., −1 is not in the spectrum of the
Laplacian on S1(2πβ), which equals −N0/β

2.

Lemma 3.12. Suppose that η ∈ Hεω and that [uij̄ ] is bounded. Then η+
√
−1∂∂̄u ∈ Hε̃ω, where

ε̃ = min{ε, β, 1− β}.

This is a corollary of Theorem 3.10 (ii). The proof of this result uses the basic Schauder type
estimates in the edge spaces. Indeed, the assumption implies of course that ∆ωu = f ∈ L∞.
Thus u = Gf + k with k an element of the L2 kernel of ∆ω. One may show that any element
of the kernel can be written in the form a0(y) + a1(y, θ)r1/β + O(r2+δ), and thus ∂y∂rk =

O(r
min{ 1

β
−1,1}

). On the other hand, it is not difficult to show that both ∂r ◦ G and 1
r∂θ ◦ G

map L∞ to itself (see Theorem 3.7 (i)). Thus, 1
r∂θu ∈ L

∞ and ∂ru ∈ L∞. We will use both
of these facts in a moment. Now, by our assumption, ∂y∂ru = O(1). Integrating twice we find
that u = v(y, θ) + a(r, θ) + O(r). Applying the two boundedness results from above it follows
that 1

r∂θ(v+a) = 0. But this implies that both ∂θv(y, θ) and ∂θa(r, θ) are functions of θ alone,
but plugging that back in we see that necessarily then v + a must be a equal to v1(y) + a1(r),
with a1(r) = O(r), so u = O(r) + v1(y). We fix a value of y and regard u as a function on the
flat cone {y} × Cβ. We know that ∆βu = P11u = F (y) ∈ L∞, and so u = GβF + k(y). But
now, by the properties of Gβ we conclude that u must vanish to order O(rmin{1/β,2}), and so it
follows that ∂r∂yu = O(rmin{1/β−1,1}), from which the lemma follows.
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Remark 3.13. Essentially, if one assumes that F in (3.17) is also in the little Hölder space
associated to C0,γ

e , and one defines H̃eω accordingly, then it would follow that H̃eω ⊂ D̃
0,γ
e . It

would be interesting to also prove upper bounds on D̃0,γ
e .

3.8 The reference geometry

“[A] Hermitian metric has the peculiarity of favoring negative curvature over positive curva-
ture.”

— Solomon Bochner [35, p. 179].

One of the novelties of [141] was to prove a priori second order estimates for a fully nonlinear
PDE without curvature bounds on the reference geometry, but only with a one-sided curvature
bound. We are not aware of other situations where this is possible. Indeed, the next lemma
shows that there is no uniform bound, in general, for the curvature of the reference geometry.
But, it provides a one-sided bound, which turns out to be very useful for the Laplacian estimates
(see §7.3).

Lemma 3.14. The bisectional curvature of the reference metric ω (recall 3.5) is bounded from
above. In general, it is not bounded from below.

The proof, due to Li and the author, appears in [141, Appendix] and its generalization
to the case of normal crossings in [175, 176]. It relies on a careful computation, using an
adapted normal coordinate system appearing in the work of Tian–Yau [252]. The lack of the
lower bound can be seen directly from the computations in [141, Appendix] by considering
the R11̄11̄ component of the bisectional curvature, and observing that the upper bound can
be made as negative as one wishes. If one is only interested in proving the upper bound
(but without proving that no lower bound exists), the proof of Lemma 3.14 can be simplified
considerably, as pointed out to the author by J. Sturm in November 2013. Indeed, working
locally on a ball B ⊂ M centered at a point in D, one considers the holomorphic map F :

(z1, . . . , zn) 7→ (z1, . . . , zn, z
1
β

1 ). Let π : Cn+1 → Cn denote the projection to the first n
components. The Kähler form π?ω0 +

√
−1∂∂̄(H(z1, . . . , zn)|zn+1|2) is a smooth metric on a

ball in Cn+1 whose bisectional curvature is uniformly bounded. Pulling this form back from
the complement of {z1 = 0}∪{zn+1 = 0} under the holomorphic map F yields the Kähler form
ω0 +

√
−1∂∂̄(H|z1|2β) on Cn whose bisectional curvature can only decrease by the classical

expression for the second fundamental form of a complex submanifold [124, p. 79]. Even
though the map F is only multivalued, the pull-back of the Kähler form above is continuous
single-valued since H is a smooth function of z1 and the expression |z1|2β is single-valued under
this pullback.

A corollary of both statements in the Lemma is that the Ricci curvature of ω is unbounded
from below: if it were not, the upper bound on the bisectional curvature would force a lower
one as well. As alluded to above, this fact motivates using the Ricci continuity method that
starts out, morally, with a metric whose Ricci curvature bound is −∞, and gradually produces
a better lower bound until, eventually, arriving at the Kähler–Einstein metric.

In the case of the model edge Cβ×Cn−1 the curvature is identically zero outside the divisor.
In general, it is natural to expect that the holomorphic submanifold geometry of the divisor D
in M should be related to whether a reference metric exists with bounded bisectional curvature.
A first step in this direction was taken by Arezzo–Della Vedova–La Nave [4].
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Figure 3: The space X ×X.

←−r

r′

Figure 4: The real blow-up of the origin in the quadrant; the origin represents any point in the
diagonal of ∂X × ∂X.

3.9 The structure of the Green kernel

In this subsection we describe in detail the structure of the Green kernel in the case M is
S2 with D a single point. The general case is not much more complicated, but we prefer
concreteness over generality in this discussion.

Thus we start with the singular manifold (S2, p) and blow-up the point p as in Figure 2.
What this means is that we ‘separate’ the different directions in which one may approach the
point p. Each of these directions is now a separate point in the blow-up. As in §3.4, what this
real blow-up amounts to is to introduce polar coordinates (r, θ) around p, with r(p) = 0. Then
X = BlR+

p S2 is the disjoint union of S2 \{p} and a circle S1
2πβ of radius 2πβ. It comes equipped

with a blow-down map X → S2 and the inverse image of p is S1
2πβ. (In the real setting a real

blow-up sometimes also refers to an R blow-up where the resulting fiber over p is a half circle
or RP1; therefore we used the superscript R+ for our ‘oriented’ blow-up.)

We do not describe the Green kernel Gω associated to ω (or any phg edge metric) on X×X
(see Figure 3), but instead pull it back under one more blow up map. The purpose of this is to
‘separate’ certain directions near the boundary diagonal. In other words, if {(0, θ)} × {(0, θ′)}
is a point on ∂X×∂X there are many different ways to approach it from the interior: if r, r′ are
the radial variables on each of the two copies of X, we may let r approach zero faster than r′

or vice versa. Thus we consider r, r′ as coordinates on the positive orthant R2
+ := R+×R+ and

blow-up the origin (see Figure 4). The result Bl
R+

(0,0)R
2
+ is the disjoint union of R2

+ \{(0, 0)} and

a quarter circle S1
++ of radius π/2. The quarter circle parametrizes various values of the ratio

r/r′, via the map tan−1 : [0,∞) → S1
++. This blow-up is a purely local construction; we may

thus perform it on X ×X, which amounts to blowing-up each point on the boundary diagonal
∂X×∂X, or in other words blowing-up that whole submanifold. We denote the resulting space
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by the edge double space
X2
e := BlR∂X×∂XX ×X

(here the R and R+ blow-ups coincide). In higher dimensions, there are an additional 2n − 2
conormal directions y. Then we only blow-up the fiber diagonal {r = r′ = 0, y = y′} which is
a strict submanifold of ∂X × ∂X. We denote by

π : X2
e → X2

the blow-down map. Observe that π−1(∂X × ∂X) is the union of three hypersurfaces:

rf := π−1
(
{r = 0}

)
, lf := π−1

(
{r′ = 0}

)
,

called the right and left faces, and the new hypersurface

ff := π−1
(
{r = r′ = 0}

)
,

diffeomorphic to S1 × S1 × S1
++, called the front face. These hypersurfaces all have coor-

dinate descriptions in terms of polar coordinates about the corner {r = r′ = 0}. Namely,
denote R :=

√
r2 + r′2 and set (ψ,ψ′) := (r/R, r′/R) ∈ S1

++. The double edge space then is
parametrized near its boundary by (R,ψ, ψ′, θ, θ′) (while, by comparison, X2 was parametrized
by (r, r′, θ, θ′)), and rf = {ψ = 0}, lf = {ψ′ = 0},ff = {R = 0}. Away from its boundary X2

e

is locally diffeomorphic to M ×M , of course, and is parametrized there by coordinates on the
latter.

Now, we return to the general setting of a Kähler edge manifold, and describe Gω as the
push-down of a distribution on X2

e under the blow-down map π. For concreteness, the reader
may focus on the example given above, even though the result below is stated in the general
setting. The first main reason for doing so is that Gω is of course singular along the diagonal
of X2, however the diagonal intersects the boundary nontransversally, while the lifted diagonal

diage := {(R, 1/
√

2, 1/
√

2, θ, θ) : R ∈ R+, θ ∈ S1}

intersects ff transversally at {(0, 1/
√

2, 1/
√

2, θ, θ)} ∼= S1, and the intersection points lie in the
interior of ff. Another reason for working on X2

e is the dilation invariance structure. Finally,
here is the description of Gω, a corollary of a general result of Mazzeo [172, Theorem 6.1], see
[141, Proposition 3.8].

Theorem 3.15. Let g be a polyhomogeneous edge metric with index set Eg with angle β along
D and denote by G the generalized inverse to the Friedrichs extension of −∆g. Then the
Schwartz kernel KG of G is a distribution on X2

e that can be decomposed as KG = K1 + K2

with the following properties:
K1 is supported on a neighborhood of diage disjoint from lf and rf; R2n−2K1 has a classical
pseudodifferential singularity of order −2 on diage that remains conormal when extended to ff.
K2 is polyhomogeneous on X2

e with index sets 2− 2n at ff, and E at both rf and lf, where

E ⊂ {(j/β + k, `) : j, k, ` ∈ Z+ and ` = 0 for j + k ≤ 1, (j, k, `) 6= (0, 1, 0)},

when Eg = {0}, and otherwise E is contained in a larger set that is determined by Eg and the
above set. In particular,

T ◦G : C0,γ
e → C0,γ

e ,

is a bounded operator where T ∈ Q is as in Theorem 3.7.

The proof of this occupies a good part of [172] and we will leave a detailed exposition of it
in our complex setting to a separate exposition.
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3.10 Higher regularity for solutions of the Monge–Ampère equation

The standard theory of elliptic regularity applies directly to the Monge–Ampère equation,
despite it being fully nonlinear [123, §17]. Indeed, the linearization of the Monge–Ampère
equation is simply the Poisson equation (with a potential)—we review this shortly. It implies
that any C2,α solution of (2.3) is automatically smooth (for an alternative approach see [83]).
This assumes, of course, that the reference form ω is smooth. A penetrating feature of Kähler
edge geometry is that although ω (see (3.5)) is no longer smooth, it is possible to develop
an analytical theory that isolates, so to speak, the only direction in which the geometry is
singular, or, equivalently, in which the associated Laplacian is degenerate (fails to be elliptic).
Thus, KEE metrics turn out to be smooth in all conormal directions. One could stop here
and argue that this is already the right analogue of higher regularity in the singular setting.
However, as already indicated in §§3.4, Taylor’s theorem does not apply to a merely conormal
function. The analogue of smoothness is thus the space of polyhomogeneous conormal distri-
butions. This is more than an academic difference. One of the thrusts of this approach is
that polyhomogeneity yields basic geometric information. Also, the proofs of these facts are
rather standard by now—essentially a matter of high-level bookkeeping, somewhat analogously
to tools in algebraic geometry. These proofs have their origin in the fundamental work of Mel-
rose, developed in-depth in the case of real edges by Mazzeo, and further developed in the case
of complex codimension one edges in [141] and in any codimension for crossing complex edges
of codimension one [175, 176]. For the rest of this subsection we describe, in broad strokes,
how higher regularity is proved in the edge setting and mention some of its basic analytic and
geometric consequences.

A basic fact is that solutions of a general class of complex Monge–Ampère equations are
automatically polyhomogeneous as soon as they lie in the maximal Hölder domain D0,γ

e . For
concreteness, we concentrate on the special class of equations that we will consider in §6. We
denote by PSH(M,ω) the space of ω-plurisubharmonic functions on M , namely upper semi-
continuous functions u from M to [−∞,∞) such that ωu = ω +

√
−1∂∂̄u is a nonnegative

current on M .

Theorem 3.16. Let ω be a polyhomogeneous Kähler edge metric. Suppose that ϕ ∈ D̃0,γ
s ∩

PSH(M,ω), satisfies
ωnϕ = ωnef+cϕ, on M \D, (3.21)

where c ∈ R and f ∈ A0
phg. Then ϕ ∈ A0

phg.

The proof, that we now outline, relies mostly on the linear theory for D0,γ
e . The detailed

proof appears in [141, §4].

Proof. Differentiating (the logarithm of (3.21)) in a conormal direction ya (the same discus-
sion applies to differentiation in θ), the Monge–Ampère equation becomes a seemingly linear
equation,

∆ωϕ∂yaϕ = c∂yaϕ+ ∂yaf ∈ C0,γ
e , (3.22)

where we used Theorem 3.7 (i) for the inclusion. The nonlinearity comes, of course, from the
fact that the operator ∆ωϕ itself depends on ϕ. However, by Theorem 3.9 this is irrelevant, as

we assume that ϕ ∈ D̃0,γ
s ⊆ D̃0,γ

e ! Thus, we conclude that ∂yaϕ, ∂θϕ ∈ D
0,γ
e . Again because

ϕ ∈ D0,γ
e this implies that ∂y(∆ωϕϕ) ∈ D0,γ

e . By induction, ∂lθ∂
k
y (∆ωϕϕ),∆ωϕ(∂lθ∂

k
yϕ) ∈ C0,γ

e

for all l, k ∈ N∪{0} with l+k > 0, where ∂ky denotes any operator of the form ∂ya(1)
◦· · ·◦∂ya(k)

,
with a(i) ∈ {1, . . . , 2n− 2}. Thus, by composing with Gωϕ , we see that ∂yϕ, ∂θϕ are infinitely
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differentiable with respect to ∂θ and ∂y. Moreover, by (3.22) and standard elliptic regularity
in the edge spaces [172] it follows that ∂yϕ, ∂θϕ are infinitely differentiable with respect to r∂r.
And the inductive argument above then gives the same also for ∂lθ∂

k
yϕ. Namely, ∂yϕ, ∂θϕ ∈ A0.

Next, we write ∂yaϕ = Gωϕ(∂yaf + c∂yaϕ) + κ, where κ ∈ ker ∆ωϕ is simply a constant.
We show now that ∂yaϕ ∈ A0

phg. We claim that the Green operator Gωϕ maps a conormal

function to a function in r2A0, at least modulo something polyhomogoneous (phg). This is
an improvement on the general fact (cf. [172, Proposition 3.28]) that such an operator (we do
not go into the details of what “such” means here, but refer to [141, Lemma 4.2] for a precise
statement) maps A0 to itself. By induction, this is all we need to conclude the proof, as we
have already showed that ∆ωϕ∂yaϕ = ∂yaf+∂yaϕ ∈ A0; applying Gωϕ to both sides would then
show ∂yaϕ ∈ r2A0 +A0

phg. But, since f is phg it then follows that ∂yaf + ∂yaϕ ∈ r2A0 +A0
phg.

And so, applying the previous claim again we conclude ∂yaϕ ∈ r4A0 + A0
phg, and thus by

induction ∂yaϕ ∈ A0
phg.

Here is the idea behind the proof of the claim: by a theorem of Mazzeo [172, Theorem 6.1]
we know that Gβ, the Green kernel of the reference metric ω, has a polyhomogeneous kernel.
If all terms in its expansion, with one variable frozen, are O(r2) or better we would be done.
In general though there will be finitely many (positive, of course) exponents γ1, . . . , γN in the
polyhomogeneous expansion of G that are smaller than 2. (In our setting, there is only one such,
1/β.) But then post-composing Gβ with ΠN

i=1(r∂r − γi) eliminates these terms. Integrating
the equation ΠN

i=1(r∂r − γi) ◦Gβv = O(r2) in r thus yields that Gβv = O(r2) +
∑
ui(y, θ)r

γi .
When v ∈ A0 this yields therefore Gβv ∈ r2A0 + A0

phg. However, we are dealing with the
Green kernel Gωϕ which does not necessarily have a phg expansion (since ϕ is not phg as of

yet). However, by Theorem 3.9 the domain D̃0,γ
e (∆ωϕ) is independent of ϕ ∈ H̃eω, and simply

equals D̃0,γ
e (see Remark 3.13). In particular, Gωϕ has the same asymptotic behavior near the

lf and rf of X. In other words, while it is not phg, it has a partial expansion (the regularity
implied by belonging to D0,γ

e ), of the form a0(y)+(a1(y) cos θ+a2(y) sin θ)r1/β)+O(r2). Thus,
the same argument as above implies that for v ∈ A0 one has Gωϕv ∈ r2A0 +A0

phg.

Thus, ∇yϕ ∈ A0
phg, and by the same reasoning also ∂θϕ ∈ A0

phg. Thus, integrating, ϕ =

ϕ0 + ϕ1 with ϕ0 a function of r alone, and ϕ1(r, θ, y) ∈ A0
phg. But we already know that

ϕ ∈ C∞e . Thus ϕ0 lies in C∞e , but then necessarily also in A0 since it is independent of y, θ.
Thus, ϕ0(r) and hence ϕ lie in A0 and, moreover, ϕ−ϕ0(r) ∈ A0

phg. Thus, to obtain Theorem

3.16 it remains to prove that ∂rϕ ∈ A0
phg.

To that end, we apply ∂r to the logarithm of (3.21). This yields ∂rϕ = Gωϕ(∂rf+c∂rϕ)+κ2,
where now the term in paranthesis belongs to r−1A0, and κ2 ∈ R. Since the volume form with
respect to which Gωϕ is defined is asymptotically equivalent to rdrdθdy we may still apply Gωϕ
to a distribution in r−1A0 and obtain a distribution that lies in r−1A0. But now we know that
Gωϕ∂rf is actually bounded, since by Theorem 3.7 (i) ∂rϕ is as ϕ ∈ D0,γ

e . Thus, again, we may
treat the equation as an ODE in r, and show that in fact ∂rϕ lies in rA0 + A0

phg. As before,

an induction results in ∂rϕ ∈ A0
phg. In conclusion then ϕ ∈ A0

phg, completing the proof.

Remark 3.17. A precursor to this sort of argument is the work of Lee–Melrose [154] on the
complex Monge–Ampère equation on a domain, and related work of Mazzeo on the singular
Yamabe problem [173]. We also refer to Rochon–Zhang [209] for recent work. All of these
articles deal with several quite different situations, but are all on complete spaces, as opposed
to our incomplete setting.

We end this subsection by discussing the significance of the terms that appear in the asymp-
totic expansion. When the function on the right hand side f has a certain index set Ef (see
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(3.13)) the solution then has an index set that will depend on E,Eω, and Ef where E is the in-
dex set of Gβ, and Eω that of ω (see (3.5)), by which we mean the index set of ψ0 +φ0 where ψ0

is any Kähler potential for ω0 and φ0 is defined in (3.6). In the setting of the Kähler–Einstein
equation, one may determine the index set of the solution from this observation. This is a
somewhat tedious, albeit completely inductive routine—one simply treats the Monge–Ampère
equation as an ODE in r and computes the terms that can occur in the expansion, relying on
our alternative characterization of D0,γ

e (Theorems 3.7 and 3.9). It follows [141, Proposition
4.3] that solutions to essentially all the complex Monge–Ampère equations considered in the
setting of the Kähler–Einstein equation have the following expansion: when 0 < β < 1/2,

ϕ(r, θ, y) = a00(y) + a20(y)r2 + (a01(y) sin θ + b01(y) cos θ)r
1
β + a40(y)r4 +O(r4+ε) (3.23)

for some ε = ε(β) > 0; when β = 1/2, the asymptotic sum on the right includes an extra term
(a02(y) sin 2θ + b02(y) cos 2θ)r4; finally, if 1/2 < β < 1, then

ϕ(r, θ, y) = a00(y) + (a01(y) sin θ + b01(y) cos θ)r
1
β + a20(y)r2 +O(r2+ε) (3.24)

for some ε = ε(β) > 0.

Remark 3.18. When β ∈ (1/3, 1/2], one may readily show that the term in the expansion
after O(r1/β) is O(r1/β+1). This is roughly equivalent to the divisor D being totally geodesic
for all β ∈ (0, 1/2) (for β ∈ (0, 1/3) this is related to Atiyah–LeBrun [5]). This is another
justification for calling the regime β ∈ (0, 1/2] the orbifold regime.

Note that the term of order r1/β in (3.23)–(3.24) is annihiliated by ∂2/∂ζ∂ζ. From this, and
the explicit formulas for the reference metric ω and its derivatives [141, §2.2] one immediately
deduces the following geometric information [141, Theorem 2].

Corollary 3.19. Let ϕ ∈ H̃eω ∩ D
0,γ
e , and suppose that ωϕ is KEE or else is a solution of a

complex Monge–Ampère equation of the type (3.21) with EF (see (3.13)) suitably small. Then

ωϕ ∈ C
0,min{1, 1

β
−1}

w , but in general its Christoffel symbols and curvature tensor are unbounded.

More precisely, in the coordinates (r, θ, y), gij̄ = O(1 + r+ r
1
β
−1

+ r
2
β
−2

), Rij̄kl̄ = O(1 + r
1
β
−2

+

r
2
β
−4

), while Γkij = gkl̄gil̄,j = O(1 + r
1
β
−2

+ r
2
β
−3

). Moreover, ωϕ|D is a smooth Kähler metric.

As another corollary, Song–Wang observed that the expansion (3.24) directly implies that
the curvature tensor of a KEE metric is in L2 with respect to the metric [229, §4.1].

4 Existence and non-existence

In this section we survey necessary and sufficient conditions for existence of KE(E) metrics. We
start in §4.1 with the easier nonpositive curvature regime, where the cohomological criterion
(3.12) is necessary and sufficient. We then move on to obstructions (§4.2–4.3), and finally,
an essentially optimal sufficient condition for existence in the positive case (§4.5). In §4.4 we
pause to discuss the Riemann surface case. The existence theorems described in §4.1 and §4.5
are the main existence results for KE(E) metrics, and their proof uses results from Sections 3,
6, and 7.

We now review some background that is useful in describing some of the obstructions below.
Denote by

Hω = {ϕ ∈ C∞(M) : ωϕ := ω +
√
−1∂∂̄ϕ > 0}
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the (moduli) space of Kähler potentials representing Kähler forms (equivalently, metrics) in a
fixed cohomology class Ω = [ω]. When we discuss Kähler edge metrics, the natural replacement
is Hεω defined in (3.20). The corresponding space of Kähler forms is denoted by

HΩ = {α is a Kähler form with [α] = Ω}.

These are infinite-dimensional Fréchet manifolds, whose transformations, functions, forms, and
vector fields control different aspects of the KE problem. We first introduce some basic objects
on this space.

The tangent bundle of Hω is isomorphic to Hω × C∞(M), and similarly T ?Hω ∼= Hω ×
Γ(M,Λ2nT ?M), the latter factor denoting the space of top degree forms on M , with the
fiberwise pairing given by integration over M . The Mabuchi metric on Hω is defined by
[168, 220, 94]

gM(ν, η)|ϕ :=
1

V

∫
M
νη ωnϕ, ν, η ∈ TϕHω ∼= C∞(M), (4.1)

where V = [ω]n/n!. Note that the constant vector field 1(ϕ) = 1 is of unit norm. This
induces a Riemannian splitting Hω = ιω(HΩ) × R, with dιω(THΩ) ⊥ 1, HΩ thus identified
with a totally geodesic submanifold of Hω passing through 0 ∈ Hω. Thus, with some abuse of
notation, we may speak of geodesics in Hω or in HΩ interchangeably, with the latter meaning
geodesics in ιω(HΩ). Remarkably, 1 is a gradient vector field for gM [168, Theorem 2.3], and
the corresponding potential

L : Hω → R (4.2)

is thus a distance function for gM (in the sense that the norm of its gradient is one; as an
aside we remark that it would be interesting to find an interpretation of this fact in terms of
the Mabuchi distance), as first observed by Mabuchi [167, Theorem 2.3],[168, Remark 3.3]. It
is known as the Aubin–Mabuchi or Monge–Ampère energy since dL|ϕ = ωϕ

n (see also §5.1),
and sometimes also referred to as the Aubin–Yau functional, and has been studied by many
authors, see, e.g., [21, 23, 18, 200, 22]. Consequently, since 1 is constant, for any C2 curve γ(s)
in Hω,

L̈(γ(s)) = gM(1,∇gM
γ̇ γ̇), (4.3)

with the notation ḟ := df/ds, f̈ := d2f/ds2. That is, if ∇gM
γ̇ γ̇ ≥ 0 then γ(s) is a geodesic iff

L(γ(s)) is linear in s. Note also that ιω(HΩ) = L−1(0).

4.1 Nonpositive curvature: the Calabi–Tian conjectures

As reviewed in §2 the early history of Kähler–Einstein metrics revolved around the local ver-
sion of this equation. Two decades later, Calabi first formulated an ambitious program for
constructing KE metrics on closed manifolds. He explicitly formulated in writing the case of
zero Ricci curvature, but in analogy with the uniformization theorem, he expected that the
negative case should then follow as well. The following statement was first formulated as a
theorem in [44], before the existence part quickly became a conjecture thanks to discussions
between Calabi and Nirenberg on the need of a priori estimates.

Conjecture 4.1. (Calabi’s conjecture 1953 [44, 45, 46]) Let (M,J) denote a closed Kähler
manifold with c1(M,J) < 0 or c1(M,J) = 0. Then (M,J) admits a Kähler–Einstein metrics
that are unique up to homothety in the former case, and unique in each Kähler class in the
latter.
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When µ < 0, the uniqueness is immediate from the maximum principle: if u, v satisfy
ωnu/ω

n
v = e|µ|(u−v) then if u − v is maximized in p ∈ M , the form

√
−1∂∂̄(u − v) has non-

positive eigenvalue with respect to ωv, and so u − v ≤ 0; by symmetry v − u ≤ 0, so u = v.
When µ = 0 the uniqueness part was proved by Calabi [46] by exploiting the algebraic structure
of the Monge–Ampère equation (more specifically, properties of determinants and integration
by parts). Indeed, if ωnu = ωnv then 0 = ωnu − ωnv =

√
−1∂∂̄(u − v) ∧ T with T a positive

(n− 1, n− 1)-form. Multiplying by u− v and integrating by parts shows u− v is constant.
The existence part of Calabi’s conjecture was established by Aubin in the negative case and

by Yau in both cases [8, 267] (the zero case under the restrictive assumption that the manifold
admits a reference Kähler metric with nonnegative bisectional curvature was established earlier
by Aubin [6]). The main innovation was to establish the a priori C0 and Laplacian estimates
conjectured by Calabi and Nirenberg. The higher derivative estimates then followed by work
of Calabi described in §7.8, and by elliptic bootstrapping.

Four decades later, motivated by application to algebraic geometry, Tian formulated a
generalization for pairs of Calabi’s conjecture.

Conjecture 4.2. (Tian’s conjecture 1994 [242]) Let (M,J) denote a closed Kähler manifold
and D = D1 + . . . + Dr ⊂ M a divisor with simple normal crossing support. Suppose that
c1(M,J)−

∑r
i=1(1−βj)[Dj ] is negative or zero. Then (M,J) admits a KEE metric with angle

2πβj along Dj that is unique in the former case, and unique in each Kähler class in the latter.

This conjecture, similarly to Calabi’s original conjecture, was also first stated as a theorem
in Jeffres’ Ph.D. thesis [142, 242], but subsequently only the uniqueness was published [143]
due to the need of a priori estimates, as well as a good linear theory. A program outlining a
collaboration between Jeffres and Mazzeo toward such a linear theory was announced by Mazzeo
[174]. As described in Theorem 3.7, two independent sets of linear estimates, in the case of
a smooth divisor, were obtained, finally, first by Donaldson [102], and subsequently in [141].
What was lacking from the approach suggested in [174] was the simple, but crucial, observation
of [102] that if one simply considers Hölder control only of the complex (1, 1)-type derivatives,
then a Schauder theory can be established; if one considers the full Hessian then this is not
the case, due to the harmonic function z1/β. In the case of a smooth divisor, this conjecture
was resolved by Mazzeo and the author [141], that also established higher regularity of the
metric. The key here was, first, to establish the a priori estimates in the absence of curvature
bounds and, second, to develop a good linear theory in the edge spaces that, among other
things, allows to obtain higher regularity (polyhomogeneity). A different proof of existence
was later given by Guenancia–Pǎun [127] relying on work of Guenancia–Pǎun–Campana [52]
that appeared around the same time as [141] (also around the same time, Brendle [42] obtained
the special case of a smooth divisor and angle β ∈ (0, 1/2] using Donaldson’s linear estimate,
Theorem 3.7 (i) with s = w). As observed by Datar–Song [81], the existence in the general
snc case actually follows easily by combining the Chern–Lu approach of [141] and a standard
regularization argument à la Demailly; a more computationally involved proof by Guenancia–
Pǎun of the general case appeared slightly earlier than [81], and around the same time also
another approach based on regularization was developed by Yao [265] . Finally, the general snc
case has also been settled independently by [175, 176], where, in addition, the higher regularity
of solutions is proved by establishing a linear theory also in the snc case; such a theory is
considerably more complicated than in the smooth divisor case.

Much of Sections 3, 6, and 7 are devoted to describing the proof of Conjecture 4.2. In fact,
the proof of Conjecture 4.2 is, in fact, a corollary of the proof of the parallel result in the harder
positive case—Theorem 4.13. The strategy of proof, following [141], is described in §4.5 below,
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where the latter result is stated. We also survey other approaches in §6.6.
Fulfilling one of the original motivations for introducing edges—see §3.1, the following result

was first obtained in 2011 in [141] (an alternative proof was given in 2013 by Guenancia–Pǎun
[127]):

Corollary 4.3. (KEE metrics on all projective manifolds) Every projective manifold admits a
KEE metric of negative curvature for any angle 2πβ ∈ (0, 2π).

In fact, on any projective manifold M there exists an ample class H. Therefore, given
β ∈ (0, 1), for large enough m = m(β) ∈ N, both |mH| admits a smooth representative by
Bertini’s theorem, and the class KM + (1−β)mβH is positive. Note that if M is minimal, i.e.,
KM is nef, then one may take mβ = 1 independently of β by Kleiman’s criterion, so that the
fixed pair (M,H) admits KEE metrics for all β ∈ (0, 1).

Problem 4.4. Let M be minimal and H a smooth ample divisor. Describe the limiting behavior
of the KEE metrics on (M,H) as β tends to 1.

Example 4.5. To illustrate some of the new metrics arising from Corollary 4.3 consider the
projective plane P2 which is typically thought of as ‘positively curved’. By choosing a smooth
plane curve D of degree d ≥ 4 and any β ∈ (0, (d−3)/d), one can thus construct a KEE metric
of negative Ricci curvature. As d→∞ the angle 2πβ can be made arbitrarily close to 2π. Of
course, this example can be generalized to any Pn, with D a smooth hypersurface of degree d,
and β ∈ (0, (d− 1− n)/d).

Problem 4.6. As d → ∞, does the divisor D becomes dense in Pn with respect to the KEE
metric? How do the diameters of D and M behave? What is a Gromov–Hausdorff limit of
such a metric space (for different limiting values of β)?

The existence problem in the positive Ricci curvature realm is more complicated, as the co-
homological assumption is not sufficient. In the rest of this section we first describe obstructions
to existence, and then, finally, formulate a general existence criterion.

4.2 Reductivity of the automorphism group

The (connected) isometry group of the round 2-sphere complexifies to give the (identity com-
ponent of the) Möbius group of its conformal transformations. A similar fact also holds for the
isometry group of a football: it complexifies to the conformal transformations that fix the poles,
or cone points. Matsushima’s theorem states that the same is true for any KEE manifold.

Theorem 4.7. Let (M,J,D, g) be a KEE manifold. Let Isom0(M, g) denote the identity com-
ponent of the isometry group and denote by Aut0(M,D) the identity component of the Lie
group of automorphisms preserving D. Then Aut0(M,D) = Isom0(M, g)C. In particular,
Aut0(M,D) is reductive.

Matsushima’s original result was proved for KE manifolds and extended to constant scalar
curvature manifolds by Lichnerowicz [171, 160]. The singular version appearing in [60] follows
the same lines, by using regularity results from [141]. A more general result (assuming the
manifold only has a weak KE metric in the sense of [108]) but in the special case M is Fano
and D ∈ | −KM | can be found in [63, 248].

Instead of reviewing the proofs above, we describe a formal proof due to Donaldson in the
smooth setting, in the spirit of infinite-dimensional geometry [98].
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First, let diff(M,D) denote the Lie algebra of vector fields on M that vanish on D, and
denote by ham(M,D,ω) the Lie subalgebra of fields X satisfying [ιXω] = 0. The corresponding
Lie subgroup, Ham(M,D,ω), consists of Hamiltonian diffeomorphisms of (M \ D,ω) that
preserve D. The group Ham(M,D,ω) acts in a natural way on the space J of ω-compatible
complex structures. Furthermore, J comes equipped with a natural symplectic structure.
A result of Donaldson in the smooth setting shows that the Ham(M,D,ω)-action on J is
Hamiltonian, with a moment map given by the scalar curvature s(ω, J) minus its average. As
long as we restrict to diffeomorphisms F that preserve polyhomogeneity and for which further
F ?ω − ω =

√
−1∂∂̄uF , with uF ∈ D0,γ

w , it is not hard to show that this result extends to the
edge setting.

Now, suppose a holomorphic Hamiltonian group action G can be complexified to GC. A
basic fact in finite-dimensional moment map geometry says that for an element belonging to
the zero of the moment map, the isotropy group of the GC-action is the complexification of the
isotropy group of the G-action. Now for any J ∈ J the isotropy group of Ham(M,D,ω) are
those diffeomorphisms of M \D that preserve both J and ω, i.e., isometries. Similarly, if one
is willing to think of Ham(M,D,ω)C as all diffeomorphisms preserving D and the (1,1)-type
of ω, then the isotropy group of J can be identified with Aut(M,D) (some motivation for such
a formal identification is discussed in [220, 94]). Thus, if J ∈ J is a constant scalar curvature
structure, the Matsushima–Lichnerowicz criterion follows.

Example 4.8. The automorphism group of all strongly asymptotically log del Pezzo pairs
(these pairs are defined in Definition 8.6) are computed in [60]. Here are some explicit examples.
The pair (Pn, H) with H a hyperplane in Pn, satisfies

Aut(Pn, H) ∼= Aut(Pn, p) ∼= Aut(BlpPn) ∼= Gn
a o GLn(C),

for a point p ∈ Pn, where BlpPn denotes the blow-up of Pn at p, and where Ga the additive group
(C, + ). The latter group is not reductive. This generalizes the well-known obstruction to the
existence of a constant curvature metric on the teardrop (S2 with one cone point), see §4.4 below
(another way to see this pair is obstructed is to use the Bogomolov–Miyaoka–Yau inequality
[242, 229]). For the pair (P2, D), with D ∈ |2H| a smooth quadric, any automorphism of D
lifts to automorphism of P2, since P2(H0(D,−KD)) = P2 (again, note that Aut(P2)→ Aut(D)
is injective, since an automorphism of P2 can only fix a linear subspace). Thus Aut(M,D)
equals PGL2(C) (and is reductive). This pair, however, turns out to be obstructed only when
β ∈ (0, 1/4] [157].

4.3 Mabuchi energy, Futaki character, and their relatives

When (2.2) holds, the KE problem reduces to finding a constant scalar curvature metric in Hω.
Indeed, ∂̄sω = ∂?Ric ω, where sω = trωRicω, denotes the scalar curvature (more precisely, half
of the standard convention in Riemannian geometry). Or simpler, sωω

n = nRicω ∧ ωn−1 and
thus sω is constant iff Ricω is harmonic, i.e., a multiple of ω. This can be considered as an
easy Kählerian analogue of the Obata theorem in conformal geometry.

Thus, it is natural to consider the following vector field on Hω:

s : ω 7→ sω − gM(sω, 1) = sω − nc1.[ω]n−1/[ω]n. (4.4)

4.3.1 Mabuchi K-energy

The zeros of the vector field s are the constant scalar curvature (csc) metrics in H, and its
integral curves are the trajectories of the Calabi flow [48]. A remarkable fact is that s is in fact
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a gradient vector field ∇ME0 = s [167]. Its potential E0 : Hω ×Hω → R

E0(ω0, ω1) =

∫
γ

s[,

is known as the Mabuchi K-energy, where s[ denotes the 1-form associated to s via gM, and γ
is any simple path between ω0 and ω1.

We now mention several fundamental properties of Mabuchi’s K-energy due to Bando–
Mabuchi [14]. Any critical point of E0 is KE as already remarked; and in fact all such critical
points lie in a connected finite-dimensional totally geodesic submanifold ofHΩ parametrizing all
KE metrics in HΩ and isometric to the symmetric space Aut(M,J)/Isom(M,ωKE)—the orbit
of a single KE metric ωKE ∈ HΩ under the action of the identity component of Aut(M,J) on
HΩ by pull-back. Moreover, a computation shows that the second variation of E0 at a critical
point is nonnegative, so KE metrics are local minima. A more difficult result is that KE metrics
are in fact global minima of E0. Thus, the KE problem is equivalent to determining when E0

attains its absolute minimum. In particular, for a solution to exist, E0 must be bounded from
below. In practice, it is easier to use this criterion to prove non-existence, as we discuss in the
next paragraph. A stronger criterion introduced by Tian [243], “properness of E0”, does turn
out to be equivalent to existence; see §5.

4.3.2 Futaki character

A näıve way to show that E0 is unbounded from below is to find a path along which its
derivative is uniformly negative. The simplest kind of path arises from a holomorphic vector
field, and is the pull-back of a fixed metric by a one-paramter group of automorphisms. To
spell this out, denote by ψX the vector field on Hω associated to the holomorphic vector field
X,

ψX : ω 7→ ψXω ∈ C∞(M),

with LXω = dιXω =
√
−1∂∂̄ψXω , and

∫
ψXω ω

n = 0. Thus, ψX is tangent to ιω(HΩ). Moreover,
if γ(s) is an integral curve of ψX in ιω(HΩ), then ω(s) := ι−1

ω γ(t) = (exp sX)?ω(0) and
L̇(γ(s)) = gM(1, ψX)|ω(s) =

∫
ψXω(0)ω(0)n = gM(1, ψX)|ω(0) since ψXω(s) = (exp sX)?ψXω (0) from

the definition of ψX and the fact that the pull-back by an automorphism commutes with ∂∂̄.
Thus, γ(s) is a geodesic by (4.3).

Along such geodesics Ė0(ω(0), ω(s)) = gM(s, ψX)(γ(s)) is manifestly constant in s. What
is less obvious is that this latter constant does not depend on the initial metric ω(0). To see
this, note that s[= dE0 is evidently a closed form (here [ and ] denote the “musical operators”
associating to a vector field a one-form via the metric gM and vice versa). Denote by exp tψX

the flow on Hω associated to ψX , given by pull-back by exp tX. Since the scalar curvature is
natural then (exp tψX)?s[ = s[. Combining these facts, LψXs[ = dιψXs[ = 0. Thus, ψX(E0)
is constant on Hω, as claimed. It is thus denoted by F (X), and is called the Futaki invariant
of X [114, 49, 39]. Since F (−X) = −F (X), it follows that F : aut(M,J) → R must vanish
identically or else E0 is unbounded from below.

Like most objects in Kähler geometry, also the above discussion generalizes in a straight-
forward manner to include edges when (3.12) holds. Considering the 1-form

s[β : ω 7→ (sω − nc1.[ω]n−1/[ω]n)ωn − (1− β)ωn|D,

proofs conceptually similar to the ones in the smooth setting show that this 1-form is closed,
admits a potential Eβ0 , and an associated Futaki character on the Lie algebra aut(M,D) of
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holomorphic vector fields vanishing on D, and that Eβ0 must be bounded from below when a
KEE metric exists. To obtain these results one works on the space Hεω (3.20), where integration
by parts arguments, as in the smooth setting, are justified.

We refer to [115, 89, 163, 245, 191, 156] for explicit computations of Futaki invariants.

Remark 4.9. In the smooth 2-dimensional Fano setting Futaki’s and Matshusima’s obstruc-
tions coincide. But in higher dimensions, there exist examples where only one of the obstruc-
tions appears. For instance, P(E), where E = OP1(−1) ⊕ OP2(−1) is the rank 2 bundle over
P1×P2, is a Fano 4-fold with reductive automorphism group and nonvanishing Futaki character
[117, pp. 24–26] (see also [114, 261]). On the other hand, there exists a Fano 3-fold whose
connected automorphism group is Ga = (C, + ), see case 2) in the main result of Prokhorov
[207], and so its Futaki character must vanish by a theorem of Mabuchi [169, Theorem 0.1].
We also remark that for some time it was believed that these two obstructions should be also
sufficient [114, §4], [167, p. 575], [138, Conjecture E]. This was verified by Tian for del Pezzo
surfaces [239] (see §9), but disproved for 3-folds, as we discuss next.

4.3.3 Degenerations and geodesic rays

One-parameter subgroups of automorphisms are particularly amenable to computations, as we
saw in the previous subsection. Yet, generic complex manifolds do not admit such automor-
phisms, and the complexity of E0 goes beyond automorphisms: Tian constructed Fano 3-folds
with no nontrivial one-parameter subgroups of automorphisms that admit no KE metrics [243].
As a replacement, Tian suggested to consider M as embedded in a one-parameter family of
complex manifolds and consider a C? action on this whole family. He observed that one may
still associate a Futaki type invariant to this family, often referred to as a special degeneration or
test configuration, and this reduces to the ordinary invariant when the family is a product. (Of
course, we are glossing over many technical details here, among them that the action should lift
to an action on a polarizing line bundle, and that the invariant is computed by considering high
powers of this bundle. As noted in the Introduction, we refer to Thomas [236] for GIT aspects
of KE theory.) Furthermore, he conjectured, in what became later known as the Yau–Tian–
Donaldson conjecture, that if the sign of this invariant is identical for all special degenerations,
and is zero only for product configurations, then the manifold should admit a KE metric [243].
This criterion is called K-polystability. In Tian’s original definition only certain singularities
were allowed on the “central fiber” of such a degeneration. Donaldson extended this to much
more general ones [97]. Li–Xu finally showed that the original definition suffices [158]. A dif-
ferent definition of stability has been introduced by Paul [194, 195, 250], who also conjectured
its equivalence to the existence of KE metrics. Very recently, a solution to these conjectures
has been announced by Chen–Donaldson–Sun and Tian [63, 248], crucially building upon the
theory of KEE metrics described in this article, and in particular on [102, 141]. Shortly after
the appearance of [63, 248], Székelyhidi observed that those may be adapted to give similar
conclusions without using KEE metrics [233].

Recently, Ross–Witt-Nyström introduced the notion of an analytic test configuration [212].
Very roughly, in their approach the singularities of the central fiber are replaced by a “singu-
larity type” of a curve of ω-psh function, and a (usually singular) generalized geodesic ray is
constructed out of this data. This generalized previous constructions of Arezzo–Tian, Phong–
Sturm, Song–Zelditch, that constructed such rays out a degeneration in the sense of the previous
paragraph [2, 201, 228]. A generalized, or weak, geodesic existing for time s ∈ [0, T ], is a solu-
tion to the homogeneous complex Monge–Ampère equation on the product ST×M , where M is
a strip [0, T ]×R of width T , but it need not be a path in H, but only in PSH(M,ω). These can
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be regarded as bona fide geodesics if one enlarges the space of Kähler metrics appropriately, as
considered by Darvas [78]. A different approach to construction of geodesic rays is suggested
by Zelditch and the author via the Cauchy problem for the Monge–Ampère equation [217].

Coming full circle, a conjecture of Donaldson states that the existence problem should
actually be completely characterized by generalizing Futaki’s criterion to all geodesic rays.
Namely, the non-existence of a csc Kähler metric is conjectured to be equivalent to the non-
existence of a geodesic ray (whose regularity is not specified in the conjecture) along which the
derivative of the K-energy is negative [94].

4.3.4 Flow paths and metric completions

Another conceivable way to “destabilize” a Fano manifold is to use Hamilton’s (volume nor-
malized) Ricci flow [129],

∂ω(t)

∂t
= −Ricω(t) + ω(t), ω(0) = ω ∈ Hc1 , (4.5)

which preserves the space Hc1 of Kähler forms cohomologous to c1 and exists for all time [54].
A theorem of Perleman asserts that the flow will converge to a Kähler–Einstein metric if and
only if such a metric exists [255]. Thus, it is tempting to hope that Ricci flow trajectories
could actually give another way of constructing geodesic rays. The following conjecture was
suggested by La Nave–Tian [152, §5.4], based on a description of the Ricci flow as a Monge–
Ampère equation in one extra dimension, that should bear a relationship to the homogeneous
complex Monge–Ampère equation governing geodesics in the Mabuchi metric (4.1).

Conjecture 4.10. The Kähler–Ricci flow is asymptotic to a gM-geodesic in a suitable sense.

The first attempt to understand the metric completion ofHω is due to Clarke and the author
[75, Theorem 5.6] where the metric completion with respect to the Calabi metric is computed,
motivated by an old research announcement of Calabi [44] that speculated a different answer.
Calabi’s metric is the L2 metric on the level of Kähler forms, that also takes the form

gC(ν, η)|ϕ :=

∫
M

∆ϕν∆ϕη
ωnϕ
n!
. (4.6)

Interestingly, Calabi’s metric was his original motivation for introducing the Calabi conjecture
[44], see [75, Remark 4.1]. The following result relates degenerations arising from the Ricci
flow, the existence problem of KE metrics, and the metric geometry of Hω.

Theorem 4.11. Let (M,J) denote a Fano manifold. The following are equivalent:
(i) (M,J) admits a KE metric;
(ii) Any Ricci flow trajectory in Hc1 converges in the Calabi metric gC (4.6).

Note that the derivative of the K-energy is negative along the Ricci flow. Also, any divergent
path must have infinite length in the corresponding metric. Thus, this result stands in precise
analogy to Donaldson’s conjecture on “geodesic stability,” with Ricci flow paths taking the place
of gM-geodesic rays. This gives some intuitive motivation both for Donaldson’s conjecture and
for Conjecture 4.10. We conjecture that these statements are also equivalent to the statement
that any Ricci flow trajectory in Hc1 converges in the Mabuchi metric gM (4.1). A weaker
statement was obtained by McFeron [178] where “converges” is replaced by “has finite length”.

Convergence in the metric sense is rather weak from a PDE point of view. Thus, the main
point in proving this theorem is to show that such convergence implies strong convergence.
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A sequence of Kähler metrics ωi converges in the Calabi metric precisely when the volume
forms ωni converge in L1(M,ωn0 ) [75, Corollary 5.5], and in particular do not charge Lesbegue
null sets. Now, the limit along the Ricci flow converges to a metric that charges an analytic
subvariety [75, Lemma 6.5] (this builds on results of Nadel [189, 190] and the author [215]),
which proves that (ii) implies (i). The converse is an immediate corollary of the exponential
convergence of the flow when a KE metric exists [255, 203].

Finally, we remark that both Donaldson’s conjecture and Conjecture 4.10 should be related
to the Hamilton–Tian conjecture, stipulating that the Kähler–Ricci flow on Fano manifolds
should converge in a suitable sense to a Kähler–Ricci soliton (with respect to a possibly different
complex structure) with mild singularities [243, Conjecture 9.1]. This relation could be related
to the following problem.

Problem 4.12. Determine which gM-geodesic rays (possibly non-smooth) come from automor-
phisms of a manifold with a nearby complex structure.

For smooth Riemann surfaces the Ricci flow converges to a constant scalar curvature by
results of Hamilton and Chow [130, 72], and to a soliton in the case of orbifold Riemann
surfaces (i.e., angles βi of the form 1/mi with mi ∈ N) [73]. The Hamilton–Tian conjecture was
also recently established in the setting of conical Riemann surfaces [177] and in the smooth 3-
dimensional setting by Tian–Zhang [253]. The smooth 2-dimensional case was previously known
by Tian’s uniformization of del Pezzo surfaces relying on their classification (see Remark 4.9
and the introduction of §9) and Tian–Zhu’s generalization of Perleman’s convergence result for
the Kähler–Ricci flow [255].

Finally, we mention that much of the discussion above has an analogue for the Calabi flow
[48]. Calabi conjectured that the eponymous flow exists for all time and converges to a csc or,
in an appropriate sense, to an extremal metric. The most general long time existence result
known is due to Streets [230] though the question of regularity of such weak flows is open
(assuming curvature bounds along the flow a smooth solution exists for all time by Chen–He
[64]). An analogue of Conjecture 4.10 in this setting is shown by Chen–Sun [66]. It would
be interesting to understand an analogue of Theorem 4.11. We mention in this context that
according to [64, Theorem 4.1] (see [55, §3] for a recent alternative and conceptual proof) the
Calabi flow converges exponentially fast as soon as it converges smoothly, say. In addition,
a result of Berman states that, when the Kähler class is a multiple of the canonical class,
the Calabi flow, when it exists, converges to a Kähler–Einstein metric when one exists [18,
Theorem 1.4]. Finally, results of Chen–He, Feng–Huang, He, Huang, and Tosatti–Weinkove,
among others, give various conditions for convergence of the Calabi flow [65, 111, 133, 137, 257].

4.4 Conical Riemann surfaces

It is interesting to contrast the general results surveyed so far with the 1-dimensional picture:
when can one uniformize a conical Riemann surface? By uniformization we refer to the con-
struction, in a given conformal class, of a constant scalar curvature metric with prescribed
conical singularities. This question was studied, in the negative case, already in Picard’s work
more than a century ago [205, 206] and was first treated definitively in Troyanov’s thesis
[258, 259] (see also McOwen [179, 180]) where a sufficient condition for existence was estab-
lished; uniqueness and necessity of this condition were addressed by Luo–Tian [165]. We refer
to [177] for background and an alternative approach via the Ricci flow (see also [268] for the
nonpositive cases).
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Figure 5: The teardrop and football (with different angles) solitons with non-constant curva-
ture, and a constant curvature football with equal angles (courtesy of D. Ramos [208]).

Fix a smooth compact surfaceM , along with a conformal, or equivalently, complex structure
J . A divisor D is now a collection of distinct points {p1, . . . , pN} ⊂M and the associated class
c1(M,J)−

∑
(1− βj)pj , that can be thought of as a modified Euler characteristic, is

2− 2g(M)−
N∑
j=1

(1− βj). (4.7)

In particular, this is now a number, and so the cohomological condition (3.12) is always satisfied.
In a local conformal coordinate chart near each pj , g =

√
−1γjdz ⊗ dz =

√
−1γj |dz|2, with

γ = |z|2βj−2Fj and Fj bounded. Suppose that g has constant curvature away from the cone
points. The Poincaré–Lelong formula asserts that −∆g log |z| is a multiple of the delta function
at {z = 0} (this can be seen by excising a small neighborhood near the cone point and using
Stokes’ formula). Together with the standard formula for the scalar curvature, Kg = −∆g log γ
(up to a constant factor), it follows that

Kg − 2π
∑

(1− βi)δpi = const, (4.8)

with the constant given by (4.7). The existence in the nonpositive regime uses standard meth-
ods as in the smooth setting, e.g., the variational method of Berger [17], or the method of
sub- and super-solutions used by Kazdan–Warner [145]. A somewhat surprising discovery of
Troyanov was the sufficient condition

βj − 1 >
∑
i 6=j

βi − 1, for each j = 1, . . . , N , (4.9)

for existence in the positive case, that followed by generalizing Moser’s inequality [185, 186]
to the singular setting. For instance, if N = 2, this is violated when β1 6= β2. As observed
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by Ross–Thomas, this condition can be rephrased by saying that the Futaki invariant of the
pair (M,

∑
(1 − βi)pi) has the right sign, or that the pair is slope (poly)stable [211, Theorem

8.1] (see [211, Remark 8.4] for a careful treatment of the equality case in (4.9)). The only
additional unobstructed pair is N = 2 with β1 = β2, and such a csc metric can be constructed
explicitly using ODE methods; when β1 6= β2 or N = 1 one can still construct a shrinking
Ricci soliton [130] (see also [26, 208]). These are depicted in Figure 5. We also remark that
[141] and Berman’s work gave a new proof of Troyanov’s original results [18], and Berndtsson’s
work gave a new approach to uniqueness [25]. Finally, the higher regularity of such a metric
was only obtained much later [141], as a corollary of Theorem 3.16.

The variational approach has recently been extended considerably through the work of
Malchiodi et al. to allow angles β > 1, even when coercivity fails, see, e.g., [15, 56]. For some
higher regularity results also in this regime we refer to [177].

4.5 Existence theorem for positive curvature

The following essentially optimal existence result in the positive case is due to [141]. It parallels
and generalizes Tian’s theorem from the smooth setting [245, §6]. We postpone the definition
of properness to §5.2.

Theorem 4.13. (Kähler–Einstein edge metrics with positive Ricci curvature) Let (M,ω0) be
a compact Kähler manifold, D ⊂ M a smooth divisor, and suppose that β ∈ (0, 1] and µ > 0
are such that

c1(M)− (1− β)[D] = µ[ω0],

and that the twisted K-energy Eβ0 is proper. Then, there exists a Kähler–Einstein edge metric
ωϕKE with Ricci curvature µ and with angle 2πβ along D, that is unique up to automorphisms
that preserve D. This metric is polyhomogeneous, namely, ϕKE admits a complete asymptotic
expansion with smooth coefficients as r → 0 of the form

ϕKE(r, θ, z2, . . . , zn) ∼
∑
j,k≥0

Nj,k∑
`=0

ajk`(θ, z2, . . . , zn)rj+k/β(log r)`, (4.10)

where locally D is cut-out by z1, r = |z1|β/β and θ = arg z1, and with each ajk` ∈ C∞. There

are no terms of the form rζ(log r)` with ` > 0 if ζ ≤ 2. In particular, ϕKE ∈ A0 ∩ D
0, 1
β
−1

w ,
i.e., ωϕKE has infinite conormal regularity, and is ( 1

β −1)-Hölder continuous with respect to the
reference edge metric ω.

A parallel result in the snc case can be stated [175, 176]. In fact, the a priori estimates
of [141] apply to the snc case without any change. The essential new difficulty, however, as
compared to the smooth divisor case, is to extend the linear theory to one with crossing edges.
This is new even in the real setting, and goes beyond the original methods of Mazzeo [172].
A different approach to the existence, avoiding such linear theory, but producing only D0,0

w

solutions without Hölder estimates on the metric (or even continuity of the metric up to D)
nor higher regularity, and under the assumption that a C0 (or even a weaker) solution exists,
has been developed by Guenancia–Pǎun [127] (a similar result is obtained by Yao [265] who
derives the C0 estimate based on the approximation scheme of [63, 248]), as described in §4.1.
Their approach starts from the C0 solution constructed by Berman [18] and [141], and produces
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a D0,0
w estimate by a careful approximation by smooth metrics1. Finally, the uniqueness is due

to Berndtsson [25].

Strategy of proof of Conjecture 4.2 and Theorem 4.13. The proof uses results from Sections 3,
6, and 7. We now describe how these results piece together.

Solving the KE equation is equivalent to solving the Monge–Ampère equation (3.7). We
embed this equation in a one-parameter family of equations (6.3), called the Ricci continuity
path (Ricci CP), and define as usual the set

I := {s ∈ (−∞, µ] : (6.3) with parameter value s admits a solution in D0,γ
w ∩ C4(M \D)}.

Equation (6.3) with parameter value µ is precisely (3.7). By Proposition 6.1, there exists some
S > −∞ such that (−∞, S) ⊂ I, so that I is not empty. Furthermore, I is open. As a
matter of fact, the linearization of (6.3) at the parameter value s is given by ∆ωϕ(s)

+ s. This
is clearly invertible when s < 0, and is also invertible when s > 0 since, as shown in §7.1, the
first eigenvalue of ∆ωϕ(s)

+ s is positive whenever s ∈ (0, µ). Invertibility at s = 0 follows by
working on the orthogonal complement of the constants [9]. Thus, Theorem 3.7 (i) yields the
openness. The fact that I is closed (and hence equal to (−∞, µ]) follows from Theorem 6.3.
Thus, (3.7) admits a solution in D0,γ

w ∩ C4(M \D). Theorem 3.16 implies that the solution is
polyhomogeneous and belongs to A0

phg; Equation (3.24) further implies the precise regularity
statements about the solution.

Note that the proof gives a new and unified proof for the classical results of Aubin, Tian
and Yau, on the existence of smooth KE metrics, in that it uses a single continuity method for
all signs of µ. This point is discussed in detail in §6.2.

Finally, consider the special case that M is Fano and D is a smooth anticanonical divisor
(the existence of such a divisor is highly nontrivial, we refer to Problem 8.9 and the discussion
there). Then, as noted by Berman [18], the twisted K-energy is proper for small µ = β > 0.
Theorem 4.13 thus gives the following corollary conjectured by Donaldson [101].

Corollary 4.14. Let M be a Fano manifold, and suppose that there exists a smooth anticanon-
ical divisor D ⊂M . Then there exists some β0 ∈ (0, 1] such that for all β ∈ (0, β0) there exists
a KEE metric with angle 2πβ along D and with positive Ricci curvature equal to β.

Li–Sun [157] observed that the exact same arguments actually prove existence also in the
plurianticanonical setting: supposing there exists a smooth divisor D in |−mKM | (this always
holds if M is Fano and m ∈ N is sufficiently large by Kodaira’s theorem), there exists a small
β0 > 0 such that there exists a KEE metric with β ∈ (1 − 1

m , 1 −
1
m + β0) along D and with

µ = 1− (1− β)m.

5 Energy functionals

The Mabuchi energy was crucial in stating the main existence theorem (Theorem 4.13). The
purpose of this section is to describe several energy functionals, including the Mabuchi energy,
that cast the Kähler–Einstein (edge) problem as a variational one. (The variational approach
can be applied to much more general settings, and we do not seek full generality, for which
we refer to Berman et al. [18, 22, 23].) First, in §5.1, we describe the Aubin energy func-
tionals, that are nonlinear generalizations of the W 1,2-seminorm. Using these functionals it is

1Just before posting this article, Guenancia–Pǎun have considerably revised their article [127]. In this version
of their article they also develop, among other things, a new alternative approach for the D0,γ

w estimate.
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easy to construct the Ding functional whose Euler–Lagrange equation is the inhomogeneous
Monge–Ampère equation. Using the Aubin energies, one can then define a notion of relative
compactness of level sets of an energy functional, and this leads to a calculus of variations
formulation of the Kähler–Einstein problem in §5.2. Both the Mabuchi and Ding energies can
be defined in a more conceptual way, using Bott–Chern forms. We describe this in detail in
§5.4 since we are not aware of a single easy-to-read reference for this (we refer to [198, 227]
for the related Deligne pairing formalism). In §5.3 we also describe other natural functionals,
the Kähler–Ricci energies, that lend themselves to a similar description, mainly to illustrate
the richness of the theory, but also to show that there are many more-or-less equivalent func-
tionals whose variational theory underlies the KE problem. Subsection 5.5 describes a relation
between the Ding energy and the Mabuchi energy, involving the Legendre transform. Building
on the preceeding subsections, in §5.6 we prove the equivalence, in suitable senses, of the Ding,
Mabuchi, and Kähler–Ricci energies.

5.1 Nonlinear Dirichlet energies and the Berger–Moser–Ding functional

The most basic functionals, going back to the work of Aubin [9], are defined by

I(η, ηϕ) =
1

V

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
l=0

ηn−1−l ∧ ηlϕ =
1

V

∫
M
ϕ(ηn − ηnϕ),

J(η, ηϕ) =
V −1

n+ 1

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1∑
l=0

(n− l)ηn−l−1 ∧ ηlϕ.

(5.1)

The functionals I, J , and I − J are all equivalent (and hence the latter is nonnegative), in the
sense that 1

nJ ≤ I − J ≤
n
n+1I ≤ nJ. Granted, these might not look so ‘basic’ at a first glance.

Let us give some motivation to these definitions.
The first motivation comes from the calculus of variations: is there a sort of nonlinear

Dirichlet energy whose Euler–Lagrange equation is (2.3)? In the case n = 1 such an energy
was studied by Berger and Moser [17, 186]

F (η, ηϕ) =


1

V

∫
1

2

√
−1∂ϕ ∧ ∂̄ϕ− 1

V

∫
ϕη − 1

µ
log

1

V

∫
efη−µϕη, for µ 6= 0,

1

V

∫
1

2

√
−1∂ϕ ∧ ∂̄ϕ− 1

V

∫
ϕη +

1

V

∫
ϕefηη, for µ = 0.

(5.2)

(Recall the definition of fη (3.9).) Its critical points are precisely constant scalar curvature
metrics in the conformal class. It is straightforward to generalize in higher dimensions the last
term to 1

µ log 1
V

∫
efη−µϕηn (respectively, 1

V

∫
ϕefηηn) so that its variational derivative comes

out to be the right hand side of (2.3) (up to the implicit normalization that the integral of the
right hand side is 1). How to replace the first two terms so that the resulting Euler–Lagrange
equation comes out right? This amounts to finding a functional whose differential is exactly
minus the Monge–Ampère operator, i.e., the left hand side of (2.3). This is precisely the
functional −L (recall (4.2) and the line following it). Decomposing −L into two terms, one of
which is − 1

V

∫
ϕηn, yields precisely J as the second term! (Incidentally, this also explains why

L, defined in (4.2), is called the Aubin–Mabuchi functional.)
Thus, the Euler–Lagrange equation for the Berger–Moser–Ding energy (or Ding energy for
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short) [88]

F β(η, ηϕ) =


J(η, ηϕ)− 1

V

∫
ϕηn − 1

µ
log

1

V

∫
efη−µϕηn, for µ 6= 0,

J(η, ηϕ)− 1

V

∫
ϕηn +

1

V

∫
efηηn, for µ = 0,

(5.3)

is precisely (3.7).

5.2 A nonlinear variational problem

This brings us to a second motivation for J . As we just noticed, −L(ϕ) = J(η, ηϕ) −
∫
ϕηn.

Recall that ±L (4.2) is a distance function for the Mabuchi metric. Thus, it is tempting to
think of J as a sort of approximate distance function. This is of course not quite true, since
the submanifold {ϕ ∈ Heω :

∫
ϕηn = 0} of Heω is not totally geodesic. But ignoring this

subtlety, one is then tempted to think of J as a good way to define coercivity for our nonlinear
problem on Heω; of course this temptation also arises from the first motivation discussed earlier.
Following Tian [243], one says a functional E on Hω×Hω is proper provided that it dominates
J (or, by their equivalence, I or I − J) on each Hω slice. This is an analogue of the standard
assumption in the direct method in the calculus of variations, namely that sublevel sets (of E)
are compact. In particular, if E is proper, a sublevel set of E is contained in some sublevel set
of J . Theorem 4.13 can be recast as a nonlinear analogue of the fundamental theorem of the
direct method (cf. [231, Theorem 1.1]) in this setting, justifying the definition of properness.

Theorem 5.1. Suppose that F β(ω, · ) is proper on Heω. Then it is bounded from below, and
its infimum is attained at a solution of (2.3).

For the proof we refer to [141, Theorem 2] (that proof assumes that the Mabuchi functional

Eβ0 is proper, however the arguments are identical; a conceptual proof of the equivalence

coercivity of F β and that of Eβ0 is given in Theorem 5.11 (ii), although a direct proof (i.e.,
one that does not use the existence of a minimizer) of equivalence of the properness of these
functionals seems to be unknown). The special case when β = 1 goes back to Ding–Tian [90]
and Tian [243] (see also [247, §2.2] for a generalization that allows for automorphisms). On the
other hand, Berman showed that under the assumption in the theorem the infimum is attained
within the larger set PSH(M,ω) ∩ C0(M), and while it is easy to see that the minimizer is
contained in C∞(M \D) by local ellipticity and the usual arguments as in the smooth case, the
proof that the minimizer lies in Hεω [141] relies on the Ricci continuity method, as described in
§6–7.

5.3 The staircase energies and Kähler–Ricci energies

A generalization of the Aubin energy J (5.1) was introduced in [213, (6)],

Ik(ω, ωϕ) =
V −1

k + 1

∫
M
ϕ(kωn −

k∑
l=1

ωn−l ∧ ωϕl). (5.4)

Note that In = J, In−1 = ((n+ 1)J − I)/n. These functionals are nonnegative (see (5.5)
below) and are related to, but different from, functionals defined by Chen–Tian [67]—see [216,
p. 133]. The functionals Ik can be thought of as gradual nonlinear generalizations of the
Dirichlet energy that interpolate between the latter and J . In fact, I1 is simply a multiple of
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the Dirichlet energy
∫ √
−1∂ϕ∧ ∂̄ϕ∧ωn−1, and increasing k is analogous to climbing a staircase

(see [216, p. 132] for a pictorial description) where Ik incorporates one additional ‘mixed’ term
proportional to

∫ √
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−k ∧ ωϕk−1; indeed, by integrating by parts,

Ik(ω, ωϕ) =
1

V

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

k−1∑
l=0

k − l
k + 1

ωn−1−l ∧ ωϕl. (5.5)

The definition (5.4) certainly makes sense for pairs of smooth Kähler forms, and by Theorem
3.10 (i) and the continuity of the mixed Monge–Ampère operators on PSH(M,ω0) ∩ C0(M)
[16, Proposition 2.3], these functionals can be uniquely extended to pairs (ωϕ1 , ωϕ2), with
ϕ1, ϕ2 ∈ Heω with ω the reference edge metric as in (3.5). Thus, these functionals are well-
defined on Heω × Heω. Moreover, (5.5) is still justified for edge metrics: working on a tubular
neighborhood of D the boundary term one obtains from integrating by part in (5.4) tends to
zero with the radius of the neighborhood about D.

As we just saw, the functionals Ik are a natural generalization of the Dirichlet energy on the
one hand, and Aubin’s J functional on the other. It turns out that Ik play a role in describing
a scale of energy functionals Ek that similarly depend gradually on additional ‘mixed terms’
as k increases, loosely speaking. This can be made precise using the language of Bott–Chern
forms that we review in §5.4. Another, more down to earth way, of defining this functional is
as follows.

Denote the normalized elementary symmetric polynomials of the eigenvalues of the twisted
Ricci form Ric η − (1− β)[D] (with respect to η) by

σβk (η) =
(Ric η − (1− β)[D])k ∧ ηn−k

ηn
, k = 1, . . . , n,

and their average (which is independent of the representative of [η]) over (M,ωn) by

µβk :=
(c1 − (1− β)c1(LD))k ∪ [η]n−k([M ])

[η]n([M ])
. (5.6)

When k = 1, σβ1 (η) = sη/n = trη(Ric η− (1−β)[D])/n, where sβ(η) denotes the twisted scalar
curvature of η. When k = n this is detη(Ric η − (1 − β)[D]), the determinant of the twisted
Ricci curvature with respect to the metric.

A straightforward generalization of a theorem of the author from the case β = 1 [213,
Proposition 2.6] yields the following.

Proposition 5.2. Let k ∈ {0, . . . , n}. Suppose µ[η] = c1 − (1− β)c1(LD). The 1-form

η 7→
[
∆ησ

β
k (η)− n− k

k + 1

(
σβk+1(η)− µβk+1

)]
ηn

is exact. Its potential, considered as a function on Heη ×Heη, is given by

µ−kEβk (η, ηϕ) = Eβ0 (η, ηϕ)+µIk(ηϕ, µ
−1Ric ηϕ−µ−1(1−β)[D])−µIk(η, µ−1Ric η−µ−1(1−β)[D]),

(5.7)

uniquely determined by the normalization Eβk (η, η) = 0.

Proof. As remarked earlier, Ik is continuous in the topology of uniform convergence (on the
level of Kähler potentials) by a result of Bedford–Taylor. By definition (see the second part of
Definition 3.2, (3.20), and (3.17)), Ricωϕ−(1−β)[D] admits a continuous Kähler potential with

37



respect to ω, and moreover this potential can be suitably uniformly approximated. Smoothly
approximate (ω, ωϕ) uniformly while approximating Ricωϕ− (1−β)[D] uniformly on the level
of potentials. Thus, it suffices to verify the proposition when the Kähler forms are smooth,
when integration by parts, precisely those in the proof in the smooth case [213], are justified.
But then the proof in the smooth case can be applied verbatim, with the definition of the
twisted Ricci potential as in (3.9) (recall fω is continuous for all β) making the proof consistent
with the introduction of the terms (1− β)[D] in the right hand side of (5.7).

Similar arguments allow to generalize the following formula of Tian [241] from the smooth
case.

Lemma 5.3. Let η, ηϕ ∈ Heω. One has,

Eβ0 (η, ηϕ) =
1

V

∫
M

log
ηnϕ
ηn
ηnϕ − µ(I − J)(η, ηϕ) +

1

V

∫
M
fη(η

n − ηnϕ). (5.8)

The functionals E0 and En were introduced by Mabuchi [167] and Bando–Mabuchi [14],
while the remaining ones by Chen–Tian [67]. Formula (5.7) shows that the Ek interpolate
between E0 and En, to wit [213, (17)]

Eβ0 (η, ηϕ) = ((1− l
k+1)E0 + l

k+1En)(η, ηϕ) + (Ik − l
k+1J)(ηϕ, µ

−1Ric ηϕ − (1− β)[D]/µ)

− (Ik − l
k+1J)(η,Ric η), ∀ l ∈ {0, . . . , k + 1}.

Since E0 is known as the K-energy or Kähler energy, and En as the Ricci energy, it is natural,
following [213], to refer to Ek as the Kähler–Ricci energies.

The Ricci energy is special. It lends a geometric interpretation to the Ding functional, via
the inverse Ricci operator, in the sense of [214, §9]. That is, suppose that (3.12) holds with
µ = 1. Define by Ric−1

β : Hεω → Hεω the twisted inverse Ricci operator, by letting Ric−1
β η := χ

be the unique Kähler form cohomologous to η satisfying Ricχ− (1−β)[D] = η. Such a unique
form exists by Conjecture 4.2, since this equation can be written as a Monge–Ampère equation
of identical form to that of the equation for a Ricci flat Kähler edge metric.

Proposition 5.4. One has (Ric−1
β )?Eβn = F β.

Again, the proof is a simple adaptation of the proof in the smooth case [214, Proposition
10.4], following the arguments in the proof of Proposition 5.2 above.

5.4 Bott–Chern forms

In this subsection we will describe the theory of Bott–Chern forms and energy functionals,
inspired by work of Bott and Chern [37] and developed by Donaldson and Bismut–Gillet–Soulé

[92, 29]. This will be applied to showing that the functionals Eβk have an expression in terms
of Bott–Chern forms, slightly generalizing but very closely following the discussion in [216,
§4.4.5].

The main idea of Bott–Chern forms is that given a moduli space of Hermitian metrics
on a bundle one may construct canonically defined “universal” functions on it associated to
curvature. These functions arise via a “potential” for the curvature form of a “universal”
bundle over the whole moduli space.
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Let E → M be a holomorphic vector bundle of rank r.2 A vector bundle represents a
Čech cohomology class in H1(M,OM (GL(r,C))). Here by OM (GL(r,C)) we mean the sheaf of
germs of holomorphic functions to GL(r,C). When r = 1 it is denoted by O?M . Let us identify
E with its Čech class representative, i.e., by a collection of transition functions g = {gαβ} that
are holomorphic maps from the intersection of any two coordinate neighborhoods Uα, Uβ ⊂M
to GL(r,C), gαβ : Uα ∩ Uβ → GL(r,C), satisfying the Čech cocycle conditions [124, p. 66]

(δg)αβγ := gαβ · gβγ · gγα = I.

Note that here the groups comprising the sheaf have a multiplicative structure (and not an
additive one) and hence δg = I expresses closedness, i.e., [g] represents a Čech cohomology
class.

Denote by HE the space of all Hermitian metrics on E. Let Herm(r) denote the space
of positive Hermitian r × r matrices. Any Hermitian metric H ∈ HE can be represented by
smooth maps Hα : Uα → Herm(r) such that with respect to local bases of sections one has
(Hα)ij̄ = (gαβ)ik(Hβ)kl̄(gαβ)jl, or simply Hα = g?αβHβgαβ. This is summarized in the notation
H = {Hα}.

To every H ∈ HE there is associated a unique complex connection DH . For a general
holomorphic vector bundle the connection DH is a 1-form on M with values in the bundle
End(E) of endomorphisms of E. One may write globally

DH = H−1 ◦ ∂ ◦H.

The derivation of this formula follows the same argument as in the line bundle case. The exact
meaning of how to understand this and other similar expressions involving compositions of
endomorphisms and differential operators will be explained in detail below in several compu-
tations. With respect to a local holomorphic frame e1, . . . , er over Uα ⊂M the endomorphism
H may be represented by a matrix and one has the special expression (DH |Uα)ij = ∂hjl̄ · hl̄i.
This expression is not valid with respect to an arbitrary frame.

The global expression for the curvature is then

FH := DH ◦DH = ∂̄ ◦H−1 ◦ ∂ ◦H. (5.9)

Implicit in this notation as well as in the sequel is the convention of working with endomor-
phisms with values in the exterior algebra of differential forms on M . Locally with respect to
a holomorphic frame one has the special expression FH |Uα = ∂̄(∂hjl̄ · hl̄i). This expression is
not valid with respect to an arbitrary frame. However it demonstrates that FH is (1, 1)-form
on M (with values in End(E)), since the type is independent of the choice of frame.

Let φ denote an elementary symmetric polynomial on gl(r,C)×· · ·×gl(r,C) (p times) that
is invariant under the adjoint action of GL(r,C) (conjugation). The idea behind Chern classes
is that one may plug into such polynomials matrices that have differential forms as their entries,
for example FH . Since the polynomials are GL(r,C)-invariant one obtains a differential form
that is invariant under a change of local trivializations for the bundle, hence is intrinsically
defined. Moreover it turns out that such forms are closed, hence define intrinsic cohomology
classes that depend only on the complex structure of E →M .

2For the general discussion of Bott–Chern forms we will only make use of the fact that M is complex (rather
than Kähler). In our applications we will always work with line bundles, i.e., r = 1. If one were interested only
in that case the discussion below could be slightly simplified. However we have chosen to maintain this level of
generality.
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Now we come back to our original task of constructing functions onHE . One may show that
φ(FH) := φ(FH , . . . , FH) is a closed 2p-form. It certainly depends on the metric H, however
its cohomology class in H2p(M,Z) does not. This means that the difference

φ(FH0)− φ(FH1)

is exact. Moreover, and here we arrive at the main point of Bott–Chern theory, one may find
a (p− 1, p− 1)-form BC(φ;H0, H1), well-defined up to ∂- and ∂̄-exact forms, such that

∂̄∂BC(φ;H0, H1) = φ(FH1)− φ(FH0).

The form BC(φ;H0, H1) may then be integrated against a (n− p+ 1, n− p+ 1)-form on M to
give a number. Fixing H0 and letting H1 vary we therefore obtain a function on HE as desired.
And, if p − 1 = n, we even do not need to make a choice of such a form in order to integrate
(this will be the case in our applications). We now show how to construct the Bott–Chern form
BC(φ;H0, H1). The proof below is a slow pitch version of the orignal one.

Proposition 5.5. (See [92, Proposition 6].) Let φ be a GL(r,C)-invariant elementary sym-
metric polynomial. Given H0, H1 ∈ HE and any path {Ht}t∈[0,1] in HE connecting them, the
(p− 1, p− 1)-form

BC(φ;H0, H1) := p(
√
−1)p−1

∫
[0,1]

φ(H−1
t Ḣt, FHt , . . . , FHt)dt mod Im∂ + Im∂̄, (5.10)

is well-defined, namely does not depend on the choice of path. In addition,

BC(φ;H0, H1) + BC(φ;H1, H2) + BC(φ;H2, H0) = 0, (5.11)

and
∂̄∂BC(φ;H0, H1) = φ(FH1)− φ(FH0). (5.12)

Notice that the first argument of φ is an endomorphism while the rest of its arguments are
endomorphism-valued 2-forms.

Proof. Note that BC(φ;H0, H1) is given by integration over a path connecting H0 and H1 of
a globally defined 1-form on HE with values in (p− 1, p− 1)-forms on M . We call this form θ.
To show independence of path we show that this form is closed modulo ∂- and ∂̄-exact terms.
Let H ∈ HE . Let h, k ∈ THHE and extend them to constant vector fields near H. Then,

dθ(h, k) = k θ|H(h)− h θ|H(k). (5.13)

First we obtain an expression for the infinitesimal change of the curvature under a variation
of a Hermitian metric. Write H + tk = H ◦ (I + tH−1k) =: H ◦ f . We write ◦ to emphasize
that composition of endomorphisms is taking place (in coordinates multiplication of matrices).
According to (5.9) we have

FH◦f = ∂̄
(
(H ◦ f)−1 ◦ ∂(H ◦ f)

)
= ∂̄

(
f−1 ◦ (H−1 ◦ ∂H) ◦ f + f−1 ◦ ∂f

)
= ∂̄ ◦ f−1 ◦D1,0

H ◦ f.
(5.14)

Here it should be emphasized that DH decomposes according to type (of its 1-form part) into
D1,0
H and D0,1

H and that while originally the connection DH was defined on E it may be extended
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naturally to End(E) and it is this extension that we use in the equation above (f is a section
of End(E) and not of E). The same applies to the operator ∂̄ that we also extend to act on
End(E). To understand the last equation better we let the endomorphism it defines act on a
holomorphic section s of E, and compute:

FH◦fs = ∂̄ ◦ f−1 ◦D1,0
H (fs)

= ∂̄ ◦ f−1 ◦
(
(D1,0

H f)s+ fD1,0
H s
)

=
(
∂̄
(
f−1(D1,0

H f)
)

+ ∂̄ ◦D1,0
H

)
s.

Therefore we write
FH◦f = FH + ∂̄

(
f−1(D1,0

H f)
)
,

and the second term should be understood to be distinct from (5.14). This subtle notational
issue can be a cause for great confusion when consulting the literature on vector bundles and
Yang-Mills theory. Putting now f = I + tH−1k we obtain

FH+tk = FH + t∂̄
(
D1,0
H (H−1k)

)
+O(t2).

Hence the first term in (5.13) is given by

1

p(
√
−1)p−1

kθ|H(h) =
d

dt

∣∣∣
0
φ((H + tk)−1h, FH+tk, . . . , FH+tk)

= φ(−
√
−1Hk

√
−1Hh,FH , . . . , FH)

+
∑
φ(
√
−1Hh,FH , . . . , ∂̄D

1,0
H (
√
−1Hk), . . . , FH).

(5.15)

Therefore one has, putting σ =
√
−1Hh, τ =

√
−1Hk,

1

p(
√
−1)p−1

dθ(h, k) = φ([σ, τ ], FH , . . . , FH) +
∑
φ(σ, FH , . . . , ∂̄D

1,0
H τ, . . . , FH)

−
∑
φ(τ, FH , . . . , ∂̄D

1,0
H σ, . . . , FH).

(5.16)

σ and τ are sections of the endomorphism bundle of E. Note that as operators on this bundle
one has

∂̄ ◦D1,0
H +D1,0

H ◦ ∂̄ = (∂̄ +D1,0
H ) ◦ (∂̄ +D1,0

H ) = D2
H = FH ,

since we already saw that the curvature is of type (1, 1). Hence for example

∂̄ ◦D1,0
H σ = −D1,0

H ◦ ∂̄σ + [FH , σ]. (5.17)

Note [FH , σ] ≡ FHσ, and the bracket notation simply emphasizes that we have extended FH
to act on the endomorphism bundle and so the endomorphism part of FH will actually act
by bracket on the endomorphism σ (the 2-form part will simply be multiplied along). By the
Bianchi identity DHFH = 0 and so D1,0

H FH = 0, ∂̄FH = 0. Now,

φ(σ, ∂̄D1,0
H τ, FH , . . . , FH) = ∂̄φ(σ,D1,0

H τ, FH , . . . , FH)

− φ(∂̄σ,D1,0
H τ, FH , . . . , FH)

−
∑
φ(σ,D1,0

H τ, FH , . . . , ∂̄FH , . . . , FH)

= ∂̄φ(σ,D1,0
H τ, FH , . . . , FH)

− φ(∂̄σ,D1,0
H τ, FH , . . . , FH).

(5.18)
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Using (5.17) the corresponding term in the second sum of (5.16) is

−φ(τ, ∂̄D1,0
H σ, FH , . . . , FH) = −φ(τ,−D1,0

H ∂̄σ + [FH , σ], FH , . . . , FH)

= −φ(τ, [FH , σ], FH , . . . , FH) + ∂φ(τ, ∂̄σ, FH , . . . , FH)

− φ(D1,0
H τ, ∂̄σ, FH , . . . , FH)

−
∑
φ(τ, ∂̄σ, FH , . . . , D

1,0
H FH , . . . , FH).

= φ(τ, [σ, FH ], FH , . . . , FH) + ∂φ(τ, ∂̄σ, FH , . . . , FH)

− φ(D1,0
H τ, ∂̄σ, FH , . . . , FH).

(5.19)

Note that it is not necessarily true that

− φ(D1,0
H τ, ∂̄σ, FH , . . . , FH) (5.20)

cancels with
−φ(∂̄σ,D1,0

H τ, FH , . . . , FH).

But, eventually taking the equations (5.18) and (5.19) for all pairs appearing in the sums (5.16)
then, e.g., the term (5.20) will cancel with the term

−φ(∂̄σ, FH , . . . , FH , D
1,0
H τ).

Indeed we are only allowed to permute the arguments of φ cyclically (e.g., for three matrices
A,B,C one has tr(ABC) = tr(CAB), but in general tr(ABC) is different from tr(BAC)).
Note also that while φ does not change when permuting matrices cyclically, when we permute
cyclically matrix valued 1-forms a sign appears, as usual. This explains the cancellation above.

Hence, modulo ∂- and ∂̄-exact terms, we are left with∑
φ(τ, FH , . . . , [σ, FH ], FH , . . . , FH)

which cancels with the first term in (5.16); this can be seen by using the invariance of φ under
the action of GL(r,C) by conjugation

d

dt

∣∣∣
0
φ(e−tBA1e

tB, . . . , e−tBApe
tB) =

∑
φ(A1, . . . , [Aj , B], . . . , Ap),

concluding the proof.

Example 5.6. Let E denote an ample line bundle polarizing a Kähler class Ω = c1(E). We
identify HE with Hω where ω = −

√
−1∂∂̄ log h =

√
−1∂̄(h−1∂h) =

√
−1Fh is a Kähler form

with h ∈ HE (and hence [ω] = Ω). Now r = 1 and so no traces are needed (the matrices are
all one-dimensional). Put

φ(A1, . . . , An+1) := A1 · · ·An+1. (5.21)

Take a path of Hermitian metrics ht = e−ϕth. Then Fht = Fh + ∂∂̄ϕt = ωϕt/
√
−1. Then the

Bott–Chern form is

BC(φ;h0, h1) = (n+ 1)

∫ 1

0
(
√
−1)nφ(−ϕ̇t, Fht , . . . , Fht)dt = −(n+ 1)

∫ 1

0
ϕ̇t ω

n
ϕt ∧ dt. (5.22)

This expresses a 2n-form on M . Integrating this over M gives the function −(n+ 1)L(ϕ), on
Hω. By 5.5 this is independent of the choice of path since any two choices differ by ∂- and
∂̄-exact terms and hence by d-exact terms since our expressions are real.
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Now we turn to the setting of a Kähler manifold with an integral Kähler class [ω]. Let L be
a line bundle polarizing the Kähler class, namely c1(L) = [ω]. Let K−1

M denote the anticanonical
bundle polarizing the class c1, and LD the line bundle associated to D. Given a Hermitian
metric h on L of positive curvature, and a global holomorphic section s of LD one obtains a
metric detFh|s|2−2β = det(ω/

√
−1) on K−1

M ⊗ L
β−1
D (we mean that locally detFh = det(gij̄)

if ω =
√
−1gij̄dz

i ∧ dzj) where ω = −
√
−1∂∂̄ log h. We write h ∈ Hω =: H+

L . Note that the

Bott–Chern forms defined below are defined on H+
L rather than on all of HL (or to be more

precise on a set isomorphic to H+
L , see [244, p. 214]).

The main result of this subsection is the following expression for the Kähler–Ricci function-
als in terms of Bott–Chern forms. While this generalizes a theorem of Tian for the K-energy
(the case k = 0) [244, §2] and its extension by the author to all k [216, §4.4.5], the computations
are almost identical. In essence, the (twisted) Kähler–Ricci functionals are realized as a linear

combination of Bott–Chern forms, one for each of the R-line bundles Ej = K−1
M ⊗L

β−1
D ⊗Ln−2j

for j = 0, . . . , n. One of these terms (the simplest contribution) is a multiple of the form
appearing in Example 5.6.

Theorem 5.7. Let k ∈ {0, . . . , n} and let φ be defined by (5.21). Let (M,J, ω) be a projective

Kähler manifold, and let L be a line bundle with c1(L) = [ω]. Let µβk be given by (5.6). For
each k ∈ {0, . . . , n},

[
∆ωσ

β
k −

n− k
k + 1

(
σβk+1 − µ

β
k+1

)]
ωn =

2−n

(n+ 1)!

(
n

k

)−1 1

V

n∑
j=0

(−1)j
(
n

j

)
(n− 2j)k BC(φ;hn−2j

0 detFh0 |s|2−2β, hn−2j
1 detFh1 |s|2−2β)

− 1

V

µβk+1

n+ 1

n− k
k + 1

BC(φ;h0, h1).

(5.23)

Proof. The proof in the case β = 1 is given in [216, Proposition 4.22]. The general case follows
from the same computations by subtracting the fixed current (1−β)[D] from each Ricci current
that appears in the computation.

Remark that from the proof it follows that similar “twisted” functionals can thus be defined
by replacing (1− β)[D] with some other fixed curvature current of a line bundle.

Remark 5.8. Tian [241, p. 255–257] gave an interpretation of the “complex Hessian” of the
K-energy E0 in terms of a certain “universal” Hermitian metric h (see the references above for
the notation and definitions):

−
√
−1∂∂̄E0 =

1

V

∫
M

(
√
−1)n+1

(
FdetFh

− nµ0

n+ 1
Fh

)
∧ (Fh)n. (5.24)

We note in passing the following generalization of this formula to the Kähler–Ricci functionals

−
√
−1∂∂̄Ek =

1

V

∫
M

(
√
−1)n+1

(
(FdetFh

)k+1 − (n− k)µk
(k + 1)(n+ 1)

(Fh)k+1
)
∧ (Fh)n−k. (5.25)

We also remark that using the techniques of [213] one may generalize appropriately Theorem

5.1 in terms of properness of the functional Eβk on the space of Kähler forms η for which
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Ric η − (1− β)[D] is positive and cohomologous to [η]. Finally, also L has such a formula due
to Tian [244, p. 214],

√
−1∂∂̄L =

1

V

∫
M

(
√
−1Fh)n+1,

that has been extended by Berman–Boucksom [21, (4.1)] to Kähler potentials with low regu-
larity, and can be used to characterize weak geodesics in the Mabuchi metric.

5.5 Legendre transform

In this section we restrict to the case µ > 0 to simplify the notation, and describe work of
Berman [18] and Berman–Boucksom [21] that ties F β with Eβ0 via the Legendre transform.

Defining the probability measure (recall the normalization (3.9))

νη := (Ric−1η)n = efηηn, (5.26)

we rewrite (5.3) and (5.8) as

F β(η, ηϕ) = −Lη(ϕ)− 1

µ
log

1

V

∫
e−µϕνη,

Eβ0 (η, ηϕ) =
1

V

∫
M

log
ηnϕ
νη
ηnϕ − µ(I − J)(η, ηϕ) +

1

V

∫
M
fηη

n.

(5.27)

The last term in Eβ0 is a constant. It can be eliminated if we had normalized
∫
M fηη

n = 0, and

then set νη := efηηn
1
V

∫
efηηn

. The first term in Eβ0 is the entropy of ηnϕ relative to the measure νη

considered as a functional on the space of measures,

Ent(ν, χ) =
1

V

∫
M

log
χ

ν
χ, (5.28)

which in terms of the density d = χ/ν takes the familiar form for the entropy
∫
d log d ν. On

the other hand, it is classical that the last term in F β is precisely the Legendre transform of
the entropy, in the sense that [85, p. 264],

Λν(−µϕ) = log
1

V

∫
e−µϕν = Ent(ν, · )?(−µϕ) = sup

χ∈VV
{〈−µϕ, χ〉 − Ent(ν, χ)}, (5.29)

where VV = {ν : 0 ≤ ν/ωn ∈ C0(M,ωn),
∫
ν = V }. Conversely, by convexity,

Ent(ν, µ) = sup
ψ∈C0(M)

{〈µ, ψ〉 − log
1

V

∫
eψν} = Λ?ν(µ).

One of Berman’s insights was that the remaining terms in Eβ0 and F β are similarly related by
the Legendre transform [18, §2] (cf. [23, Theorem 5.3]).

Lemma 5.9. Let µ > 0. Then, supψ∈PSH(M,ω)∩C0{〈−µψ, ωnϕ〉+ µLω(ψ)} = µ(I − J)(ω, ωϕ).

We could have introduced a minus sign into the usual inner product between functions and
measures in order to obtain that (−L)? = I−J . Instead of doing that, we kept the usual inner
product but then the left hand side in Lemma 6.4 is not precisely the Legendre transform.
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Proof. The proof would be easier if we knew that the supremum over all functions coincides
with that over ω-psh ones. Indeed in that case, F (ψ) := 〈−µψ, ωnϕ〉+ µLω(ψ) is concave in ψ
in the sense that

− d2

dt2

∣∣∣
t=0

F (ψ + tφ) = µ

∫
n
√
−1∂φ ∧ ∂̄φωnψ ≥ 0

(recall that dLω|ψ = ωnψ). Differentiating, one sees a critical point ψ, necessarily a maximum,

must satisfy ωnψ = ωnϕ (here we are being a bit loose since C0(M) is infinite-dimensional;
however the same reasoning as for the Legendre transform in finite-dimensions applies), hence
by uniqueness ϕ = ψ+C [31]. Plugging back in, and using the formula L(ϕ) = (I−J)(ω, ωϕ)+
1
V

∫
ϕωnϕ then yields the statement.

To make the reduction to the subset PSH(M,ω) ∩ C0(M) ⊂ C0(M), recall the definition
of the ω-psh envelope operator Pω : ϕ 7→ sup{φ ∈ PSH(M,ω) ∩ C0(M) : φ ≤ ϕ}. By a
result of Berman–Boucksom [21], Lω ◦ Pω is concave on C0(M), Gateaux differentiable, and
dLω ◦Pω|ϕ = ωnPωϕ. Thus, supψ∈C0{〈−ψ, ωnϕ〉+Lω ◦Pω(ψ)} = (I − J)(ω, ωPϕ). This concludes
the proof, since Pϕ ≤ ϕ and so the supremum must actually be attained at ϕ ∈ PSH(M,ω),
as Lu ≤ Lv if u ≤ v ≤ 0, and we can normalize ψ so that supψ = 0.

Remark 5.10. As pointed out by Berman, one can, in fact, avoid using the result of Berman–
Boucksom to prove the preceeding Lemma, since simpler convexity arguments already show
that the supremum must be attained at ϕ. However, that result is useful to show that a
maximizer ψ must satisfy ωnψ = ωnϕ (and hence ψ ∈ L∞ [149] and so equal to ϕ up to a constant
[31]). In addition, the result of Berman–Boucksom is essentially needed if one replaces ωnϕ by
a more general measure or even volume form ν; the result can be seen as the starting point of
the variational approach to constructing a weak solution of the equation ωnϕ = ν.

5.6 Equivalence of functionals

Motivated by variational calculus, one expects that the KEE problem is solvable if and only
if it can be cast as a variational problem with a coercive functional. One calls E coercive if
there exist uniform positive constants A,B such that the c-sublevel set of E is contained in the
A(c + B)-sublevel set of J , i.e., E ≥ 1

AJ − B. In particular, E is then proper, thus bounded
from below. We have seen a number of functionals that have KEE metrics as critical points.
The following basic result says that they are all more or less equivalent as far as boundedness,
coercivity, and existence of KEE metrics is concerned. To state it we introduce some notation.
Suppose that µ > 0, and define

He,+ω = {ϕ ∈ Heω : Ric ωϕ − (1− β)[D] is a positive current}. (5.30)

This space is nonempty as a corollary of the existence theorem for the case µ = 0. Let
l(ω) = infϕ∈Heω F

β(ω, ωϕ) and

lk(ω) =

{
infϕ∈Heω Ek(ω, ωϕ), for k = 0, 1,

infϕ∈He,+ω Ek(ω, ωϕ), for k = 2, . . . , n.

Theorem 5.11. Let µ > 0. (i) The lower bounds of Eβk and that of F β are related by

µl(ω) +
1

V

∫
fωω

n = l0(ω) = µ−klk(ω)− µIk(ω, µ−1Ricω − µ−1(1− β)[D]). (5.31)

In particular, F β, Eβ0 and Eβ1 are simultaneously bounded or unbounded from below on Heω.

(ii) The coercivity of Eβ0 is equivalent to that of F β.
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Proof. (i) First, by Proposition 5.2 and the fact that Ik is nonnegative on Heω ×Heω, it follows

that if Eβ0 is bounded below onHeω then Eβk , k = 1 . . . n is bounded below onHe,+ω . In particular

this is true for Eβn , but then, by Proposition (5.4) and the edge version of the Calabi–Yau
theorem (Conjecture 4.2, that guarantees that Ric−1

β : Heω → He,+ω is an isomorphism) it

follows that F β is bounded below on Heω ×Heω. But by a formula of Ding–Tian [90]

(Eβ0 − µF
β)(ω, ωϕ) =

1

V

∫
fωω

n − fωϕωnϕ ≥
∫
fωω

n, (5.32)

where we used the normalization (3.9) and Jensen’s inequality 1
V

∫
fωϕω

n
ϕ ≤ log 1

V

∫
efωϕωnϕ = 0.

This proves (i), since the precise lower bounds (5.31) can be deduced from the proof and a
theorem of Ding–Tian—see [213, Remark 4.5].

We now give a second derivation, due to Berman, of a special case of (i), namely the

equivalence of the lower bounds of F β and Eβ0 . First, F β(ω, · ) ≥ −C, is equivalent to −µLω ≥
log 1

V

∫
e−µϕν−µC. The Legendre transform, in the sense of the previous subsection, is order-

reversing. Thus, according to (5.29) and Lemma 6.4, µ(I − J)(ω, ωϕ) ≤ Ent(ν, ωnϕ) + µC i.e.,

Eβ0 (ω, · ) ≥ 1
V

∫
fωω

n − µC. This concludes this derivation since the Legendre transform is an
involution.

(ii) Suppose that Eβ0 is coercive. Then, by definition, Eβ0 − ε(I−J) is bounded from below.
It follows from (i) that so is F β, but now with µ replaced by µ+ ε, in other words

−Lω(ϕ) ≥ 1

µ+ ε
log

1

V

∫
e−(µ+ε)ϕν − C,

for all ϕ ∈ PSH(M,ω)∩C0. Normalize ϕ so that
∫
ϕωn = 0, and substitute µ

µ+εϕ ∈ PSH(M,ω)
in this inequality to obtain

J(ω, ωµϕ/(µ+ε)) = −Lω
( µ

µ+ ε
ϕ
)
≥ 1

µ+ ε
log

1

V

∫
e−µϕν − C,

so

1

µ
log

1

V

∫
e−µϕν − C ′ ≤ µ+ ε

µ
J(ω, ωµϕ/(µ+ε)) ≤

( µ

µ+ ε

)1/n
J(ω, ωϕ) =: −(1− ε′)L(ω, ωϕ),

where the last inequality is due to Ding [88, Remark 2]. Thus, F β ≥ ε′J − C ′. The converse
follows from (5.32).

Remark 5.12. Part (i) and its proof above is due to [213]. The special case of the equivalence

of F β and Eβ0 being bounded below was obtained independently by H. Li [159] using results
of Perelman [221] on the Ricci flow, and a third proof was later given by Berman [18] using
the Legendre transform, as presented above. Part (ii) is a special case of a result of Berman
(which allows to replace ν by a rather general probability measure), which generalized a result
of Tian and its subsequent refinement by Phong et al. (in the smooth case) [243, 245, 202].
For a comparison of properness and coercivity in the KE setting we refer to [247, §2].

6 The Ricci continuity method

This section describes a new input that goes into the proof of Conjecture 4.2 and Theorem 4.13
in §4.5. It is a new continuity method that is essentially the only one that can be used to prove
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existence of KEE metrics, since the classical continuity methods that were previously used
to construct KE metrics break down when β belongs to the more challenging regime (1/2, 1)
where, among other things, the curvature of the reference geometry is no longer bounded
(Lemma 3.14). We describe all of this in detail in §6.1–§6.4. Subsection 6.5 is an interlude
about the Ricci iteration that origingally motivated the Ricci continuity method. Finally, §6.6
describes other approaches to existence.

6.1 Ricci flow meets the continuity method

The Ricci continuity method was introduced in [214] and was further developed and first used
systematically to construct KE(E) metrics in [175, 141]. The idea is to prove existence of a
continuity path, or, in other words, a one-parameter family of Monge–Ampère equations and
solutions thereto, in a canonical geometric manner. To that end, we start with the Ricci flow

∂ω(t)

∂t
= −Ric ω(t) + (1− β)[D] + µω(t), ω(0) = ω ∈ H, (6.1)

Fix τ ∈ (0,∞). The (time τ) Ricci iteration is the sequence {ωkτ}k∈N ⊂ Hω, satisfying the
equations

ωkτ = ω(k−1)τ + τµωkτ − τRicωkτ + τ(1− β)[D], ω0τ = ω,

for each k ∈ N for which a solution exists in Hω. This is the backwards Euler discretization of
the flow (6.1) [214]. Equivalently, let ωkτ = ωψkτ , with ψkτ =

∑k
l=1 ϕlτ . Then,

ωnψkτ = ωnefω−µψkτ+ 1
τ
ϕkτ . (6.2)

We now change slightly our point of view by fixing k = 1 but instead varying τ in (0,∞). This

yields ωnϕτ = ωnefω+( 1
τ
−µ)ϕτ , and setting s := µ− 1

τ , we obtain

ωnϕ = ωnefω−sϕ, s ∈ (−∞, µ], (6.3)

where ϕ(−∞) = 0, and ωϕ(−∞) = ω. We call this the Ricci continuity path (Ricci CP).
Aside from the formal derivation that relates (6.3) to the Ricci flow, it turns out that the

two equations share several key analytic and geometric properties:
(i) Short-time existence: the Ricci CP exists for all 0 < τ << 1, i.e., for all s << −1.
(ii) Monotonicity: Ė0(ω(0), ωϕs) ≤ 0 with equality iff ω(0) is KEE.
Moreover, the Ricci CP inherits one additional property that is not satisfied by the Ricci flow,
and which provides an important advantage:
(iii) Ricci lower bound: Along the Ricci CP Ric ωϕ(s) > sωϕ(s). Moreover, this holds even if
the initial metric has unbounded Ricci curvature! Note that properties (i) and (iii) were first
noticed by Wu and Tian–Yau, respectively, in their study of non-compact KE metrics with
negative Ricci curvature [264, 251], while (ii) goes back to [14].

In the rest of this section we will explain how to obtain a unified proof of existence of both
smooth and edge KE metrics (the proof of Conjecture 4.2 and Theorem 4.13) using the Ricci
CP. In §6.6 we also review other approaches to existence. But first, we make a comparison to
some other CPs and explain where each of them would break down in the edge setting.

6.2 Other continuity methods

The continuity path (6.3) has several useful properties, some already noted above, which are
necessary for the proof of Conjecture 4.2 and Theorem 4.13 when β > 1/2. In other words, one
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(6.3)

(6.4)

(6.5)

(6.6)
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0 µ
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0
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Figure 6: Continuity paths of the form (6.7) with (s, t) ∈ A (assuming µ > 0). The Ricci
continuity path is (6.3).

could use various CPs (including the Ricci CP) when β is in the “orbifold regime” β ∈ (0, 1/2],
but it seems that the CPs we discuss below break down in the regime β ∈ (1/2, 1). To illustrate
this, we now describe these CPs and where they fail.

When µ ≤ 0, Calabi suggested the following path [46, (11)] that was later used by Aubin
and Yau [8, 267]

ωnϕt = ωnetfω+ct−µϕt , t ∈ [0, 1]. (6.4)

In the case µ > 0, Aubin suggested the following extension of Calabi’s path [9]

ωnϕt =

{
ωnetfω+ct , t ∈ [0, 1],

ωnefω−(t−1)ϕt , t ∈ [1, 1 + µ].
(6.5)

Still when µ > 0, an alternative path was considered by Demailly and Kollár [84, (6.2.3)], given
by

ωnϕt = ωnet(fω/µ−ϕt), t ∈ [0, µ]. (6.6)

All of these paths, as well as the Ricci CP, corresponds to different curves within the two-
parameter family of equations

ωnϕ = etfω+ct−sϕωn, ct := − log
1

V

∫
M
etfωωn, (s, t) ∈ A, (6.7)

where A := (−∞, 0]× [0, 1] ∪ [0, µ]× {1} (see Figure 6).
In the smooth setting, any one of these paths may be used to prove existence of a KE

metric, assuming the K-energy is proper. Note that different paths have been used to prove
existence, depending on µ: (6.4) when µ ≤ 0, and (6.5) or (6.6) when µ > 0. Below, we
will prove existence in a unified manner, i.e., regardless of the sign of µ or whether β = 1 or
β ∈ (0, 1). In fact, we show that when β ∈ (0, 1/2] ∪ {1} then (6.7) has a solution for each
(s, t) ∈ A. On the other hand, when β ∈ (0, 1/2) the Ricci curvature of the reference metric ω
is unbounded from below as a corollary of Lemma 3.14. Thus, for each (s, t) ∈ A,

Ricωϕ(s,t) = (1− t)Ricω + sωϕ(s,t) + (µt− s)ω + (1− β)[D],

and this has a lower bound only if t = 1. Thus, on the one hand, the Chern–Lu inequality, which
requires such a lower bound is inapplicable; on the other hand, the Aubin–Yau inequality which
requires a lower bound on the bisectional curvature of the reference geometry is inapplicable
once again due to Lemma 3.14. This reasoning sifts out naturally the Ricci CP among all other
possible curves in A.
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6.3 Short time existence

Intuitively, the Ricci continuity path (6.3) has the trivial solution ω(−∞) = ω at s = −∞.
Producing solutions for very negative s can be considered as the continuity method analogue
of showing short-time existence for the Ricci flow. However, it is not possible to apply the
implicit function theorem directly to obtain solutions for large negative finite values of s (this
observation is due to Wu, who noted that the last displayed equation on [251, p. 589] is valid
for s0 > 0 but not for s0 = 0). Indeed, reparametrizing (6.3) by setting σ = −1/s, then the
linearization of the Monge-Ampère equation at σ equals σ∆ϕ(−1/σ) − 1, which degenerates at
σ = 0. More concretely, Lσ := σ∆ϕ(−1/σ) − 1 has bounded operator norm when considered as

acting from D0,γ
w to C0,γ

w only when σ > 0: there is no constant C > 0 such that ||L0v||D0,γ
w

=
||v||D0,γ

w
≤ C||v||

C0,γ
w

, of course.
Thus a different method is needed to produce a solution of (6.3) for sufficiently negative,

but finite, values of s. We present two arguments. The first, described in §6.3.1, works only
when β ∈ (0, 1/2] ∪ {1}. Wu’s original argument also only works when β is in that range;
in §6.3.2 we present a generalization of Wu’s argument that does not require lower curvature
bounds on ω and thus is applicable for all β ∈ (0, 1]. Finally, we remark that an interpretation
of the s → −∞ limit in terms of thermodynamics together with a variational approach has
been given by Berman [20].

6.3.1 The two-parameter family trick

When β ∈ (0, 1/2] ∪ {1}, the difficulty with applying the implicit function theorem can be
circumvented as follows [141]. Indeed, the original continuity path (6.3) embeds into the two-
parameter family (6.7), and it is trivial that solutions exist for the finite parameter values (s, 0).
Thus, while this does not show directly that our original equation has solutions for all (s, 1)
with s sufficiently negative, it yields that result eventually, provided we have a priori estimates
for all values (s, t). This is somewhat reminiscent of adding variables or symmetries to a given
equation in order to solve it.

The reason this trick does not seem to work when β > 1/2 is that it is not clear how
to obtain the a priori estimates needed to carry out the rest of the continuity argument for
the two-parameter family, unless β ∈ (0, 1/2] ∪ {1}. In essence then, the classical continuity
path with parameter values {(−µ, t), t ∈ [0, 1]} may simply fail to exist within the space of
D̃0,γ
s -regular Kähler edge potentials. It would be interesting to understand the maximal set of

values (s, t) for which a solution exists in (6.7),

M := {(s, t) ∈ A : (6.7) admits a solution ϕ(s, t) ∈ PSH(M,ω) ∩ D0,γ
w }, (6.8)

as well as analogues of this set for lower regularity classes.

6.3.2 Newton iteration arguments

Thus, to handle the general case, another method must be used to obtain a solution of (6.3)
for some very negative value of s. Wu used a Newton iteration argument to obtain such a
solution in a different setting [264, Proposition 7.3]. However, his argument requires a Ricci
curvature bound on the reference metric (see [264, p. 431] where the expression ∆ωfω, that
on M \D equals the scalar curvature up to a constant, enters), which we lack. What follows
is an adaptation of Wu’s argument that requires no curvature control on the reference metric,
and thus requires more delicate estimates. We compare our approach to Wu’s in Remark 6.2.
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Define
Nσ : D0,γ

w → C0,γ
w , Nσ(Φ) := log(ωnσΦ/e

fωωn)− Φ.

This is equivalent to the original Monge–Ampère equation (6.3) upon substituting σ = −1/s
and Φ = −sϕ. Note that DNσ|Φ = σ∆σΦ − Id. Now, suppose that σΦ ∈ Hω, and, say,
s < −1. By the maximum principle (adapted to the edge setting by adding a barrier function,
see §6.4), the nullspace of DNσ is trivial provided s < 0. Thus, Theorem 3.7 (i) implies that
DNσ|Φ : D0,γ

w → C0,γ
w is an isomorphism, with

||u||D0,γ
w
≤ C||DNσu||C0,γ

w
. (6.9)

Denote by DNσ|−1
Φ the inverse of this map on C0,γ

w .

Proposition 6.1. Define, Φ0 = 0, Φk = (Id −DNσ|−1
Φk−1

◦ Nσ)(Φk−1), k ∈ N. There exists

0 < σ0 � 1 and γ′ > 0, such that if σ ∈ (0, σ0) then σ limk→∞Φk ∈ D0,γ′
w ∩ PSH(M,ω) solves

(6.3) with s = −1/σ.

The proof appears in [141, §9]. The crucial step is showing that σΦ1 has small D0,γ′
w norm,

and therefore it is still a Kähler edge potential. We now sketch some of the details.
When k = 1, Nσ(0) = −fω and Φ1 = (σ∆ω − Id)−1fω. To prove that σΦ1 ∈ Hω, it

suffices to show that the pointwise norm |∂∂̄ σΦ1|ω is small, for then ω +
√
−1∂∂̄ σΦ > 0. By

Theorem 3.7 (i), it is enough to prove that ∆ω(σΦ1) is small in C0,γ
w . However, by definition,

σ∆ωΦ1 = σ∆ω(σ∆ω − 1)−1fω = ∆ω(∆ω + s)−1fω.

The difficulty is that fω ∈ C0,γ
w for γ ∈ (0, 1/β − 1), but not higher in the wedge Hölder scale.

To overcome this, we consider f as varying over a range of function spaces (some of which

fω does not belong to!), and estimate the norm of the map C`1,γ1
w 3 f 7→ ∆ω(∆ω + s)−1f ∈

C`2,γ2
w , for different values of (`j , γj), and interpolate. This eventually leads to the estimate
||∆ω(∆ω+s)−1fω||w;0,γ′′ ≤ C|s|−η for some η > 0 and γ′′ ∈ (0, γ), proving that σΦ1 is a Kähler
edge potential for small enough σ. The rest of the proof of Proposition 6.1 then follows by
induction.

Remark 6.2. It is worth comparing the above approach to Wu’s original argument. Appro-
priately translating Wu’s argument into our setting one would have considered the operator
N ′σ(Φ) := log(ω̃nσΦ/ω

n)−Φ, with ω̃ := ω−σ
√
−1∂∂̄fω. This is clearly equivalent to the original

complex Monge–Ampère equation. With this definition,

Φ1 = (σ∆ω̃ − 1)−1 log
ω̃n

ωn
.

When a small multiple of fω is a Kähler edge potential, equivalently when the Ricci curvature
of the reference ω is uniformly bounded, then ω and ω̃ are uniformly equivalent for all small σ.
Then it is straightforward to show σΦ1 is small in D0,γ

w , essentially from its definition and by
computing D2N ′. The approach we described before was devised precisely to circumvent this
lack of differentiability of fω.

6.4 Convergence

To show the convergence of the Ricci CP, in particular implying the existence of a KE(E)
metric, one must prove, as usual, openness and closedness of the set M ∩ (−∞, µ] × {1} in
(−∞, µ] × {1} (recall (6.8)); indeed, since this set is nonempty by §6.3, this implies that it is
equal to (−∞, µ] × {1}. Openness follows as described in §4.5. Closedness follows from the
following a priori estimate.
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Theorem 6.3. Along the Ricci continuity path (6.3),

||ϕ(s)||D0,γ
w
≤ C, (6.10)

where C = C(||ϕ(s)||L∞(M),M, ω, β, n). When µ ≤ 0 or the twisted Mabuchi energy is proper
then

||ϕ(s)||L∞(M) ≤ c, (6.11)

with c depending only on M,ω, β, n.

For very negative values of s this is a consequence of §6.3. Thus, (6.11) follows from
Proposition §7.1, and (6.10) is a corollary of the a priori estimates (7.8) for the Laplacian
of ϕ(s) together with the maximum principle, and (7.24) for the Hölder semi-norm of the
Laplacian of ϕ(s). These estimates are described in detail in §7 below. There is, however, one
caveat in applying the maximum principle in the edge setting: the maximum could be attained
on D and then, as the metric blows up there, one cannot make sense of its Laplacian. A trick
due to Jeffres [143] is to add the barrier function c|s|εh with c, ε > 0 small. This is easily seen
to “push” the maximum away from D, while not changing the value of the function being
maximized by a whole lot: the latter fact is obvious, while the maximum is pushed away from
D precisely because the gradient of the barrier function blows up near D. One can even let c
tend to zero to see that the same exact estimates as in the smooth case hold. An improved
version of this maximum principle is proved in [141, Lemma 5.1].

6.5 The Ricci iteration

As explained in §6.1, the Ricci continuity method is motivated by the Ricci iteration, introduced
in [214] (cf. Keller [146]). It is then natural to go back and prove convergence of the Ricci
iteration {ωkτ}k∈N. When τ = 1, this leads to a particularly natural result:

lim
k→∞

Ric−kβ ω = ωKE,

where ωKE is a KEE metric of angle β, Ric−k := (Ric−1)k, and Ric−1 is the twisted inverse
Ricci operator defined in §5.3. It is interesting to note that when β = 1, results of Donaldson
[100] show that Ric−1 can be approximated by certain finite-dimensional approximations, and
this was further studied by Keller [146] yielding Bergman type approximations to KE metrics.

The convergence of the Ricci iteration when τ > 1, or when τ = 1 and the α-invariant is
bigger than one was proved in [214] and adapts to the edge setting once the a priori estimates
needed for the Ricci CP are established. The weak convergence when τ ≤ 1 in general was
first established in [22] (and the strong convergence then can be deduced from arguments of
[214, 141]) using a new pluripotential estimate from [23, 18] that can be stated as follows:

Lemma 6.4. Suppose J(ω, ωϕ) ≤ C. Then for each t > 0 there exists C ′ = C ′(C,M,ω, t) such
that

∫
M e−t(ϕ−supϕ)ωn ≤ C ′.

In particular, since the K-energy decreases along the Ricci iteration, the properness as-
sumption means that J(ω, ωkτ ) is uniformly bounded, independently of k. Thus, rewriting
(6.2) as

ωnψkτ = ωnefω−(1− 1
τ

)ψkτ− 1
τ
ψ(k−1)τ ,

choosing p sufficiently large depending only on τ , say p/3 = max{1− 1
τ ,

1
τ }. Using Ko lodziej’s

estimate and the Hölder inequality this yields the uniform estimate oscψkτ ≤ C. Unlike for
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solutions of (6.3), the functions ψkτ need not be changing signs. But an inductive argument
shows that |(1− 1

τ )ψkτ− 1
τψ(k−1)τ | ≤ C [214, p. 1543]. The higher derivative estimates follow as

in the Ricci CP since the Ricci curvature is uniformly bounded from below along the iteration.
It is natural to also hope for similar results for a suitable Kähler–Ricci edge flow (6.1).

For Riemann surfaces, a rather complete understanding is given by [177], as described in §4.4.
Different approaches to short time existence in higher dimensions are developed by Chen and
Wang [68, 69, 263], Liu–Zhang [161], as well as by Mazzeo and the author [176].

6.6 Other approaches to existence

The Ricci continuity method gives a unified proof of the classical results of Aubin, Tian, and
Yau on existence of KE metrics in the smooth setting, and naturally generalizes to give new
and optimal existence results for KEE metrics. This was the main contribution of [141, 175], in
addition to the the linear theory and higher regularity. Later, two other alternative approaches
to existence were brought to fruition.

The first is a combination of a variational approach of Berman, and an approximation tech-
nique of Campana, Guenancia, and Pǎun. Guenancia–Pǎun, building on work of Campana–
Guenancia–Pǎun, developed a smooth approximation method [127, 52] to prove existence as-
suming a weak, say C0, solution exists. In their scheme, such a solution is obtained by using
the variational approach of Berman [18], under a properness assumption on the K-energy
(when µ ≤ 0 such a C0 solution exists automatically by Ko lodziej’s estimate [149]). One
first approximates the reference form ω (3.5) by a particular sequence of smooth cohomolo-
gous Kähler forms ω0 +

√
−1∂∂̄ψε (with limε→0 ψε = (|s|2h)β), and then solves the regularized

Monge–Ampère equation

(ω +
√
−1∂∂̄(ψε + φε))

n = ωn0 e
f+µ(ψε+φε)(|s|2 + ε2)β−1. (6.12)

These equations can be solved by standard results in the smooth setting, i.e., when ε > 0. It
thus suffices to prove a Laplacian estimate. When β ∈ (0, 1/2] this follows directly from the
classical Aubin–Yau estimate (7.16), once a careful and tedious computation establishes that
the bisectional curvature of ω0 +

√
−1∂∂̄ψε is bounded from below independently of ε [52].

When β ∈ (0, 1) this follows by additional clever and lengthy computations showing that the
negative contribution of the bisectional curvature of ω0 +

√
−1∂∂̄ψε in the right hand side of

(7.16), can be cancelled by adding terms of the form ∆ωχ(ε2 + |s|2h) on the left hand side, where
χ : R+ → R+ is a certain auxiliary function [127]. As remarked in [127], a somewhat similar
trick appears in [42] to deal with C3 estimates, and is reviewed in §7.8. Later, Datar–Song
observed that relying on Lemma 3.14 and the Chern–Lu inequality as developed in [141, §7]
(Corollary 7.2) one can avoid the aforementioned lengthy computations. Either way, the main
advantage of this method over a continuity method is that, as first observed by Berman [18],
no openness argument is needed.

The second is an angle-deforming continuity method that applies in the special case of a
smooth plurianticanonical divisor D ∈ | − mKM | in a Fano manifold. It was introduced by
Donaldson in lectures at Northwestern University in 2009 and later published in [102] in the case
D is anticanonical, and the immediate, yet useful, extension to the case of a plurianticanonical
divisor, was noted by Li–Sun [157]. Here, one constructs first a KEE of angle β along D for
some small β0 ∈ (0, 1). Equation (3.10) reads, RicωKEβ0

= β0ωKEβ0
+ (1− β0)[D]/m, and now

we may consider β0 as a parameter and try to deform it to a given β. This was first achieved
for all small β0 by the combined results of Berman [18] and [141]: the former shows that for
all small β > 0 the twisted K-energy is proper, while the latter shows that properness implies
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existence. Alternatively, Berman also observes that when β0 = 1/k for k ∈ N sufficiently large,
an orbifold KE metric can be constructed using Demailly–Kollár’s orbifold version of Tian’s
α-invariant existence criterion [84, 237]. Next, Donaldson’s openness result implies that the
KEE metric of angle β0 can be deformed to a KEE of slightly larger angle, as long as the Lie
algebra aut(M,D) is trivial. This always holds in this Fano setting (but not in general [60]) as
first observed by Berman [18, p. 1291] (an algebraic proof of this was later given by Song–Wang
[229]). Finally, the recently announced results of [63, 248], together with Berman’s observation
that properness of the twisted K-energy is an open property (in β), can be combined to prove
existence.

7 A priori estimates for Monge–Ampère equations

This section surveys the a priori estimates pertinent for the study of the (possibly degenerate)
complex Monge–Ampère equations (6.7), both in the smooth setting (β = 1) and the edge
setting (β ∈ (0, 1)). The L∞ estimate can be proved in at least three different ways, as dis-
cussed in §7.1 with little dependence on the (possibly unbounded) curvature of the background
geometry. The Laplacian estimate on the other hand is quite sensitive to the latter, and more
care is needed here. We take the opportunity to give a rather self-contained introduction to
the Laplacian estimate for the complex Monge–Ampère equation in §7.2–7.7. The Chern–Lu
inequality was used first by Bando–Kobayashi in the 80’s to obtain a Laplacian estimate with
bounded reference geometry, but fell into disuse since and was first systematically put to use
for a general class of Monge–Ampère equations (more specifically, whenever the solution metric
has Ricci curvature uniformly bounded from below) in the author’s work on the Ricci iteration
[214] and fully exploited in [141] to obtain estimates under a one-sided curvature bound on the
reference geometry. This is described in §7.3–7.4. Traditionally, except in those three articles,
the Laplacian estimate was essentially always derived using the Aubin–Yau estimate (with the
exception of [18] that used the estimate from [214]). The latter estimate depends on a lower
bound on the bisectional curvature of the reference metric, and is therefore not directly appli-
cable for the Ricci continuity method. However, it always seemed curious to the author that
the Chern–Lu inequality can be derived as a corollary of a general statement about holomor-
phic mappings, while the Aubin–Yau estimate is classically derived using a lengthy and rather
un-enlightening computation. In §7.5 we describe a new inequality on holomorphic embeddings,
that we call the reverse Chern–Lu inequality that yields the Aubin–Yau estimate as a corollary
(§7.6–7.7). The rest of this Section describes approaches to Hölder continuity of the metric.
When β ∈ (0, 1/2]∪{1}, the asymptotic expansion of (3.23) proves that third mixed derivatives
of the type ϕij̄k are bounded. Subsection 7.8 indicates how to obtain a uniform estimate for
such derivatives by slightly modifying the original approach of Calabi in the smooth setting. In
general, the expansion (3.24) shows that ϕij̄k 6∈ L∞(M) but that ϕij̄k ∈ L2. Tian’s approach to
proving a uniform local W 3,2 estimate on ϕ is the topic of §7.9; Campanato’s characterization
of Hölder spaces implies a uniform D0,γ

w estimate on ϕ. Finally, §7.10 describes three other
approaches to D0,γ

s estimates.

7.1 Uniformity of the potential

Ko lodziej’s estimate gives a uniform bound on the oscillation of the solution u of (ω0 +√
−1∂∂̄u)n = Fωn0 in terms of ||F ||L1+ε(M,ωn0 ), ω0, and ε > 0 [149]. By (3.11) it suffices to

take any ε in the range (0, β
1−β ). Thus, Ko lodziej’s estimate (together with the normalization

along (6.3)) directly provides the L∞ bound on the Kähler potential along the Ricci CP for all
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s ≤ 0, and this is of course enough when µ ≤ 0. A different approach is to use Moser iteration,
as in Yau’s work in the smooth setting, which directly adapts to this setting without change.
The real challenge is then to obtain the estimate when s > 0.

The method used in [141] is to prove uniform bounds on the Sobolev and Poincaré constants
along the Ricci CP. Then, a standard Moser iteration argument [245] gives a uniform control
on the C0 norm of ϕ(s) in terms of I(ω, ωϕ(s)), which is in turn controlled under the properness
assumption.

The proof of the uniformity of the Poincaré inequality is a quick consequence of the asymp-
totic expansion of the solutions ϕ(s). This expansion precisely shows that ϕ(s) ∈W 3,2 and so
the integration by parts in the Bochner–Weitzenböck formula is justified, and readily implies
λ1(ωϕ(s)) ≥ s with strict inequality for all s < µ, and equality when s = µ iff there exist
holomorphic vector fields on M tangent to D [102, Proposition 8],[141, Lemma 6.1].

The Sobolev inequality is trickier, but still the key is to use the validity of the integrated
form of the Bochner–Weitzenböck formula. More precisely, standard results of Bakry and others
on diffusive semigroups imply both the existence and the uniformity of a Sobolev inequality
under a general curvature-dimension condition (that precisely corresponds to the Bochner–
Weitzenböck inequality holding on a class of functions) as well as some assumptions on the
algebra of functions on which the (uniform) curvature-dimension condition holds [12]. In our
setting, the existence of a (possibly non-uniform in s) Sobolev inequality is easily verified by
the change of coordinate z 7→ ζ and a covering argument. Moreover, one can verify, using
basic results on polyhomogeneity of solutions to quasilinear elliptic equations, that the class
D0,γ
w satisfies the conditions necessary for Bakry’s approach to be carried out [141, §6]. Thus,

this approach furnishes a uniform in s Sobolev inequality. This approach also give a uniform
diameter estimate along the Ricci continuity method. It is interesting to note that one could
also use classical Riemannian geometry arguments (e.g., Croke’s approach for the isoperimetric
inequality [77], and Myers’ approach for the diameter bound [188]) provided one knew that
between every two points in M \ D there exists a minimizing geodesic entirely contained in
M \D. This was shown very recently by Datar [79] building on a result on Colding–Naber [76].

A completely different approach is to regularize the equation and prove that solutions ϕ(s)
can be approximated by smooth Kähler metrics whose Ricci curvature is also bounded from
below by s, and then use the standard results on Sobolev bounds [63, 248].

Finally, as in [18], one may use the pluripotential estimate of Lemma 6.4 to obtain a
C0 estimate via Ko lodziej’s result. In fact, more recent and sophisticated methods yield a
Hölder estimate in this setting (see, e.g., [150, 105]). Furthermore, under stronger regularity
assumptions on the right hand side there is also a Lipschitz estimate due to B locki [32].

7.2 Uniformity of the metric, I

We say that ω, ωϕ are uniformly equivalent if C1ω ≤ ωϕ ≤ C2ω, for some (possibly non-
constant) C2 ≥ C1 > 0. This is implied by either

n+ ∆ωϕ = trωωϕ ≤ C2 and detω ωϕ ≥ C1C
n−1
2 /(n− 1)n−1, (7.1)

or,
n−∆ωϕϕ = trωϕω ≤ 1/C1 and detω ωϕ ≤ C1C

n−1
2 (n− 1)n−1; (7.2)

conversely, it implies trωωϕ ≤ nC2 and detω ωϕ ≥ Cn1 , as well as trωϕω ≤ n/C1 and detω ωϕ ≤
Cn2 . Indeed,

∑
(1+λj) ≤ A, and Π(1+λj) ≥ B implies 1+λj ≥ (n−1)n−1B/An−1; conversely,

Π(1 + λj) ≥
(

1
n

∑ 1
1+λj

)−n ≥ Cn1 .
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Let ι : (M,ωϕ) → (M,ω) denote the identity map. Consider ∂ι−1 either as a map from
T 1,0M to itself, or as a map from ΛnT 1,0M to itself. Alternatively, it is section of T 1,0 ?M ⊗
T 1,0M , or of KM ⊗K−1

M , and we may endow these product bundles with the product metric
induced by ω on the first factor, and by ωϕ on the second factor. Then, (7.1) means that
the norm squared of ∂ι−1, in its two guises above, is bounded from above by C2, respectively
bounded from below by C1C

n−1
2 /(n− 1)n−1. Similarly, (7.2) can be interpreted in terms of ∂ι.

Now, detω ωϕ = ωϕ
n/ωn = F (z, ϕ) is given solely in terms of ϕ (without derivatives), it

thus suffices to find an upper bound for either |∂ι−1|2 or |∂ι|2 (from now on we just consider
maps on T 1,0M).

The standard way to approach this is by using the maximum principle, and thus involves
computing the Laplacian of either one of these two quantities. The classical approach, due to
Aubin [7, 8] and Yau [267], is to estimate the first, while a more recent approach is to estimate
the second [214, 141, 176], and this builds on using and finessing older work of Lu [162] and
Bando–Kobayashi [13].

We take the opportunity to explain here both of these approaches in a unified manner since
such a unified treatment seems to be missing in the literature. In particular, essentially all
known Laplacian estimates are seen to be a direct corollary of the Chern–Lu inequality or its
reverse form. We now explain this in detail.

7.3 Chern–Lu inequality

Let f : (M,ω) → (N, η) be a holomorphic map between Kähler manifolds. We choose two
holomorphic coordinate charts (z1, . . . , zn) and (w1, . . . , wn) centered at a point z0 ∈M and at
a point f(z0) ∈ N , respectively, such that the first is normal for ω while the second is normal
for η. In those coordinates, we consider the map

f : z = (z1, . . . , zn) 7→ f(z) = (f1(z), . . . , fn(z)),

and write ω =
√
−1gij̄(z)dz

i ∧ dzj , η =
√
−1hij̄(w)dwi ∧ dwj , and

∂f |T 1,0M =
∂f j(z)

∂zi
dzi|z ⊗

∂

∂wj
∣∣
w(z)

= f ji dz
i|z ⊗

∂

∂wj
∣∣
w(z)

,

so
|∂fT 1,0M |2 = gil̄(z)hjk̄(f(z))f ji (z)fkl (z). (7.3)

Thus, at z0,

∆ω|∂fT 1,0M |2(z0) =
∑
p,q

gpq̄
∂2(gil̄hjk̄f

j
i f

k
l )

∂zp∂zp

=
∑
p

gpq̄
[
gil̄hjk̄,dēf

j
i f

k
l f

d
p f

e
q − hjk̄git̄gsl̄gst̄,pq̄f

j
i f

k
l + gil̄hjk̄f

j
ipf

k
lq

]
= −ω# ⊗ ω# ⊗Rη(∂f, ∂̄f, ∂f, ∂̄f) + (Ricω)# ⊗ η(∂f, ∂̄f) + gpq̄gil̄hjk̄f

j
ipf

k
lq,

(7.4)
where the last line is now coordinate independent. Here Rη denotes the curvature tensor
of η (of type (0, 4)), while ω# denotes the metric g−1 on T 1,0 ?M (i.e., of type (2, 0)), and
similarly (Ricω)# denotes the (2, 0)-type tensor obtained from Ricω by raising indices using
g. The last term in (7.4) is equal to |∇∂f |2, the covariant differential of ∂f , a section of
T 1,0M ⊗ T 1,0M ⊗ f?T 1,0N . Note, finally, that η(∂f, ∂̄f) = f?η, and similarly other terms
above can be expressed as pull-backs from N to M .
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Proposition 7.1. (Chern–Lu inequality) Let f : (M,ω) → (N, η) be a holomorphic map
between Kähler manifolds. Then,

|∂f |2∆ω log |∂f |2 = ((Ricω)# ⊗ η)(∂f, ∂̄f)− (ω# ⊗ ω# ⊗Rη)(∂f, ∂̄f, ∂f, ∂̄f) + e(f)

≥ (Ricω)# ⊗ η(∂f, ∂̄f)− ω# ⊗ ω# ⊗Rη(∂f, ∂̄f, ∂f, ∂̄f),
(7.5)

where e(f) = |∇∂f |2 − |∂f |2|∂ log |∂f |2|2.

The proof follows from the previous paragraph, the identity u∆ω log u = ∆ωu− u|∂ log u|2,
and the Cauchy–Schwarz inequality: indeed, since f is holomorphic,

|∂f |2|∇∂f |2 ≥ 〈∇∂f, ∂̄f〉2 = |∂|∂f |2|2, (7.6)

therefore e(f) ≥ 0. Note that ∂2f and ∂f are of course sections of different bundles, and so
we are abusing notation a bit when we write 〈∂∂f, ∂̄f〉, however the meaning should be clear
from (7.3). Note that the right hand side of (7.5) can be thought of as the Ricci curvature of
the bundle T 1,0 ?M ⊗ f?T 1,0N equipped with the metric g# ⊗ f?h.

A few words about the history of inequality (7.5). It was shown by Lu (more generally on
Hermitian manifolds) [162] (though “=” should be replaced by “≥” in [162, (4.13)]). Chern
[71] carried out a similar computation earlier for ∆ω|∂f |2 for ∂f considered as a map from
ΛnT 1,0M to ΛnT 1,0N . As pointed out to us by Donaldson, (7.4) is in fact a special case of
the computation of Eells–Sampson (with a slightly different sign convention) [103, (16)] on the
Laplacian of the energy density of a harmonic map (holomorphic maps are harmonic by op.
cit., pp. 116–118). In fact, as Eells–Sampson observe, when f is an immersion, (7.4) can also
be proved using the Gauss equations.

7.4 A corollary of the Chern–Lu inequality

The next result shows how to estimate ∆ωϕ log |∂ι|T 1,0M |2 solely under an upper bisectional
curvature bound on the target, and a generalized lower Ricci curvature bound on the domain.

Proposition 7.2. Let f : (M,ω) → (N, η) be a holomorphic map between Kähler manifolds.
Assume that Ricω ≥ −C1ω − C2f

?η and that Bisecη ≤ C3, for some C1, C2, C3 ∈ R. Then,

∆ω log |∂f |2 ≥ −C1 − (C2 + 2C3)|∂f |2. (7.7)

In particular, if f = ι : (M,ω)→ (M,η) is the identity map, and ω = η +
√
−1∂∂̄ϕ then

∆ω

(
log trωη − (C2 + 2C3 + 1)ϕ

)
≥ −C1 − (C2 + 2C3 + 1)n+ trωη. (7.8)

Using the Chern–Lu inequality to prove a Laplacian estimate for complex Monge–Ampère
equations seems to go back to Bando–Kobayashi [13], who considered the case Ricω ≥ −C2η.
Next, the case Ricω ≥ −C1ω first appeared in proving a priori Laplacian estimate for the Ricci
iteration [214], where both the Bando–Kobayashi estimate and the Aubin–Yau estimate do not
work directly. Proposition 7.2 combines both cases, and first appeared in [141, Proposition
7.1].

7.5 The reverse Chern–Lu inequality

The following is a new, reverse form of the Chern–Lu inequality.
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Proposition 7.3. (Reverse Chern–Lu inequality) Let f : (M,ω) → (N, η) be a holomorphic
map between Kähler manifolds that is a biholomorphism onto its image. Then,

|∂f |2∆η log |∂f |2 ◦ f−1 = −(ω# ⊗ Ric η)(∂f, ∂̄f) + ((Rω)# ⊗ η ⊗ η#)(∂f, ∂̄f, ∂f−1, ∂̄f−1) + e(f)

≥ −ω# ⊗ Ric η(∂f, ∂̄f) + (Rω)# ⊗ η ⊗ η#(∂f, ∂̄f, ∂f−1, ∂̄f−1),
(7.9)

where e(f) = |∇1,0∂f |2 − |∂f |2|∇1,0
η log |∂f |2|2.

Proof. Mostly keeping the notation of §7.3 we compute ∆ηtrωη with respect to two holomorphic
coordinate charts, but now we only assume z = (z1, . . . , zn) is normal for g, and let w =
(w1, . . . , wn) = f(z). By our assumption on f , w is a holomorphic coordinate on f(M). Then,

∆η|∂fT 1,0M |2 =
∑
p,q

hpq̄
∂2

∂wp∂wq

[
gil̄(z)hjk̄(f(z))f ji (z)fkl (z)

]
=
∑
p,q

hpq̄
[
gil̄hjk̄,pq̄f

j
i (z)fkl (z)− git̄gsl̄gst̄,dēhjk̄(f−1)dp(f

−1)eqf
j
i f

k
l

]
= −(ω)# ⊗ Ric η(∂f, ∂̄f) + (Rω)# ⊗ η(∂f, ∂̄f, ∂f−1, ∂̄f−1) + e1(f).

(7.10)

Here,
hpq̄hjk̄,pq̄ = hpq̄(−Rjk̄pq̄ + hst̄hjt̄,phsk̄,q̄),

so
e1(f) := gil̄(z)hpq̄hst̄hjt̄,phsk̄,q̄(w)f ji (z)fkl (z) = |∇1,0∂f |2. (7.11)

Also, by (Rω)# we denote the (2, 2)-type version of the curvature tensor. Next,

e2(f) := ∆η|∂f |2 − |∂f |2∆η log |∂f |2 = |∂f |2|∇1,0
η log |∂f |2|2.

This time,

e1(f)|∂f |2 = |∇1,0∂f |2|∂f |2 ≥ 〈∇1,0∂f, ∂̄f〉2 = |∇1,0
η |∂f |2|2 = e2(f)|∂f |2, (7.12)

using the Kähler condition. Therefore,

|∂f |2∆η log |∂f |2 ≥ −(ω)# ⊗ Ric η(∂f, ∂̄f) + (Rω)# ⊗ η(∂f, ∂̄f, ∂f−1, ∂̄f−1),

as desired.

Note that (7.12) seems to simplify, or at least cast invariantly, Aubin–Yau’s derivation,
done in coordinates, of a similar inequality, cf. [267, (2.15)],[226, p. 99].

Remark 7.4. The reverse Chern–Lu inequality is not the same inequality one would obtain
from the Chern–Lu inequality by considering the inverse of the identity map. In fact, the latter
would yield

|∂f−1|2∆η log |∂f−1|2 ≥ (Ric η)# ⊗ ω(∂f−1, ∂̄f−1)− η# ⊗Rω(∂f−1, ∂̄f−1, ∂f−1, ∂̄f−1),

or specifically, considering the map ι−1 : (M,ω)→ (M,ωϕ),

∆ω log(n+ ∆ωϕ) ≥ (Ricω)# ⊗ ωϕ(∂ι, ∂̄ι)− ω# ⊗Rωϕ(∂ι, ∂̄ι, ∂ι, ∂̄ι), (7.13)

which is less useful, since it is hard to estimate the full bisectional curvature of a solution to a
complex Monge–Ampère equation (which only controls the Ricci curvature).
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7.6 The Aubin–Yau inequality as a corollary

We now demonstrate how the classical Aubin–Yau inequality [7, 267] (see Siu [226, p. 114]
for a comparison between the approaches of Aubin and Yau) can be deduced using the reverse
Chern–Lu inequality. It allows to work under somewhat complementary curvature assumptions
to those in Proposition 7.2.

Proposition 7.5. (Aubin–Yau Laplacian estimate) In the above, let f = id : (M,ω)→ (M,η)
be the identity map, and assume that Ric η ≤ C1ω + C2η and that Bisecω ≥ −C3, for some
C1, C2, C3 ∈ R. Then,

trωη∆η log trωη ≥ −n(C1 + C3)− C2trωη − C3trωη trηω. (7.14)

In particular, if η = ω +
√
−1∂∂̄ϕ then

∆ωϕ

(
log trωωϕ − (C3 + 1)ϕ

)
≥ −nC1 + C3

trωωϕ
− (C2 + n(C3 + 1)) + trωϕω, (7.15)

hence

∆ωϕ

(
log trωωϕ − (2C3 + C1 + 1)ϕ

)
≥ −(C2 + n(2C3 + C1 + 1)) + trωϕω. (7.16)

Proof. Proposition 7.3 implies (7.14) by direct computation. Since trωϕω = n − ∆ωϕϕ, this
inequality is equivalent to (7.15). Since trωωϕ trωϕω ≥ n (since trA trA−1 ≥ n for every positive
matrix A), this last inequality implies (7.16).

Remark 7.6. An older inequality of Aubin [6, p. 408] also follows from (7.10) when ω has
nonnegative bisectional curvature. Aubin used this inequality to prove the Calabi conjecture
under this curvature assumption.

Remark 7.7. The reverse Chern–Lu inequality also yields, by considering the inverse of the
identity map ι−1 : (M,ωϕ)→ (M,ω),

∆ω log(n−∆ωϕϕ) ≥ −(ωϕ)# ⊗ Ricω(∂f, ∂̄f) + (Rωϕ)# ⊗ ω(∂f, ∂̄f, ∂f−1, ∂̄f−1), (7.17)

which is not very useful for the Monge–Ampère equations we consider here for the same rea-
sons as in Remark 7.4. In summary, there are four quantities one can estimate, and the
corresponding four inequalities are (7.8) (Chern–Lu), (7.13) (Chern–Lu backwards), (7.15) (re-
verse Chern–Lu, i.e., Aubin–Yau), and (7.17) (reverse Chern–Lu backwards), and it is the first
and the third which are most useful. One may also easily derive four corresponding parabolic
versions of the above inequalities: we leave the details to the reader.

7.7 Uniformity of the metric, II

The estimates of the previous paragraphs imply uniformity of the metric under various cur-
vature assumptions coupled with uniform estimates on the potential and/or the volume form.
Let us now state these consequences carefully. Part (i) in the next result is a corollary of the
Chern–Lu inequality, and seems to have first been formulated in this generality in [141]. Part
(ii) is a corollary of the reverse Chern–Lu inequality, and seems to be phrased in this generality
for the first time here. Part (iii) in the case Ricωϕ = Ricω +

√
−1∂∂̄ψ2 −

√
−1∂∂̄ψ1 is due to

Pǎun [196] (whose more quantitative formulation appears in [24, 22]) together with Campana–
Guenancia–Pǎun [52] that allows to assume only a lower bound on the bisectional curvature of
the reference metric (without an upper bound on the scalar curvature). Here we explain how
it (or rather its slight generalization to the case Ricωϕ ≤ Ricω+

√
−1∂∂̄ψ2−

√
−1∂∂̄ψ1), too,

follows from the reverse Chern–Lu inequality.
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Corollary 7.8. Let ϕ ∈ D0,γ
w ∩ C4(M \D) ∩ PSH(M,ω).

(i) Suppose that Ricωϕ ≥ −C1ω − C2ωϕ and Bisecω ≤ C3 on M \D. Then

− n < ∆ωϕ ≤ (C1 + n(C2 + 2C3 + 1))e(C2+2C3+1) oscϕ − n. (7.18)

(ii) Suppose that Ricωϕ ≤ C1ω + C2ωϕ and Bisecω ≥ −C3 on M \D. Then

− n < ∆ωϕ ≤
(C2 + n(2C3 + C1 + 1))n−1

n− 1

∣∣∣∣∣∣e(2C3+C1+1)(ϕ−minϕ)ωϕ
n

ωn

∣∣∣∣∣∣
L∞
− n. (7.19)

(iii) Let ψ1, ψ2 ∈ D0,γ
w with ψ2/C4 ∈ PSH(M,ω). Suppose that Ricωϕ ≤ Ricω +

√
−1∂∂̄ψ2 −√

−1∂∂̄ψ1 and Bisecω ≥ −C3 on M \D. Then,

− n < ∆ωϕ ≤
(nA)n−1

n− 1

∣∣∣∣∣∣e(Aϕ+ψ2−min(Aϕ+ψ2))ωϕ
n

ωn

∣∣∣∣∣∣
L∞
− n, (7.20)

where A := 1 + C4 + C3 + | inf ∆ωψ1|
n .

Proof. (i) By (7.8), trωωϕ(p) ≤ C1 + n(C2 + 2C3 + 1), where log trωωϕ − (C2 + 2C3 + 1)ϕ is
maximized at p ∈M \D, proving (7.18). Notice that here we used that the maximum is always
attained on M \D, as explained in §6.4 (see [141, §7] for details) by using barrier functions of
the form ε1|s|ε2 .
(ii) By (7.16), trωϕω(p) ≤ C2 +n(2C3 +C1 +1), where log trωωϕ−(2C3 +C1 +1)ϕ is maximized
at p ∈M \D. But, trωωϕ

ωn

ωϕn
≤ 1

n−1(trωϕω)n−1. Thus,

maxM trωωϕ ≤ trωωϕ(p)e(2C3+C1+1)(ϕ(p)−minϕ)

≤ e(2C3+C1+1)(ϕ(p)−minϕ)ωϕ
n

ωn
(p)

1

n− 1
(C2 + n(2C3 + C1 + 1))n−1.

(iii) Proposition 7.3 implies

trωωϕ∆ωϕ log trωωϕ ≥ −nC3 − C3trωωϕtrωϕω − sω + ∆ωψ1 −∆ωψ2,

where sω is the scalar curvature of ω. However, since we do not want to assume an upper bound
for the scalar curvature (e.g., if Bisecω ≤ C5 then −sω ≥ −n(n+ 1)C5 [148, pp. 168–169]), we
observe that Proposition 7.3 also implies

trωωϕ∆ωϕ log trωωϕ ≥ R#
ω ⊗ ωϕ ⊗ ωϕ# − sω + ∆ωψ1 −∆ωψ2. (7.21)

Recall that here the first term on the right hand side is defined as the contraction of the
curvature tensor of ω that appears in (7.10). As in [52, Lemma 2.2], one can then combine the
terms depending on the curvature of ω, as we now explain. Indeed, this is most easily seen
upon diagonalization (choosing normal holomorphic coordinates so that at a given point p, ω is
represented by the identity matrix, while ωϕ is represented by a diagonal matrix diag{l1, . . . , ln}
while ωϕ

# is represented by diag{1/l1, . . . , 1/ln}). Then,

R#
ω ⊗ωϕ⊗ωϕ#− sω =

∑
j,k

( lj
lk
− 1
)
Rjj̄,kk̄ =

∑
j≤k

( lj
lk

+
lk
lj
− 2
)
Rjj̄,kk̄ ≥ −C3

∑
j≤k

( lj
lk

+
lk
lj
− 2
)
,
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where, by assumption, the numbers Rjj̄,kk̄ are bounded from below −C3 and Rjj̄,kk̄ = Rkk̄,jj̄
by the symmetries of the curvature tensor. But now,∑

j≤k

( lj
lk

+
lk
lj
− 2
)

=
∑
j,k

( lj
lk
− 1
)

= −n(n+ 1) +
∑
j,k

lj
lk
≤ −n(n+ 1) +

∑
j

1

lj

∑
k

lk,

and this last expression equals −n(n+ 1) + trωϕωtrωωϕ(p). Thus, returning to (7.21), we now
deduce,

∆ωϕ log trωωϕ ≥ (n(n+ 1)C3 + ∆ωψ1 −∆ωψ2)/trωωϕ − C3trωϕω.

Since trωωϕ trωϕω ≥ n, ∆ωϕ log trωωϕ ≥ −[C3 + 1
n | inf ∆ωψ1|]trωϕω −∆ωψ2/trωωϕ, hence,

∆ωϕ

(
log trωωϕ −

[
1 + C3 +

| inf ∆ωψ1|
n

]
ϕ
)
≥ trωϕω − n

[
1 + C3 +

| inf ∆ωψ1|
n

]
− ∆ωψ2

trωωϕ
.

So far the proof followed that of (ii). Pǎun’s additional observation is that the term ∆ωψ2/trωωϕ
can be controlled even though it has the ‘wrong’ sign, under the plurisubharmonicity as-
sumption. Indeed, since 0 ≤ C4ω +

√
−1∂∂̄ψ2 then each eigenvalue of this nonnegative

form (that we take with respect to ωϕ) is controlled by the sum of the eigenvalues, i.e.,
C4ω +

√
−1∂∂̄ψ2 ≤ (C4trωϕω + ∆ωϕψ2)ωϕ. Taking the trace of this inequality with respect to

ω,

−∆ωψ2

trωωϕ
≥ nC4

trωωϕ
− C4trωϕω −∆ωϕψ2 ≥ −C4trωϕω −∆ωϕψ2.

Thus,

∆ωϕ

(
log trωωϕ −

[
1 + C4 + C3 +

| inf ∆ωψ1|
n

]
ϕ+ ψ2

)
≥ trωϕω

− n
[
1 + C4 + C3 +

| inf ∆ωψ1|
n

]
.

(7.22)

Arguing as in (ii) proves (7.20).

In all three cases, it follows that 1
Cω ≤ ωϕ(s) ≤ Cω, with C depending only on the constants

appearing in (7.18)–(7.20) and in (7.1)–(7.2), with the precise dependence computed in §7.2. Of
course, if one assumes equalities in the expressions for Ricωϕ instead of inequalities, then one
can express the ratio of the volume forms more explicitly to make the estimates (7.19)–(7.20)
more explicit.

7.8 Uniformity of the connection: Calabi’s third derivative estimate

The term e1(f) = |∇∂f |2 of (7.11) is the norm squared of the connection associated to g#⊗f?h.
on T 1,0 ?M ⊗ f?T 1,0N . When f = id it equals |∇1,0∂∂̄ϕ|2, with the norm taken with respect
to ωϕ ⊗ ωϕ ⊗ ω. But assuming that the metrics ωϕ and ω are uniformly equivalent, this term
is uniformly equivalent to a term obtained by using the norm associated to ωϕ alone, namely
S := |∇1,0∂f |2ωϕ . Under appropriate bounds on Rω and Ricωϕ it follows from (7.10) that
∆ωϕtrωωϕ ≥ C1S−C2, with Ci depending also on the equivalence between ω and ωϕ. Standard

computations going back to Calabi [47] also show that ∆ωϕS ≥ −C ′3|Rω|S − C ′4|DRω|S1/2 ≥
−C3S − C4, with constants depending on bounds on Rω and its covariant derivative. Thus,
∆ωϕ(S + C3+1

C1
trωωϕ) ≥ S − C3+1

C1
C2 − C4. Using the maximum principle now yields a bound

on S. This summarizes the proof in the smooth setting [6, p. 410],[267, §3],[204].
In the edge setting, Rω and its covariant derivative are no longer bounded, and so this

approach has somewhat limited applicability. For instance, when β ∈ (0, 1/2), Brendle observed
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that |∇Rω| ≤ C

|s|ε−βh

for some ε > 0. Thus an inequality from the previous paragraph implies

∆ωϕS ≥ −C3S−
C′4
2 (|DRω|2+S) ≥ −(C3+

C′4
2 )S− C′4

2
C2

|s|2ε−2β
h

. But since ∆ωϕ |s|2εh ≥ C5|s|2ε−2β
h −

C6, the maximum principle can be applied, this time to S+ C3+1
C1

trωωϕ+ |s|2εh , to conclude [42].

7.9 Tian’s W 3,2-estimate

A general result due to Tian [238], proved in his M.Sc. thesis, gives a local a priori estimate in
W 3,2 for solutions of both real and complex Monge–Ampère equations under the assumption
that the solution has bounded real or complex Hessian and the right hand side is at least
Hölder. By Campanato’s classical integral characterization of Hölder spaces [53, 131] this
implies a uniform Hölder estimate on the Laplacian. This result can be seen as an alternative
to the Evans–Krylov theorem (and in fact appeared independently around the same time). Let
B1 ⊂ Cn be the unit ball. Consider the equation

det[uij̄ ] = eF−cu, on B1. (7.23)

The following is due to Tian. The proof in [238] is written for the real Monge–Ampère, but
applies equally to the complex Monge–Ampère.

Theorem 7.9. Suppose that u ∈ C4∩PSH(B1) satisfies (7.23). For any γ ∈ (0, 1), there exists
and C > 0 such that for any 0 < a < 1/2,∫

Ba

|uij̄k|2 ≤ Ca2n−2+2γ . (7.24)

Thus, ||ϕij̄ ||C0,γ(B1/4) ≤ C ′. The constants C,C ′ depend only on γ, β, ω, n, ||uij̄ ||L∞(B1),

||F ||C0,γ(B1), and ||u||L∞(B1).

The main ideas are as follows. First, an easy computation shows that (det[ukl̄]u
ij̄)i = 0

[238, 262]. Consider the Monge–Ampère equation det[uij̄ ] = h. Taking the logarithm and
differentiating twice, multiplying by h, and using the previous identity, yields

− huis̄utj̄uts̄,l̄uij̄,k + (huij̄ukl̄,i)j̄ = hkl̄ − hkhl̄/h, for each k, l. (7.25)

Thus, the Monge–Ampère equation roughly becomes a second order system of equations in
divergence form for the Hessian, with a quadratic nonlinearity, resembling the harmonic map
equation. In the harmonic map setting, a result of Giaquinta–Giusti shows that a bounded weak
W 1,2-solution is necessarily Hölder [122]. Since we already have bounds on the real/complex
Hessian, the situation is quite analogous. As shown by Tian, the Monge–Ampère equation
can be treated in just the same way, proving Theorem 7.9. A key difference between the two
settings is dealing with a system, so some extra algebra facts are needed. This method makes
clear that no additional curvature assumptions on the reference geometry are needed for this
estimate.

The discussion so far was in the absence of edge singularities. However, a very nice feature
of the above result is that since its proof involves integral quantities, they carry over verbatim to
the edge situation Cβ×Cn−1 (recall (3.4)), modulo only one very minor difference [141, Theorem

B.1]: since the vector field V1 = z1−β
1 ∂z1 = ∂ζ is multivalued, then if f is a smooth function in

(z1, . . . , zn) = (z1, Z) then choosing any branch and considering the function f1 = V1f on the
model wedge, f1 satisfies the boundary condition

f1(re
√
−12πβ, Z) = e

√
−12π(1−β)f1(r, Z). (7.26)
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Thus, the Sobolev inequality satisfied by such functions deteriorates as β approaches 1 (but
this is harmless if β is fixed, for instance). Moreover, harmonic functions with such boundary
conditions satisfy the estimate

||dh||2L2(Cβ(a),ωβ) ≤ Ca
2n−4+2β−1 ||dh||2L2(Cβ(1),ωβ), (7.27)

instead of the usual one with a2n. Again, this is harmless, and the only effect it has is to restrict
the range of possible Hölder exponents in the following immediate corollary of Theorem 7.9
[238, 141]. Consider the singular equation

det[uij̄ ] = eF−cu|z1|2β−2, on B1 \ {z1 = 0}. (7.28)

Corollary 7.10. Suppose that u ∈ C4({z1 6= 0}) ∩ PSH(B1) satisfies (7.28). For any γ ∈
(0, 1

β − 1) ∩ (0, 1), there exists a C > 0 such that for any 0 < a < 1/2,∫
Ba

|uij̄k|2 ≤ Ca2n−2+2γ . (7.29)

Here fi := Vif , where V1 = z1−β
1 ∂z1 = ∂ζ (a choice of one branch), V2 = ∂z2 , . . . , Vn = ∂zn.

Thus, ||uij̄ ||C0,γ ≤ C ′. The constants C,C ′ depend only on γ, β, ω, n, ||uij̄ ||L∞(B1), ||F ||C0,γ(B1),
and ||u||L∞(B1).

7.10 Other Hölder estimates for the Laplacian

Next, we describe several other Hölder estimates on the Laplacian of a solution of a complex
Monge–Ampère equation. The first is a weaker D0,γ

e estimate that follows the Evans–Krylov
method. The other estimates are alternative approaches to the D0,γ

w estimate descried in §7.9
(we also mention the approach in [51] under the restriction β ∈ (0, 2/3)).

7.10.1 The complex Evans–Krylov edge estimate

Compared with the approach presented in §7.9, perhaps a more well-known approach to the
Hölder estimate on the Laplacian of a solution of a complex Monge–Ampère equation is an
adaptation of the Evans–Krylov estimate to the complex setting. This has been carried out
for the original formulation [226] and in divergence form [262]; the latter requires slightly less
control on the right hand side of the equation than the former (see also [34]). Let us then
concentrate on the relevant adaptation to the singular setting.

The standard complex Evans–Krylov estimate adapts rather easily to the edge setting to
give a uniform D0,γ

e estimate in terms of a Laplacian estimate. The key point is to use properties
of the edge Hölder spaces under rescaling, and a Lipschitz estimate on the right hand side that
is valid for the Ricci continuity path (and fails for some other paths). We present the result,
closely following [141, §8].

The Evans–Krylov technique is local; we may thus concentrate on the neighborhood of D
where r ≤ 1. We cover this region with Whitney cubes

W = WR(y0) := {p ∈M \D : |y(p)− y0| < R, θ(p) ∈ Iπβ, r(p) ∈ (R, 2R)} ⊂M \D,

where R > 0 and y0 ∈ D. Here Iπβ denotes any interval in S1
2πβ of length πβ, so each WR(y0)

is simply connected. Clearly {r ≤ 1} \D is covered by the union of such cubes. Our goal is to
show that there exists a fixed γ′ ∈ (0, 1) and a uniform C > 0 such that ||Pijϕ||C0,γ′

e (W )
≤ C for
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all such Whitney cubes W (here Pij are the special second order operators discussed in §2.1, cf.
the discussion in §3.4). Taking the supremum over W gives the uniform estimate [ϕ]D0,γ′

e
≤ C ′.

The key point here is that log r and yi/r are distance functions for the complete metrics
(d log r)2 and |dZ|2/r2, respectively, and the model metric is the product of these two, i.e.,
ωβ/r

2 = (d log r)2+dθ2+|dZ|2/r2. Thus, we may in fact restrict to such cubes when computing
the Hölder norm. Indeed, if the supremum in the definition of the Hölder seminorm was nearly
attained for two points p, q ∈M\D not contained in one such cube then either r(p)/r(q) > 2 or
r(q)/r(p) > 2. But then the distance between p and q with respect to ωβ/r

2 would be bigger
than some fixed constant, and the Hölder seminorm would then be uniformly controlled by
the C0 norm, which is, by assumption, already bounded. Similarly we see that |y(p)/r(p) −
y(q)/r(q)| must be uniformly bounded.

This property of ωβ/r
2 manifests itself in another way in the proof. Namely, denoting

Sλ(r, θ, y) = (λr, θ, λy) the dilation map then

||S?λf ||C0,γ
e (W1(y0))

= ||f ||
C0,γ
e (Wλ(y0))

.

Thus, we can perform all estimates on a cube of fixed size.
Finally, the last crucial observation is that for any ϕ ∈ Heω, the metric ωϕ when viewed in

a “microscope” looks (up to perhaps a linear transformation of the original coordinates) very
close to the model (product) metric ωβ. In particular, given ε > 0, there exists λ0 = λ0(ε, ϕ)
such that for all λ > λ0,

(1− ε)|d~Z|2 ≤ λ−2S?λω(~Z) ≤ (1 + ε)|d~Z|2, (7.30)

where ~Z = (Z1, . . . , Zn) are holomorphic coordinates on W1, where λ~Z = ~ζ = (ζ, z2, . . . , zn),
are the original coordinates on Wλ.

To summarize, when we work in the rescaled cubes (that we may assume are of fixed size)
and use the coordinates ~Z, the “rescaled pulled-back” metric is essentially equivalent to the
model Euclidean metric (7.30). Fortunately, also the complex Monge–Ampère equation we are
trying to solve transforms very nicely under this same rescaling coupled with pull-back under
the dilation map. So, at the end of the day, one may simply apply the standard Evans–Krylov
argument on this cube of fixed size (that is disjoint from D). There is one small caveat, however.
In the (divergence form of the) Evans–Krylov argument one differentiates the Monge–Ampère
equation twice to obtain a differential inequality and one must control the right hand side
in C0,1. More precisely, provided then that we can estimate the Lipschitz norm of the right
hand side efω−sϕωn, we can carefully put all these observations together to prove a uniform
D0,γ
e estimate by directly applying the divergence form complex Evans–Krylov estimate to the

(uniformly elliptic) metric λ−2S?λω on the (fixed size) cube W1(y0), and to the local Kähler
potential λ−2(ψ + ϕ) ◦ Sλ (here ψ is a local potential for ω). The required aforementioned
Lipschitz estimate is proved in [141, Lemmas 4.4,8.3] and can be summarized as follows.

Lemma 7.11. Let log h(s, t) := logF + log det[ψij̄ ] = tfω + ct − sϕ+ log det[ψij̄ ], with s > S.
Then the following estimates hold with constants independent of t, s:
(i) For β ≤ 2/3, ||h(s, t)||w;0,1 ≤ C = C(S,M,ω, β, ||ϕ(s, t)||C0,1

w
).

(ii) For β ≤ 1, ||h(s, 1)||w;0,1 ≤ C = C(S,M,ω, β, ||ϕ(s, 1)||C0,1
w

).

The point of the proof of this lemma is that fω and det[ψij̄ ] are in C
0, 2
β
−2

w , and therefore so

is h. This is however in C0,1
w only when β ≤ 2/3. Fortunately, the combination fω +log det[ψij̄ ]
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is nevertheless always in C0,1
w . On the other hand, this crucial cancellation is false for tfω +

log det[ψij̄ ] when t < 1! Thus, we must use the Ricci continuity path in this juncture.
To summarize, we have:

Theorem 7.12. Let ϕ(s) ∈ D0,γ
e ∩ C4(M \D) ∩ PSH(M,ω) be a solution to (6.3) with s > S

and 0 < β ≤ 1. Then
||ϕ(s)||D0,γ

e
≤ C, (7.31)

where γ > 0 and C depend only on M,ω, β, S and ||∆ωϕ(s)||C0 , ||ϕ(s)||C0.

7.10.2 A harmonic map type argument vs. a Schauder type argument

Equation (7.30) was simply a consequence of the definition of a Kähler edge metric. However,
it turns out that under some geometric assumptions it is possible to obtain a priori control on
λ(ε, ϕ). Intuitively, of course, if along a family {ωϕj} of Kähler edge metrics supj λ(ε, ϕj) =∞
then there exists p ∈ D such that the family of metrics, while being bounded, fails to be
uniformly continuous up to the boundary at p ∈ D. This kind of behavior can be easily ruled
out by the existence of a unique tangent cone at p. In [63, II] this is proved when ωϕj are KEE
metrics of angle βj < β∞ < 1. This can be generalized to Kähler edge metrics with a uniform
lower bound on the Ricci curvature [249]. One idea is to notice that a rescaled limit will be
Ricci flat and then use results of [57, 63, 248].

Be it as it may, this improved control on the metric allows to upgrade to Hölder bounds.
We explain two approaches.

The first is similar in spirit to the proof of Theorem 7.9 and is due to Tian [249]. In
the following paragraph all norms, covariant derivatives and Laplacian are with respect to
ωβ. Thus, let v be the unique ωβ-harmonic (1,1)-form equal to ωϕ on ∂Ba(y) ⊂ U , where
U is a neighborhood of D (this neighborhood is the same for the whole family of potentials
ϕ we are considering) on which (1 − ε)ωβ < ωϕ < (1 + ε)ωβ. Since ωβ is ωβ-harmonic, then
∆|v − ωβ|2 = |∇(v − ωβ)|2 ≥ 0. The maximum principle then gives that −εωβ < v − ωβ < εωβ
on Ba(y), and thus also −εωβ < v−ωϕ < εωβ on Ba(y). Multiplying (7.25) by ω̂ := v−ωϕ and
integrating directly implies that ||∇ω̂||2L2(Ba(y)) is controlled from above by Cε||∇ωϕ||2L2(Ba(y)) +

Cr2n. Now, since ||∇v||2L2(Bσ(y)) ≤ C
(
σ
a

)2n−4+ 2
β ||∇v||2L2(Ba(y)), and using Dirichlet’s principle

||∇v||L2(Ba(y)) ≤ ||∇ωϕ||L2(Ba(y)), we conclude that

||∇ωϕ||2L2(Bσ(y)) ≤ C
(
ε+

(σ
a

)2n−4+ 2
β

)
||∇ωϕ||2L2(Ba(y)) + Ca2n.

In fact, these arguments are very similar to the ones that go into the proof of Theorem 7.9; the
only difference is in showing the smallness of ||∇ω̂||2L2(Ba(y)). The latter proof uses completely

elementary tools (Moser iteration, essentially). At any rate, given the inequality above, it is
standard to show the estimate (7.29). The arguments above assume that Fij̄ ∈ L∞, but a close
examination shows that had F only been assumed Hölder than by elementary arguments one
must replace the term Ca2n by a slightly more singular term Ca2n−δ, however still sub-critical.
We omit the elementary details.

The second approach is to cleverly use the Schauder estimate for ∆. A key point is that
given any δ ∈ (0, 1) there exists a sufficiently small ball Ba(y), with a uniformly positive, such
that

||det[uij̄ ]−∆u||
C0,γ
w
≤ δ[u]D0,γ

w
.
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This can be proved by elementary properties of the function det( · )− tr( · ) near the identity
on the space of positive Hermitian matrices [238, Lemma 2.2],[63, II]. By the Monge–Ampère
equation we know that det[uij̄ ] is uniformly controlled. Thus, by the triangle inequality and
Schauder estimate of Theorem 3.7 (i),

||∆u||
C0,γ
w
≤ δ[u]D0,γ

w
+ C ≤ Cδ(||∆u||

C0,γ
w

+ ||u||
C0,γ
w

+ 1).

Choosing δ small enough gives a uniform bound on ||∆u||
C0,γ
w

. In the argument above we have
been particularly sloppy in keeping track of the scaling; we refer to [63, II] for details.

7.10.3 An approximation by orbifolds argument

In the very recent revision of the paper of Guenancia–Pǎun (that appeared during the final
revision of the present article) one finds a yet different approach to the D0,γ

w estimate, that we
only attempt to sketch briefly, restricting for simplicity to the case D is smooth. First, the
authors assume that β is rational, namely β = p/q for p, q ∈ N with no common nontrivial
divisors. Then, working on the ramified q cover essentially reduces one to the situation of edge
metrics of angles 2πp. In fact, under this cover, that amounts to the map z 7→ z1/q, the metric
|z|2β−2|dz|2 pulls-back to q2|w|2p−2|dw|2 (substitute z = wq). When p = 1 this solves the
problem, of course (the orbifold case). When p ∈ N, the authors show that all the tools from
the standard complex Evans–Krylov theorem have appropriate analogues in this large angle
regime. Namely, a Sobolev inequality with an appropriate constant and a Harnack inequality
(for such degenerate (vanishing along D to possibly high order) metrics). The key point here is
that these inequalities do not break down when p tends to infinity. Then, the authors express
the Monge–Ampère equation in terms possibly singular vector fields 1

qw
1−p∂w, ∂z2 , . . . , ∂zn , to

obtain the desired conclusion. Finally, the authors approximate an arbitrary β ∈ (0, 1) by
rational numbers, and approximate the initial Monge–Ampère equation by Monge–Ampère
equations with β replaced by those rational numbers. By stability results for the complex
Monge–Ampère operator the solutions of these approximate equations will converge to the
solution of the original equation. Thus, taking a limit, the D0,γ

w estimate carries over to the
solution of the original equation.

8 The asymptotically logarithmic world

As discussed in §3.3, a basic obstruction to existence of KEE metrics is the cohomological
requirement that the R-divisor

Kβ = Kβ
M := KM +Dβ := KM +

r∑
i=1

(1− βi)Di (8.1)

satisfy
−Kβ

M equals µ times an ample class, with µ ∈ R. (8.2)

Here, β := (β1, . . . , βr) ∈ (0, 1]r, M is smooth, D 6= 0 has simple normal crossings (as we

will assume throughtout this whole section), and Kβ
M is sometimes referred to as the twisted

canonical bundle associated to the triple (M,D, β). In this section we will be interested in
classification questions, perhaps the most basic of which is:

Question 8.1. What are all triples (M,D, β) for which (8.2) holds?
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When µ ≤ 0, according to Theorem 4.13, such a classification is tantamount to a classifica-
tion of KEE manifolds of nonpositive Ricci curvature. When µ > 0, such a classification would
yield a class of manifolds containing the KEE manifolds. Narrowing this class down then of
course depends on notions of stability that are a further challenging obstacle—more on that in
§9.

Question 8.1 is, of course, too ambitious in the sense that even when all βi = 1 and M
is smooth there is no complete classification, or list, of projective manifolds satisfying (8.2),
unless µ > 0 and n is small. In particular, when µ < 0, which is a subset of the world of
“general type” varieties, a classification is quite hopeless; in §8.5 we will review what can still
be said when n = 2. Thus, we will largely concentrate on the case µ > 0 and further restrict
to the small angle regime where some classification can be achieved, that furthermore has
interesting geometric consequences. The small angle, or asymptotically logarithmic, regime,
can be thought of as the other extreme from the smooth regime (βi = 1). In the next few
subsections we discuss some of its interesting properties.

8.1 Warm-up: classification of del Pezzo surfaces

Which compact complex surfaces admit a Kähler metric of positive Ricci curvature? The
following basic classification result, together with the Calabi–Yau theorem gives a complete
list.

Theorem 8.2. Let S be a compact complex surface. Then c1(S) is ample if and only if S is
either P1 × P1, or otherwise P2 blown-up at at most 8 distinct points, of which no three are
collinear, no six lie on a conic, and no eight lie on a cubic with one of the points being a double
point.

Del Pezzo first described some of the eponymous surfaces in the ninteenth century [82];
more precisely, he described the ones with up to six blown-up points, or, in his language,
surfaces of degree d = c2

1 embedded in Pd. In other words, the ones for which −KM is very
ample, i.e., for which the linear series | − KM | gives a projective embedding; indeed, since
−KM > 0, by Riemann–Roch dimH0(M,OM (−KM )) = χ(−KM ) = χ(OM ) + c2

1 = 1 + c2
1.

What are now known as del Pezzo surfaces are the surfaces for which −KM is ample, i.e., those
in the statement of Theorem 8.2. By the Kodaira Embedding Theorem, those are the surfaces
for which | −mKM | gives a projective embedding for some m ∈ N. It is hard to trace precisely
the original discoverers of those remaining del Pezzo surfaces, let alone the first time Theorem
8.2 was stated in this form in the literature, but the contributions of Clebsch, Segre, Enriques,
Nagata, among others, played a crucial role. We refer to [104, 91, 50, 11, 74] for more references
and historical notes.

This result is used, and generalized, in Theorem 8.10. We describe a proof, closely follow-
ing Hitchin [135] (see also, e.g., [266, 91, 112]). The detailed proof serves to motivate later
classification results, as well as to establish notation and basic results that are useful later.

Proof. To start, one checks that indeed the surfaces in the statement are del Pezzo. We
concentrate on the converse.

Step 1. Let Ω ∈ H2(M,R) ∩H1,1

∂̄
. By Nakai’s criterion [192, 43, 153]

Ω > 0 if and only if Ω2 > 0 and Ω.C > 0 for every curve C in S. (8.3)

Thus, any blow-down π : S̃ → S of S̃ with c1(S̃) > 0 will also satisfy c1(S) > 0: indeed, if E is
the exceptional divisor of π then E2 = degLE |E = −1 and [124, p. 185,187]

KS̃ = π?KS + E. (8.4)
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Thus, c2
1(S) = c2

1(S̃) + 1 > 0. Additionally, if Σ is any holomorphic curve in S then the
associated cohomology class [Σ] (represented by the current of integration along it), that by
abuse of notation we still denote by Σ, satisfies Σ̃+mE = π?Σ, where Σ̃ := π−1(Σ \ E) denotes
the proper transform of Σ, and where m is the multiplicity of Σ̃ at the blow-up point. Since cup
product is preserved under birational transformations, KS .Σ = π?KS .π

?Σ = (KS̃ − E).π?Σ =

KS̃ .(Σ̃ + mE) ≤ 0. Here, we used the fact that any pulled-back class has zero intersection
number with the exceptional divisor.

It thus remains to classify all del Pezzos with no −1-curves, since by a classical theorem
of Castelnuovo–Enriques [124, p. 476] there always exists such a birational blow-down π con-
tracting any given −1-curve. The goal is to show that these “minimal del Pezzos” are precisely
P2 and P1 × P1. To that end, one first observes that S is rational, i.e., birational to P2. In-
deed, by the Kodaira Vanishing Theorem [124, p. 154], Hk(S,O(mKS)) = 0, k = 0, 1,m ∈ N.
In particular, H0(S,OS(2KS)) = 0, and by Dolbeault’s theorem and Kodaira–Serre duality
H0,1

∂̄
∼= H1(S,OS) ∼= H1(S,OS(KS)). Consequently, by the Castelnuovo–Enriques characteri-

zation S is rational [124, p. 536]. The classification of minimal rational surfaces implies that
these are precisely P2 and the Hirzebruch surfaces,

Fm := P(O ⊕O(m)), (8.5)

with m ∈ N0 \ {1}, the projectivization of the rank 2 bundle over P1 that is obtained by the
direct sum of the trivial bundle and the degree m bundle. (Note that F0 = P1 × P1, while F1

is the blow-up of P2 at one point, hence is not minimal.) Finally, observe that Fm,m ≥ 2 are
not del Pezzo: indeed they contain a rational holomorphic curve of self-intersection −m, while
by adjunction, any curve C on a del Pezzo surface S satisfies C2 = 2gC − 2−KS .C > −2.

Step 2. Next, we classify the admissible blow-ups of P2 and P1 × P1. Since the two-
point blow-up of the former equals the one-point blow-up of the latter, we may concentrate on
P2. Since c2

1(P2) = 9, by (8.4) and the relation following it, at most 8 blow-ups are allowed,
according to (8.3). Next, it remains to determine the allowable configurations of blow-ups.
Suppose that k ≤ 8 points have been blown up and that the resulting surface is not del Pezzo.
Then by (8.3) this means that there exists a curve C ⊂ S with C.KS ≥ 0. We may assume C
is irreducible, since at least one of its components will have nonnegative intersection number
with KS . Denote by π : S → P2 the blow-down map, by E ⊂ S the exceptional divisor, and by
{p1, . . . , pk} ⊂ P2 the blown-up points. We denote by q1, . . . , ql the singular points of C, and let
pk+i := π(qi), i = 1, . . . , l. We also let Σ = π(C) and write E =

∑k
i=1Ei, with π−1(pi) = Ei.

Since π is an isomorphism outside E, Σ will have multiplicity one everywhere except, possibly,
at the points {pi}∩Σ, and we denote each of these multiplicities by mi. Denote by d the degree
of Σ. By the genus formula for planar irreducible projective curves [124, p. 220, 505] the genus
of Σ equals gΣ = (d− 1)(d− 2)/2 precisely when Σ is smooth, and in general

2gΣ ≤ (d− 1)(d− 2)−
k+l∑
i=1

mi(mi − 1) ≤ (d− 1)(d− 2)−
k∑
i=1

mi(mi − 1). (8.6)

Here the genus of a possibly singular irreducible curve is defined either as dimH1(Σ,OΣ)
[124, p. 494], or as the genus of its unique desingularization [124, p. 500]; in particular,
it is nonnegative. Letting m :=

∑k
i=1mi, convexity of f(x) = x2 gives

∑
m2
i /k ≥ (m/k)2.

Combined with gΣ ≥ 0 this yields m2/k −m ≤ (d− 1)(d− 2), hence

2m ≤ k +
√
k2 + 4k(d− 1)(d− 2). (8.7)
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Additionally, C = π?Σ−
∑k

i=1miEi, and so by (8.4),

0 ≤ KS .C = (−π?3H + E).(π?Σ−
k∑
i=1

miEi) = −3d+m, (8.8)

since Σ ∈ |dH|, where H → P2 is the hyperplane bundle. Here we are implicitly assuming
that the blown-up points are distinct, or in other words that we have not blown up any point
on the exceptional divisor of a previous blow-up. This is justified by the observation that
had we blown-up a point on a −1-curve, we would obtain a −2-curve, contradicting the Fano
assumption (recall the end of the previous paragraph).

Thus, 3d ≤ m. Plugging this back into (8.7) and expanding the resulting inequality yields

(9− k)d2 ≤ 2k. (8.9)

It follows that (k, d) ∈ {(3, 1), (4, 1), (5, 1), (6, 1), (6, 2), (7, 1), (7, 2), (8, 1), (8, 2), (8, 3), (8, 4)}.
When d ∈ {1, 2} by (8.6) all mi must equal 1, thus equality holds in (8.6). Thus, the cases
{(k, 1) : k = 3, . . . , 8} correspond to Σ being a line passing through three or more of the {pi},
and the cases {(k, 2) : k = 6, . . . , 8} correspond to Σ being a smooth conic passing through
six or more of the points. If d = 3 then by (8.8) at least one mi equals 2, thus by (8.6) exactly
one such mi exists. Thus, (k, d) = (8, 3) and Σ is a singular rational cubic with a double
point passing through one of the blow-up points. Finally, the case (8, 4) is the only one that
is excluded, since it forces m ≥ 12, while the equation following (8.6), namely, m2/8−m ≤ 6
implies m ≤ 12, thus m = 12. Now equality in the latter means precisely that equality also
occurs in

∑
m2
i /k ≥ (m/k)2. By strict convexity of f(x) = x2 this means that all the mi are

equal; but since they are also all at least 2, this implies m ≥ 16, a contradiction.

8.2 Log Fano manifolds

The definition of log Fano manifolds goes back to work of Maeda [166].

Definition 8.3. We say that the pair (M,D =
∑
Di) is log Fano if −KM −D is ample.

In dimension 2, these are also called log del Pezzo surfaces (to avoid confusion, we remark
that some authors use this terminology to refer to rather different objects). The motivation
for the adjective “logarithmic”, according to Maeda, is from the work of Iitaka on classification
of open algebraic varieties where logarithmic differential forms are used to define invariants of
the pair. The open variety associated to (M,D) is the Zariski open set M \D.

Maeda posed the following problem.

Problem 8.4. Classify log Fano manifolds.

This problem has a beautiful inductive structure. Indeed, by the adjunction formula [124,
p. 147], any component Di of D, or more precisely the pair (Di,

∑
j 6=iDi ∩Dj), is itself a log

Fano manifold of one dimension lower, to wit

KDi +
∑
j 6=i

Dj |Di = (KM +D)|Di .

When n = 1, log Fanos consist precisely of (P1, {point}) (we always omit the case of empty
boundary, that in this dimension corresponds to (P1, ∅)). Thus, the first step in Problem 8.4
should be a classification for n = 2. This was provided by Maeda [166, §3.4].
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Theorem 8.5. Log del Pezzo surfaces (S,C) are classified as follows:
(i) S ∼= P2, and C is a line in S,
(ii) S ∼= P2, and C = C1 + C2, where each Ci is a line in S.
(iii) S ∼= P2, and C is a smooth conic in S.
(iv) S ∼= Fn for any n > 0, and C is a smooth rational curve in S such that C2 = −n (such
curve is unique if n > 1).
(v) S ∼= Fn for any n > 0, and C = C1 + C2 where C1 is as in (iv) and C2 is a smooth fiber
(i.e., a smooth rational curve such that C2

2 = 0, C2.C1 = 1).
(vi) S ∼= F1, and C is a smooth rational curve such that C ∈ |C1 +C2|, with C1, C2 as in (v).
(vii) S ∼= P1 × P1, and C is a smooth rational curve in |H1 + H2| where H1, H2 are lines in
each copy of P1.

Building on this result and considerable more work, Maeda then tackles the case n = 3.
Much more recently, Fujita was able to obtain some results in higher dimensions, especially for
pairs with high log Fano index [113].

8.3 Asymptotically log Fano manifolds

In this section we finally get to the case 0 < βi � 1, that generalizes both extremal cases
βi = 1 and βi = 0 studied in the last two sections.

Definition 8.6. We say that a pair (M,D) is (strongly) asymptotically log Fano if the divisor

−Kβ
M = −KM −

∑r
i=1(1− βi)Di is ample for (all) sufficiently small (β1, . . . , βr) ∈ (0, 1]r.

Both of these classes (strongly asymptotically log Fano and asymptoticaly log Fano) gen-
eralize the class of log Fanos since ampleness (of −KX − D) is an open property. They also
generalize the class of Fanos (at least in small dimensions, see the discussion surrounding Prob-
lem 8.9), since if D is a smooth anticanonical divisor in a Fano M , then (M,D) is strongly
asymptotically log Fano.

The notion of strongly asymptotically log Fano coincides with that of asymptoticaly log
Fano in the case r = 1, i.e., when D consists of a single smooth component. However, they
differ in general, as the following example demonstrates.

Example 8.7. (See Figure 7.) Let S = F1 (recall (8.5)) and C = C1 + C2 + C3 where
C1, C2 ∈ |F | are both fibers and C3 = Z is the −1-curve. Note that −KS = 2Z + 3F .

Then −Kβ
S .Z = β1 + β2 − β3 and so (S,C) is not strongly asymptotically log del Pezzo.

However, one may verify that it is asymptotically log del Pezzo: when β1 + β2 > β3, the class
−KS − (1 − β1)C1 − (1 − β2)C2 − (1 − β3)C3 is positive. Note this pair is the blow-up of the
pair P2 with two lines at their intersection (the pair II.1B in Figure 9 below).

We pose the following problem.

Problem 8.8. Classify the (strongly) asymptotically log del Pezzo surfaces and Fano 3-folds.

In §8.4 below we explain the solution to this problem in the case of a smooth divisor [60],
where Problem 8.8 is solved more generally for strongly asymptotically log del Pezzos. This
generalizes Maeda’s result and the classical classification of del Pezzo surfaces (Theorems 8.5
and 8.2). The general (i.e., not necessarily strongly) case of surfaces, as well as the three
dimensional case are open and challenging.
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F F

Z1

Figure 7: A non-strongly asymptotically log del Pezzo pair (see Example 8.7): F1 with boundary
consisting of two fibers and the −1-curve (the fibration structure of the surface F1 is indicated
in green, the boundary C (consisting of those three curves) in red).

8.3.1 Comparison between the asymptotic and classical logarithmic regimes

We end this subsection with a few comparisons between the log Fano and asymptotically log
Fano regimes, emphasizing the flexibility in the asymptotic classes as opposed to the rigidity
of the class of log Fanos.

One point of similarity between both classes is that unlike Fano manifolds, for neither
logarithmic classes is the degree of the logarithmic anticanonical bundle bounded uniformly
for fixed dimension. E.g., when n = 2, K2

M ≤ 9 for del Pezzos, while following the notation of
Example 8.7, (Fm, Z) (see Theorem 8.5 (iv)) satisfies (−KM −Z)2 = ((m+2)F +Z)2 = m+4.
Thus, already in the log Fano class there are infinitely many non-diffeomorphic pairs. Another
property shared by both classes is that if M is Fano then in fact −KM −

∑r
i=1(1 − βi)Di is

ample for all (β1, . . . , βr) ∈ (0, 1]r.
Aside from these properties though, these classes are quite different.
First, the asymptotic notion is no longer inductive, in the sense that (Di, Di ∩ ∪j 6=iDj), is

not necessarily itself asymptotically log Fano. In fact,

KDi +
∑
j 6=i

(1− βj)Dj |Di = Kβ
M |Di + βiDi|Di ,

and the right hand side may fail to be negative. Perhaps the simplest example is the pair
(P2, smooth cubic curve), where the boundary is an elliptic curve, hence not Fano. Thus, in
every dimension one may encounter boundaries that were absent from the classification in lower
dimensions.

Second, while D is always connected in the classical setting [166, Lemma 2.4], this is
certainly not so in the asymptotic regime. As an example, consider M = P1 × P1 and D =
D1 +D2 a union of two disjoint lines in the same linear series, say, Di ∈ |H1|. However, there
is an upper bound on the number of disjoint components D may have. The reason D is always
connected in the non-asymptotic regime is the standard logarithmic short exact sequence

0→ OM (−D)→ OM → OD → 0.

Note that H0(M,OM (−D)) = {0} since holomorphic functions on M vanishing on D must be
identically zero, as M is connected. Also, H1(M,OM (−D)) = {0} since by Serre duality this
vector space is isomorphic to H1(M,OM (KM +D)) = {0}, by Kodaira Vanishing. Therefore,
H0(M,OM ) ∼= H0(D,OD), and thus the connectivity of D is ‘inherited’ from that of M .

Other more refined connectivity properties are also interesting to compare. According to
Maeda (op. cit.), when (M,D) is log Fano, D is always “strongly connected,” meaning that
any two components of D intersect. This follows immediately from the inductive structure
already mentioned. Indeed, this certainly holds for n = 1. Suppose now that D1 intersects
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both D2 and D3. Then since (D1,
∑r

j=2D1 ∩Dj), is itself log Fano, then by induction (D2 ∩
D1)∩(D3∩D1) 6= ∅, therefore also D2∩D3 6= ∅, as desired. Such strong connectivity again fails
in the asymptotic world. In fact, Example 8.7, or even simpler, the disconnected example or
the previous paragraph, or even (P1, 2 distinct points) (which are both strongly asymptotically
log Fano) provide instances of that.

Moreover, the number of components in the boundary of log Fanos is bounded from above
by the dimension (op. cit.): by strong connectivity any two components intersect and thus all
components have a common point. But the components cross normally! There is no analogue
for this property in the asymptotic regime. As we will see, the number of boundary components
can be arbitrary.

Finally, the class of asymptotically log Fano manifolds seems like a more natural general-
ization of the class of Fano manifolds than the class of log Fanos. Indeed the latter do contain
the Fano manifolds as a subclass if one allows the case of empty boundary. However the class
of Fanos actually can be considered as a subset of the asymptotically log Fanos, if one considers
pairs (M,D) with M Fano and D ∈ | − KM | a snc divisor, when such a divisor exists. As
an aside, we mention that this last existence problem is known to hold for all smooth Fano
up to dimension three (then even a smooth anticanonical divisor exists by the classification
and a theorem Shokurov [109, 139, 223, 224, 187, 184, 140]), and in general it falls under the
world of the Elephant conjectures going back to Iskovskih [36]. In fact, even the existence of
such a divisor is open, although examples show that, in general, one needs to allow for worse
singularities than snc [136].

Problem 8.9. Determine whether an anticanonical divisor exists on a smooth Fano manifold,
and whether it has some regularity, at least in sufficiently low dimensions.

One approach to this problem that does not seem to have been tried so far would be to
use Geometric Measure Theory. Indeed, any (holomorphic) divisor is automatically a minimal
submanifold, in fact area minimizing in its homology class by Wirtinger’s inequality [110,
§5.4.19]. In other words, the Kähler form provides for a calibration in the sense of Harvey–
Lawson [132]. The question is then whether an area minimizing representative of the homology
class [−KM ] can be found that is also a complex subvariety, and if so whether it has some
regularity beyond that provided by general results of GMT. In view of [182] this seems to
be a delicate question. In the real setting, a famous result says that hypersurfaces can have
singularities only in codimension 7 or higher [225, Theorem 37.7]. Perhaps one approach to
Problem 8.9 would be to develop a regularity theory for complex hypersurfaces. The rigidity
of the holomorphic setting might just be enough for such a theory, which in the general real
codimension greater than one setting breaks down, of course aside from Almgren’s fundamental
result saying that singularities then occur in real codimension two or higher [1].

8.4 Classification of strongly asymptotically log del Pezzo surfaces

The following result gives a complete classification of strongly asymptotically log del Pezzo
surfaces with smooth connected boundary.

Theorem 8.10. Let S be a smooth surface (the surface), and let C be an irreducible smooth
curve on S (the boundary curve). Then −KS − (1 − β)C is ample for all sufficiently small
β > 0 if and only if S and C can be described as follows:

(I.1A) S ∼= P2, and C is a smooth cubic elliptic curve,
(I.1B) S ∼= P2, and C is a smooth conic,
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I.1A I.1B I.1C

F

Zn

I.2.n

F

Z1

I.3A

F

Z1

I.3B I.4A

I.4B I.4C

Figure 8: Strongly asymptotically log del Pezzo surfaces with smooth connected boundary: the
minimal pairs (the surface is indicated in green, the boundary in red, the fibration structure,
when one exists, is indicated by the dashed green lines). The remaining pairs listed in Theorem
8.10 are obtained by blowing-up along the boundary curves as follows: I.1A as described in
Theorem 8.2; I.1B, I.1C, I.2.n, I.3B, and I.4C at any number of distinct points; I.4B at any
number of distinct point with no two on a single (0, 1)-fiber. Note that I.4A and I.3A may also
be blown-up but these cases are covered by blow-ups of I.1A and I.4B, respectively.

(I.1C) S ∼= P2, and C is a line,
(I.2.n) S ∼= Fn for any n ≥ 0, and C = Zn,
(I.3A) S ∼= F1, and C ∈ |2(Z1 + F )|,
(I.3B) S ∼= F1, and C ∈ |Z1 + F |,
(I.4A) S ∼= P1 × P1, and C is a smooth elliptic curve of bi-degree (2, 2),
(I.4B) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (2, 1),
(I.4C) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (1, 1),

(I.5.m) S is a blow-up of the surface in (I.1A) at m ≤ 8 distinct points on the boundary curve
such that −KS is ample, i.e., S is a del Pezzo surface, and C is the proper transform of
the boundary curve in (I.1A), i.e., C ∈ | −KS |,

(I.6B.m) S is a blow-up of the surface in (I.1B) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.1B),

(I.6C.m) S is a blow-up of the surface in (I.1C) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.1C),

(I.7.n.m) S is a blow-up of the surface in (I.2.n) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.2),

(I.8B.m) S is a blow-up of the surface in (I.3B) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.3B),

(I.9B.m) S is a blow-up of the surface in (I.4B) at m ≥ 1 distinct points on the boundary curve
with no two of them on a single curve of bi-degree (0, 1), and C is the proper transform
of the boundary curve in (I.4B),

(I.9C.m) S is a blow-up of the surface in (I.4C) at m ≥ 1 distinct points on the boundary curve,
and C is the proper transform of the boundary curve in (I.4C).
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III.2A

F
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III.3n IV

Figure 9: Strongly asymptotically log del Pezzo surfaces with general snc boundary: the mini-
mal pairs. Essentially, these pairs are obtained by “degenerating” the elliptic/rational bound-
aries of Figure 8 into cycles/chains of rational curves.

The proof appears in [60]. We sketch the main steps. Figure 1 illustrates the pairs graphi-
cally.

One starts by checking directly that indeed all the pairs in the list above are asymptotically
log Fano. Let us concentrate on the reverse implication.

First, it follows from the asymptotic assumption that −KS − C is nef. Also, −KS is big
and nef, since it is a linear combination of an ample class −KS− (1−β)C and an effective class
(1− β)C. The former implies that the genus of C is at most one. The latter, together with a
version of Nadel Vanishing Theorem and a theorem of Castelnuovo, imply that S is rational.
This further implies that if C is elliptic then C ∈ | − KS |, and S is del Pezzo, i.e., is one of
(1A),(4A), or (5m). On the other hand, if C is rational, then it must “trap” all the negative
curvature of −KS . More precisely, the only curve that can intersect −KS nonpositively is C,
and that happens if and only if C2 ≤ −2 (compare to the end of Step 1 in the proof of Theorem
8.2). Thus, all other negative self-intersection curves must be −1-curves. Furthermore, these
curves must be either disjoint from C, or intersect it transversally at exactly one point. This
motivates the following definition.

Definition 8.11. We say that the pair (S,C) is minimal if there exist no smooth irreducible
rational −1-curve E 6= C on the surface S such that E ∩ C 6= ∅.

The importance of this definition is in the following.

Lemma 8.12. Suppose that (S,C) is non-minimal asymptotically log del Pezzo and let E be as
in Definition 8.11. Then there exists a birational morphism π : S → s such that s is a smooth
surface, π(E) is a point, the morphism π induces an isomorphism S \E ∼= s \ π(E), the curve
π(C) is smooth, and (s, π(C)) is asymptotically log del Pezzo.

Thus, it remains to classify all minimal pairs. First, one proves that minimality implies the
rank of the Picard group of S is at most two. Second, one shows, using the classical theory of
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≤ 1
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III.3.n

Figure 10: Strongly asymptotically log del Pezzo surfaces with general snc boundary: the
remaining cases obtained by blowing-up the minimal pairs in Figure 9. A circle corresponds to
a point that may not be blown-up. An indication “≤ k” next to a curve means that no more
than k distinct points may be blown-up on that curve. In III.3.n no more than one point may
be blown up on any single fiber and none on the fiber belonging to the boundary.

rational surfaces, that a minimal pair with this rank restriction must be (I.1B), (I.1C), (I.2.n),
(I.3A), (I.3B), (I.4B), or (I.4C), and a non-minimal one must equal (I.6B.1) or (I.6C.1). This
concludes the proof since (I.6B.m), (I.6C.m), with m ≥ 2, and (I.7.n.m),(I.8B.m),(I.9B.m),
(I.9C.m), with m ≥ 1, are precisely the only blow-ups of minimal pairs that are still asymp-
totically log del Pezzo.

Building on this, the case of a snc boundary is handled in [60]. Essentially, aside from
a few cases of disconnected boundary, the only new boundaries allowed beyond the smooth
connected boundary case are boundaries that can be considered as “degenerations” of smooth
ones. For instance, the smooth elliptic boundary of (I.1A) can be replaced by a triangle of
lines, or a conic and a line; the elliptic boundary of (I.4A) can similarly break up to no more
than 4 components. However, an additional complication in the snc case is that a −1-curve in
a non-minimal pair could be a component of the boundary. Luckily, one can show that such
a curve must be at the ‘tail’: it cannot intersect two boundary components. Thanks to this,
paying attention to the combinatorical structure of the boundary, the main idea from the proof
of Theorem 8.10 carries over to give a classification of strongly asymptotically log del Pezzos
[60]. We list these pairs in Figures 9–10, and refer to [60] for their precise construction.
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8.5 The negative case

In this subsection we assume that µ < 0. We fix M and seek necessary and sufficient restrictions
on a snc divisor D ⊂M in order to be an admissible boundary for all small enough β.

Definition 8.13. We say that a pair (M,D) is (strongly) asymptotically log general type if the

divisor Kβ
M = KM +

∑r
i=1(1− βi)Di is ample for (all) sufficiently small (β1, . . . , βr) ∈ (0, 1]r.

The following theorem comes close to describing the (strongly) asymptotically log general
type surfaces as a subclass of the class of log general type minimal surfaces. The proof we
describe is due to Di Cerbo [87] (who showed (ii) ⇔ (iv)), with slight modifications to
include also the asymptotic classes defined above.

Proposition 8.14. Let S be projective surface and C ⊂ S a snc curve such that KS + C is
big and nef. Consider the following statements:
(i) (S,C) is strongly asymptotically log general type.

(ii) Kβ
S > 0 for β = β1(1, . . . , 1) for 0 < β1 � 1.

(iii) (S,C) is asymptotically log general type.
(iv) Every rational −1-curve not contained in C intersects C at least in two points, and any
rational −2-curve F satisfies F 6⊂ S \ C. Every rational component Ci of C intersects ∪j 6=iCj
at least in two points, and, if C2

i ∈ {−1,−2} then at least in three points.
(v) Every −1-curve not contained in C intersects C at least in two points, and any rational
−2-curve F satisfies F 6⊂ S \ C. Every rational component Ci of C intersects ∪j 6=iCj at least
in two points.
Then (i) ⇒ (ii) ⇔ (iv)⇒ (iii) ⇒ (v).

Note that, similarly to the last section, the assumption that KS + C is big and nef is of
course a consequence of (S,C) being asymptotically log general type.

Proof. Suppose first that (S,C) is (strongly) asymptotically log canonical. Let F be a holo-

morphic rational curve. Then, Kβ
S .F > 0, i.e.,

C.F > −KS .F +
∑

βiCi.F = 2− 2gF + F 2 +
∑

βiCi.F = 2 + F 2 +
∑

βiCi.F. (8.10)

Thus (C − F ).F ≥ 2 which proves the second part of (v) by letting F = Ci. To prove the
second part of (iv), suppose now that we are in the strong regime. By putting βi = β1 � 1,
then (1 − β1)C.F > 2 + F 2, i.e., (1 − β1)F.(C − F ) > 2 + β1F

2. If F 2 ∈ {−1,−2} this then
majorizes 2− 2β1, so F.(C−F ) > 2 proving the second part of (iv). Finally, suppose now that
F 2 = −2 (but not necessarily in the strong regime). Then, F 2 < −2 + F.

∑
(1− βi)Ci. Thus,

if F ⊂ S \ C so that F.Ci = 0 for each i, then necessarily F 2 < −2, contradicting F 2 = −2.
To prove the remainder of the first part of (iv) and (v), let F 2 = −1. If F 6= Ci for each i,
then F.Ci ≥ 0, thus (8.10) implies C.F > 1. In the strong regime the same inequality gives
C.F > (1− β1)−1 > 1 without further assumption on F .

Suppose now that (iv) hold. As (KS +C)2 > 0 also (Kβ
S )2 > 0 for all small enough |β|. By

Nakai’s criterion (8.3), it remains to show that Kβ
S intersects positively with every irreducible

curve in S. By taking |β| sufficiently small, this is certainly the case for every curve Z such
that (KS + C).Z > 0. Thus, suppose that (KS + C).Z = 0. Note that the cup product Q on
H1,1

∂̄
has exactly one positive eigenvalue [124, p. 126]. Thus if Q(x, x) > 0, Q(x, y) = 0 for

some x, y ∈ H1,1

∂̄
then Q(y, y) = Q(x±y, x±y)−Q(x, x)∓2Q(x, y) = Q(x+y, x+y)−Q(x, x),

so necessarily Q(y, y) < 0, otherwise Q(ax+by, ax+by) > 0, for all a, b ∈ R, and Q would have
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at least two positive eigenvalues. Thus, Z2 < 0. Now, by our assumption on Z, (C − Z).Z =
2 − 2gZ (here gZ denotes the genus of the desingularization of Z). Therefore, gZ ≥ 1 implies

C.Z ≤ Z2 < 0. But then Kβ
S .Z = (KS + C).Z −

∑
βiCi.Z = −

∑
βiCi.Z, which is necessarily

positive for certain β in any neighborhood of 0 ∈ Rr+\{0} (for instance, if βi = β1). On the other
hand, suppose gZ = 0. As we just saw, we may suppose that C.Z ≥ 0; since C.Z = 2 + Z2,
this implies Z2 ∈ {−1,−2}. If Z2 = −2, so C.Z = 0, then either Z ⊂ S \ C—but this is
precluded by the first part of (iv)—or, Z 6⊂ S \ C, so necessarily Z = Ci for some i, but then
C.Z = (Z +

∑
j 6=iCj).Z ≥ −2 + 3 ≥ 1, contradicting the second part of (iv). If Z2 = −1 then

C.Z = 1. Thus, Z 6⊂ S \ C. If Z 6= Ci for each i we obtain a contradiction to the first part of
(iv). If Z = Ci for some i, then C.Z = (Z +

∑
j 6=iCj).Z ≥ −1 + 3 ≥ 2, a contradiction.

8.6 Uniform bounds

A natural question is whether there exist uniform bounds on the asymptotic range of β; and if
so, what do they depend on? This was first addressed by Di Cerbo–Di Cerbo [86] in the case
β = β1(1, . . . , 1), and this subsection is mostly a review of these results. As can be expected,
the results are more complete in the negative regime.

8.6.1 Strongly asymptotically log general type regime

Perhaps the simplest example of an asymptotically log general type pair is (Pn, D) with D ∈
|O(n + 2)|. Then for every β in the range (0, 1

n+2) Kβ
M is still positive. As shown by Di

Cerbo–Di Cerbo [86], this is always the case when restricting to the ray β = β1(1, . . . , 1).

Proposition 8.15. Suppose that (M,D) is such that Kβ
M > 0 for β = β1(1, . . . , 1) for some

0 < β1 � 1 (recall (8.1)). Then the same is true for 0 < β1 <
1

n+2 .

Proof. First, recall the following fact:

if C is an irreducible curve such that (KM +D).C = 0 then KM .C > 0. (8.11)

In fact, for some t < 1, (KM + tD).C > 0, and since D.C = −KM .C we conclude 0 <
(KM + tD).C = (1− t)KM .C.

Second, KM + tD is nef for every t ∈ [n+1
n+2 , 1]. This implies the Proposition, since then for

any t ∈ (n+1
n+2 , 1], KM + tD is a convex combination of an ample divisor and a nef divisor, hence

positive by Kleiman’s criterion. We now prove the nefness claim. It suffices to show that if C
is an irreducible curve with (KM + D).C > 0 then (KM + tD).C ≥ 0; indeed, this is already
true by the first paragraph if (KM + D).C = 0 (and since KM + D is nef as a limit of ample
divisors, it is always true that (KM +D).C ≥ 0). Now, we decompose C according to the cone
theorem (see, e.g., [86])

C ∼Z

r∑
i=1

aiCi + F, ai > 0, F.KX ≥ 0, Ci.KX ∈ (−n− 1, 0). (8.12)

Thus, once again using that KM +D is nef,

(KM + (n+ 1)(KM +D)).C = (KM + (n+ 1)(KM +D)).
( r∑
i=1

aiCi + F
)

≥ −(n+ 1)
∑

ai + (n+ 1)
∑

aiCi.(KM +D) ≥ 0,

since Ci.(KM+D) ≥ 1 as otherwise, by nefness of KM+D, Ci.(KM+D) = 0 which would imply
KM .Ci = 0 by (8.11), contradicting (8.12). Thus, KM + tD is nef for every t ∈ [n+1

n+2 , 1].
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Remark 8.16. In [86] it is shown that (8.11) also implies that KM + (1 − β1)D is ample for
some 0 < β1 � 1 in the case KM +D is big.

8.6.2 Log Fano regime

Theorem 8.10 implies that an analogue of Proposition 8.15 in the asymptotically log Fano
regime is false, and the correct analogue remains to be found. In the more restrictive log Fano
regime (see §8.2), Di Cerbo–Di Cerbo prove an interesting first result in this direction [86],
based on deep results from algebraic geometry. It is an a priori bound on the asymptotic
regime depending only on the degree of −KM −D and n.

Proposition 8.17. Suppose (M,D) is log Fano. Then −KM − (1− β1)D is positive for every
β1 ∈ [0, βmax) with βmax depending only on n and (−KM −D)n.

9 The logarithmic Calabi problem

For simplicity, in what follows we always suppose the boundary is smooth and connected and
that the dimension is two. We refer to [60] for more general considerations.

The preceding section sets the stage for the asymptotic logarithmic Calabi problem:

Problem 9.1. Determine which (strongly) asymptotically logarithmic Fano manifolds admit
KEE metrics for sufficiently small β.

In dimension two, the smooth version of Calabi’s problem was solved by Tian in 1990 who
showed that among the list of Theorem 8.2, only P2 blown-up at one or two distinct points
do not admit KE metrics [239]. In light of Theorem 8.10 it is very natural and tempting to
hope for a counterpart for strongly asymptotically log del Pezzo surfaces. The formulation
conjectured in [60] is the following:

Conjecture 9.2. Suppose that (S,C) is strongly asymptotically log del Pezzo with C smooth
and irreducible. Then S admits KEE metrics with angle β along C for all sufficiently small β
if and only if (KS + C)2 = 0.

In Tian’s solution of the smooth case the vanishing of the Futaki invariant provided a
necessary and sufficient condition for existence. More generally, since the work of Hitchin,
Kobayashi, and many others, a standard condition for the existence of canonical metrics that
can be described as zeros of an infinite-dimensional moment map is some sort of ‘stability’
condition. How, then, does Conjecture 9.2 fit into this scheme?

9.1 First motivation: positivity classification and Calabi–Yau fibrations

It turns out to be quite useful to re-classify the pairs appearing in Theorem 8.10 according to
the positivity of the logarithmic anticanonical bundle −KS − C. We distinguish between four
mutually exclusive classes. Class (ℵ): S is del Pezzo and C ∼ −KS ; class (i): C 6∼ −KS and
(KS + C)2 = 0; class :(ג) −KS − C is big but not ample; class (k): −KS − C is ample.

Theorem 9.3. The asymptotically log del Pezzo pairs appearing in Theorem 8.10 are classified
according to the positivity properties (ℵ), (i), ,(ג) and (k) as follows:

(ℵ) (S,C) is one of (I.1A), (I.4A), or (I.5.m).
(i) (S,C) is one of (I.3A), (I.4B), or (I.9B.m).
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(ג) (S,C) is one of (I.6B.m), (I.6C.m), (I.7.n.m), (I.8B.m), or (I.9C.m).
(k) (S,C) is one of (I.1B), (I.1C), (I.3B), (I.2.n), or (I.4C).

This list nicely puts the discussion of §8.1–8.2 in perspective. Class (k) is Maeda’s class of
log del Pezzo surfaces [166], while class (ℵ) is the classical class of del Pezzo surfaces together
with the information of a simple normal crossing anticanonical curve. The classes (i) and (ג)
are new.

The next result is a structure result for surfaces of class (i) [60]. It is slightly stronger
than what Kawamata–Shokurov basepoint freeness would give: there the relevant linear system
giving a morphism is | − lKS − lC|, for some l ∈ N.

Proposition 9.4. If (S,C) is of class (i), then the linear system | − KS − C| is free from
base points and gives a morphism S → P1 whose general fiber is P1, and every reducible fiber
consists of exactly two components, each a P1.

Thus, these surfaces are conic bundles, and the boundary C intersects each generic fiber at
two points, whose fiber complement is a cylinder! It is therefore tempting to conjecture:

Conjecture 9.5. Let (S,C, ωβ) be KEE pairs of class (ℵ) or (i). Then (S,C, ωβ) converges
in an appropriate sense to a a generalized KE metric ω∞ on S \ C as β tends to zero. In
particular, ω∞ is a Calabi–Yau metric in case (ℵ), and a cylinder along each generic fiber in
case (i).

This conjecture is itself a generalization of a folklore conjecture in Kähler geometry saying
that S \C equipped with the Tian–Yau metric [252] should be a limit of KEE metrics on (S,C)
when S is of class (ℵ) (see, e.g., [174, p. 9], [102, p. 76]).

This gives strong motivation for the ‘if’ part of Conjecture 9.2 because it suggests what
the small-angle KEE metrics could be considered as a perturbation of the complete Calabi–
Yau metrics on the complement of C. It also motivates the ‘only if’ part: then there is no
good limit, as the limit class is ‘too’ positive, which should morally preclude the existence of a
smooth non-compact complete metric on it (having Myers’ theorem in mind).

9.2 Second motivation: asymptotic log canonical thresholds

Perhaps further evidence for Conjecture 9.2 is given by the following result.

Theorem 9.6. Assume (S,C) is asymptotically log del Pezzo with C smooth and irreducible.
Then

lim
β→0+

α(S, (1− β)C) =


1 class (ℵ),

1/2 class (i),

0 class (ג) or (k)

The result for class (ℵ) is shown by Berman [18], and the remaining cases are shown in [60].
Note that 0, 1/2 and 1 are the Tian invariants of Pn, n → ∞,P1, and P0, respectively. It is
then tempting to think of 1/2 as the Tian invariant of the generic rational fiber of Proposition
9.4, thus suggesting existence of approximate conic metrics on the football fibers, who should
tend to cylinders in the limit. On the other hand, the smallness of the log canonical threshold
for classes (ג) and (k) suggests non-existence.
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9.3 Third motivation: explicit computations

Tian’s 1990 result in the smooth regime mentioned earlier can also be phrased equivalently by
saying that a del Pezzo surface admits a KE metric if and only if its automorphism group is
reductive (a simplification of Tian’s original proof has been obtained by the work of Cheltsov
[58] and Shi [222], see also Odaka–Spotti–Sun [193], and the expository article [256]). Given
the logarithmic version of Matsushima’s criterion (Theorem 4.7), it is tempting to check how
far reductivity gets us in the asymptotic regime. Some explicit computations give [60]:

Proposition 9.7. The automorphism groups of all pairs of class (ℵ) and (i) are reductive.
The pairs of classes (ג) and (k) that have non-reductive automorphism groups, and hence admit
no KEE metrics, are: (I.1C), (I.2.n) with any n ≥ 0, (I.6C.m) with any m ≥ 1, (I.7.n.m) with
any n ≥ 0 and m ≥ 1, (I.6B.1), (I.8B.1) and (I.9C.1).

Thus, Matsushima’s criterion supports Conjecture 9.2 but does not solve the problem in
the singular setting.

Another tool is Tian’s criterion for existence of KEE metrics, which involves calculating log
canonical threshold, and is especially useful in the presence of large finite symmetries. Using
such tools, the following KEE metrics are constructed [60] on surfaces of class (i):

Theorem 9.8. There exist strongly asymptotically log del Pezzo pairs of type (I.3A), (I.4B),
and (I.9B.5) that admit KEE metrics for all sufficiently small β.

An in-depth study of log canonical thresholds on pairs of class (ℵ) was carried out by
Mart́ınez-Garćıa [170, §4] and Cheltsov–Mart́ınez-Garćıa [59] whose results give lower bounds
on how large β can be taken (see also [60] for some weaker bounds that hold in all dimen-
sions). In fact, their results show that the threshold depends on the representative chosen in
| −KS |, and, similarly, examples of Székelyhidi [232] show the maximal allowed β might as
well. Conjecture 9.2 predicts that such dependence does not appear in the asymptotic regime.

In work in progress [61], the ‘only if’ part of Conjecture 9.2 is verified by using techniques
adapted from work of Ross–Thomas on slope stability, motivated in part by work of Li–Sun
[157] that proved non-existence in the small angle regime for (I.1B), (I.3B), and (I.4C).

Acknowledgements

This article is an expanded version of a talk delivered at the CRM, Montréal, in July 2012. I am
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[76] T.H. Colding, A. Naber, Sharp Hölder continuity of tangent cones for spaces with a lower
Ricci curvature bound and applications, Ann. of Math. 176 (2012), 1173–1229.

[77] C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc.
Norm. Sup. 13 (1980), 419–435.

[78] T. Darvas, Envelopes and geodesics in the space of Kähler metrics, preprint,
arxiv:1401.7318.

[79] V. Datar, On convexity of the regular set of conical Kähler–Einstein metrics, preprint,
arxiv:1403.6219.

[80] V.V. Datar, B. Guo, J. Song, X.-W. Wang, Connecting toric manifolds by conical Kähler–
Einstein metrics, preprint, arxiv:1308.6781.

[81] V.V. Datar, J. Song, A remark on Kähler metrics with conical singularities along a simple
normal crossing divisor, preprint, arxiv:1309.5013.

[82] P. del Pezzo, Sulle superficie delle nmo ordine immerse nello spazio di n dimensioni, Rend.
del circolo matematico di Palermo 1 (1887), 241–271.

83
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