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Abstract— The paper considers an extension of factor analy-
sis to moving average processes. The problem is formulated as
a rank minimization of a suitable spectral density. It is shown
that it can be efficiently approximated via a trace norm convex
relaxation.

I. INTRODUCTION

Factor models are used to compress information contained
in a high dimensional data vector into a small number of
common factors. Those common factors represent nonob-
served variables influencing the observations. Such models
have been initially developed by psychologists for statistical
tests of mental abilities, [21], [2], [23] and successively in
econometrics and control engineering, [15], [14], [20], [17].

The “standard” factor model is a zero mean Gaussian n-
dimensional random vector whose covariance matrix X can
be decomposed as the sum of a low rank covariance matrix
Y plus a diagonal covariance matrix Z, i.e. X = Y +Z. Here
X , Y and Z belong to the vector space of symmetric matrices
of dimension n, say Qn, and are positive semidefinite, say
X,Y, Z � 0. X encodes the observed information from
data, Y the compressed information through r := rank(Y )
independent common factors, and Z the information which
cannot be compressed. The estimation of Y from X , leads to
a constrained rank minimization of Y , a nonconvex problem
and computationally NP hard. It admits a tight convex re-
laxation which minimizes the trace of Y and was introduced
in factor analysis by Jackson and Agunwamba, [13], and
independently Bentler and Woodward, [1]. Likewise, convex
relaxations of rank minimization problems have been a topic
of active research in the recent years [8], [9], [3], [19].

In the above formulation data are modeled as originating
from independent, identically distributed Gaussian random
vectors and factor analysis consists only in dimension re-
duction in the cross-sectional dimension (i.e. the number of
observed variables). A generalization is to assume that data
originate from a stochastic process, thus compressing infor-
mation in the cross-sectional and in the time dimension, [10],
[18], [16], [12]. Different approaches have been considered
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to tackle the corresponding minimum rank problem. In [10],
Geweke considers a stationary process and approximates
its spectral density by a piecewise constant function. The
factor analysis is then performed piecewise by adapting the
maximum-likelihood (ML) estimation method for Gaussian
random vectors. Alternatively, in [7], [24], [16], the authors
consider a special dynamic factor model wherein the com-
mon (dynamic) factors are only combined in a static way.

A moving average (MA) Gaussian process is obtained
by filtering white Gaussian noise with an all-zero filter.
Although the estimation of an MA processes is relatively
simple, it is not clear how to extract the compressible
information from it. The present paper considers the case
of a dynamic factor model generated by an MA process.
We show that the convex relaxation for the static case then
admits a natural generalization wherein the covariance matrix
X is replaced by the spectral density of the MA process. In
Section II we recall the standard factor analysis. In Section
III we introduce its dynamic MA generalization. In Section
IV we analyze the constrained convex optimization problem
which relaxes the corresponding minimum rank problem,
and in Section V we propose a matricial SDP algorithm for
computing a solution to the problem. Finally, in Section VI
we present some simulation studies.

Throughout the paper we use the following notation.
Functions defined on the unit circle are denoted by capital
Greek letters, e.g. Ψ(eiϑ) with ϑ ∈ [−π, π]. If Ψ is positive
semidefinite on the unit circle we write Ψ � 0. An is the
linear space of Cn×n-valued analytic functions defined on
the unit circle. The (normal) rank of Ψ ∈ An is defined as

rank(Ψ) = max
ϑ∈[−π,π]

rank(Ψ(eiϑ)). (1)

We define the norm

‖Ψ‖ := max
ϑ∈[−π,π]

σ(Ψ(eiϑ)) (2)

where σ(X) denotes the maximum singular value of the
matrix X , which is equal to its maximum eigenvalue when
X � 0.

II. STANDARD FACTOR ANALYSIS

The standard factor model is a static linear model

x = Awy +Bwz (3)

where A ∈ Rn×r with r � n, B ∈ Rn×n diagonal.
wy and wz are Gaussian random vectors with zero mean
and covariance matrix equal to the identity of dimension r
and n, respectively. Moreover, wy and wz are independent,
i.e. E[wyw

T
z ] = 0. Let y := Awy and z := Bwz . The
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n-dimensional random vector x is called observed vector
because some statistics of it are available. To explain the
reason why (3) is referred to as factor model, we need
some further notation. Let x =

[
x1 . . . xn

]T
, wy =[

wy,1 . . . wy,r
]T

, wz =
[
wz,1 . . . wz,n

]T
, ajk

denote the entry in position (j, k) of the matrix A, and bj
denote the j-th entry in the main diagonal of B. Therefore,

xj =

r∑
k=1

ajkwy,k + bjwz,j (4)

namely the j-th observed variable xj is generated by r
independednt common factors wy,1, . . . , wy,r and by the
specific factor wz,j .

In view of (3), x is a Gaussian random vector with zero
mean and covariance matrix denoted by X . Since wy and
wz are independent, we get

X = Y + Z (5)

where Y = AAT , with rank equal to r, and Z = BBT ,
diagonal, are the covariance matrices of y and z, respectively.
Therefore, the covariance matrix of x is the sum of a low
rank covariance matrix, describing the common factors, and
a diagonal covariance matrix, describing the specific factors.

The purpose of factors analysis consists in characterizing
common factors, representing the compressed information,
and specific factors from some statistics of the observed
vector. This problem can be formalized as follows: find the
decomposition low rank plus diagonal (5) from an estimate
of X . A natural strategy for factor analysis is to solve the
following minimum rank problem

min
Y,Z∈Qn

rank(Y )

subject to Y,Z � 0

Z diagonal
X = Y + Z. (6)

This problem, however, is computationally NP-hard. Then,
the following minimum trace problem has been proposed as
approximation of (6)

min
Y,Z∈Qn

tr(Y )

subject to Y,Z � 0

Z diagonal
X = Y + Z. (7)

It turns out that the relaxed problem recovers the correct
decomposition under weak assumptions. Moreover, its so-
lution is unique, [5]. The reason why the approximation is
effective is because the convex hull of rank(Y ) over the set
{Y ∈ Qn s.t. Y � 0, ‖Y ‖2 ≤ 1} is the trace of Y , here
‖Y ‖2 denotes the spectral norm of Y , see [8].

III. MOVING AVERAGE FACTORS ANALYSIS

In this paper we consider the following dynamic factor
model

x(t) =

m∑
k=0

Akwy(t− k) +

m∑
k=0

Bkwz(t− k), t ∈ Z (8)

where Ak ∈ Rn×r with r � n, Bk ∈ Rn×n diagonal, wy
and wz are r and n-dimensional white Gaussian noise with
zero mean and variance equal to the identity, respectively,
and such that

E[wy(t)wz(s)
T ] = 0 ∀ t, s. (9)

Note that, (8) is a linear combination of two white Gaussian
noises, whereas a standard MA process involves just one
noise term. On the other hand, only with (8) one characterizes
the compressible information, and thus the common factors,
in the data. Similarly to the static case, we define the
stochastic processes

y(t) :=

m∑
k=0

Akwy(t− k) (10)

z(t) :=

m∑
k=0

Bkwz(t− k). (11)

Model (8) is completely described by its spectral density

Ψx(eiϑ) =

m∑
k=−m

e−ikϑRk (12)

where Rk := E[x(t)x(t+ k)T ] is the k-th covariance lag of
x. In view of (9), we get

Ψx(eiϑ) = Ψy(eiϑ) + Ψz(e
ϑ) (13)

where Ψy is the spectral density of y and Ψz the one of z.
Moreover, from (10) and (11) we obtain

Ψy(eiϑ) =

(
m∑
k=0

e−ikϑAk

)(
m∑
k=0

e−ikϑAk

)∗

Ψz(e
iϑ) =

(
m∑
k=0

e−ikϑBk

)(
m∑
k=0

e−ikϑBk

)∗
. (14)

Therefore, Ψx, Ψy and Ψz belong to the following family
of pseudo-polynomial matrices in eiϑ:

Qn,m =

{
m∑

k=−m

e−ikϑQk, Qk = QT−k ∈ Rn×n
}
. (15)

Moreover spectral densities must be positive semidefinite on
the unit circle, hence Ψx,Ψy,Ψz � 0. Since Ak ∈ Rn×r and
Bk is diagonal, Ψy has (normal) rank r and Ψz is diagonal.
We conclude that the observed process x of the MA factor
model (8) has spectral density Ψx which is given by the sum
of a low rank and a diagonal matrix function belonging to
Qn,m and positive semidefinite on the unit circle.

Factor analysis of the model (8) can be formulated as
follows.

Problem 1: Let x(1), x(2), . . . , x(N) be a finite-length
sequence extracted from a realization of x and assume that
m is given. Find the decomposition low rank plus diagonal
(13) from x(1), x(2), . . . , x(N).

In the above problem we assumed to know m. If not, one
can estimate m from the data by using model order selection
techniques, see for instance [11].



We propose the following identification procedure for
finding (13):

1) Estimate Ψx(eiϑ) =
∑m
k=−m e

−ikϑRk, such that
Ψx � 0, from x(1), x(2), . . . , x(N);

2) Compute Ψy and Ψz by solving the following mini-
mum rank problem

min
Ψy,Ψz∈Qn,m

rank(Ψy)

subject to Ψy,Ψz � 0

Ψz diagonal
Ψx = Ψy + Ψz. (16)

Step 1. This is an MA parameter estimation problem. One
would compute the correlogram of x and then truncate it with
a m-length rectangular window according to the Blackman-
Tukey method, [22, page 38]. However, the truncated estimate
may fail to be positive semidefinite over the unit circle,
especially when m� N , that is it is not a spectral density.
One could overcome this problem designing a window which
preserves the positivity of the windowed correlogram. The
design of this window depends on the specific application.
Since this is not the main issue we address in the paper,
we consider the Durbin’s method, [6]. The sketch of this
procedure is as follows:
• Fit an autoregressive (AR) model of order m̃ = 2m

from x(1), x(2), . . . , x(N);
• Approximate the AR model with an MA model, of order
m, via the least square method;

• Let x(t) =
∑m
k=0 Cke(t − k) be the estimated MA

model where e is white Gaussian noise with zero mean
and covariance matrix equal to the identity, then

Ψx(eiϑ) =

(
m∑
k=0

Cke
−ikϑ

)(
m∑
k=0

Cke
−ikϑ

)∗
. (17)

Step 2. The minimum rank Problem (16) is computation-
ally NP-hard. This lead us to relax it in a such way to
obtain a tractable convex optimization-based method. More
precisely, we would like to approximate the rank function
with a convex function. Next section is devoted to this task.

Remark 3.1: We assumed that the MA processes (10) and
(11) have the same order, that is m, for simplicity. Let
Ψx ∈ Qn,mx , Ψy ∈ Qn,my and Ψz ∈ Qn,mz . Clearly,
mx is set in Step 1 in the above procedure. If we choose
mx > min{my,mz}, the semi-definite decomposition Ψx =
Ψy + Ψz , with Ψz diagonal, may not exist or the solution
for Ψy may be trivially full rank. If we choose mx =
min{my,mz} such decomposition does exists, but it implies
that Ψy and Ψz belong to Qn,mx . The unique interesting
case is mx < min{my,mz}. Note that, it is not difficult
to construct examples where the low rank plus diagonal
semi-definite decomposition Ψx = Ψy + Ψz is such that
mx < min{my,mz}. Without loss of generality assume that
mx < my ≤ mz . Then, Ψx and Ψy can be understood as
elements in Qn,mz , setting the last mz−mx lags of Ψx equal
to zero and with the linear constraint that the last mz −my

lags of Ψy are equal to zero. Accordingly, the results we
will present can be easily adapted to this case. It is worth
noting condition mx < min{my,mz} means that we permit
an “expansion” in the time dimension, with respect to x,
to allow a more effective compression in the cross-sectional
dimension.

IV. RELAXED MINIMUM RANK PROBLEM

By replacing rank(Ψy) in (16) with a convex function
we obtain a constrained convex optimization problem. The
tightest convex lower approximation of a nonconvex function
is defined as follows.

Definition 4.1: Given f : D → [−∞,∞], the convex hull
co f is defined as the greatest convex function such that

co f(x) ≤ f(x), ∀x ∈ D. (18)

In [25], we prove the following result.

Proposition 4.1: Let Ψy ∈ An be an arbitrary analytic
function such that Ψy � 0, we define the following restricted
rank function

rank′(Ψy) :=

{
rank(Ψy), ‖Ψy‖ ≤ 1
+∞, otherwise. (19)

Then, the convex hull of rank′(Ψy) is

co rank′(Ψy) :=

{
tr
∫ π
−π Ψy(eiϑ)dϑ

2π , ‖Ψy‖ ≤ 1

+∞, otherwise.
(20)

Consider the following convex optimization problem:

min
Ψy,Ψz∈Qn,m

tr

∫ π

−π
Ψy(eiϑ)

dϑ

2π

subject to Ψy,Ψz � 0

Ψz diagonal
Ψx = Ψy + Ψz. (21)

Proposition 4.2: Assume that Ψx ∈ Qn,m is positive
semidefinite and bounded on the unit circle. Then Problem
(21) does admit solution.

Proof: In (21), Ψz = Ψx − Ψy does not appear in
the objective function, thus the optimization problem is
equivalent to

min
Ψy∈Qn,m

tr

∫ π

−π
Ψy(eiϑ)

dϑ

2π

subject to 0 � Ψy � Ψx

Ψx −Ψy diagonal. (22)

Hence, it is sufficient to show that (22) admits solution for
proving the statement.

The point Ψy = Ψx is feasible for Problem (22) because
Ψx � 0 by assumption. Thus, the feasibility set

K = {Ψy ∈ Qn,m s.t. 0 � Ψy � Ψx, Ψx −Ψy diagonal}
is nonempty. Moreover, K is bounded, closed and contained
in the finite dimensional space Qn,m. Accordingly, K is
a compact set. Since the objective function in (22) is a



continuous function, by Weierstrass’ theorem Problem (22)
admits a minimum over K.

By Proposition 4.2, Problem (21) with Ψx estimated as
explained in Section III admits a solution. Define c := ‖Ψx‖.
Then, Problem (21) is equivalent to

min
Ψy∈Qn,m

1

c
tr

∫ π

−π
Ψy(eiϑ)

dϑ

2π

subject to 0 � Ψy � Ψx

Ψx −Ψy diagonal. (23)

Note that the feasibility set is contained in K̃ := {Ψy ∈
Qn,m s.t. ‖Ψy‖ ≤ c} and 1

c tr
∫ π
−π Ψy(eiϑ)dϑ

2π is the convex
hull of rank(Ψy) over K̃. We conclude that (21) is the
convex relaxation of the minimum rank Problem (16).

V. A MATRICIAL SDP ALGORITHM

The computation of a solution to Problem (21) requires
a matrix parametrization of the problem. To this end, we
consider Y ∈ Qn(m+1) partitioned as follows

Y =


Y00 Y01 . . . Y0m

Y10 Y11

...
...

. . .
Ym0 . . . Ymm

 (24)

and define the shift operator

∆(eiϑ) =
[
In eiϑIn . . . eimϑIn

]
. (25)

Then

∆(eiϑ)Y∆(eiϑ)∗ = D0(Y )+

m∑
k=1

Dk(Y )e−ikϑ+Dk(Y )T eikϑ

(26)
where

D0 : Qn(m+1) → Qn

Y 7→
m∑
j=0

Yjj

Dk : Qn(m+1) → Rn×n

Y 7→
m−k∑
j=0

Yj,j+k (27)

where k = 1 . . .m. Therefore, ∆(eiϑ)Y∆(eiϑ)∗ ∈ Qn,m.
Moreover, any element in Qn,m admits the representation
(26) because Dks are surjective maps and Dj(Y ),Dk(Y )
with j 6= k depend on different subblocks of Y .

This lead us to parameterize Ψy,Ψz ∈ Qn,m as

Ψy(eiϑ) = ∆(eiϑ)Y∆(eiϑ)∗

Ψz(e
iϑ) = ∆(eiϑ)Z∆(eiϑ)∗ (28)

with Y, Z ∈ Qn(m+1), and translate (21) with respect to such
matrices:

• Objective function. We have

tr

∫ π

−π
Ψy(eiϑ)

dϑ

2π
=

∫
tr(∆(eiϑ)Y∆(eiϑ)∗)

dϑ

2π

= tr

(
Y

∫ π

−π
∆(eiϑ)∗∆(eiϑ)

dϑ

2π

)
= tr(Y )

where we exploited the fact that∫ π

−π
eikϑ

dϑ

2π
=

{
1, k = 0
0, k 6= 0.

(29)

• Conditions Ψy,Ψz � 0. The condition Y � 0 implies
that Ψy(eiϑ) = ∆(eiϑ)Y∆(eiϑ)∗ � 0 for each ϑ ∈
[−π, π]. On the other hand if Ψy � 0, there exists
Γ(eiϑ) =

∑m
k=0 e

−ikϑCk, with Ck ∈ Rn×l, such
that Ψy(eiϑ) = Γ(eiϑ)Γ(eiϑ)∗. Hence, Ψy(eiϑ) =
∆(eiϑ)Y∆(eiϑ)∗ with

Y =


C0

C1

...
Cm

 [ CT0 CT1 . . . CTm
]

(30)

which is positive semidefinite. Thus, we can replace
Ψy � 0 with Y � 0, and similarly Ψz � 0 with Z � 0.

• Condition Ψx = Ψy + Ψz . Let Ψx(eiϑ) =∑m
k=−m e

−ikϑRk, Ψy(eiϑ) =
∑m
k=−m e

−ikϑPk,
Ψz(e

iϑ) =
∑m
k=−m e

−ikϑQk with Rk = RT−k, Pk =
PT−k, Qk = QT−k. Thus, the equality constraint may be
rewritten as

∑m
k=−m e

−ikϑ(Pk +Qk −Rk) = 0 which
is equivalent to

Pk +Qk = Rk, k = 0 . . .m. (31)

Note that Rks, Pks and Qks are the coefficients of the
pseudo-polynomial matrices Ψx, Ψy and Ψz , respec-
tively. In view of (26), the k-th coefficients of Ψy and
Ψz are given by Dk(Y ) and Dk(Z), respectively. Thus,
(31) is equivalent to

Dk(Y ) + Dk(Z) = Rk, k = 0 . . .m. (32)

Finally, by exploiting the linearity of Dks, we obtain

Dk(Y + Z) = Rk, k = 0 . . .m. (33)

• Condition Ψz diagonal. By exploiting argumentations
similar to the ones of the previous point, we get that
the condition is equivalent to

Dk(Z) diagonal, k = 0 . . .m. (34)

Hence, Problem (21) is equivalent to

min
Y,Z∈Qn(m+1)

tr(Y )

subject to Y,Z � 0

Dk(Z) diagonal k = 0 . . .m

Dk(Y + Z) = Rk k = 0 . . .m (35)

and a solution to (21) is given by Ψ̂y(eiϑ) =
∆(eiϑ)Ŷ∆(eiϑ)∗ and Ψ̂z(e

iϑ) = ∆(eiϑ)Ẑ∆(eiϑ)∗, where



(Ŷ , Ẑ) is solution to (35). We conclude that a solution to
(21) may be easily computed by solving (35).

Remark 5.1: In the case that x, y, z are MA processes
of order mx, my and mz , respectively, and such that mx <
my ≤ mz , we define Ψx,Ψy,Ψz ∈ Qn,mz

and (35) becomes

min
Y,Z∈Qn(mz+1)

tr(Y )

subject to Y,Z � 0

Dk(Z) diagonal k = 0 . . .mz

Dk(Y + Z) = Rk k = 0 . . .mx

Dk(Y + Z) = 0 k = mx + 1 . . .my

Dk(Y ) = 0 k = my + 1 . . .mz (36)

and it is not difficult to show that the previous results, in
particular Proposition 4.2, still holds.

VI. SIMULATION STUDIES

A. Performance of the relaxed problem

We start by testing the tightness of the convex relaxation
(21). We consider 10 dynamic factor models (8) with n =
10 and m = 5 whose coefficients Aks Bks are randomly
generated. These models differ by the number of common
factors, i.e. r. For each model we solve problem (21) by
using the true spectral density Ψx of the observed process.
Let Ψy be the true spectral density of y, and Ψ̂y the estimate
provided by (21). We compute the relative estimation error,
averaged on the unit circle, of Ψ̂y:

meΨy
=

∫ π

−π

‖Ψy(eiϑ)− Ψ̂y(eiϑ)‖2
‖Ψy(eiϑ)‖2

dϑ

2π
. (37)

In the following table the relative error meΨy
for the 10

different models is shown.

r meΨy
r meΨy

1 8.72× 10−10 6 5.02× 10−5

2 4.56× 10−10 7 2.91× 10−2

3 1.76× 10−9 8 3.15× 10−2

4 1.25× 10−9 9 5.51× 10−2

5 1.63× 10−9 10 8.25× 10−2

The estimated decomposition is exact when the number of
common factors is small, r ≤ 5, whereas it is not for a
large number of common factors, r ≥ 6. At this point it
is worth recalling that the decomposition (13) is generically
unique, and thus identifiable from Ψx, for r ≤ n − √n,
[4]. In our case n − √n ∼= 6.84. We conclude that the
relaxed formulation is able to recover all the identifiable
decompositions except for the case r = 6.

B. Factor Analysis

We consider the dynamic factor model of Section VI-A
with r = 3. In Figure 1 we depict the spectral norm of Ψx,
Ψy and Ψz at each frequency. From (8) we generate N =
6000 samples of x: x(1), x(2), . . . x(6000). We apply then
the identification procedure of Section III for characterizing
common and specific factors from the data. We denote by
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Fig. 1. Spectral norm of Ψx, Ψy and Ψz of the dynamic factor model
with r = 3.

Ψ̂x the estimate of Ψx computed by Durbin’s method, and
Ψ̂y the estimate of Ψy obtained by solving Problem (21).
We define the relative estimation errors at each frequency:

eΨx
(eiϑ) =

‖Ψx(eiϑ)− Ψ̂x(eiϑ)‖2
‖Ψx(eiϑ)‖2

eΨy
(eiϑ) =

‖Ψy(eiϑ)− Ψ̂y(eiϑ)‖2
‖Ψy(eiϑ)‖2

(38)

The errors graph is displayed in Figure 2. We note that eΨx

and eΨy
take similar values for ϑ ∈ [−π, π]. This means that

the estimation error is mainly imputable to Durbin’s method
for estimating Ψx from the data. Finally, we define

sj := max
ϑ∈[−π,π]

σj(Ψ̂(eiϑ))

σ1(Ψ̂(eiϑ))
(39)

where σj(Ψ̂(eiϑ)) is the j-th largest singular value of Ψ̂y at
ϑ. Hence, sj can be understood as the j-th largest normalized
singular value over the unit circle of Ψ̂y . Those quantities
are plotted in Figure 3. The plot suggests that we can
safely approximate rank(Ψ̂y) = 3. Accordingly, we recover
the exact number of common factors. Finally, we obtained
similar results with different samples and by changing the
factor model.

VII. CONCLUSION

In this paper we proposed an identification procedure for
factor analysis of MA processes. Here, the challenging step
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is to solve a minimum rank problem. We proposed a convex
optimization problem approximating the NP-hard problem.
Simulation studies point out that the convex problem is able
to recover a correct solution in most of the cases. Finally,
we tested the identification procedure: simulations show this
method is able to identify common and specific factors with
satisfactory accuracy.
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