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COMPACTNESS PROPERTIES FOR GEOMETRIC FOURTH ORDER
ELLIPTIC EQUATIONS WITH APPLICATION TO THE @Q-CURVATURE
FLOW

ALI FARDOUN AND RACHID REGBAOUI

ABSTRACT. We prove the compactness of solutions to general fourth order elliptic equations
which are L!-perturbations of the Q-curvature equation on compact Riemannian 4-maniflods.
Consequently, we prove the global existence and convergence of the @Q-curvature flow on a generic
class of Riemannian 4-manifolds. As a by product, we give a positive answer to an open question
by A. Malchiodi [I2] on the existence of bounded Palais-Smale sequences for the Q-curvature
problem when the Paneitz operator is positive with trivial kernel.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

On a Riemannian 4-manifold (M, go), the Q-curvature of the metric gg is defined by

1
Qo = -5 (AoSo + So* — 3|Rico?) , (1.1)

where Ag, So and Ricg denote respectively, the Laplace-Beltrami operator, the scalar curvature
and the Ricci tensor associated to the metric gg. A conformal change of the metric gy produces a
metric g = e?“gg having Q-curvature

Qg = e *(Pou+ Qo), (1.2)

where P, is the Paneitz operator defined by

2
P()’U, = Agu + diVO |:<§SOQO - 2R1C0) d’u:| y (13)

where divg denotes the divergence operator with respect to go. The Paneitz operator is conformally
invariant in the sense that if ¢ = e2“gg, then the Paneitz operator with respect to g is given by
P, = e=*P,. Through this paper, we will always assume that P has trivial kernel, that is, its
kernel consists only of constant functions. Some times, we will also need to assume that P is
positive, which means that for all u € C°°(M) we have

/ Pou-u dVy > 0,
M
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where dVj is the volume element with respect to gop. We note here that both hypothesis are
conformally invariant. From the following Chern-Gauss-Bonnet formula :

1
| @uvi+ 1 [ wav, = seon.

where x (M) denotes the Euler-characteristic of M, W, is the Weyl tensor of g and dVj, is the volume
element with respect to g, we see that the total ()-curvature

ko = /M Qodvoz/M Qg dv, (1.4)

is also conformally invariant since the Weyl tensor is pointwise conformally invariant. We note here
that formula (1.4) is also a direct consequence of (1.2).

The @-curvature and the Paneitz operator have received much attention in recent years because
of their role in four-dimensional conformal geometry and in mathematical physics. Similarly to the
uniformization problem of surfaces, one of the interesting problems in the geometry of 4-manifolds
is to ask if there exists a metric g on M conformal to gy and having constant @)-curvature ? By
using the relation (1.2), the problem is equivalent to find a function v € C*°(M) satisfying the
following partial differential equation

P()’U, + QO = k064u. (15)

Equation (1.5) has a variational structure, and its solutions are critical points of the following
functional on the Sobolev space H?(M) :

E(u) := 1 Pyu - u dVj +/ Qou dVy — @ log (/ e4udVo> , (1.6)
2 ) M 4 M

that we will call the @Q-curvature functional through this paper. The main difficulty in the study

of this functional is that in general it is not coercive, and it can be unbounded from below and

from above. This is due to the large values that the total @-curvature kg may have, and to the

possibility of negative eigenvalues of the operator F.

S.A. Chang and P. Yang [7] first studied Equation (1.5) by minimizing the functional E. They
constructed conformal metrics of constant @-curvature when the Paneitz operator Py is positive
with trivial kernel and the total Q-curvature satisfies kg < 1672 which is the total Q-curvature of
the Euclidean sphere S*. The key point in their proof is that by using Adams inequality (see section
2), if we suppose that Py is positive with trivial kernel and ko < 1672, then the functional E is
bounded from below, coercive and its critical points can be found as global minima. Later, Z.Djadli
and A.Malchiodi [8] solved equation (1.5) when Py is not necessarily positive under the condition
that the kernel of Py is trivial and kg # 16k7?, k € N*. They constructed a critical point of E by
a mini-max scheme based on a result by A. Malchiodi [12], and independently by O. Druet and F.
Robert [9], on the compactness of solutions to fourth order elliptic equations. For more details on
the @-curvature problem we refer the reader to [I], [2], [4], [10] and the references therein.

In [12] A. Malchiodi proved, by assuming ko ¢ 1672N*, the compactness of any sequence (uy)n
satisfying a C°-perturbation of equation (1.5) of the form
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Pty + Qpn = kpe*r (1.7)
where k, = / Q,dVy, by assuming
M

Qn —> Qo in C°(M).
n——+o0o

This result does not apply to Palais-Smale sequences for the functional F since for such sequences
one needs H ~2-perturbations of equation (1.5). An open question was kept in [12]: do there exist
bounded Palais-Smale sequences for the functional £ ? One of the main result of the present paper
is to give a positive answer to this question when the Paneitz operator is positive with trivial kernel.
We prove first a compactness result of solutions to L!-perturbations of equation (1.5), that is, we
need only to assume

. 1
Qu —_Qo in L'(M)

in equation (1.7) above. Then we apply this result to study the solution of the heat flow equation
associated with (1.5) since such an equation is a L!-perturbation of (1.5), giving thus a convergent
Palais-Smale sequence for the functional E. Our first main result reads :

Theorem 1.1. Let (M, go) be a compact Riemannian 4-manifold whose Paneitz operator has trivial
kernel. Let f € CO(M), and let (un, fn)n be a sequence in H*(M) x L*(M) satisfying

Poty, + fr = kne*™» (1.8)
/ et dVy =1 (1.9)
M
and
. 1
I Rl f in L' (M), (1.10)

where k, = / fndVy. Then one of the following alternatives holds :
M

1) either the sequence (€!"»l),, is bounded in LP(M) for all p € [1,+00),

2) or for a subsequence, that we still denote by (un)n for simplicity, there exist a finite number of
points ai, ..., am € M and integers lq, ..., L, € N* such that

= = /M FdVy (1.11)

j=1
and

4y,

e (1.12)

e T deOZ”“J’

in the sense of measures, where 0, stands for the Dirac mass at the point a € M.
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A particular case of Theorem 1.1 is the following result when / fdVy & 16m>N*.
M

Corollary 1.1. Let (up, fn)n be a sequence in H*(M) x L*(M) as in Theorem 1.1. If we assume
in addition

/ fdVy & 16m*N*, (1.13)
M

then the sequence (el“n!),, is bounded in LP(M) for all p € [1,+00), that is,

/ ePlenlqvy < ¢y,
M

where Cy, is a positive constant depending on p but not on n.

It is clear that Corollary 1.1 is a particular case of Theorem 1.1 since if condition (1.13) is
satisfied, then the second alternative in Theorem 1.1 does not occur.

As a direct consequence of Corollary 1.1, we recover the result of A. Malchiodi [12] and O. Druet-
F. Robert [9] stated above. More precisely, we have the following corollary on the compactness of
solutions to the Q-curvature equation (1.5) :

Corollary 1.2. Let (M, go) be a compact Riemannian 4-manifold whose Paneitz operator has a
trivial kernel, and assume that the total Q-curvature ko satisfies ko € 1672N*. Then for any k € N,
there exits a constant Cy depending only on k and (M, go) such that for any solution u € H?(M)
of the Q-curvature equation

Pou+ Qo= k064u

with the normalization / et dVy = 1, we have
M

lullcx(ary < Ck

We note here that when kg # 0, the normalization condition / e dVy = 1 is automatically
M
satisfied from the Q-curvature equation.

Remark 1.1. 1) The conclusions of Theorem 1.1 and Corollary 1.1 remain valid if we consider
equations of the form

Poun + fn = hne4un
where we assume h,, € CO(M) such that C~* < h,, < C for some positive constant C' independent
of n. This can be checked by following the same proofs with some necessary slight modifications.

2) One can easily check that in Corollary 1.1 a subsequence of (uy)n converges strongly in WP (M)
for all p € [1,2) to a function us satisfying the following equation

Pyugo + f = k064um7

where kg :/ fdvp.
M
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3) As it can be seen from our proofs, Theorem 1.1 and Corollary 1.1 remain valid if we consider
L'-perturbations of the mean field equation on compact Riemannian surfaces. Indeed, the same
arguments work if we replace the Paneitz operator by the Laplacian. Some related results concerning
the mean field equation are proved by J-B. Castéras in his thesis [6].

The main difficulty in the study of equations like (1.8) in Theorem 1.1 is the appearance of
the so-called bubbling phenomena due to the concentration of the volume of the conformal metric
gn = €2¥ngo. We prove that if such phenomena occur then there must be some volume quantization.
An important tool in the proof of such a result is an integral Harnack type inequality that we will
prove in section 3.

As stated above, the second main result of this paper concerns the evolution problem associated
with equation (1.5). More precisely, we will consider the evolution of a metric g on M under the
flow:

dhg=—(Qy—Q,) g
(1.14)

9(0) = e*0 gy, ug € C>°(M)

where

— 1 B ko
@y = Vol, (M) /M QgdVy = Voly (M)

is the average of Q.

Since equation (1.14) preserves the conformal structure of M, then g(t) = e**(® gy, where

u(t) € C°(M) with initial condition u(0) = uoy € C°(M). For simplicity, we have used the
notation u(t) := u(.,t), t € I, for any function defined on M x I, where I is a subset of R. Thus
the flow (1.14) takes the form

du=—1e " (Pou+ Qo) + %%7

(1.15)
u(0) = up.

It is clear that the first equation in (1.15) is parabolic since Py is an elliptic operator. Then by
classical methods it admits a solution u € C°°(M x [0,7T)) where T' < 400 denotes the maximal
time of existence. By integrating the first equation in (1.15) over M with respect to the volume
element of g(t), we see that the volume of M with respect to g(t) remains constant, that is,

/e4u(t)dV0:/ e*™dVy, vt e[0,T). (1.16)
M M

If we multiply the first equation in (1.15) by dyu and integrating with repect to g(t), we see that
the functional E is decreasing along the flow :

%E(u(t)) = _2/M MO |uu(t)2dVy, Yt e [0,T). (1.17)
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As far as we know, the evolution problem (1.15) has been studied only in the case where the
total Q-curvature ko satisfies kg < 1672 and P, is positive with trivial kernel. Indeed, S.Brendle [3]
was the first who studied the Q-curvature flow by considering a more general flow (with prescribed
Q-curvature function) on Riemannian manifolds of even dimension. In dimension four, his result
corresponds to assume that Py is positive with trivial kernel and ky < 1672, and then he proved that
(1.15) has a solution which is defined for all time (T = +o00) and converges to a smooth function
Uso such that the metric go, = e?“>~ has constant Q-curvature. When ko = 1672, he proved in [5]
the global existence and the convergence of Q-curvature flow on the sphere S*. We also mention
here the work of A. Malchiodi and M. Struwe [13] where they consider the Q-curvature flow on S*
with a prescribed @Q-curvature function f. They proved the global existence of the flow and studied
its asymptotic behaviour under some assumptions on the critical points of f.

Our second main result in this paper is to study the flow (1.15) on Riemannian 4-manifolds with
total curvature kg satisfying ko ¢ 1672N*. In particular, we are able to allow ko to take values
beyond the critical threshold 1672. Our result is as follows :

Theorem 1.2. Let (M, go) be a compact Riemannian 4-manifold whose Paneitz operator Py is
positive with trivial kernel. For ug € C®(M), let u € C®(M x [0,T)) the solution of problem
(1.15) defined on a mazimal interval [0,T). If

inf F(u(t — 1.18
nf Bu(t) >~ (118)

where E is defined by (1.6), then T = +oo, that is, u(t) is globally defined on [0,400). Moreover,
if in addition the total Q-curvature ko satisfies ko € 16m2N*, then u(t) converges in C°°(M) as
t — +00, to a function us € C°(M) satisfying the Q-curvature equation

ke
euce dVj
M

AU oo

Potioo + Qo =

It is natural to ask if there exist initial data ug € C°°(M) for which the solution u(t) of problem
(1.15) with u(0) = wug, satisfies condition (1.18) in Theorem 1.2 ? As we will see below, we can
always find initial data for which (1.18) is satisfied, and others for which it is not the case. We note
here that the condition (1.18) is automatically satisfied if kg < 1672 and P, positive with trivial
kernel since in this case the functional E is bounded from below by using Adams inequality (see
section 2). First we have :

Theorem 1.3. Let (M, go) be a compact Riemannian 4-manifold whose Paneitz operator Py is
positive with trivial kernel, and suppose that the total Q-curvature ko satisfies ko & 16m2N*. Then
there exists at least one function ug € C*°(M) such that the solution u(t) of problem (1.15) with
u(0) = wo, satisfies condition (1.18) in Theorem 1.2, that is,

inf E(u(t)) > —o0 .
,ant Blu(t)) > —oo
Thus, according to Theorem 1.2, u(t) is globally defined on [0,+00) and converges in C*°(M) as
t — +00, to a function us € C°(M) satisfying the Q-curvature equation

ke
fM eduoo dVy

AU oo

Potioo + Qo =
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It follows from Theorem 1.3, by taking any real sequence (t,), such that ¢, — +oo, that

n——+oo
(u(tn))n is a convergent Palais-Smale sequence for the Q-curvature functional E. This gives a
positive answer to the open question by A. Malchiodi [12] stated above. In particular, Theorem 1.3
is a direct method to solve equation (1.5).

The following theorem gives a class of functions ug € C°°(M) for which condition (1.18) in The-
orem 1.2 is not satisfied. More precisely, it gives a class of initial data for which the corresponding
flow wu(t) blows up in finite or infinite time :

Theorem 1.4. Let (M, go) be a compact Riemannian 4-manifold whose Paneitz operator Py is
positive with trivial kernel, and suppose that the total Q-curvature ko satisfies ko & 16m2N*. Then
there exists a constant A € R such that for any ug € C°° (M) satisfying E(ug) < A, the corresponding
solution u(t) of (1.15) satisfies thﬁrr% E(u(t)) = —o0.

One of the principal difficulties in the study of the @Q-curvature flow (1.15) comes from the
absence of a maximum principle for elliptic operator of high order (greater than 4). Our analysis
is based on the proof of some delicate integral estimates concerning the parabolic equation (1.15),
combined with the compactness of the solutions of the corresponding elliptic equation proved in
Theorem 1.1.

2. PRELIMINARIES AND BLOW-UP ANALYSIS

We introduce in this section some basic tools on elliptic operators on Riemannian manifolds, and
we recall some known results on the blow-up of solutions to general Q-curvature type equations.

Let (M, go) a smooth compact 4-Riemannian manifold without boundary. For the simplicity of
notations, the Riemannian distance between two points z,y € M is denoted as in the FKuclidean
space, by |x —y|. If z € M and r > 0, we denote by B, (z) the geodesic ball in M of center = and
radius r. If € R™, we denote in the same manner by B, (z) the Euclidean ball in R™ of center
x and radius . The volume element of gg is denoted by dVj, and the volume of any measurable
set A C M is denoted by |A|. The Green function G associated to the Paneitz P, is a symmetric
function G € C*°(M x M \ D), where D = {(z,z) : = € M} is the diagonal of M, giving the
inversion formula for Paneitz operator. That is, if ' € L'(M) with F = 0, then u is a solution of

Po’u =F (21)
if and only if

uw) =+ [ Gy FE)Vi) 22)

where we denote by h := ﬁ fM hdVy the average of any function h € L'(M). We have the
following asymptotics for G

1
where R € C°(M x M).

The following proposition concerning solutions of equation (2.1) is proved in A. Malchiodi [12]
by using the asymptotics of the Green function (see Lemma 2.3 in [12].)
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Proposition 2.1. Let (u,, F,,) € H>(M) x L*(M) satisfying

Poun:Fn

with || Fy| gy < K for some constant K independent of n. Then for any x € M, for any r > 0
(small enough), for any j =1,2,3, and p € [1,4/7), we have

/ |VIu,|PdVy < Cri=IP,
B, (z)

where C' is a positive constant depending on K, M, p but not on n.

We need also the following proposition proved in [12] :

Proposition 2.2. Let (u,, F,) € H>(M) x L*(M) satisfying
Po’un = Fn
with || Fy| gy < K for some constant K independent of n. Then :

1) either
/ e‘](un_un)d‘/o S C
M

for some q > 4 and some C > 0 (independent of n),
2) or there exists a point x € M such that for any r > 0, we have

lim inf / |F|dVy > 872
B, (z)

n—-+o0o

Remark 2.1. Proposition 2.2 remains valid if one replace the metric go on M by a family of
metric (gn)n depending on n which is uniformly bounded in C*(M) for any k € N. The same result
holds also if we replace M by any bounded open ball of R* and assuming all the functions with
compact support in this ball. Indeed, a bounded open ball of R* can always be embedded in a torus
for example.

Now we shall give some basic properties of solutions to equation (2.1) when F' is as in Theorem
1.1. That is, we consider a sequence (wy, fn)n in H?>(M) x L'(M) satisfying

POun + fn = kne4unu (24)
such that
/ etindVy =1, (2.5)
M
and
: 1
In n_)—+>oo f in L (M), (2.6)

with f € C%(M), and where k,, = / fndVp.
M
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First we state the following proposition which can easily be deduced from Proposition 2.2 above
by setting F,, = kpett — f,.

Proposition 2.3. Let (un, fn)n € H2(M) x LY(M) satisfying (2.4)-(2.6). Then :

1) either for any p > 1 we have for some some constant Cp, > 0 independent of n,
/ ePlunlqvy < ¢,
M

2) or there exists a point x € M such that for any r > 0, we have

ko lim inf etindVy > 8w + or(1),
n—-+oo BT(w)

where ko = / fdVh, and where 0,.(1) = 0 as r — 0.
M

If (up)n and (fy)n are as above, (z,), is a sequence of points in M and (r,), a sequence of
positive numbers such that r, — 0, we set

Un(2) = un(exp,, (rnz)) +logr,, z€ Bs (0), (2.7)
where B s (0) C R?* is the Euclidean ball of center 0 and radius %, and where ¢ is the injectivity
radius of M. We note here that the ball Bs (0) approaches R* when n — +oo. As we will
see later, it is useful to introduce the following quantities. Let T, : Bs (0) — M defined by
Tn(z) = exp,, (rnz), and define a metric g, on B (0) by

gn =1, °Tg. (2.8)
It is not difficult to see that gy ST IR in C¥(Bg(0)) for all k € N and all R > 0, where ggs
n—-+00
is the standard Euclidean metric of R*. An easy computation shows that 4, satisfies the following
PDE in R*
Py i 412 o = ke, (2.9)

where P,, is the Paneitz operator of the metric g, in R* and

Fa(2) = fulexp,, (rn2)), z € Bs (0). (2.10)
We shall also use the following function on R*, known as a standard bubble,
2A 1 ko 4
» =1 — | — =1 — ), R*, 2.11
() =t (e ) ~ s () =€ (2.11)

where zj is a fixed point in R%, X\ > 0 is a positive constant, and ky = / fdV, that we assume
M
satisfying ko > 0.

The following is a slightly different definition of blow-up with respect to that given in [12] since
we are considering more general equations.
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Definition 2.1. Let (un, fu)n € H2(M) x LY (M) satisfying (2.4)-(2.5). Let (xn)n a sequence of
points in M and (r,), a sequence of positive numbers such that r, — 0. We say that the sequence
(T, 70 )n 8 a blow-up for (u,)y if for some zg € R*, we have for any R > 0,
U, — &, in D'(Bg(0)) and e* 2 e*=0 in L'(Bg(0)), (2.12)
n—-+0oo

n—-+o0o

where Uy, and &, are defined by (2.7) and (2.11), and where D' (Br(0)) denotes the space of distri-
butions on Bgr(0).

1672
By using the above definition and the fact that / edody = =1 , one can easily prove the

R4 0
following :

Proposition 2.4. Let (uy, fn)n € H*(M) x LY(M) satisfying (2.4)-(2.5), and let (2n,n)n a blow-
up for (up)n. Then for any positive sequence (By)n such that B, — +o0, there exists a positive
sequence (by,)n with b, < B, and b, — +00 such that

1672
ko

lim et dVy =
77/—>+OO anT‘n (z’ﬂ)

Now we will prove a proposition giving the existence of blow-ups for solutions to equation (2.4).

Proposition 2.5. Let (un, fu)n € H?(M) x LY(M) satisfying (2.4)-(2.5). Suppose that there
exit a sequence (xy)n in M, sequences (rp)n, (Tn)n of positive numbers and a constant p € (0, Z—j]
(independent of n ) such that

Py o= 0, 0 (2.13)
n—-4oo Ty n—+oo
and for n large enough,
2
/ etirdVy =p / endVy < T Wy € B (). (2.14)
Br, (2n) By, (y) ko

Then by passing to a subsequence, (Ty,Tn)n s a blow-up for (u,).

Proof. The proof follows closely that of Proposition 3.4 in A. Malchiodi [12]. But since we are
considering more general equations, we shall give the detailed proof. It suffices to prove that for
any fixed R > 1, a subsequence of (U,), converges in W2P?(Bg(0)) to &, for some zy € R* and
some p > 1, and that (e*"),, converges to e*¢=0 in L'(Bg(0)).

Let R > 1 be fixed large enough. In what follows, C' denotes a positive constant depending on
M and R but independent of n, whose values may change from line to line. Set

1 / ~
p = —— UndVy,,
|B2R(O)|gn B2r(0)

where dV,, is the volume element of the metric g, defined in (2.8) above, and |Bag(0)|,, is the
volume of the ball Byr(0) with respect to the metric g,,. Let now ¢ € C§°(Bar(0)) such that ¢ =1
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on Bg(0), and define v, := ¢(U, —ay). Then by using Proposition 2.1 and the Poincaré inequality,
we have for any p € [1,4/3) and j = 1,2, 3,

/ |ViG,|PdV,, < C and / i, — an|PdV, < C,
B3r(0) B2r(0)
which implies that (v, ), is bounded in W3 (Byr(0)) for any p € [1,4/3), that is
llvnllws.»(Baro)) < C. (2.15)
(we recall here that the metric g,, is uniformly bounded in C*(Bg(0)) for any k € N and R > 0.)

Moreover we have

Py vn = =120 f0 + knpe*™ + by, (2.16)

where h,, = L, (@, — a,) for some third order linear operator L,, with uniformly bounded smooth
coefficients, and where f,, is defined by (2.10). So, hy, is bounded in LP(Byg(0)) for any p € [1,4/3).
If we set Fj, = —r3¢f, + knwet® + hy,, then by using (2.6), (2.13)-(2.14) and the fact that (hy)n
is bounded in LP(B2g(0)), one can check that there exists a constant dy > 0 independent of n such
that for any = € Bag(0) we have

/ |F|dV;, < 272 + 0n(1), (2.17)
Bs, ()

where 0,(1) — 0 as n — 4o00. Thus by applying Proposition 2.2 (with Remark 2.1) to equation
(2.16), we obtain that

/ edWn=n) gy, < C (2.18)
B>r(0)
1
for some constant ¢ > 4 independent of n, where 7,, = ———— / vpdV,, is the average of
|B21(0)lg, JBar(0)

vy, on Bapr(0). Since [U,] < C by (2.15), then (2.18) becomes

/ e dV, < C,
B>r(0)

/ tEn—an) gy < (2.19)
Br(0)

which gives

since v, = U, — a, on Br(0).

By using Jensen inequality and the fact

/ et gV, = / etndVy < / ettrdVo =1, (2.20)
B2R(0) B2rnR($n) M

an < C. (2.21)

we have

Thus it follows from (2.19) and (2.21) that

/ el qv, < C,
BRr(0)
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which gives
/ etindy < C (2.22)
Br(0)
since g,, is bounded in C*¥(Br(0)) ¥ k € N, where dx is the Euclidean volume element of R*.

Now, we have by (2.14) since R > 1

p= / etindvy = / etinqy, < / elindy, = e“”/ 64(?‘"—“")an,
Brn (wn) By (0) BR(O) BR(O)

and since by (2.19) and Hélder’s inequality we have / etlin—an)gy, < C (recall here that g,
Br(0)
is bounded in C*(Bg(0)) ¥ k € N), then we obtain

e > C'p,
which together with (2.21) give
lan| < C. (2.23)

It follows from (2.15) and (2.23), that (), is bounded in W3P(Bg(0)) (for all p € [1,4/3)).
Then by using Rellich-Kondrachov Theorem and passing to a subsequence, we have that (@),
converges strongly in W2%(Bg(0)) for all a € [1,2), and in L?(Bg(0)) for all 8 € [1,4+00), to a
function Uy, € W3P(Bg(0)) for all p € [1,3/4). That is,

Vae [1, 2), H’an — ’aoonz,a(BR(o)) njoo 0 (224)
and
VB € [1,+00), |un — UoollLs(Br(0)) WS 0. (2.25)

Thus it follows from (2.22) and (2.25) by using Hélder inequality (recall that ¢ > 4 in (2.22)) that

/ ’emn—e@w‘dag 0. (2.26)
Br(0)

n—-+4oo

Since u,, satisfies equation (2.9), then by passing to the limit in this equation (in the distributional
sense) where we use (2.26), we obtain

A%l = koe'™> in RY, (2.27)
where A is the Laplacian in R* with respect to the Euclidean metric. By using (2.20), we see that

Uso Satisfies also
/ et () < 1,
Br(0)

/ ety < 1. (2.28)
R4

and since R > 1 is arbitrary, then

The solutions of equation (2.27) satisfying (2.28) are classified in [T1]. More precisely, it is proved

in [I1] that either
_ 2 1 ko
wo(z) =1 — | — =1 — 2.29

o (2) Og(1+)\2|z—zo|2) 1 0g<6) (2:29)
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for some zp € R* and A > 0, or one has
—Al(z) — a (2.30)

|z| =400

for some a > 0. But by using Proposition 2.1 and (2.24) (by taking o = 1), one can easily check
that for any R > 1,

/ | Al (2)|dz < CR2. (2.31)
Br(0)
On the other hand, if (2.30) occurs, then one has for R large enough
/ |Alino (2)|dz > CaR?
Br(0)

which contradicts (2.31). This proves that U is of the form (2.29). The proof of Proposition 2.4
is then complete.
O

We close this section with the following well known Adam’s inequality (see [7]) :

Proposition 2.6. Let (M, go) be a compact Riemannian 4-manifold whose Paneitz operator Py is
positive with trivial kernel. Then for any u € H*(M), we have

- 1
/ A0 gV, < Cexp <—2 / Pou - u dV0> : (2.32)
M 47 M

1
where C' is a positive constant depending only on (M,go) and where @ = W/ u dVy is the
M

average of u on M.

3. INTEGRAL HARNACK TYPE INEQUALITY

In this section we shall prove an integral Harnack type inequality, which is an important tool
in the proof of our results. In what follows, we set fT = max(f,0) and f~ = max(—f,0) for
any function f on M. As already noticed in Section 2, in order to simplify the notations, we are
denoting by |z — y| the Riemannian distance between two points z,y € M. The diameter of M is
denoted by diam(M).

Proposition 3.1. Let h € C°(M), and let (un, hy)n be a sequence in H?(M) x L*(M) satisfying

Pouy + h = hy, (3.1)

where we suppose that
li h-dVy = 0. 2
n e oy M Vo =0 (32)

Let (Xpn, Yn)n a sequence in M x M, and let (Ry,)n with 0 < R,, < diam(M) a sequence of positive
numbers satisfying, for some constant Cy independent of n,

| — yn| < CoR, and / htdVy < w2, (3.3)
BQRn (yn)
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Then for any sequence (ry), such that 0 < r, < R,, we have

r —4+ﬁ”hi”Ll(Brn (zny Fon(1)
/ etindvy < C (—") / et dvy, (3.4)
B, (4n) R By, (a2)

where 0, (1) — 0 as n — 400, and where C is a positive constant independent of n.

Remark 3.1. As it can be seen in the proof, one can replace w in (3.3) in the above proposition
by any positive constant p < 4m2.

Proof. In what follows, C' is a positive constant independent of n whose values may change from
line to line. Also, to simplify the notations, we set R = R,, and r = r,,. First, let us recall the
asymptotic formula for the Green function (see section 2)

1
G(z,y) = —8?10g|3:—y|—|—0(1), for all x # y in M. (3.5)

From the Green representation formula (see section 2) we have, for any x € M,
wnle) =i = [ Gl phaaVols) = [ Glan)h)dvslo)

- / G, y)h (9)dVoly) — / G, y)hs; () dVa(y) — / Gla.h@dVoly).  (3.6)
M M M

Since h € C°(M), then by using (3.5) we have

[ G| <l 57
Thus it follows from (3.6) and (3.7) that for any x € M,
Un () = Tn < Cllhl[ L) +/ G(z,y)hy (y)dVo(y) +/ G(z,y)hy (y)dVo(y)
Bar(yn) M\B2r (yn)

_ / Gz, y)hy, (y)dVo(y)
M

which implies by integrating the function e*(“»(*)=%) on Bp(y,),

/ ettt vy < eCiMle=an / exp (/ 4G<x,y>h:<y>dvo<y>> dVo(x)
BR(Un) BR(yn) BZR(yn)

< exp | sup / 1G (@, )t () dVly) —  inf /4G<z,y>h;<y>dvo<y> (38)
2€BRr(yn) J M\Bar (yn) 2€Br(yn) J M

By Jensen inequality, we have

exp < / AG(z, y)ht (y)dVo(y)>
Bar(yn)
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1

< m/}g ( )h;'{(y)exp(élG(:v,y)||h:;||L1(B2R(yn))>dVo(y),
n 2R(Yn 2R(Yn

and integrating this inequality on Bg(y,) (in the z-variable) and using Fubini’s Theorem, we obtain

/ exp ( / 4G, y)ht(y)dvo(w) V()
Br(yn) Bar(yn)

1
<[ [ (166 I o i) dVo(e) ) 1 )aVa)
IAn 1121 (Bor (yn)) J Bar(yn) \J Br(yn)
< sup / exp(4G(x,y)||h:||L1(B2R(yn)))dVo(:v). (3.9)
yE€B2r(yn) Y Br(Yn)

It follows from (3.9) and (3.5) that

/ exp ( / 4G (z, y)hyy (y)dVo(y)> dVo(z)
Br(yn) Bar(yn)

< eXp(CIIhZIILuBzR(yn))) sup / o — |~ 2= et ) V5 ()
yEB2r(Yo) Y Br(yn)

__1 ypt
< ™0 sup / |z —y| gy LN IIL1<B2R<yn>>dvo(gc)7 (3.10)
YEB2r(Yn) Y Br(yn)

where we have used (3.3).
It is easy to check that, for any « € [0,4), and any y € M, we have
C
/ |z — y|~“dVp(z) < ——R* .
Br(yn) i-a

Since A} (|21 (Bar(yn)) < 72 by (3.3), it follows by taking o = #||h;’{||L1(BQR(yn)) <1,

/ |z — yF#”hI”Ll(BR(yn))dvo(x) < CR* wr Ihn sy | (3.11)
BR(yn)
Thus it follows from (3.8), (3.10) and (3.11) that

U — T log R
/ 64( n ”)dVO S CR4 eXp (C||h||Loo(M) — 2 2 ||hjl_||L1(BzR(yn))>
BR(yn) m

xeXp< sup / 4G(z,y)ht (y)dVo(y) —  inf /4G(z,y)hn(y)dVo(y)>- (3.12)
z€BR(yn) Y M\B2r (yn) 2z€BR(Yyn) J M

On the other hand, using again the representation formula (3.6), we have by using (3.7), for any
x € By(xy),

u(z) — iy = /M G, y)h (9)dVoly) — /M G, y)hs; () dVa(y) — / G, y)h(y)dVo (y)

M
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> [ Gaamidew [ G- Glenh @) -Clhl=)
By (zn) M\B;(zn)

> inf / G )bt () dVoly) +  in / Gz 0 (1) dVo(y)
2€By(zn) By (zy) 2€Br(zn) M\B,(zy)

- [ Gl Vi) =l (3.13)

Since by (3.5) we have G(z,y) > —giz logr — C for any z,y € B,(z,), then it follows from (3.13)
that for any = € By(z,),

log r

eHun(@)=n) > exp <_C||h||L°°(M) - OHh:zr”Ll(M) Hh HLl(BT zn))>

ZEBT(LEn)

xexp( inf /M\BT(%)ZLG(Z y)ht (y)dVo(y )) exp (— /M 4G (z,y)h, (y)dVo(y )) (3.14)

But from (3.1) and (3.2) we have ||h;f]|z1ar) < [Pl oiary + 0n(1) < Cllhl|Lee(ar) + 0n(1). So it
follows from (3.14) on integrating on B,.(z,,) that

_a logr
/ e4(un n)d‘/b > Cexp (_C||h||Loo(M) — 2—g2|h:|L1(Br(zn))>
B,(2) T

X exp (zeé?(fzn)/M\BT(mn)élG(z y)h! (y)dVo(y )) /BT(wn)exp (— /M 4G (z,y)h,, (y)dVo(y )) dVo(x).

(3.15)
But by Jensen inequality we have
[ e (- [ a6wan i) aie
By (zy) M
1 _
> Bielexs (- [ [ a6 @dhmaee ). @10
|BT(IH)| () J M
Since |B,(x,)| > Cr, it follows from (3.15) and (3.16) that
Up—0 1ogr
/B ( )64( n AV > Or'texp <_C|h|L°°(M) =z 1 s, (mn))>
X exp inf / 4G (z,y)ht (y)dVo (y) / / 4G(z, y)h,, (y)dVo(y)dVo(x)
2EBy(zy) M\B, () .In | ()
(3.17)
Now since . 4 B
IBR(yn) e 'Ufnd‘/'o IBR y ) (un_un)d‘/o

Jo, @y € dVo fB et Edvy
then it follows from (3.12) and (3.17) that

log r log R

Sl (B, (2n)) — 5 At Bm(yn)))

4un,
fBR(yn)e d% < C(r

4
e ——— oy ex C h/ oo +
B, () € dVo R) p( 12l
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<ep( s [ G @)~ _nf [ 46 )
2€EBR(Yn) Y M\B2r (yn) 2€Br(zn) MN\B,(zn)

1 _ . _
X exp (m / . /M 4Gz, )y () AV (y)dVo(z) — _ in /M 4G (= )b (y)dVo(y)> .

ZEBR(yn)
(3.18)
Set
Acep( s [ 16 i @) ~ it [ 46 V)
z€BR(yn) J M\B2r (yn) 2€Br(zn) JM\B, (z,)
and
1 _ . _
Bew | [ [ a6 @d@die - _pt [ a6k ) ).
|Br(zn)| J B, (0n) J M 2€Br(yn) J
We shall prove that
log R log R
A< CeXP( oz 1l Barwn) — 53 |h:’z_||L1(Br(zn))> (3.19)
and
_ R
B < Cexp (C||hn |1 (ar) 10g—> . (3.20)
r

It is clear that Proposition 3.1 will follow from (3.18), (3.19) and (3.20) by using (3.2). Let us then
prove the estimates (3.19) and (3.20).

First we shall prove (3.19). We have for any « € Br(y,) and z € B,(x,)

/ 4G, y)hE (9)dVoly) — / 4Gz y)hE () dVa(y)
M\Bzr (yn) M\B(zy)

_ / (G (@, ) — G(zy)hit (y)dVa(y)
M\Bacyr(yn)

+ / 4G (@, y) it (y)dVa (y) — / 4G () dVely)  (321)
Bacyr(yn)\B2r(yn) Bacyr(yn)\Br(zn)

since Bag(yn) C Bacyr(yn) and B.(z,) C Bic,r(yn), where Cy is the constant in (3.3) that we
assume satisfying Cy > 1 without loss of generality (we recall here that r =r,, < R, = R).

Let us estimate the first term in the right side of (3.21). We have for any = € Br(y,), z € B (z,)
and y € M \ Byc,r(yn) by using the hypothesis |z, — y,| < CoR and r < R, that

|t =yl > |y —ynl — |2 —yn| >4CoR — R > 3CyR, (3.22)
and

lz =yl > |y —yn|l = lyn — 2n| — |z — zn| >4CoR — CoR — 1 > 2CHR. (3.23)
On the other hand, we have by using (3.22)
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|z =yl <[z —znl + |20 — Ynl + [yn — 2| + |z — ¥
<r+CoR+ R+ |r—y| <3CoR+ |z —y|
< 20w —yl,
and by using (3.23) we have
|z =yl < |z = ynl + 20 — yn| + |20 — 2| + ]2 — ¥
< R+CoR+r+|2—y| <3CoR+ |z —y|

< §|z — |
< 5 yl.
Thus we have 2 | |
=Y
- < < 2. 3.24
57 w—yl — (8:24)
It follows from (3.5) and (3.24) that for any « € Br(yn), 2z € Br(z,) and y € M \ Bacyr(Yn),
|G(z,y) — G(z,y)| < C, (3.25)
which gives
/ 4(Glv)  Gzw) )W WAV () < ClIb aqan (3.26)
M\ Bacyr(yn)

for any © € Br(yn), # € Br(zp).

Now we shall estimate the second and third term in the right side (3.21). By using formula (3.5)
we have for any « € Br(y,) and y € Bacyr(Yn) \ B2r(yn),

1
G(z,y) < ——=logR+ C. (3.27)
82
We have for any z € B,(zy,) and y € Bacyr(yn) \ Br(zy), since |z, — yn| < CoR (by hypothesis)
and r < R,
|y—Z| < |y—yn| + |yn _Jin| + |£L’n —Z| <4CoR+ CoR+1 < 6CHR

which implies by (3.5) that

1
> —— . .
G(z,y) > 52 logkR+C (3.28)

It follows from (3.27) and (3.28), for any = € Bgr(y,) and z € B,.(z,,), that

/ 4G(I, y)hn (y)dVo(y) — / 4G(z, y)hn (y)d o(y)
Bicyr(Yn)\B2r (Yn) Bucg #(yn)\ B (n) V
< log R/ Wt d logR/ by CHh H (3 29)
2 Bar(yn) nto 272 B, (zn) n S0 n [IL1(M)- .

Combining (3.21), (3.26) and (3.29) we obtain the desired estimate (3.19) since ||h;)}]|z1(ar) <
PNl Lrary + 17y [l 1 (ary < € by integrating (3.1) and using (3.2).

Now it remains to prove (3.20). We have

1 _ . _
B = exp {m o) /M 4G(x, y)h,, (y)dVo(y)dVo(x) — . éﬁﬁym /M 4G(z,y)h,, (y)dVo (y)}
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= sup exp{m o (/Mél(G(:C,y) — Gz, y))h (y)dVo(y )) dVo(x)}. (3.30)

ZGBR(yn)

But we have for any z € Bgr(yn),
_
|Br(xn)| B, (zn)

1
- / 4(Glav) ~ Gz0) )b W)V () | dVo(a)
| ( )| B, In) B4COR(yn)

1
S (@) (/M\B4COR(yn)4(G(“”y) — Gz, y))h (y)dVo(y )) Vo (x). (3.31)

Since by (3.5) we have, for any z € Br(y,) and y € Bicyr(yn),

(/M4(G(a?,y) — Gz, y))h (y)dVo (y )) dVy(z)

1
G(z,y) > —=—=log R+ C,
812

then the first term in the right side of (3.31) can be estimated as follows

: /
—_— 4 G(z,y) — G(z,9) | hy, (y)dVo(y)dVo (z)
|Br(xn)| By (xn) Y Bacor(yn) ( ) ’ ’
1 1
< — (= — N M
< BT Do oo s (sl o R Y )Vae) + U

1 / ( 1 -
sup log —|x—y|>}dV0(:v)+C|hn|L1 - (3.32)
1Be@n)l yepicynon o, | \R 0

A direct computation shows that

1 _
< S?thHLl(M

: fyo o .
- sup log | = |z — y|> ‘ dVo(z) < Clog (—) +C.
|BT(xn)| y€B4C0R(yn) Bv‘(zn) R "

(we recall here that » < R). Combining the last inequality with (3.32) gives for any z € Br(yn),

m/B @ >/B o A(G@w) = G iy Vo)V )

_ R _
< iz sy tog (2 ) + Cllig Lo, (3.33)

Now let us estimate the second term in the right side of (3.31). We recall that from (3.25) we
have
|G($,y) - G(Zvy)l < C7
for any x € By(xy,),z € Br(yn) and y € M \ Bac,r(yn). Thus we obtain

T (6.) — Ceo) ) DAV ()AV (@) < Clg ey (3:34)
|B xn | By (zn) Y M\Bacyr(zo)
It follows from (3.30), (3.31), (3.33) and (3.34) that

_ R _
5 < exp (Cllig lvn 1og () + iz o )
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which proves (3.20) by using (3.2). The proof of Proposition 3.1 is then complete.

4. VOLUME QUANTIZATION AND PROOF OF THEOREM 1.1

In this section we apply the result of section 3 (Harnack type inequality) to prove some funda-
mental properties on solutions of equation (1.8) in Theorem 1.1. They state that the conformal
volume concentrates with quantization at points corresponding to blow-up sequences. Through the
rest of the paper we shall assume that ky = fM fdVy > 0 where f is as in Theorem 1.1. Indeed, if
ko <0, then Theorem 1.1 is a direct consequence of Proposition 2.3 in section 2.

Proposition 4.1. Let (uy)n as in Theorem 1.1 and let (xy,,7y)n a blow-up for the sequence (up ).

Let (yn)n a sequence of points in M, and 0 < p, < diam(M) such that lim 'n _y. Suppose

n—-+oo pn
that, for some positive constant Cy independent of n, we have

2
|zn — yn| < Coprn and / etundVy < — ;
Bap, (yn) ko

where koz/ fdVy. Then
M

r 240, (1)
/ etindVy < C (—") , (4.1)
By, (yn) Pn

where C is a positive constant independent of n. In particular, we have

lim e dvy = 0.

n—too BPn (yn)

Proof. First let us apply Proposition 2.4 by choosing 3,, = |/2~. Then there exists b, < /2% such
that b, — +00 and
1672

lim etindVy = "

noteo anT‘n(l‘n)

(4.2)

We can apply now Proposition 3.1 to (u,), by choosing h,, = k,e*'» — f, + f, h = f, R, =
Pn, and b,r, instead of r,. Indeed, since f, = fin LY(M) and ko = [,, fdVy > 0, then
n—-+0oo

k, = fM fndVp > 0 for n large enough. Then one can easily check that hypothesis (3.2)-(3.3) in
Proposition 3.1 are satisfied. Thus we obtain

1

B - [0 P +on(1)

b T 272 n L2 (B, rp, (n))

/ etindvy < C < nn et dv
By, (yn) Pn B,y rn (wﬂ)

b1 _4+2,%2Hh7+zHL1(anm(zn))"‘on(l)
<C ( - ") : (4.3)

Pn

where we have used the fact that /

etindVy < / etindvy = 1.
anT‘n (ITL) M
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Since h,, = ket — f, + f, then we have by using (4.2) and the fact that f,, — f in L'(M),

that
1

212
and by replacing in (4.3)we get

byt 4+0,(1)
/ edun gy < © < ! > :
By, (yn) Pn

This proves estimate (4.1) since b, <

[t llLr By, () = 8+ 0n(1)

TH

Proposition 4.2. Let (u,)n as in Theorem 1.1 and let (xy,,7y)n a blow-up for the sequence (up ).
Let 0 < R, < Sy such that = — 0, and suppose that there exists a positive constant o <1
o0

n n—+

independent of n such that

2
¥ B,(y) C Bas, (2n) \ By, (xn), / etundvy > Z_ — r>aly— ). (4.4)
B (y) 0

Then

lim et dVy = 0. (4.5)
"0 J B, (w0)\Br,, (zn)

Proof. Before giving the proof we note here that we may assume without loss of generality that
Sy, < diam(M). First we shall prove that for any p, € [Ry,,Sy] we have the following estimate

r 240, (1)
/ etndVy < C ( ") ;
B%Pn (I”)\BPH (1n) Pn

where C' is constant independent of n, and 0,(1) — 0 as n — 4o00. Then (4.5) will follow from
(4.6) by using an appropriate decomposition of the annulus Bg, (z,,) \ Br, (z). Indeed, suppose
that (4.6) is proved, then by choosing N € N such that (3/2)" < S,,/R, < (3/2)N*1 and applying
(4.6) with p,, = (3/2)'R,, for j = 0,..., N, we obtain for n large enough :

J;

and by summing up over j =0, ..., N, one gets

et dVy < Z / etrdVy <

B(s/2)i+1 Ry, (@n)\B(3/2)i Ry, (Tn)

(4.6)

s 2+on(1 ) r 240n (1)
etundVy < C(2/3)ron ()i (R—"> C(2/3) ( = ) :

(3/2)3+1 Ry, (#n)\B(3/2)i r,, (¥n)

/BSn (In)\BRn (wn)

r 2+0,(1) N ) r 2+0,(1)
C (R—’;> ;(2/3)3 <3C (R—’;> —0 as n— 400,

which proves the desired result (4.5).
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Now let us prove the estimate (4.6). We can cover the set B, (zn)\ By, (2x) by a finite number
of balls B, (21), sy B

apn (21), where L € N is independent of n, and where « is the constant
appearing in (4.4), such that

B%apn (2j) C Bap, (xn) \ B%pn (zn) C Bag, (xn) \B%Rn (xn), j=1,...,L.
But since |z; — x| > pp > %pn, we have from (4.4) that

2
/ gy < = vj=1,..,L. (4.7)
B1ap,(2) ko

(we recall here that 0 < a < 1.)
We can now apply Proposition 4.1 by taking y, = z; to get

J

and the estimate (4.6) follows. This achieves the proof of Proposition 4.2.

r 2+0,(1)
64“"dV0§O(—n> Vj=1,..L,
(25) Pn

Lapn

O
Proposition 4.3. Let (uy, fn) as in Theorem 1.1. Let (z}k, 7). ..., (2™, 7™),, be m blow-ups for
(un)n, and RL ... R™ > 0 such that
: P T ..
nllﬂloo R, =0, nllﬂloo R 0 Vi=1,...m, (4.8)
and )
lim i:() Vi#jan{l,..,m} ifm>2. (4.9)

nrtes Jaf, — o)

Let S, > 4m£x |zl — 27 | and suppose that there exists a positive constant o < 1 independent of n
i#]

such that
YV B(y) € | Bas, (@3)\ | Big (2), / endVy > = 1> ada(y), (4.10)
n 5 Ry k
j=1 j=1 B (y) 0
— -/
where d, (y) = 1§1§‘1£m ly — x?|. Then
lim et dVy = 0. (4.11)

MTE I B (h)\UfLs By (#h)

Proof. Tt is clear that it suffices to prove (4.11) for a subsequence of (u,,),. We proceed by induction
on m. Suppose m = 1, then it follows from Proposition 4.2, by taking z,, = 2} and R, = R}, that

lim et dvy = 0.

=0 B, (21)\Bg (z1)
‘n

Now let m > 2 be an integer and suppose that (4.11) is true for any ! blow-ups with [ < m. We
shall prove that this is also the case for any (m+1) blow-ups. Let then (z},7r}),,...., (™t pmtl),

nr'n )
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be (m + 1) blow-ups for (u,), satisfying (4.9)-(4.10) for some R > 0, i € [1,m + 1] and S,, > 0,
that is

i Ri
ngglw;_z =0 Vi=1,..,m+1, ngxfwm =0 Vi#jin{l,..,m+1}, (4.12)
and
m—+1 ) m—+1 ) 7T2
v Br(y) c U B2Sn(x£7,)\ U BlR;jl(x%,)v / e4und% > k_ == r > adn(y)u (413)
j=1 = B, (y) 0
_ : _
where d,(y) = 1§j1£1fn+1 ly — .
Let _ _
dyp =inf {|z}, — 2| : i,j€[1,m+1],i#j}
and

Dnzsup{|xfl—le| D i,j € [[1,m+1]],i7éj}.

By passing to a subsequence if necessary, we distinguish two cases depending on d,, and D,,. That

d
is, we have either D,, < Cd,,, where C is a positive constant independent of n, or HI_P = =0.
n——+0oo n

First case: D, < (Cd,, where C is a positive constant independent of n.

If we apply Proposition 4.2 by taking x,, = 2!, and R,, = 4D,, (by using (4.13)), we have for any
i=1,....,m+1
lim et dVy = 0.
"7 He I Bs,, (#1)\Bap, (a1,)

Thus it remains to prove that

lim et dVy = 0. (4.14)

o0 JUT! Bap, (#0)\UILY B (ah)

n—r oo

4.2 by taking x, = a4, R, = RJ, and S, = +d,, (by using (4.13)), we obtain

RI
We have by (4.12) since D,, < Cd,, that lim d—" =0, j=1,...,m+1. Thus if we apply Proposition

lim _ CetdVp=0 Vi=1,..,m+1. (4.15)

nTEO By, @)\B g (ah)
On the other hand, since d,, < D,, < Cd,,, we can cover the set U;n:ﬁl Buyp, (xfl)\U;n:ﬁl Big, (x1)
by a finite number N (independent of n) of balls B a, (21),l=1,..,N, where 0 < a < 1 is the

constant appearing in (4.13), such that Bi .4, (zL) c U;n:tl Bap, (1) \ U;n:ﬁl Big, (2,). Then we

can apply Proposition 4.1 by taking y, = 2%, n = 2}, rn =75, pn = {5dy, and by using (4.13),
we obtain
lim etndVy=0 Vi=1,.. N, (4.16)

n—-+o0o 1
B% adn (Zn)

It is clear that (4.14) follows from (4.15) and (4.16).
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Second case : lim d—n =0.
n—-+o0o Dn

By relabelling the blow-ups and passing to a subsequence if necessary, we may suppose that
dn = |z} — 22|. Define the set J by :

J={jel,m+1] : |z} —zl| < Cjd, ¥n},

where Cj is a positive constant independent of n. By Taking Cy = max C; we have ( by passing to
je

a subsequence if necessary)

Vjeld |z —al| <Cod, Vn, (4.17)
and
. . d,

By relabeling the blow-ups (except for j = 1 and j 2 ) and observing that 1,2 € J, we
dn

may suppose that J = [1,k], where k satisfies 2 < k < m since 7~ —+> 0. Now by using
n. n—4+0o00

(4.12)-(4.13) and (4.17)-(4.18), we can apply the induction hypothesis above to the k blow-ups:
(zr,rL), ..., (zF,rF), where S, is replaced by S,, = 8Cyd,,, and where Cj is the constant in (4.17).

n»’'n n)»'n

We obtain
lim et dVy = 0. (4.19)

mES JUEL Bscoan (ei)\US-y By (ah)

On the other hand, for each fixed i € [1,k], if we apply again the induction hypothesis to the
(m + 2 — k) blow-ups : af, zktl gk+2 " gm+l (we recall here that 2 < k < m) where R} is

n? n ? n

replaced by Ri = 8Cyd,,, then we have for any i € [1, k],

lim _ , e*ndVy =0
PR (UL By (@0) U Bs, i)\ (U5 By (@) U Bscoa, (@)

which gives

lim , _ et dVy = 0. (4.20)
P U Bs,, @i\ (UFSY By (@h) UUR, Bscoa, (@)

Now it is clear that (4.19) and (4.20) imply

lim et dVy = 0.

e JUE Bs,, (@i)\UFEE By (ah)

This achieves the proof of Proposition 4.3. O

The following proposition is the principal tool in the proof of Theorem 1.1
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Proposition 4.4. Let (uyp, fr) as in Theorem 1.1. If the first alternative in Theorem 1.1 does not

hold, then there is exist a finite number of blow-ups (zL,7L),, ..., (xk rk), with 1 <k < and

n)'n n’'n 16 2 ’
k sequences (RL),, ..., (RE) of positive numbers such that
i T .
nll}rf@R ) nﬂlfoo R~ 0 Viell,k] (4.21)
I R, =0, Vie[LK] if k>2 (4.22)
im ——2>—— =0, Vi K] if k> 2, .
n—+oo inf |a: — x|
1<5<
i#i
and
k ) 7T2
Y B) <M\ By, [ emavz T — vz adi) (4.23)
1R,
j=1 r(y) 0
where o is a positive constant independent of n, and where dp(y) = 1énf ly — 27 |. Moreover we
<<
have, for alli € [1,k],
1672
lim ehindyy = —=. (4.24)
n—+00 B (a3) ko
Proof. Before proving Proposition 4.4 let us introduce some notations. If (z%,7l),, ..., (x4, rL),
are [ blow-ups for (uy)n, we say that they satisfy the property (P) if
I=1 or lim T—".:o, Vie[L,1] if 1>2.
n—+oo inf |x! — ]|
1<5<1
J#i

Now let us prove Proposition 4.4. As noted in the begining of this section,we may suppose that
ko > 0. If the first alternative in Theorem 1.1 does not hold, then by using Proposition 2.3, there
exists a point x € M such that for any r > 0 we have

n—-+o0o kO

where 0,.(1) = 0 as r — 0. It follows that there exit z,, € M and r,, > 0 such that

2
T _ / e dVy = sup e’rdVy and lim r, = 0.
Brn ($n) ’

z€M J B, (z) noree

2
1iminf/ A vy > S 4 oo (1).
B, (x)

Then setting 7, = /T, we have that for any y € Bz, (z,), f Br, (y) etindVy < ”j, and applying
Proposition 2.5, we see that (zy,ry,) is a blow-up for (u),. It follows that the set A defined by

A:={l €N : there exist [ blow-ups (z},, 7)), ..., (z},r},) satisfying the property (P) }

717 n n? ’ﬂ

is not empty First we shall prove that if [ € A, then [ < lﬁk_:)r . Indeed, let [ € A. Then there exit [
blow-ups (z,7}), ..., (x,, rl) satisfying the property (P) above. More precisely, we have

nun n»'n

7

lim 2 =0 Vie [L1], (4.25)

n— 400 d:z
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where d!, = infl|:1c — 2] if1>2 and d}, = 1if | = 1.
1<5<

J#i
Now we apply Proposition 2.3 by setting 8, = % Then there exists (bY,),, satisfying b%, < 3,
and b!, —» +o0, such that
n—-+o0o
lim

1672
ehunqyy = 28
By i (4 ko

n—-+o0o

(4.26)
Since bi,ré < 1d°,

then the balls By ,i (x7,), i = 1,...,1, are pairwise disjoint. This implies by using
(4.26) that
16721 !
= lim
ko

+ etundvy < / etundvy =1,
e ,
" o fL:l Bb%r%(zl) M

n

which implies [ <

16 0. Hence the set A defined above is bounded, so let k := max A. Thus, there
exit k blow-ups (z%,7L),, ..., (z% r

k rk), satisfying the property (P) defined above. That is

. ri
lim 2 =

Jim G =0 Vie [1, %], (4.27)

where d! 1mf |zt — 27 | if k > 2, and d}, = 1 if k = 1. Now, by setting 3, = 14/ s and applying
<<
J#i

Proposition 2.3, then there exists (b?,),, satisfying b, < 1,/ % and b, —

. 400, such that
n—-+oo
1672
lim gy = 25 =1,k
nH By L (@) ko

(4.28)
If we set Rl = birt

nn7

then it is clear that (4.21) is satisfied, and (4.24) follows from (4.28). If we
apply again Proposition 2.3 by choosing f3,, =

I IZ , and using (4.28) we arrive at

lim

etindVy =0, Yi=1,.., k. (4.29)
n— 400 BR% (z%)\B%R% (z2)
Hence
1672
lim efun gy = lim gy = =2 i=1,.. k. (4.30)
n—-+4oo B%R';L (z:z) n—-+oo BR}'l (m:l) ko

Now, Since R!, = biri < \/ridi, then we have

nglqpoo @ =0 Vie][lk], (4.31)
which proves (4.22).
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It remains then to prove (4.23). Suppose by contradiction that (4.23) is false, then there are
k

balls B, (z,) C M\ U Bipgi (z7)) such that

j=1

du 77-2 . Pn
/ e dVy > . and lim 7 =0,
By, (2n) 0 n—+oo n(zn)

where we recall that d,(z) = 1<in£k |zJ — z|. Then there exist r, < p, and a ball B, (a,) C
<j<

M\ U;?:l Bip (x7) such that

2

A / et dVy = sup / et dvy. (4.32)
ko Jp,, () Br, ()CM\US, B, ) (5h) 7 Bra (9)
17}

n

Let us show that
T
lim ———~ =0. 4.
If (4.33) was false, then by passing to a subsequence if necessary, we would have for some constant
C independent of n,
n > Cdy(an) (4.34)

and without loss of generality we may suppose that d,(a,) = |z} — a,|. Set d,, := dn(a,) and
define :

J:={je[l,k] : |2 -z} <Cd, Vn},

where C' is a positive constant independent of n. Observing that 1 € J, so by relabeling the
blow-ups, we may suppose that J = [1,m], with 1 < m < k, and by passing to a subsequence if
necessary, we have

Vi€ [1,m], |z¢ — x| < Cod, Vn, (4.35)
and
, . di

where () is a positive constant independent of n that we assume, without loss of generality, satis-
fying Cop > 1.
Now by using (4.32), (4.34) and (4.35) one can easily check that

m m 2
. . T .
VY B,(y) € | | Bscya, (7, By x;,/ endVy > — = r>a inf |y—al|, (4.37
() Lll 8Codn ( )\Lll 155, () ) 0= Iy —anl, (437)

where « is a positive constant independent of n. Thus by applying Proposition 4.3, where we take
Sp = 4Cod,, and using (4.37), we get

lim et dl =0,
n—+00 Bacgdy, (@L)\UTZ, BRzl(mi)

which contradicts (4.32) since B, (a,) C Bacya, (T5) \ Uj1 Bri (z1). So this proves (4.33).



28 ALI FARDOUN AND RACHID REGBAOUI

Since $R!, < |z% — a,|, then it follows from (4.29), (4.32) and (4.33) that for n large enough we

have A
R < —|zi —a,| Vi=1,..,k. (4.38)

n —

Indeed, if (4.38) were not satisfied, then by passing to a subsequence one could check by using (4.33)
that By, (an) C Br; (x},) \ Big: (2},), so by (4.29) we would have that lim et dVy =0
n n n——+oo B'r'n (an)

contradicting thus (4.32).

Now, by using Proposition 2.5, where we take @, = an, 7 = 7dy, and using (4.33) and (4.38),
it is not difficult to see that (ay,r,) is a blow-up for (u,)n, and by using (4.27) and (4.33) we see
that the (k + 1) blow-ups (xL,71), ..., (zE rF), (an,7,.) satisfy the property (P). This contradicts

the fact that £k = max A. The proof of Proposition 4.4 is then complete.
O

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let (un, fr) as in Theorem 1.1. If the first alternative in Theorem 1.1 does
not hold, then by Proposition 4.4 there are k blow-ups (z2,7L),,...., (zX r¥), with 1 <k < 15%,
and k sequences (RL),, ..., (RY), of positive numbers satisfying (4.21)-(4.24) in Proposition 4.4. If
we apply Proposition 4.3 by taking S,, = 2 diam(M), we obtain

lim et dVy =0, (4.39)
NI IM\UL, By (a})

which implies since the balls Bri (x%) are pairwise disjoint,

k
lim et dVp = lim / e dvp. (4.40)
n—-+o0o M n—-+oo ; BRw (131)
Since by (4.24) we have
1672
lim elungVy = =2 Wi=1,... k (4.41)
n—+oo BRZ' (wi) ko

and since / e*"ndVy = 1, then we get from (4.40) and (4.41) that
M

- 167m2
On the other hand, since M is compact, then by passing to a subsequence, there exist m distincts

points aq, ..., ay € M with m < k such that for any ¢ = 1, ..., k, the sequence (z%,), converges to a
limit in {aq,...,an }. For any i = 1,...,m, if we set

k (4.42)

Li=#{j€[Lk] : lim r) =a; }, (4.43)

then we have .
I b, =k = 4.44
1+ + 6.2 (4.44)

where we have used (4.42).
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Let now ¢ € C°(M). Then we have by (4.39)

k
lim et dVy = lim / et dVy. (4.45)
n—-+oo M n—-+oo ; BRi (12)
But we have by the mean-value Theorem
/ _ cpe4““ dVy = (p(y;) / » edun dVp (4.46)
BR%(LEL) BR% (1;)

for some y!, € Bri (z%). Since R} — 0 as n — oo, then we have

lim 3, = lim ) € { a1, ....am }. (4.47)
n—

n—-+oo —+oo

It follows from (4.45) by using (4.43), (4.44), (4.46) and (4.47) that

m

1 2
lim et dVy = bm Z Lip(a;).
i=1

n—-+oo M kO

This achieves the proof of Theorem 1.1.

5. THE FLOW

In this section we prove our results concerning the Q-curvature flow. Through this section we
assume that the total Q-curvature kg satisfies kg > 0 since ky < 0 is included in the case kg < 1672
which has been already proved by S. Brendle [3].

Lemma 5.1. Let u € C®(M x [0,T)) be the solution of problem (1.15) defined on a mazimal
interval [0,T), and set

Ay={zeM : ult,x) >ao }, t€[0,T),

4
there exists a positive constant Cy depending only on Lo and M such that, for any Ty € [0,T), if

1 1
where ag = — log <W/ 64“°dV0), and where |M]| is the volume of (M, go). For any Lo > 0,
M

luollg2ary < Lo and  inf  E(u(t)) > —Lo, (5.1)
te[0,To)

then Ay has volume |Ay| (with respect to go) satisfying

|A¢] > exp (—Coe%OTU) for all t € [0, Ty). (5.2)
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Proof. Through the proof of Lemma 5.1, C will denote a positive constant depending only on Lg
and M, whose value may change from line to line.

Since by (1.16) the volume of the conformal metric e*(*)
without loss of generality that for all ¢ € [0,T)

/ ey, = 1. (5.3)
M

Thus the first equation in (1.15) becomes

go remains constant, we may assume

1 1
e o = -3 (Pou + Qo) + §koe4U. (5.4)

Multiplying equation (5.4) by u(t) and integrating on M with respect to dVp, and using (5.3), one
gets

d [ e dVy = —2/ Pou-u dVy — 2/ Qou dVy + 2k0/ uet™ dvj. (5.5)
dt Ja M M M

Let Lo € R and Ty € [0,7T) such that (5.1) is satisfied. Then we have for any ¢ € [0, 7]
1/ Pou - u dVi +/ Qou dVy = E(u(t)) > — Lo, (5.6)
2 )M M

It follows from (5.5) and (5.6) that

— / uet dVy < — / Pou - u dVy + 2kg /M ue*™ dVy + 2Ly

which implies since Py is positive
d
— / ue™ dVy < 2ko / ue*™ dVy + 2Lo. (5.7)
By setting Y (¢t) = / ue*™ dVp, it follows from (5.7) that for all ¢ € [0, Ty,
M

Y(t) < (Y(O) + %

) e?kot S C€2k0T0, (58)
0

where the constant C' depends only Lo and M since Y (0) depends only on the H2-norm of ug by
Adams inequality (see section 2).

Since ue** > —%1, then we get from (5.8), for any A C M,

/ uet® dVy < CeFoTo, (5.9)
A
For z > 0, let p(z) = zlogz. Then ¢ is convex on (0,+00), and it satisfies for each A > 1 and
z >0,
Lo P e(z)
e(A)  logA
which implies, since ¢(z) > —e™! for any z > 0,
by -1
L P2 e (5.10)

o) | logh
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For t € [0,Tp], let A, C M defined by
Ar={zeM : u(z,t)>ap}

1 1 1 1
:_1 4’u.0d :_1 .
o 4°g<2|M| /Me VO) 4°g<2|M|)

Since ¢ is convex, then it follows from Jensen inequality

where

1 4 1 4
_— YdVy | < — Y dV; 5.11
“’(w/j o)_mt| [ oy (5.11)
But by (5.9) we have
1 4 Cle2koTo
— ey vy < ——— |
A J,, e o = =

hence it follows from (5.11) that

1 4 CeroTO
—_— u < — .
“’(|At|/Af dVO)‘ A (5:12)

Now, if |A;| > 1, then the estimate (5.2) is trivially satisfied by taking Cy any positive constant,
and Lemma 5.1 is proved in this case. Thus we may suppose that |A;| < 1. Then by using (5.10)

1
with A = — and z = / e*vdVy, we have
| Az A,

A 1 -1
/ vy < o tll i <—/ eMdVO) o
A log 7 7 \[4d] Ja, log 17

which gives by using (5.12)

1 Ce2koTo

1 — 1 :
log W log W

/ eMdVy < (Ce*FoTo e 1) (5.13)
Ay

On the other hand, we have

1= / eHdvy = / et dviy + / A (5.14)
M Ay M\ Ay

and since e < et = L on M\ A;, then (5.14) implies

2| M|
< / €4ud‘/0
At

1
1 —— < 2k0Tg'
og A s e

N~

which together with (5.13) give

This achieves the proof Lemma 5.1. O

Lemma 5.1 allows us to prove the following estimates on the solution :
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Proposition 5.1. Let u € C°(M x [0,T) be the solution of problem (1.15) defined on a mazimal
interval [0,T). For any Lo > 0, there exists a positive constant Cy depending on Ly and M such
that, for any To € [0,T), if

[uoll zr2(ary < Lo and nE E(u(t)) = —Lo,

then we have

sup |lu(t)|| g2(ar) < exp (Coe%“T") . (5.15)
te[0,To]

Moreover, for any k € N, there exist a positive constant C, depending on k, Lo, Ty and M such that

sup [lu()| gr ) < Ck- (5.16)
t€[0,To)

Proof. Through the proof of Proposition 5.1, C' will denote a positive constant depending only on
Ly and M, whose value may change from line to line. For any measurable set A C M, we shall
denote its volume with respect to the metric go by |A|.

Since by (1.16) the volume of the conformal metric e
without loss of generality that

2u(t) gy remains constant, we may assume

/ e vy = 1. (5.17)
M
This implies by using the elementary inequality z < e, that
1 1
/u@mggi/&Wng— (5.18)
A 44 4

for any A C M. Let Ty € [0,T) and Lo > 0 such that
inf FE(u(t)) > —Ly.
ot B(®) 2 —Lo
If we let A = Ay, where A; is as in Lemma 5.1, then we have by using (5.18) and the definition of
the set Ay, for any ¢ € [0, Tp],

‘ /M w(t)dVe

< +

/At u(t)dVh /M\At u(t)dVy

/ u(t)dVy
M\ A,

But by the Cauchy-Schwarz inequality we have

/ w(t)dVe
M\ A,

and by replacing this inequality in (5.19), we get for any £ > 0,

<C+ . (5.19)

<M\ Adl 2 [|ull L2y,

(/M u(t)dvo> < (1+&) M\ Allfu(t)|[22(ap) + Ce™* + C. (5.20)

Now, from Poincaré’s inequality we have

a7z ar) < %/M Pou(t) - u(t) dVo + M| [a(t)]?, (5.21)
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1
where )\ is the first positive eigenvalue of Py, and u(t) = ] / u(t)dVp is the average of u(t).
M
Thus it follows from (5.20) and (5.21) that
(1+a)|M\At|) 9 1 c ., C
1—————— ) JJu(?)| <— | Pu-uwdVp+ == +—
< |M]| POD =N | M| |M]|
that is
M
(4] = e\ AD o) ey < G [ Poucwavy +0=7 4 (5.22)
1 JMm

Since by Lemma 5.1 we have [4;| > exp (—Coe?*70), then by choosing & = 537 exp (—Coe? 7o)

[M]
in (5.22) and observing that |M \ A;| < |M]|, we obtain
||u(t)||2L2(M) <C (/ Pou(t) - u(t) dVp + 1) exp (Coe?m o) . (5.23)
M

Since the functional E is decreasing along the flow by (1.17), then

1

: /M Pou(t) - u(t) dV + /M Qoult) dVo = E(u(t)) < E(uo),

hence
/ Pyu(t) - u(t) dVp < C’Hu(t)HLz(M) + C. (5.24)
M

It follows from (5.23) and (5.24) that

”u||2L2(M) < (Jlu(®)ll L2(ary + 1) exp (CerOTO) ,
which implies that
u(®)||p2(ar) < exp (Ce*MoT0) . (5.25)
Combining (5.24) and (5.25) we get (5.15). The higher order estimate (5.16) follows as in S.

Brendle [3].
O

Proof of Theorem 1.2. Step 1 Global existence of the flow. Let u € C°(M x [0,T)) be the
solution of problem (1.15) defined on a maximal interval [0, T), satisfying (1.18), that is

L:= inf FE(u(t —00. 5.26
nf E(u(®) > —oc (5.26)

Suppose by contradiction that T < +oo, then it follows from Proposition 5.1 by taking Lo =
l[woll 2 (ary + L] that

sup HU(t)HHz(M) < exp (Coe%oT) :
t€(0,T)

and for for any k > 2 :

sup [[u(t)|| mx(ary < +oo. (5.27)
t€(0,T)

It is clear that (5.27) implies that the solution wu(t) would be extended beyond T giving thus a
contradiction. This proves Step 1.
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Step 2 Convergence of the flow. According to the first step, the solution u is defined on
[0,4+00), and (5.26) becomes

L:= inf FE(u(t)) > —oc. (5.28)
t€[0,+00)

Since by (1.16) the volume of the conformal metric e2*(*)

without loss of generality that

go remains constant, we may assume

/ e ®avy = 1. (5.29)
M

By using (1.17), we get for any T > 0,

T
/ / e ®|9pu(t)*dVydt = E(ug) — E(w(T)) < E(ug) — L,
0o JMm
which implies
—+oo
MW 9u(t)|2dVodt < E(ug) — L. 5.30
¢ oat < 0) (
0 M
By using the mean value theorem, we obtain from (5.30), that for any n € N, there exits
tn € [n,n+ 1] such that

: 4u(ty,) 2 —
ngrfoo Me |Opu(tn)|dVy = 0. (5.31)

Now if we set
Up = u(t,) and f, = 2eM"Ou(t,) + Qo
then we have from (1.15)
Py, + fn = koen (5.32)

/ et'rdVy =1
M

1/2 1/2
|fn—Qo||L1<M>s2< / 64u"dV0> < / e4“n|atu<tn)|2dvo)
M M

1/2
=2 </ 64u"|atu(tn)|2d‘/0> — 0.
M

n—-+oo

with

and

Since we are supposing ko ¢ 16m2N*, then we can apply Corollary 1.1 to get, for any p > 1
/ e?lunlavy < G, (5.33)
M

which implies by using (5.31) that for any ¢ € [1, 2)

Il frllzaany < Cy (5.34)
for some constant C; depending on ¢. Thus it follows from the elliptic regularity theory applied to
equation (5.32) by using (5.33) and (5.34) that (u,,), is bounded in W*4(M) for any ¢ € [1,2). But
by Sobolev embedding theorem we have W44(M) c C*(M) for any a € (0,1), and by applying
the elliptic regularity theory again to equation (5.32), we obtain that (uy,), is bounded in H*(M).
In particular we have that (u,), is bounded in H?(M), that is

llwnll 520y < C, (5.35)
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where C' is a positive constant depending only on L, ug and M. Now, let us define vy, (t) := u(t+t,).
Then v, is a solution of problem (1.15) where ug is replaced by w,, that is

Orvy = —e~ " (Pyvy + Qo) +

(5.36)
v (0) = up.
We want to apply Proposition 5.1 to v,,. We have
inf F(v,(t)) = inf E(u(t+t,))= inf FE(u(t)) > L,
ok (vn(t)) g (u(t +tn)) e (u(t)) =

where L is given by (5.28). Then by Proposition 5.1, where we choose Tp = 1 and Lo = |L| + C
with C as in (5.35), there exist a positive constant Cy depending on L, ug and M, such that

sup] [on ()| 2 (ar) < exp (Coe?™)
t

)

that is

sup )l = sup o)) < exp (Coe*),

tE[tn,tn+1] te[0,1]
and since n < t, <n + 1 for all n € N, then we have

sup [lu(t)l|l a2 (ar) < exp (Coe™™) . (5.37)
te[0,4+00)

Following the argument of S. Brendle[3], one gets from (5.37) that,

sup |[u(t)|| g (ary < Ch
te[0,4+00)

for any k > 2, and the convergence of the flow follows as in S. Brendle [3]. O

Proof of Theorem 1.3. We proceed by contradiction. For u € C°°(M), let ®(¢,u) be the solution
of (1.15) such that ®(0,u) = u, that is,

0® = —5e~ " (R® + Qo) + 3 T,
(5.38)
®(0,u) = u.
Let [0,T,) be the maximal existence interval of ® and suppose by contradiction that
inf E(®(tu)) =—oc0 Yue C™®(M). (5.39)

te[0,Ty)

Let X := C°(M) endowed with its natural C*° topology , and let us introduce the sub-level set

Xo={ueX : E(u)<-L}, (5.40)

where L > 0 is large enough. One fundamental property of Xy is its invariance under the flow @,
that is, if u € X, then ®(¢,u) € X for all ¢ € [0,T,), as it can be immediately checked by using
the fact that F is decreasing along the flow ®(see formula 1.17))

Following Z. Djadli and A. Machioldi [§], one can prove that X, is not contractible. Indeed, in
[8] the set X consists of H2- functions u satisfying E(u) < —L, but by following the same proof
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as in [8], one can easily see that the same arguments work when considering C*° functions and the
C™ topology on Xy. Then we shall use our flow ® to construct a deformation retraction from X
onto X, which would give a contradiction since X is contractible as a topological vector space.

By using (5.39) we can define for any u € X

te=min{ t € [0,T,) : E(®(t,u)) < —L}. (5.41)

Thus we have by using the continuity of ® that

E(®(ty,u)) = —L. (5.42)
We extend ® on [0, +00) by considering @ : [0, +00) x X — X as follows
O(t,u) if t€[0,t,]

d(t,u) =
D(ty,u) if >ty
By using Proposition 5.1 and the fact that the functional E is decreasing along the flow ® (see
formula (1.17)), one can prove that ® is continuous on [0, +00) x X.

We define now the following homotopy map : H : [0,1] x X — X by
O(L5,u) if te0,1)
H(t,u) =

~

D(ty,u) if t=1.

Then it is easy to see that we have

HO,u)=u YuclX,
H(t,u)=u Yue Xy, Vtel01]
H(l,u)e Xo Vue X.

This proves that Xy is a deformation retract of X which is impossible since X is non contractible.
The proof of Theorem 1.3 is then complete.
O

Proof of Theorem 1.4. Let S be the set of all solutions of the Q-curvature equation

Pou + Qo = koe™® (5.43)

/ ety =1
M

(we note here that by using (5.43), the last condition is automatically satisfied when ko # 0).

such that

According to Corollary 1.1, we have for any k € N

ulleran < Ck YueS (5.44)
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where C}, is a positive constant independent of w. It follows from (5.44) that the functional F
satisfies

Ew)>L VueS (5.45)
for some constant L € R independent of w.
Let A < L, we shall prove that for any uy € C°°(M) with E(ug) < A, the solution u(t) of (1.15)

such that u(0) = uo, satisfies
lim E(u(t)) = —oo, (5.46)
t—=T

where [0,7") is the maximal existence interval of u. Indeed, suppose by contradiction that (5.46)
does not hold. Then according to Theorem 1.2, we have T' = +00, and the solution u(t) converges
(as t — +00) to a function ues € C*° (M) satisfying

ko
Foteo & @0 = T cncan ¢

Moreover, since the functional E is decreasing along the flow, u, satisfies

E(us) < E(ug) < A (5.48)

oo (5.47)

On the other hand, since F is translation invariant, that is, E(u + ¢) = E(u) Ve € R, we may
assume by adding an appropriate constant to u.., that et dVy = 1. This implies by using

(5.47) that ue € S. Thus it follows from (5.45) that

E(uw) > L

which contradicts (5.48) since A < L. This achieves the proof of Theorem 1.4.
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