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COMPACTNESS PROPERTIES FOR GEOMETRIC FOURTH ORDER

ELLIPTIC EQUATIONS WITH APPLICATION TO THE Q-CURVATURE

FLOW

ALI FARDOUN AND RACHID REGBAOUI

Abstract. We prove the compactness of solutions to general fourth order elliptic equations
which are L1-perturbations of the Q-curvature equation on compact Riemannian 4-maniflods.
Consequently, we prove the global existence and convergence of the Q-curvature flow on a generic
class of Riemannian 4-manifolds. As a by product, we give a positive answer to an open question
by A. Malchiodi [12] on the existence of bounded Palais-Smale sequences for the Q-curvature
problem when the Paneitz operator is positive with trivial kernel.

1. Introduction and statement of the results

On a Riemannian 4-manifold (M, g0), the Q-curvature of the metric g0 is defined by

Q0 = −1

6

(
∆0S0 + S0

2 − 3|Ric0|2
)
, (1.1)

where ∆0, S0 and Ric0 denote respectively, the Laplace-Beltrami operator, the scalar curvature
and the Ricci tensor associated to the metric g0. A conformal change of the metric g0 produces a
metric g = e2ug0 having Q-curvature

Qg = e−4u(P0u+Q0), (1.2)

where P0 is the Paneitz operator defined by

P0u = ∆2
0u+ div0

[(
2

3
S0g0 − 2Ric0

)
du

]
, (1.3)

where div0 denotes the divergence operator with respect to g0. The Paneitz operator is conformally
invariant in the sense that if g = e2ug0, then the Paneitz operator with respect to g is given by
Pg = e−4uP0. Through this paper, we will always assume that P0 has trivial kernel, that is, its
kernel consists only of constant functions. Some times, we will also need to assume that P0 is
positive, which means that for all u ∈ C∞(M) we have

∫

M

P0u · u dV0 ≥ 0,
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2 ALI FARDOUN AND RACHID REGBAOUI

where dV0 is the volume element with respect to g0. We note here that both hypothesis are
conformally invariant. From the following Chern-Gauss-Bonnet formula :

∫

M

Qg dVg +
1

4

∫

M

|Wg|2 dVg = 8π2χ(M) ,

where χ(M) denotes the Euler-characteristic ofM , Wg is the Weyl tensor of g and dVg is the volume
element with respect to g, we see that the total Q-curvature

k0 :=

∫

M

Q0 dV0 =

∫

M

Qg dVg (1.4)

is also conformally invariant since the Weyl tensor is pointwise conformally invariant. We note here
that formula (1.4) is also a direct consequence of (1.2).

The Q-curvature and the Paneitz operator have received much attention in recent years because
of their role in four-dimensional conformal geometry and in mathematical physics. Similarly to the
uniformization problem of surfaces, one of the interesting problems in the geometry of 4-manifolds
is to ask if there exists a metric g on M conformal to g0 and having constant Q-curvature ? By
using the relation (1.2), the problem is equivalent to find a function u ∈ C∞(M) satisfying the
following partial differential equation

P0u+Q0 = k0e
4u. (1.5)

Equation (1.5) has a variational structure, and its solutions are critical points of the following
functional on the Sobolev space H2(M) :

E(u) :=
1

2

∫

M

P0u · u dV0 +

∫

M

Q0u dV0 −
k0
4

log

(∫

M

e4udV0

)
, (1.6)

that we will call the Q-curvature functional through this paper. The main difficulty in the study
of this functional is that in general it is not coercive, and it can be unbounded from below and
from above. This is due to the large values that the total Q-curvature k0 may have, and to the
possibility of negative eigenvalues of the operator P0.

S.A. Chang and P. Yang [7] first studied Equation (1.5) by minimizing the functional E. They
constructed conformal metrics of constant Q-curvature when the Paneitz operator P0 is positive
with trivial kernel and the total Q-curvature satisfies k0 < 16π2 which is the total Q-curvature of
the Euclidean sphere S4. The key point in their proof is that by using Adams inequality (see section
2), if we suppose that P0 is positive with trivial kernel and k0 < 16π2, then the functional E is
bounded from below, coercive and its critical points can be found as global minima. Later, Z.Djadli
and A.Malchiodi [8] solved equation (1.5) when P0 is not necessarily positive under the condition
that the kernel of P0 is trivial and k0 6= 16kπ2, k ∈ N∗. They constructed a critical point of E by
a mini-max scheme based on a result by A. Malchiodi [12], and independently by O. Druet and F.
Robert [9], on the compactness of solutions to fourth order elliptic equations. For more details on
the Q-curvature problem we refer the reader to [1], [2], [4], [10] and the references therein.

In [12] A. Malchiodi proved, by assuming k0 6∈ 16π2N∗, the compactness of any sequence (un)n
satisfying a C0-perturbation of equation (1.5) of the form
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P0un +Qn = kne
4un (1.7)

where kn =

∫

M

QndV0, by assuming

Qn −→
n→+∞

Q0 in C0(M).

This result does not apply to Palais-Smale sequences for the functional E since for such sequences
one needs H−2-perturbations of equation (1.5). An open question was kept in [12]: do there exist
bounded Palais-Smale sequences for the functional E ? One of the main result of the present paper
is to give a positive answer to this question when the Paneitz operator is positive with trivial kernel.
We prove first a compactness result of solutions to L1-perturbations of equation (1.5), that is, we
need only to assume

Qn −→
n→+∞

Q0 in L1(M)

in equation (1.7) above. Then we apply this result to study the solution of the heat flow equation
associated with (1.5) since such an equation is a L1-perturbation of (1.5), giving thus a convergent
Palais-Smale sequence for the functional E. Our first main result reads :

Theorem 1.1. Let (M, g0) be a compact Riemannian 4-manifold whose Paneitz operator has trivial
kernel. Let f ∈ C0(M), and let (un, fn)n be a sequence in H2(M)× L1(M) satisfying

P0un + fn = kne
4un (1.8)

∫

M

e4undV0 = 1 (1.9)

and

fn −→
n→+∞

f in L1(M) , (1.10)

where kn =

∫

M

fndV0. Then one of the following alternatives holds :

1) either the sequence (e|un|)n is bounded in Lp(M) for all p ∈ [1,+∞),

2) or for a subsequence, that we still denote by (un)n for simplicity, there exist a finite number of
points a1, ..., am ∈ M and integers l1, ..., lm ∈ N∗ such that

m∑

j=1

lj =
1

16π2

∫

M

fdV0 (1.11)

and

e4un −→
n→+∞

16π2

∫
M

fdV0

m∑

j=1

ljδaj , (1.12)

in the sense of measures, where δa stands for the Dirac mass at the point a ∈ M .
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A particular case of Theorem 1.1 is the following result when

∫

M

fdV0 6∈ 16π2
N

∗.

Corollary 1.1. Let (un, fn)n be a sequence in H2(M)× L1(M) as in Theorem 1.1. If we assume
in addition ∫

M

fdV0 6∈ 16π2
N

∗, (1.13)

then the sequence (e|un|)n is bounded in Lp(M) for all p ∈ [1,+∞), that is,

∫

M

ep|un|dV0 ≤ Cp,

where Cp is a positive constant depending on p but not on n.

It is clear that Corollary 1.1 is a particular case of Theorem 1.1 since if condition (1.13) is
satisfied, then the second alternative in Theorem 1.1 does not occur.

As a direct consequence of Corollary 1.1, we recover the result of A. Malchiodi [12] and O. Druet-
F. Robert [9] stated above. More precisely, we have the following corollary on the compactness of
solutions to the Q-curvature equation (1.5) :

Corollary 1.2. Let (M, g0) be a compact Riemannian 4-manifold whose Paneitz operator has a
trivial kernel, and assume that the total Q-curvature k0 satisfies k0 6∈ 16π2N∗. Then for any k ∈ N,
there exits a constant Ck depending only on k and (M, g0) such that for any solution u ∈ H2(M)
of the Q-curvature equation

P0u+Q0 = k0e
4u

with the normalization

∫

M

e4udV0 = 1, we have

‖u‖Ck(M) ≤ Ck.

We note here that when k0 6= 0, the normalization condition

∫

M

e4undV0 = 1 is automatically

satisfied from the Q-curvature equation.

Remark 1.1. 1) The conclusions of Theorem 1.1 and Corollary 1.1 remain valid if we consider
equations of the form

P0un + fn = hne
4un

where we assume hn ∈ C0(M) such that C−1 ≤ hn ≤ C for some positive constant C independent
of n. This can be checked by following the same proofs with some necessary slight modifications.

2) One can easily check that in Corollary 1.1 a subsequence of (un)n converges strongly in W 2,p(M)
for all p ∈ [1, 2) to a function u∞ satisfying the following equation

P0u∞ + f = k0e
4u∞ ,

where k0 =

∫

M

fdV0.
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3) As it can be seen from our proofs, Theorem 1.1 and Corollary 1.1 remain valid if we consider
L1-perturbations of the mean field equation on compact Riemannian surfaces. Indeed, the same
arguments work if we replace the Paneitz operator by the Laplacian. Some related results concerning
the mean field equation are proved by J-B. Castéras in his thesis [6].

The main difficulty in the study of equations like (1.8) in Theorem 1.1 is the appearance of
the so-called bubbling phenomena due to the concentration of the volume of the conformal metric
gn = e2ung0. We prove that if such phenomena occur then there must be some volume quantization.
An important tool in the proof of such a result is an integral Harnack type inequality that we will
prove in section 3.

As stated above, the second main result of this paper concerns the evolution problem associated
with equation (1.5). More precisely, we will consider the evolution of a metric g on M under the
flow:





∂tg = −
(
Qg −Qg

)
g

g(0) = e2u0g0, u0 ∈ C∞(M)

(1.14)

where

Qg =
1

Volg(M)

∫

M

QgdVg =
k0

Volg(M)

is the average of Qg.

Since equation (1.14) preserves the conformal structure of M , then g(t) = e2u(t)g0, where
u(t) ∈ C∞(M) with initial condition u(0) = u0 ∈ C∞(M). For simplicity, we have used the
notation u(t) := u(., t), t ∈ I, for any function defined on M × I, where I is a subset of R. Thus
the flow (1.14) takes the form





∂tu = − 1
2e

−4u (P0u+Q0) +
1
2

k0∫
M

e4u dV0
,

u(0) = u0.

(1.15)

It is clear that the first equation in (1.15) is parabolic since P0 is an elliptic operator. Then by
classical methods it admits a solution u ∈ C∞(M × [0, T )) where T ≤ +∞ denotes the maximal
time of existence. By integrating the first equation in (1.15) over M with respect to the volume
element of g(t), we see that the volume of M with respect to g(t) remains constant, that is,

∫

M

e4u(t)dV0 =

∫

M

e4u0dV0, ∀t ∈ [0, T ). (1.16)

If we multiply the first equation in (1.15) by ∂tu and integrating with repect to g(t), we see that
the functional E is decreasing along the flow :

d

dt
E(u(t)) = −2

∫

M

e4u(t)|∂tu(t)|2dV0, ∀t ∈ [0, T ). (1.17)
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As far as we know, the evolution problem (1.15) has been studied only in the case where the
total Q-curvature k0 satisfies k0 ≤ 16π2 and P0 is positive with trivial kernel. Indeed, S.Brendle [3]
was the first who studied the Q-curvature flow by considering a more general flow (with prescribed
Q-curvature function) on Riemannian manifolds of even dimension. In dimension four, his result
corresponds to assume that P0 is positive with trivial kernel and k0 < 16π2, and then he proved that
(1.15) has a solution which is defined for all time (T = +∞) and converges to a smooth function
u∞ such that the metric g∞ = e2u∞ has constant Q-curvature. When k0 = 16π2, he proved in [5]
the global existence and the convergence of Q-curvature flow on the sphere S4. We also mention
here the work of A. Malchiodi and M. Struwe [13] where they consider the Q-curvature flow on S4

with a prescribed Q-curvature function f . They proved the global existence of the flow and studied
its asymptotic behaviour under some assumptions on the critical points of f .

Our second main result in this paper is to study the flow (1.15) on Riemannian 4-manifolds with
total curvature k0 satisfying k0 6∈ 16π2N∗. In particular, we are able to allow k0 to take values
beyond the critical threshold 16π2. Our result is as follows :

Theorem 1.2. Let (M, g0) be a compact Riemannian 4-manifold whose Paneitz operator P0 is
positive with trivial kernel. For u0 ∈ C∞(M), let u ∈ C∞(M × [0, T )) the solution of problem
(1.15) defined on a maximal interval [0, T ). If

inf
t∈[0,T )

E(u(t)) > −∞ , (1.18)

where E is defined by (1.6), then T = +∞, that is, u(t) is globally defined on [0,+∞). Moreover,
if in addition the total Q-curvature k0 satisfies k0 6∈ 16π2N∗, then u(t) converges in C∞(M) as
t → +∞, to a function u∞ ∈ C∞(M) satisfying the Q-curvature equation

P0u∞ +Q0 =
k0∫

M e4u∞dV0
e4u∞ .

It is natural to ask if there exist initial data u0 ∈ C∞(M) for which the solution u(t) of problem
(1.15) with u(0) = u0, satisfies condition (1.18) in Theorem 1.2 ? As we will see below, we can
always find initial data for which (1.18) is satisfied, and others for which it is not the case. We note
here that the condition (1.18) is automatically satisfied if k0 ≤ 16π2 and P0 positive with trivial
kernel since in this case the functional E is bounded from below by using Adams inequality (see
section 2). First we have :

Theorem 1.3. Let (M, g0) be a compact Riemannian 4-manifold whose Paneitz operator P0 is
positive with trivial kernel, and suppose that the total Q-curvature k0 satisfies k0 6∈ 16π2N∗. Then
there exists at least one function u0 ∈ C∞(M) such that the solution u(t) of problem (1.15) with
u(0) = u0, satisfies condition (1.18) in Theorem 1.2, that is,

inf
t∈[0,T )

E(u(t)) > −∞ .

Thus, according to Theorem 1.2, u(t) is globally defined on [0,+∞) and converges in C∞(M) as
t → +∞, to a function u∞ ∈ C∞(M) satisfying the Q-curvature equation

P0u∞ +Q0 =
k0∫

M
e4u∞dV0

e4u∞ .
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It follows from Theorem 1.3, by taking any real sequence (tn)n such that tn −→
n→+∞

+∞, that

(u(tn))n is a convergent Palais-Smale sequence for the Q-curvature functional E. This gives a
positive answer to the open question by A. Malchiodi [12] stated above. In particular, Theorem 1.3
is a direct method to solve equation (1.5).

The following theorem gives a class of functions u0 ∈ C∞(M) for which condition (1.18) in The-
orem 1.2 is not satisfied. More precisely, it gives a class of initial data for which the corresponding
flow u(t) blows up in finite or infinite time :

Theorem 1.4. Let (M, g0) be a compact Riemannian 4-manifold whose Paneitz operator P0 is
positive with trivial kernel, and suppose that the total Q-curvature k0 satisfies k0 6∈ 16π2N∗. Then
there exists a constant λ ∈ R such that for any u0 ∈ C∞(M) satisfying E(u0) ≤ λ, the corresponding
solution u(t) of (1.15) satisfies lim

t→T
E(u(t)) = −∞.

One of the principal difficulties in the study of the Q-curvature flow (1.15) comes from the
absence of a maximum principle for elliptic operator of high order (greater than 4). Our analysis
is based on the proof of some delicate integral estimates concerning the parabolic equation (1.15),
combined with the compactness of the solutions of the corresponding elliptic equation proved in
Theorem 1.1.

2. Preliminaries and blow-up analysis

We introduce in this section some basic tools on elliptic operators on Riemannian manifolds, and
we recall some known results on the blow-up of solutions to general Q-curvature type equations.

Let (M, g0) a smooth compact 4-Riemannian manifold without boundary. For the simplicity of
notations, the Riemannian distance between two points x, y ∈ M is denoted as in the Euclidean
space, by |x− y|. If x ∈ M and r > 0, we denote by Br(x) the geodesic ball in M of center x and
radius r. If x ∈ Rn, we denote in the same manner by Br(x) the Euclidean ball in Rn of center
x and radius r. The volume element of g0 is denoted by dV0, and the volume of any measurable
set A ⊂ M is denoted by |A|. The Green function G associated to the Paneitz P0 is a symmetric
function G ∈ C∞(M × M \ D), where D = {(x, x) : x ∈ M} is the diagonal of M , giving the
inversion formula for Paneitz operator. That is, if F ∈ L1(M) with F = 0, then u is a solution of

P0u = F (2.1)

if and only if

u(x) = ū+

∫

M

G(x, y)F (y)dV0(y), (2.2)

where we denote by h̄ := 1
|M|

∫
M

hdV0 the average of any function h ∈ L1(M). We have the

following asymptotics for G

G(x, y) = − 1

8π2
log |x− y|+R(x, y), (2.3)

where R ∈ C0(M ×M).

The following proposition concerning solutions of equation (2.1) is proved in A. Malchiodi [12]
by using the asymptotics of the Green function (see Lemma 2.3 in [12].)
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Proposition 2.1. Let (un, Fn) ∈ H2(M)× L1(M) satisfying

P0un = Fn

with ‖Fn‖L1(M) ≤ K for some constant K independent of n. Then for any x ∈ M , for any r > 0
(small enough), for any j = 1, 2, 3, and p ∈ [1, 4/j), we have

∫

Br(x)

|∇jun|pdV0 ≤ Cr4−jp,

where C is a positive constant depending on K,M, p but not on n.

We need also the following proposition proved in [12] :

Proposition 2.2. Let (un, Fn) ∈ H2(M)× L1(M) satisfying

P0un = Fn

with ‖Fn‖L1(M) ≤ K for some constant K independent of n. Then :

1) either ∫

M

eq(un−ūn)dV0 ≤ C

for some q > 4 and some C > 0 (independent of n),

2) or there exists a point x ∈ M such that for any r > 0, we have

lim inf
n→+∞

∫

Br(x)

|Fn|dV0 ≥ 8π2.

Remark 2.1. Proposition 2.2 remains valid if one replace the metric g0 on M by a family of
metric (gn)n depending on n which is uniformly bounded in Ck(M) for any k ∈ N. The same result
holds also if we replace M by any bounded open ball of R4 and assuming all the functions with
compact support in this ball. Indeed, a bounded open ball of R4 can always be embedded in a torus
for example.

Now we shall give some basic properties of solutions to equation (2.1) when F is as in Theorem
1.1. That is, we consider a sequence (un, fn)n in H2(M)× L1(M) satisfying

P0un + fn = kne
4un , (2.4)

such that ∫

M

e4undV0 = 1, (2.5)

and

fn −→
n→+∞

f in L1(M) , (2.6)

with f ∈ C0(M), and where kn =

∫

M

fndV0.
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First we state the following proposition which can easily be deduced from Proposition 2.2 above
by setting Fn = kne

4un − fn.

Proposition 2.3. Let (un, fn)n ∈ H2(M)× L1(M) satisfying (2.4)-(2.6). Then :

1) either for any p ≥ 1 we have for some some constant Cp > 0 independent of n,
∫

M

ep|un|dV0 ≤ Cp

2) or there exists a point x ∈ M such that for any r > 0, we have

k0 lim inf
n→+∞

∫

Br(x)

e4undV0 ≥ 8π2 + or(1),

where k0 =

∫

M

fdV0, and where or(1) → 0 as r → 0.

If (un)n and (fn)n are as above, (xn)n is a sequence of points in M and (rn)n a sequence of
positive numbers such that rn → 0, we set

ûn(z) = un(expxn
(rnz)) + log rn, z ∈ B δ

rn
(0), (2.7)

where B δ
rn
(0) ⊂ R4 is the Euclidean ball of center 0 and radius δ

rn
, and where δ is the injectivity

radius of M . We note here that the ball B δ
rn
(0) approaches R4 when n → +∞. As we will

see later, it is useful to introduce the following quantities. Let Tn : B δ
rn
(0) → M defined by

Tn(z) = expxn
(rnz), and define a metric gn on B δ

rn
(0) by

gn = r−2
n T ∗

ng. (2.8)

It is not difficult to see that gn −→
n→+∞

gR4 in Ck(BR(0)) for all k ∈ N and all R > 0, where gR4

is the standard Euclidean metric of R4. An easy computation shows that ûn satisfies the following
PDE in R4

Pgn ûn + r4nf̂n = kne
4ûn , (2.9)

where Pgn is the Paneitz operator of the metric gn in R4 and

f̂n(z) = fn(expxn
(rnz)), z ∈ B δ

rn
(0). (2.10)

We shall also use the following function on R4, known as a standard bubble,

ξz0(z) = log

(
2λ

1 + λ2|z − z0|2
)
− 1

4
log

(
k0
6

)
, z ∈ R

4, (2.11)

where z0 is a fixed point in R4, λ > 0 is a positive constant, and k0 =

∫

M

fdV0 that we assume

satisfying k0 > 0.

The following is a slightly different definition of blow-up with respect to that given in [12] since
we are considering more general equations.
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Definition 2.1. Let (un, fn)n ∈ H2(M) × L1(M) satisfying (2.4)-(2.5). Let (xn)n a sequence of
points in M and (rn)n a sequence of positive numbers such that rn → 0. We say that the sequence
(xn, rn)n is a blow-up for (un)n if for some z0 ∈ R4, we have for any R > 0,

ûn −→
n→+∞

ξz0 in D′(BR(0)) and e4ûn −→
n→+∞

e4ξz0 in L1(BR(0)), (2.12)

where ûn and ξz0 are defined by (2.7) and (2.11), and where D′(BR(0)) denotes the space of distri-
butions on BR(0).

By using the above definition and the fact that

∫

R4

e4ξz0dz =
16π2

k0
, one can easily prove the

following :

Proposition 2.4. Let (un, fn)n ∈ H2(M)×L1(M) satisfying (2.4)-(2.5), and let (xn, rn)n a blow-
up for (un)n. Then for any positive sequence (βn)n such that βn → +∞, there exists a positive
sequence (bn)n with bn ≤ βn and bn → +∞ such that

lim
n→+∞

∫

Bbnrn(xn)

e4undV0 =
16π2

k0
.

Now we will prove a proposition giving the existence of blow-ups for solutions to equation (2.4).

Proposition 2.5. Let (un, fn)n ∈ H2(M) × L1(M) satisfying (2.4)-(2.5). Suppose that there

exit a sequence (xn)n in M , sequences (rn)n, (r̂n)n of positive numbers and a constant ρ ∈ (0, π2

k0
]

(independent of n ) such that

r̂n −→
n→+∞

0 ,
rn
r̂n

−→
n→+∞

0 (2.13)

and for n large enough,
∫

Brn (xn)

e4undV0 = ρ ,

∫

Brn (y)

e4undV0 ≤ π2

k0
∀ y ∈ Br̂n(xn). (2.14)

Then by passing to a subsequence, (xn, rn)n is a blow-up for (un).

Proof. The proof follows closely that of Proposition 3.4 in A. Malchiodi [12]. But since we are
considering more general equations, we shall give the detailed proof. It suffices to prove that for
any fixed R ≥ 1, a subsequence of (ûn)n converges in W 2,p(BR(0)) to ξz0 for some z0 ∈ R4 and
some p ≥ 1, and that (e4ûn)n converges to e4ξz0 in L1(BR(0)).

Let R ≥ 1 be fixed large enough. In what follows, C denotes a positive constant depending on
M and R but independent of n, whose values may change from line to line. Set

an =
1

|B2R(0)|gn

∫

B2R(0)

ûndVn,

where dVn is the volume element of the metric gn defined in (2.8) above, and |B2R(0)|gn is the
volume of the ball B2R(0) with respect to the metric gn. Let now ϕ ∈ C∞

0 (B2R(0)) such that ϕ = 1
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on BR(0), and define vn := ϕ(ûn−an). Then by using Proposition 2.1 and the Poincaré inequality,
we have for any p ∈ [1, 4/3) and j = 1, 2, 3,

∫

B2R(0)

|∇j ûn|pdVn ≤ C and

∫

B2R(0)

|ûn − an|pdVn ≤ C,

which implies that (vn)n is bounded in W 3,p(B2R(0)) for any p ∈ [1, 4/3), that is

‖vn‖W 3,p(B2R(0)) ≤ C. (2.15)

(we recall here that the metric gn is uniformly bounded in Ck(BR(0)) for any k ∈ N and R > 0.)

Moreover we have

Pgnvn = −r4nϕf̂n + knϕe
4ûn + hn, (2.16)

where hn = Ln(ûn − an) for some third order linear operator Ln with uniformly bounded smooth

coefficients, and where f̂n is defined by (2.10). So, hn is bounded in Lp(B2R(0)) for any p ∈ [1, 4/3).

If we set Fn = −r4nϕf̂n + knϕe
4ûn + hn, then by using (2.6), (2.13)-(2.14) and the fact that (hn)n

is bounded in Lp(B2R(0)), one can check that there exists a constant δ0 > 0 independent of n such
that for any x ∈ B2R(0) we have

∫

Bδ0
(x)

|Fn|dVn ≤ 2π2 + on(1), (2.17)

where on(1) → 0 as n → +∞. Thus by applying Proposition 2.2 (with Remark 2.1) to equation
(2.16), we obtain that ∫

B2R(0)

eq(vn−vn)dVn ≤ C (2.18)

for some constant q > 4 independent of n, where vn =
1

|B2R(0)|gn

∫

B2R(0)

vndVn is the average of

vn on B2R(0). Since |vn| ≤ C by (2.15), then (2.18) becomes

∫

B2R(0)

eqvndVn ≤ C,

which gives ∫

BR(0)

eq(ûn−an)dVn ≤ C, (2.19)

since vn = ûn − an on BR(0).

By using Jensen inequality and the fact

∫

B2R(0)

e4ûndVn =

∫

B2rnR(xn)

e4undV0 ≤
∫

M

e4undV0 = 1, (2.20)

we have
an ≤ C. (2.21)

Thus it follows from (2.19) and (2.21) that

∫

BR(0)

eqûndVn ≤ C,
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which gives ∫

BR(0)

eqûndx ≤ C (2.22)

since gn is bounded in Ck(BR(0)) ∀ k ∈ N, where dx is the Euclidean volume element of R4.

Now, we have by (2.14) since R ≥ 1

ρ =

∫

Brn (xn)

e4undV0 =

∫

B1(0)

e4ûndVn ≤
∫

BR(0)

e4ûndVn = ean

∫

BR(0)

e4(ûn−an)dVn,

and since by (2.19) and Hölder’s inequality we have

∫

BR(0)

e4(ûn−an)dVn ≤ C (recall here that gn

is bounded in Ck(BR(0)) ∀ k ∈ N), then we obtain

ean ≥ C−1ρ,

which together with (2.21) give

|an| ≤ C. (2.23)

It follows from (2.15) and (2.23), that (ûn)n is bounded in W 3,p(BR(0)) (for all p ∈ [1, 4/3)).
Then by using Rellich-Kondrachov Theorem and passing to a subsequence, we have that (ûn)n
converges strongly in W 2,α(BR(0)) for all α ∈ [1, 2), and in Lβ(BR(0)) for all β ∈ [1,+∞), to a
function û∞ ∈ W 3,p(BR(0)) for all p ∈ [1, 3/4). That is,

∀ α ∈ [1, 2), ‖ûn − û∞‖W 2,α(BR(0)) −→
n→+∞

0 (2.24)

and

∀β ∈ [1,+∞), ‖ûn − û∞‖Lβ(BR(0)) −→
n→+∞

0. (2.25)

Thus it follows from (2.22) and (2.25) by using Hölder inequality (recall that q > 4 in (2.22)) that
∫

BR(0)

∣∣∣e4ûn − e4û∞

∣∣∣ dx −→
n→+∞

0. (2.26)

Since ûn satisfies equation (2.9), then by passing to the limit in this equation (in the distributional
sense) where we use (2.26), we obtain

∆2û∞ = k0e
4û∞ in R

4, (2.27)

where ∆ is the Laplacian in R4 with respect to the Euclidean metric. By using (2.20), we see that
û∞ satisfies also ∫

BR(0)

e4û∞(z)dz ≤ 1,

and since R ≥ 1 is arbitrary, then ∫

R4

e4û∞(z)dz ≤ 1. (2.28)

The solutions of equation (2.27) satisfying (2.28) are classified in [11]. More precisely, it is proved
in [11] that either

û∞(z) = log

(
2λ

1 + λ2|z − z0|2
)
− 1

4
log

(
k0
6

)
(2.29)
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for some z0 ∈ R4 and λ > 0, or one has

−∆û∞(z) −→
|z|→+∞

a (2.30)

for some a > 0. But by using Proposition 2.1 and (2.24) (by taking α = 1), one can easily check
that for any R ≥ 1, ∫

BR(0)

|∆û∞(z)|dz ≤ CR2. (2.31)

On the other hand, if (2.30) occurs, then one has for R large enough∫

BR(0)

|∆û∞(z)|dz ≥ CaR4

which contradicts (2.31). This proves that û∞ is of the form (2.29). The proof of Proposition 2.4
is then complete.

�

We close this section with the following well known Adam’s inequality (see [7]) :

Proposition 2.6. Let (M, g0) be a compact Riemannian 4-manifold whose Paneitz operator P0 is
positive with trivial kernel. Then for any u ∈ H2(M), we have

∫

M

e4(u−u)dV0 ≤ C exp

(
1

4π2

∫

M

P0u · u dV0

)
, (2.32)

where C is a positive constant depending only on (M, g0) and where u =
1

|M |

∫

M

u dV0 is the

average of u on M .

3. Integral Harnack type inequality

In this section we shall prove an integral Harnack type inequality, which is an important tool
in the proof of our results. In what follows, we set f+ = max(f, 0) and f− = max(−f, 0) for
any function f on M . As already noticed in Section 2, in order to simplify the notations, we are
denoting by |x − y| the Riemannian distance between two points x, y ∈ M . The diameter of M is
denoted by diam(M).

Proposition 3.1. Let h ∈ C0(M), and let (un, hn)n be a sequence in H2(M)× L1(M) satisfying

P0un + h = hn, (3.1)

where we suppose that

lim
n→+∞

∫

M

h−
n dV0 = 0. (3.2)

Let (xn, yn)n a sequence in M ×M , and let (Rn)n with 0 < Rn ≤ diam(M) a sequence of positive
numbers satisfying, for some constant C0 independent of n,

|xn − yn| ≤ C0Rn and

∫

B2Rn (yn)

h+
n dV0 ≤ π2. (3.3)
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Then for any sequence (rn)n such that 0 < rn ≤ Rn we have

∫

BRn (yn)

e4undV0 ≤ C

(
rn
Rn

)−4+ 1
2π2 ‖h+

n ‖L1(Brn (xn))+on(1) ∫

Brn (xn)

e4undV0, (3.4)

where on(1) → 0 as n → +∞, and where C is a positive constant independent of n.

Remark 3.1. As it can be seen in the proof, one can replace π2 in (3.3) in the above proposition
by any positive constant ρ < 4π2.

Proof. In what follows, C is a positive constant independent of n whose values may change from
line to line. Also, to simplify the notations, we set R = Rn and r = rn. First, let us recall the
asymptotic formula for the Green function (see section 2)

G(x, y) = − 1

8π2
log |x− y|+O(1), for all x 6= y in M. (3.5)

From the Green representation formula (see section 2) we have, for any x ∈ M ,

un(x)− ūn =

∫

M

G(x, y)hn(y)dV0(y)−
∫

M

G(x, y)h(y)dV0(y)

=

∫

M

G(x, y)h+
n (y)dV0(y)−

∫

M

G(x, y)h−
n (y)dV0(y)−

∫

M

G(x, y)h(y)dV0(y). (3.6)

Since h ∈ C0(M), then by using (3.5) we have

∣∣∣∣
∫

M

G(x, y)h(y)dV0(y)

∣∣∣∣ ≤ C‖h‖L∞(M). (3.7)

Thus it follows from (3.6) and (3.7) that for any x ∈ M ,

un(x)− ūn ≤ C‖h‖L∞(M) +

∫

B2R(yn)

G(x, y)h+
n (y)dV0(y) +

∫

M\B2R(yn)

G(x, y)h+
n (y)dV0(y)

−
∫

M

G(x, y)h−
n (y)dV0(y)

which implies by integrating the function e4(un(x)−ūn) on BR(yn),

∫

BR(yn)

e4(un−ūn)dV0 ≤ eC‖h‖L∞(M)

∫

BR(yn)

exp

(∫

B2R(yn)

4G(x, y)h+
n (y)dV0(y)

)
dV0(x)

× exp

(
sup

x∈BR(yn)

∫

M\B2R(yn)

4G(x, y)h+
n (y)dV0(y)− inf

z∈BR(yn)

∫

M

4G(z, y)h−
n (y)dV0(y)

)
. (3.8)

By Jensen inequality, we have

exp

(∫

B2R(yn)

4G(x, y)h+
n (y)dV0(y)

)
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≤ 1

‖h+
n ‖L1(B2R(yn))

∫

B2R(yn)

h+
n (y) exp

(
4G(x, y)‖h+

n ‖L1(B2R(yn))

)
dV0(y),

and integrating this inequality on BR(yn) (in the x-variable) and using Fubini’s Theorem, we obtain

∫

BR(yn)

exp

(∫

B2R(yn)

4G(x, y)h+
n (y)dV0(y)

)
dV0(x)

≤ 1

‖h+
n ‖L1(B2R(yn))

∫

B2R(yn)

(∫

BR(yn)

exp
(
4G(x, y)‖h+

n ‖L1(B2R(yn))

)
dV0(x)

)
h+
n (y)dV0(y)

≤ sup
y∈B2R(yn)

∫

BR(yn)

exp
(
4G(x, y)‖h+

n ‖L1(B2R(yn))

)
dV0(x). (3.9)

It follows from (3.9) and (3.5) that

∫

BR(yn)

exp

(∫

B2R(yn)

4G(x, y)h+
n (y)dV0(y)

)
dV0(x)

≤ exp
(
C‖h+

n ‖L1(B2R(yn))

)
sup

y∈B2R(y0)

∫

BR(yn)

|x− y|−
1

2π2 ‖h+
n ‖L1(B2R(yn))dV0(x)

≤ eπ
2C sup

y∈B2R(yn)

∫

BR(yn)

|x− y|−
1

2π2 ‖h+
n ‖L1(B2R(yn))dV0(x), (3.10)

where we have used (3.3).

It is easy to check that, for any α ∈ [0, 4), and any y ∈ M , we have
∫

BR(yn)

|x− y|−αdV0(x) ≤
C

4− α
R4−α.

Since ‖h+
n ‖L1(B2R(yn)) ≤ π2 by (3.3), it follows by taking α = 1

2π2 ‖h+
n ‖L1(B2R(yn)) ≤ 1,

∫

BR(yn)

|x− y|−
1

2π2 ‖h+
n‖L1(BR(yn))dV0(x) ≤ CR

4− 1
2π2 ‖h+

n‖L1(B2R(yn)) . (3.11)

Thus it follows from (3.8), (3.10) and (3.11) that

∫

BR(yn)

e4(un−ūn)dV0 ≤ CR4 exp

(
C‖h‖L∞(M) −

logR

2π2
‖h+

n ‖L1(B2R(yn))

)

× exp

(
sup

x∈BR(yn)

∫

M\B2R(yn)

4G(x, y)h+
n (y)dV0(y)− inf

z∈BR(yn)

∫

M

4G(z, y)h−
n (y)dV0(y)

)
. (3.12)

On the other hand, using again the representation formula (3.6), we have by using (3.7), for any
x ∈ Br(xn),

u(x)− ūn =

∫

M

G(x, y)h+
n (y)dV0(y)−

∫

M

G(x, y)h−
n (y)dV0(y)−

∫

M

G(x, y)h(y)dV0(y)



16 ALI FARDOUN AND RACHID REGBAOUI

≥
∫

Br(xn)

G(x, y)h+
n (y)dV0(y)+

∫

M\Br(xn)

G(x, y)h+
n (y)dV0(y)−

∫

M

G(x, y)h−
n (y)dV0(y)−C‖h‖L∞(M)

≥ inf
z∈Br(xn)

∫

Br(xn)

G(z, y)h+
n (y)dV0(y) + inf

z∈Br(xn)

∫

M\Br(xn)

G(z, y)h+
n (y)dV0(y)

−
∫

M

G(x, y)h−
n (y)dV0(y)− C‖h‖L∞(M). (3.13)

Since by (3.5) we have G(z, y) ≥ − 1
8π2 log r − C for any z, y ∈ Br(xn), then it follows from (3.13)

that for any x ∈ Br(xn),

e4(un(x)−ūn) ≥ exp

(
−C‖h‖L∞(M) − C‖h+

n ‖L1(M) −
log r

2π2
‖h+

n ‖L1(Br(xn))

)

× exp

(
inf

z∈Br(xn)

∫

M\Br(xn)

4G(z, y)h+
n (y)dV0(y)

)
exp

(
−
∫

M

4G(x, y)h−
n (y)dV0(y)

)
. (3.14)

But from (3.1) and (3.2) we have ‖h+
n ‖L1(M) ≤ ‖h‖L1(M) + on(1) ≤ C‖h‖L∞(M) + on(1). So it

follows from (3.14) on integrating on Br(xn) that

∫

Br(xn)

e4(un−ūn)dV0 ≥ C exp

(
−C‖h‖L∞(M) −

log r

2π2
‖h+

n ‖L1(Br(xn))

)

× exp

(
inf

z∈Br(xn)

∫

M\Br(xn)

4G(z, y)h+
n (y)dV0(y)

)∫

Br(xn)

exp

(
−
∫

M

4G(x, y)h−
n (y)dV0(y)

)
dV0(x).

(3.15)

But by Jensen inequality we have
∫

Br(xn)

exp

(
−
∫

M

4G(x, y)h−
n (y)dV0(y)

)
dV0(x)

≥ |Br(xn)| exp
(
− 1

|Br(xn)|

∫

Br(xn)

∫

M

4G(x, y)h−
n (y)dV0(y)dV0(x)

)
. (3.16)

Since |Br(xn)| ≥ Cr4, it follows from (3.15) and (3.16) that

∫

Br(xn)

e4(un−ūn)dV0 ≥ Cr4 exp

(
−C‖h‖L∞(M) −

log r

2π2
‖h+

n ‖L1(Br(xn))

)

× exp

(
inf

z∈Br(xn)

∫

M\Br(xn)

4G(z, y)h+
n (y)dV0(y)−

1

|Br(xn)|

∫

Br(xn)

∫

M

4G(x, y)h−
n (y)dV0(y)dV0(x)

)
.

(3.17)

Now since ∫
BR(yn)

e4undV0∫
Br(xn)

e4undV0
=

∫
BR(yn)

e4(un−ūn)dV0∫
Br(xn)

e4(un−ūn)dV0
,

then it follows from (3.12) and (3.17) that
∫
BR(yn)

e4undV0∫
Br(xn)

e4undV0
≤ C

( r

R

)−4

exp

(
C‖h‖L∞(M) +

log r

2π2
‖h+

n ‖L1(Br(xn)) −
logR

2π2
‖h+

n ‖L1(B2R(yn))

)
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× exp

(
sup

x∈BR(yn)

∫

M\B2R(yn)

4G(x, y)h+
n (y)dV0(y)− inf

z∈Br(xn)

∫

M\Br(xn)

4G(z, y)h+
n (y)dV0(y)

)

× exp

(
1

|Br(xn)|

∫

Br(xn)

∫

M

4G(x, y)h−
n (y)dV0(y)dV0(x)− inf

z∈BR(yn)

∫

M

4G(z, y)h−
n (y)dV0(y)

)
.

(3.18)

Set

A = exp

(
sup

x∈BR(yn)

∫

M\B2R(yn)

4G(x, y)h+
n (y)dV0(y)− inf

z∈Br(xn)

∫

M\Br(xn)

4G(z, y)h+
n (y)dV0(y)

)

and

B = exp

(
1

|Br(xn)|

∫

Br(xn)

∫

M

4G(x, y)h−
n (y)dV0(y)dV0(x) − inf

z∈BR(yn)

∫

M

4G(z, y)h−
n (y)dV0(y)

)
.

We shall prove that

A ≤ C exp

(
logR

2π2
‖h+

n ‖L1(B2R(yn)) −
logR

2π2
‖h+

n ‖L1(Br(xn))

)
(3.19)

and

B ≤ C exp

(
C‖h−

n ‖L1(M) log
R

r

)
. (3.20)

It is clear that Proposition 3.1 will follow from (3.18), (3.19) and (3.20) by using (3.2). Let us then
prove the estimates (3.19) and (3.20).

First we shall prove (3.19). We have for any x ∈ BR(yn) and z ∈ Br(xn)∫

M\B2R(yn)

4G(x, y)h+
n (y)dV0(y)−

∫

M\Br(xn)

4G(z, y)h+
n (y)dV0(y)

=

∫

M\B4C0R(yn)

4(G(x, y)−G(z, y))h+
n (y)dV0(y)

+

∫

B4C0R(yn)\B2R(yn)

4G(x, y)h+
n (y)dV0(y)−

∫

B4C0R(yn)\Br(xn)

4G(z, y)h+
n (y)dV0(y) (3.21)

since B2R(yn) ⊂ B4C0R(yn) and Br(xn) ⊂ B4C0R(yn), where C0 is the constant in (3.3) that we
assume satisfying C0 ≥ 1 without loss of generality (we recall here that r = rn ≤ Rn = R).

Let us estimate the first term in the right side of (3.21). We have for any x ∈ BR(yn), z ∈ Br(xn)
and y ∈ M \B4C0R(yn) by using the hypothesis |xn − yn| ≤ C0R and r ≤ R, that

|x− y| ≥ |y − yn| − |x− yn| ≥ 4C0R −R ≥ 3C0R, (3.22)

and

|z − y| ≥ |y − yn| − |yn − xn| − |z − xn| ≥ 4C0R − C0R− r ≥ 2C0R. (3.23)

On the other hand, we have by using (3.22)
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|z − y| ≤ |z − xn|+ |xn − yn|+ |yn − x|+ |x− y|
≤ r + C0R+R+ |x− y| ≤ 3C0R+ |x− y|

≤ 2|x− y|,
and by using (3.23) we have

|x− y| ≤ |x− yn|+ |xn − yn|+ |xn − z|+ |z − y|
≤ R+ C0R+ r + |z − y| ≤ 3C0R+ |z − y|

≤ 5

2
|z − y|.

Thus we have
2

5
≤ |z − y|

|x− y| ≤ 2. (3.24)

It follows from (3.5) and (3.24) that for any x ∈ BR(yn), z ∈ Br(xn) and y ∈ M \B4C0R(yn),

|G(x, y)−G(z, y)| ≤ C, (3.25)

which gives ∫

M\B4C0R(yn)

4
(
G(x, y) −G(z, y)

)
h+
n (y)dV0(y) ≤ C‖h+

n ‖L1(M) (3.26)

for any x ∈ BR(yn), z ∈ Br(xn).

Now we shall estimate the second and third term in the right side (3.21). By using formula (3.5)
we have for any x ∈ BR(yn) and y ∈ B4C0R(yn) \B2R(yn),

G(x, y) ≤ − 1

8π2
logR+ C. (3.27)

We have for any z ∈ Br(xn) and y ∈ B4C0R(yn) \ Br(xn), since |xn − yn| ≤ C0R (by hypothesis)
and r ≤ R,

|y − z| ≤ |y − yn|+ |yn − xn|+ |xn − z| ≤ 4C0R+ C0R+ r ≤ 6C0R

which implies by (3.5) that

G(z, y) ≥ − 1

8π2
logR + C. (3.28)

It follows from (3.27) and (3.28), for any x ∈ BR(yn) and z ∈ Br(xn), that

∫

B4C0R(yn)\B2R(yn)

4G(x, y)h+
n (y)dV0(y)−

∫

B4C0R(yn)\Br(xn)

4G(z, y)h+
n (y)dV0(y)

≤ logR

2π2

∫

B2R(yn)

h+
n dV0 −

logR

2π2

∫

Br(xn)

h+
n dV0 + C‖h+

n ‖L1(M). (3.29)

Combining (3.21), (3.26) and (3.29) we obtain the desired estimate (3.19) since ‖h+
n ‖L1(M) ≤

‖h‖L1(M) + ‖h−
n ‖L1(M) ≤ C by integrating (3.1) and using (3.2).

Now it remains to prove (3.20). We have

B = exp

{
1

|Br(xn)|

∫

Br(xn)

∫

M

4G(x, y)h−
n (y)dV0(y)dV0(x)− inf

z∈BR(yn)

∫

M

4G(z, y)h−
n (y)dV0(y)

}
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= sup
z∈BR(yn)

exp

{
1

|Br(xn)|

∫

Br(xn)

(∫

M

4
(
G(x, y)−G(z, y)

)
h−
n (y)dV0(y)

)
dV0(x)

}
. (3.30)

But we have for any z ∈ BR(yn),

1

|Br(xn)|

∫

Br(xn)

(∫

M

4
(
G(x, y)−G(z, y)

)
h−
n (y)dV0(y)

)
dV0(x)

=
1

|Br(xn)|

∫

Br(xn)

(∫

B4C0R(yn)

4
(
G(x, y)−G(z, y)

)
h−
n (y)dV0(y)

)
dV0(x)

+
1

|Br(xn)|

∫

Br(xn)

(∫

M\B4C0R(yn)

4
(
G(x, y) −G(z, y)

)
h−
n (y)dV0(y)

)
dV0(x). (3.31)

Since by (3.5) we have, for any z ∈ BR(yn) and y ∈ B4C0R(yn),

G(z, y) ≥ − 1

8π2
logR + C,

then the first term in the right side of (3.31) can be estimated as follows

1

|Br(xn)|

∫

Br(xn)

∫

B4C0R(yn)

4
(
G(x, y)−G(z, y)

)
h−
n (y)dV0(y)dV0(x)

≤ 1

|Br(xn)|

∫

Br(xn)

∫

B4C0R(yn)

1

8π2

(
− log |x− y|+ logR

)
h−
n (y)dV0(y)dV0(x) + C‖h−

n ‖L1(M)

≤ 1

8π2
‖h−

n ‖L1(M)
1

|Br(xn)|
sup

y∈B4C0R(xn)

∫

Br(xn)

∣∣∣∣log
(
1

R
|x− y|

)∣∣∣∣ dV0(x) + C‖h−
n ‖L1(M). (3.32)

A direct computation shows that

1

|Br(xn)|
sup

y∈B4C0R(yn)

∫

Br(xn)

∣∣∣∣log
(
1

R
|x− y|

)∣∣∣∣ dV0(x) ≤ C log

(
R

r

)
+ C.

(we recall here that r ≤ R). Combining the last inequality with (3.32) gives for any z ∈ BR(yn),

1

|Br(xn)|

∫

Br(xn)

∫

B4C0R(yn)

4
(
G(x, y)−G(z, y)

)
h−
n (y)dV0(y)dV0(x)

≤ C‖h−
n ‖L1(M) log

(
R

r

)
+ C‖h−

n ‖L1(M). (3.33)

Now let us estimate the second term in the right side of (3.31). We recall that from (3.25) we
have

|G(x, y)−G(z, y)| ≤ C,

for any x ∈ Br(xn), z ∈ BR(yn) and y ∈ M \B4C0R(yn). Thus we obtain

1

|Br(xn)|

∫

Br(xn)

∫

M\B4C0R(x0)

4
(
G(x, y)−G(z, y)

)
h−
n (y)dV0(y)dV0(x) ≤ C‖h−

n ‖L1(M). (3.34)

It follows from (3.30), (3.31), (3.33) and (3.34) that

B ≤ exp

(
C‖h−

n ‖L1(M) log

(
R

r

)
+ C‖h−

n ‖L1(M)

)
,
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which proves (3.20) by using (3.2). The proof of Proposition 3.1 is then complete.
�

4. Volume quantization and proof of Theorem 1.1

In this section we apply the result of section 3 (Harnack type inequality) to prove some funda-
mental properties on solutions of equation (1.8) in Theorem 1.1. They state that the conformal
volume concentrates with quantization at points corresponding to blow-up sequences. Through the
rest of the paper we shall assume that k0 =

∫
M fdV0 > 0 where f is as in Theorem 1.1. Indeed, if

k0 ≤ 0, then Theorem 1.1 is a direct consequence of Proposition 2.3 in section 2.

Proposition 4.1. Let (un)n as in Theorem 1.1 and let (xn, rn)n a blow-up for the sequence (un)n.

Let (yn)n a sequence of points in M , and 0 < ρn ≤ diam(M) such that lim
n→+∞

rn
ρn

= 0. Suppose

that, for some positive constant C0 independent of n, we have

|xn − yn| ≤ C0ρn and

∫

B2ρn (yn)

e4undV0 ≤ π2

k0
,

where k0 =

∫

M

fdV0. Then

∫

Bρn (yn)

e4undV0 ≤ C

(
rn
ρn

)2+on(1)

, (4.1)

where C is a positive constant independent of n. In particular, we have

lim
n→+∞

∫

Bρn (yn)

e4undV0 = 0.

Proof. First let us apply Proposition 2.4 by choosing βn =
√

ρn

rn
. Then there exists bn ≤

√
ρn

rn
such

that bn → +∞ and

lim
n→+∞

∫

Bbnrn(xn)

e4undV0 =
16π2

k0
. (4.2)

We can apply now Proposition 3.1 to (un)n by choosing hn = kne
4un − fn + f , h = f , Rn =

ρn, and bnrn instead of rn. Indeed, since fn −→
n→+∞

f in L1(M) and k0 =
∫
M

fdV0 > 0, then

kn =
∫
M fndV0 > 0 for n large enough. Then one can easily check that hypothesis (3.2)-(3.3) in

Proposition 3.1 are satisfied. Thus we obtain
∫

Bρn (yn)

e4undV0 ≤ C

(
bnrn
ρn

)−4+ 1
2π2 ‖h+

n‖L1(Bbnrn
(xn))+on(1) ∫

Bbnrn(xn)

e4undV0

≤ C

(
bnrn
ρn

)−4+ 1
2π2 ‖h+

n ‖L1(Bbnrn
(xn))+on(1)

, (4.3)

where we have used the fact that

∫

Bbnrn (xn)

e4undV0 ≤
∫

M

e4undV0 = 1.
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Since hn = kne
4un − fn + f , then we have by using (4.2) and the fact that fn → f in L1(M),

that
1

2π2
‖h+

n ‖L1(Bbnrn (xn)) = 8 + on(1)

and by replacing in (4.3)we get
∫

Bρn (yn)

e4undV0 ≤ C

(
bnrn
ρn

)4+on(1)

.

This proves estimate (4.1) since bn ≤
√

ρn

rn
.

�

Proposition 4.2. Let (un)n as in Theorem 1.1 and let (xn, rn)n a blow-up for the sequence (un)n.
Let 0 < Rn ≤ Sn such that rn

Rn
−→

n→+∞
0, and suppose that there exists a positive constant α ≤ 1

independent of n such that

∀ Br(y) ⊂ B2Sn(xn) \B 1
2Rn

(xn),

∫

Br(y)

e4undV0 ≥ π2

k0
=⇒ r ≥ α |y − xn|. (4.4)

Then

lim
n→+∞

∫

BSn(xn)\BRn(xn)

e4undV0 = 0. (4.5)

Proof. Before giving the proof we note here that we may assume without loss of generality that
Sn ≤ diam(M). First we shall prove that for any ρn ∈ [Rn, Sn] we have the following estimate

∫

B 3
2
ρn

(xn)\Bρn (xn)

e4undV0 ≤ C

(
rn
ρn

)2+on(1)

, (4.6)

where C is constant independent of n, and on(1) → 0 as n → +∞. Then (4.5) will follow from
(4.6) by using an appropriate decomposition of the annulus BSn(xn) \ BRn(xn). Indeed, suppose
that (4.6) is proved, then by choosing N ∈ N such that (3/2)N ≤ Sn/Rn ≤ (3/2)N+1, and applying
(4.6) with ρn = (3/2)jRn for j = 0, ..., N , we obtain for n large enough :

∫

B(3/2)j+1Rn
(xn)\B(3/2)jRn

(xn)

e4undV0 ≤ C(2/3)(2+on(1))j

(
rn
Rn

)2+on(1)

≤ C(2/3)j
(
rn
Rn

)2+on(1)

,

and by summing up over j = 0, ..., N , one gets

∫

BSn (xn)\BRn (xn)

e4undV0 ≤
N∑

j=0

∫

B(3/2)j+1Rn
(xn)\B(3/2)jRn

(xn)

e4undV0 ≤

C

(
rn
Rn

)2+on(1) N∑

j=0

(2/3)j ≤ 3C

(
rn
Rn

)2+on(1)

→ 0 as n → +∞,

which proves the desired result (4.5).
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Now let us prove the estimate (4.6). We can cover the set B 3
2 ρn

(xn)\Bρn(xn) by a finite number

of balls B 1
4αρn

(z1), ..., B 1
4αρn

(zL), where L ∈ N is independent of n, and where α is the constant

appearing in (4.4), such that

B 1
2αρn

(zj) ⊂ B2ρn(xn) \B 1
2ρn

(xn) ⊂ B2Sn(xn) \B 1
2Rn

(xn), j = 1, ..., L.

But since |zj − xn| ≥ ρn > 1
2ρn, we have from (4.4) that
∫

B 1
2
αρn

(zj)

e4undV0 <
π2

k0
∀ j = 1, ..., L. (4.7)

(we recall here that 0 < α ≤ 1.)
We can now apply Proposition 4.1 by taking yn = zj to get

∫

B 1
4
αρn

(zj)

e4undV0 ≤ C

(
rn
ρn

)2+on(1)

∀ j = 1, ..., L,

and the estimate (4.6) follows. This achieves the proof of Proposition 4.2.
�

Proposition 4.3. Let (un, fn) as in Theorem 1.1. Let (x1
n, r

1
n)n, ...., (x

m
n , rmn )n be m blow-ups for

(un)n, and R1
n, ..., R

m
n > 0 such that

lim
n→+∞

Ri
n = 0 , lim

n→+∞

rin
Ri

n

= 0 ∀ i = 1, ...,m, (4.8)

and

lim
n→+∞

Ri
n

|xj
n − xi

n|
= 0 ∀ i 6= j in {1, ...,m} if m ≥ 2. (4.9)

Let Sn ≥ 4max
i6=j

|xi
n − xj

n| and suppose that there exists a positive constant α ≤ 1 independent of n

such that

∀ Br(y) ⊂
m⋃

j=1

B2Sn(x
j
n) \

m⋃

j=1

B 1
2R

j
n
(xj

n),

∫

Br(y)

e4undV0 ≥ π2

k0
=⇒ r ≥ αdn(y), (4.10)

where dn(y) = inf
1≤j≤m

|y − xj
n|. Then

lim
n→+∞

∫
⋃

m
j=1 BSn(xj

n)\
⋃

m
j=1 B

R
j
n
(xj

n)

e4undV0 = 0. (4.11)

Proof. It is clear that it suffices to prove (4.11) for a subsequence of (un)n. We proceed by induction
on m. Suppose m = 1, then it follows from Proposition 4.2, by taking xn = x1

n and Rn = R1
n, that

lim
n→+∞

∫

BSn(x1
n)\BR1

n
(x1

n)

e4undV0 = 0.

Now let m ≥ 2 be an integer and suppose that (4.11) is true for any l blow-ups with l ≤ m. We
shall prove that this is also the case for any (m+1) blow-ups. Let then (x1

n, r
1
n)n, ...., (x

m+1
n , rm+1

n )n
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be (m+ 1) blow-ups for (un)n satisfying (4.9)-(4.10) for some Ri
n > 0, i ∈ J1,m+ 1K and Sn > 0,

that is

lim
n→+∞

rin
Ri

n

= 0 ∀ i = 1, ...,m+ 1, lim
n→+∞

Ri
n

|xi
n − xj

n|
= 0 ∀ i 6= j in {1, ...,m+ 1}, (4.12)

and

∀ Br(y) ⊂
m+1⋃

j=1

B2Sn(x
j
n) \

m+1⋃

j=1

B 1
2R

j
n
(xj

n),

∫

Br(y)

e4undV0 ≥ π2

k0
=⇒ r ≥ αdn(y), (4.13)

where dn(y) = inf
1≤j≤m+1

|y − xj
n|.

Let
dn = inf

{
|xi

n − xj
n| : i, j ∈ J1,m+ 1K, i 6= j

}

and
Dn = sup

{
|xi

n − xj
n| : i, j ∈ J1,m+ 1K, i 6= j

}
.

By passing to a subsequence if necessary, we distinguish two cases depending on dn and Dn. That

is, we have either Dn ≤ Cdn, where C is a positive constant independent of n, or lim
n→+∞

dn
Dn

= 0.

First case : Dn ≤ Cdn, where C is a positive constant independent of n.

If we apply Proposition 4.2 by taking xn = xi
n and Rn = 4Dn (by using (4.13)), we have for any

i = 1, ...,m+ 1

lim
n→+∞

∫

BSn (xi
n)\B4Dn (xi

n)

e4undV0 = 0.

Thus it remains to prove that

lim
n→+∞

∫
⋃m+1

j=1 B4Dn (xj
n)\

⋃m+1
j=1 B

R
j
n
(xj

n)

e4undV0 = 0. (4.14)

We have by (4.12) since Dn ≤ Cdn that lim
n→∞

Rj
n

dn
= 0, j = 1, ...,m+1. Thus if we apply Proposition

4.2 by taking xn = xj
n, Rn = Rj

n and Sn = 1
4dn (by using (4.13)), we obtain

lim
n→+∞

∫

B 1
4
dn

(xj
n)\B

R
j
n
(xj

n)

e4undV0 = 0 ∀ j = 1, ...,m+ 1. (4.15)

On the other hand, since dn ≤ Dn ≤ Cdn, we can cover the set
⋃m+1

j=1 B4Dn(x
j
n)\

⋃m+1
j=1 B 1

4dn
(xj

n)

by a finite number N (independent of n) of balls B 1
16αdn

(zln), l = 1, ..., N , where 0 < α ≤ 1 is the

constant appearing in (4.13), such that B 1
8αdn

(zln) ⊂
⋃m+1

j=1 B2Dn(x
j
n) \

⋃m+1
j=1 B 1

8dn
(xj

n). Then we

can apply Proposition 4.1 by taking yn = zln, xn = x1
n, rn = r1n, ρn = 1

16αdn, and by using (4.13),
we obtain

lim
n→+∞

∫

B 1
16

αdn
(zl

n)

e4undV0 = 0 ∀ l = 1, ..., N. (4.16)

It is clear that (4.14) follows from (4.15) and (4.16).
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Second case : lim
n→+∞

dn
Dn

= 0.

By relabelling the blow-ups and passing to a subsequence if necessary, we may suppose that
dn = |x1

n − x2
n|. Define the set J by :

J = { j ∈ J1,m+ 1K : |xj
n − x1

n| ≤ Cjdn ∀n } ,

where Cj is a positive constant independent of n. By Taking C0 = max
j∈J

Cj we have ( by passing to

a subsequence if necessary)

∀ j ∈ J, |xj
n − x1

n| ≤ C0dn ∀ n, (4.17)

and

∀j ∈ J1,m+ 1K \ J, lim
n→+∞

dn

|xj
n − x1

n|
= 0. (4.18)

By relabeling the blow-ups (except for j = 1 and j = 2 ) and observing that 1, 2 ∈ J , we
may suppose that J = J1, kK, where k satisfies 2 ≤ k ≤ m since dn

Dn
−→

n→+∞
0. Now by using

(4.12)-(4.13) and (4.17)-(4.18), we can apply the induction hypothesis above to the k blow-ups:

(x1
n, r

1
n), ..., (x

k
n, r

k
n), where Sn is replaced by S̃n = 8C0dn, and where C0 is the constant in (4.17).

We obtain

lim
n→+∞

∫
⋃

k
j=1 B8C0dn (xj

n)\
⋃

k
j=1 B

R
j
n
(xj

n)

e4undV0 = 0. (4.19)

On the other hand, for each fixed i ∈ J1, kK, if we apply again the induction hypothesis to the
(m + 2 − k) blow-ups : xi

n, x
k+1
n , xk+2

n , ..., xm+1
n (we recall here that 2 ≤ k ≤ m) where Ri

n is

replaced by R̃i
n = 8C0dn, then we have for any i ∈ J1, kK,

lim
n→+∞

∫

(
⋃m+1

j=k+1 BSn (xj
n)

⋃
BSn (xi

n))\
(⋃m+1

j=k+1 B
R

j
n
(xj

n)
⋃

B8C0dn(xi
n)

) e
4undV0 = 0

which gives

lim
n→+∞

∫
⋃m+1

j=1 BSn (xj
n)\

(⋃m+1
j=k+1

B
R

j
n
(xj

n)
⋃⋃k

i=1 B8C0dn (xi
n)

) e
4undV0 = 0. (4.20)

Now it is clear that (4.19) and (4.20) imply

lim
n→+∞

∫
⋃m+1

j=1 BSn(xj
n)\

⋃m+1
j=1 B

R
j
n
(xj

n)

e4undV0 = 0.

This achieves the proof of Proposition 4.3. �

The following proposition is the principal tool in the proof of Theorem 1.1
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Proposition 4.4. Let (un, fn) as in Theorem 1.1. If the first alternative in Theorem 1.1 does not
hold, then there is exist a finite number of blow-ups (x1

n, r
1
n)n, ...., (x

k
n, r

k
n)n with 1 ≤ k ≤ k0

16π2 , and

k sequences (R1
n)n, ..., (R

k
n) of positive numbers such that

lim
n→+∞

Ri
n = 0 , lim

n→+∞

rin
Ri

n

= 0 ∀ i ∈ J1, kK, (4.21)

lim
n→+∞

Ri
n

inf
1≤j≤k

j 6=i

|xi
n − xj

n|
= 0, ∀ i ∈ J1, kK if k ≥ 2, (4.22)

and

∀ Br(y) ⊂ M \
k⋃

j=1

B 1
2R

j
n
(xj

n),

∫

Br(y)

e4undV0 ≥ π2

k0
=⇒ r ≥ αdn(y), (4.23)

where α is a positive constant independent of n, and where dn(y) = inf
1≤j≤k

|y − xj
n|. Moreover we

have, for all i ∈ J1, kK,

lim
n→+∞

∫

BRi
n
(xi

n)

e4undV0 =
16π2

k0
. (4.24)

Proof. Before proving Proposition 4.4 let us introduce some notations. If (x1
n, r

1
n)n, ...., (x

l
n, r

l
n)n

are l blow-ups for (un)n, we say that they satisfy the property (P) if

l = 1 or lim
n→+∞

rin
inf

1≤j≤l

j 6=i

|xi
n − xj

n|
= 0, ∀ i ∈ J1, lK if l ≥ 2.

Now let us prove Proposition 4.4. As noted in the begining of this section,we may suppose that
k0 > 0. If the first alternative in Theorem 1.1 does not hold, then by using Proposition 2.3, there
exists a point x ∈ M such that for any r > 0 we have

lim inf
n→+∞

∫

Br(x)

e4undV0 ≥ 8π2

k0
+ or(1).

where or(1) → 0 as r → 0. It follows that there exit xn ∈ M and rn > 0 such that

π2

k0
=

∫

Brn (xn)

e4undV0 = sup
x∈M

∫

Brn(x)

e4undV0 and lim
n→+∞

rn = 0.

Then setting r̂n =
√
rn we have that for any y ∈ Br̂n(xn),

∫
Brn (y)

e4undV0 < π2

k0
, and applying

Proposition 2.5, we see that (xn, rn) is a blow-up for (un)n. It follows that the set A defined by

A :=
{
l ∈ N : there exist l blow-ups (x1

n, r
1
n), ..., (x

l
n, r

l
n) satisfying the property (P)

}

is not empty. First we shall prove that if l ∈ A, then l ≤ 16π2

k0
. Indeed, let l ∈ A. Then there exit l

blow-ups (x1
n, r

1
n), ..., (x

l
n, r

l
n) satisfying the property (P) above. More precisely, we have

lim
n→+∞

rin
din

= 0 ∀ i ∈ J1, lK, (4.25)
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where din = inf
1≤j≤l

j 6=i

|xi
n − xj

n| if l ≥ 2, and d1n = 1 if l = 1.

Now we apply Proposition 2.3 by setting βn =
di
n

4rin
. Then there exists (bin)n satisfying bin ≤ βn

and bin −→
n→+∞

+∞, such that

lim
n→+∞

∫

Bbinrin
(xi

n)

e4undV0 =
16π2

k0
. (4.26)

Since binr
i
n ≤ 1

4d
i
n, then the balls Bbinr

i
n
(xi

n), i = 1, ..., l, are pairwise disjoint. This implies by using
(4.26) that

16π2l

k0
= lim

n→+∞

∫
⋃

l
i=1 Bbinrin

(xi
n)

e4undV0 ≤
∫

M

e4undV0 = 1,

which implies l ≤ k0

16π2 . Hence the set A defined above is bounded, so let k := maxA. Thus, there

exit k blow-ups (x1
n, r

1
n)n, ...., (x

k
n, r

k
n)n satisfying the property (P) defined above. That is,

lim
n→+∞

rin
din

= 0 ∀ i ∈ J1, kK, (4.27)

where din = inf
1≤j≤l

j 6=i

|xi
n−xj

n| if k ≥ 2, and d1n = 1 if k = 1. Now, by setting βn = 1
2

√
di
n

rin
and applying

Proposition 2.3, then there exists (bin)n satisfying bin ≤ 1
2

√
di
n

rin
and bin −→

n→+∞
+∞, such that

lim
n→+∞

∫

Bbinrin
(xi

n)

e4undV0 =
16π2

k0
, ∀i = 1, ..., k. (4.28)

If we set Ri
n = binr

i
n, then it is clear that (4.21) is satisfied, and (4.24) follows from (4.28). If we

apply again Proposition 2.3 by choosing βn = 1
4
Ri

n

rin
, and using (4.28) we arrive at

lim
n→+∞

∫

BRi
n
(xi

n)\B 1
4
Ri

n
(xi

n)

e4undV0 = 0, ∀i = 1, ..., k. (4.29)

Hence

lim
n→+∞

∫

B 1
4
Ri

n
(xi

n)

e4undV0 = lim
n→+∞

∫

BRi
n
(xi

n)

e4undV0 =
16π2

k0
, ∀i = 1, ..., k. (4.30)

Now, Since Ri
n = binr

i
n ≤

√
rind

i
n, then we have

lim
n→+∞

Ri
n

din
= 0 ∀ i ∈ J1, kK, (4.31)

which proves (4.22).
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It remains then to prove (4.23). Suppose by contradiction that (4.23) is false, then there are

balls Bρn(zn) ⊂ M \
k⋃

j=1

B 1
2R

j
n
(xj

n) such that

∫

Bρn (zn)

e4undV0 ≥ π2

k0
and lim

n→+∞

ρn
dn(zn)

= 0,

where we recall that dn(z) = inf
1≤j≤k

|xj
n − z|. Then there exist rn ≤ ρn and a ball Brn(an) ⊂

M \⋃k
j=1 B 1

2R
j
n
(xj

n) such that

π2

k0
=

∫

Brn (an)

e4undV0 = sup
Brn (y)⊂M\

⋃
k
j=1 B 1

2
R

j
n
(xj

n)

∫

Brn (y)

e4undV0. (4.32)

Let us show that

lim
n→+∞

rn
dn(an)

= 0. (4.33)

If (4.33) was false, then by passing to a subsequence if necessary, we would have for some constant
C independent of n,

rn ≥ Cdn(an) (4.34)

and without loss of generality we may suppose that dn(an) = |x1
n − an|. Set dn := dn(an) and

define :

J := { j ∈ J1, kK : |xj
n − x1

n| ≤ Cdn ∀n },

where C is a positive constant independent of n. Observing that 1 ∈ J , so by relabeling the
blow-ups, we may suppose that J = J1,mK, with 1 ≤ m ≤ k, and by passing to a subsequence if
necessary, we have

∀j ∈ J1,mK, |xj
n − x1

n| ≤ C0dn ∀n, (4.35)

and

∀j ∈ Jm+ 1, kK, lim
n→+∞

dn

|xj
n − x1

n|
= 0, (4.36)

where C0 is a positive constant independent of n that we assume, without loss of generality, satis-
fying C0 ≥ 1.

Now by using (4.32), (4.34) and (4.35) one can easily check that

∀ Br(y) ⊂
m⋃

j=1

B8C0dn(x
j
n)\

m⋃

j=1

B 1
2R

j
n
(xj

n),

∫

Br(y)

e4undV0 ≥ π2

k0
=⇒ r ≥ α inf

1≤j≤m
|y−xj

n|, (4.37)

where α is a positive constant independent of n. Thus by applying Proposition 4.3, where we take
Sn = 4C0dn and using (4.37), we get

lim
n→+∞

∫

B4C0dn (x1
n)\

⋃
m
j=1 B

R
j
n
(xj

n)

e4undV0 = 0,

which contradicts (4.32) since Brn(an) ⊂ B4C0dn(x
1
n) \

⋃m
j=1 BRj

n
(xj

n). So this proves (4.33).
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Since 1
2R

i
n ≤ |xi

n − an|, then it follows from (4.29), (4.32) and (4.33) that for n large enough we
have

Ri
n ≤ 4

3
|xi

n − an| ∀i = 1, ..., k. (4.38)

Indeed, if (4.38) were not satisfied, then by passing to a subsequence one could check by using (4.33)

that Brn(an) ⊂ BRi
n
(xi

n) \B 1
4R

i
n
(xi

n), so by (4.29) we would have that lim
n→+∞

∫

Brn(an)

e4undV0 = 0

contradicting thus (4.32).

Now, by using Proposition 2.5, where we take xn = an, r̂n = 1
4dn, and using (4.33) and (4.38),

it is not difficult to see that (an, rn) is a blow-up for (un)n, and by using (4.27) and (4.33) we see
that the (k + 1) blow-ups (x1

n, r
1
n), ..., (x

k
n, r

k
n), (an, rn) satisfy the property (P). This contradicts

the fact that k = maxA. The proof of Proposition 4.4 is then complete.
�

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let (un, fn) as in Theorem 1.1. If the first alternative in Theorem 1.1 does

not hold, then by Proposition 4.4 there are k blow-ups (x1
n, r

1
n)n, ...., (x

k
n, r

k
n)n with 1 ≤ k ≤ k0

16π2 ,

and k sequences (R1
n)n, ..., (R

k
n)n of positive numbers satisfying (4.21)-(4.24) in Proposition 4.4. If

we apply Proposition 4.3 by taking Sn = 2 diam(M), we obtain

lim
n→+∞

∫

M\
⋃k

i=1 BRi
n
(xi

n)

e4undV0 = 0, (4.39)

which implies since the balls BRi
n
(xi

n) are pairwise disjoint,

lim
n→+∞

∫

M

e4undV0 = lim
n→+∞

k∑

i=1

∫

BRi
n
(xi

n)

e4undV0. (4.40)

Since by (4.24) we have

lim
n→+∞

∫

BRi
n
(xi

n)

e4undV0 =
16π2

k0
∀i = 1, ..., k, (4.41)

and since

∫

M

e4undV0 = 1, then we get from (4.40) and (4.41) that

k =
k0

16π2
. (4.42)

On the other hand, since M is compact, then by passing to a subsequence, there exist m distincts
points a1, ..., am ∈ M with m ≤ k such that for any i = 1, ..., k, the sequence (xi

n)n converges to a
limit in {a1, ..., am}. For any i = 1, ...,m, if we set

li = #{ j ∈ J1, kK : lim
n→∞

xj
n = ai }, (4.43)

then we have

l1 + · · ·+ lm = k =
k0

16π2
, (4.44)

where we have used (4.42).
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Let now ϕ ∈ C0(M). Then we have by (4.39)

lim
n→+∞

∫

M

ϕe4undV0 = lim
n→+∞

k∑

i=1

∫

BRi
n
(xi

n)

ϕe4undV0. (4.45)

But we have by the mean-value Theorem
∫

BRi
n
(xi

n)

ϕe4undV0 = ϕ(yin)

∫

BRi
n
(xi

n)

e4undV0 (4.46)

for some yin ∈ BRi
n
(xi

n). Since Ri
n → 0 as n → ∞, then we have

lim
n→+∞

yin = lim
n→+∞

xi
n ∈ { a1, ..., am }. (4.47)

It follows from (4.45) by using (4.43), (4.44), (4.46) and (4.47) that

lim
n→+∞

∫

M

ϕe4undV0 =
16π2

k0

m∑

i=1

liϕ(ai).

This achieves the proof of Theorem 1.1.
�

5. The flow

In this section we prove our results concerning the Q-curvature flow. Through this section we
assume that the total Q-curvature k0 satisfies k0 > 0 since k0 ≤ 0 is included in the case k0 ≤ 16π2

which has been already proved by S. Brendle [3].

Lemma 5.1. Let u ∈ C∞(M × [0, T )) be the solution of problem (1.15) defined on a maximal
interval [0, T ), and set

At :=
{
x ∈ M : u(t, x) ≥ α0

}
, t ∈ [0, T ),

where α0 =
1

4
log

(
1

2|M |

∫

M

e4u0dV0

)
, and where |M | is the volume of (M, g0). For any L0 > 0,

there exists a positive constant C0 depending only on L0 and M such that, for any T0 ∈ [0, T ), if

‖u0‖H2(M) ≤ L0 and inf
t∈[0,T0]

E(u(t)) ≥ −L0, (5.1)

then At has volume |At| (with respect to g0) satisfying

|At| ≥ exp
(
−C0e

2k0T0
)

for all t ∈ [0, T0]. (5.2)
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Proof. Through the proof of Lemma 5.1, C will denote a positive constant depending only on L0

and M , whose value may change from line to line.

Since by (1.16) the volume of the conformal metric e2u(t)g0 remains constant, we may assume
without loss of generality that for all t ∈ [0, T )

∫

M

e4u(t)dV0 = 1. (5.3)

Thus the first equation in (1.15) becomes

e4u∂tu = −1

2
(P0u+Q0) +

1

2
k0e

4u. (5.4)

Multiplying equation (5.4) by u(t) and integrating on M with respect to dV0, and using (5.3), one
gets

d

dt

∫

M

ue4u dV0 = −2

∫

M

P0u · u dV0 − 2

∫

M

Q0u dV0 + 2k0

∫

M

ue4u dV0. (5.5)

Let L0 ∈ R and T0 ∈ [0, T ) such that (5.1) is satisfied. Then we have for any t ∈ [0, T0]

1

2

∫

M

P0u · u dV0 +

∫

M

Q0u dV0 = E(u(t)) ≥ −L0. (5.6)

It follows from (5.5) and (5.6) that

d

dt

∫

M

ue4u dV0 ≤ −
∫

M

P0u · u dV0 + 2k0

∫

M

ue4u dV0 + 2L0

which implies since P0 is positive

d

dt

∫

M

ue4u dV0 ≤ 2k0

∫

M

ue4u dV0 + 2L0. (5.7)

By setting Y (t) =

∫

M

ue4u dV0, it follows from (5.7) that for all t ∈ [0, T0],

Y (t) ≤
(
Y (0) +

L0

k0

)
e2k0t ≤ Ce2k0T0 , (5.8)

where the constant C depends only L0 and M since Y (0) depends only on the H2-norm of u0 by
Adams inequality (see section 2).

Since ue4u ≥ − e−1

4 , then we get from (5.8), for any A ⊂ M ,
∫

A

ue4u dV0 ≤ Ce2k0T0 . (5.9)

For z > 0, let ϕ(z) = z log z. Then ϕ is convex on (0,+∞), and it satisfies for each λ > 1 and
z > 0,

z =
ϕ(λz)

ϕ(λ)
− ϕ(z)

logλ
,

which implies, since ϕ(z) ≥ −e−1 for any z > 0,

z ≤ ϕ(λz)

ϕ(λ)
+

e−1

logλ
. (5.10)
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For t ∈ [0, T0], let At ⊂ M defined by

At = { x ∈ M : u(x, t) ≥ α0 }
where

α0 =
1

4
log

(
1

2|M |

∫

M

e4u0dV0

)
=

1

4
log

(
1

2|M |

)
.

Since ϕ is convex, then it follows from Jensen inequality

ϕ

(
1

|At|

∫

At

e4udV0

)
≤ 1

|At|

∫

At

ϕ
(
e4u
)
dV0 (5.11)

But by (5.9) we have

1

|At|

∫

At

ϕ
(
e4u
)
dV0 ≤ Ce2k0T0

|At|
,

hence it follows from (5.11) that

ϕ

(
1

|At|

∫

At

e4udV0

)
≤ Ce2k0T0

|At|
. (5.12)

Now, if |At| ≥ 1, then the estimate (5.2) is trivially satisfied by taking C0 any positive constant,
and Lemma 5.1 is proved in this case. Thus we may suppose that |At| < 1. Then by using (5.10)

with λ =
1

|At|
and z =

∫

At

e4udV0, we have

∫

At

e4udV0 ≤ |At|
log 1

|At|

ϕ

(
1

|At|

∫

At

e4udV0

)
+

e−1

log 1
|At|

,

which gives by using (5.12)
∫

At

e4udV0 ≤
(
Ce2k0T0 + e−1

) 1

log 1
|At|

≤ Ce2k0T0

log 1
|At|

. (5.13)

On the other hand, we have

1 =

∫

M

e4udv0 =

∫

At

e4udV0 +

∫

M\At

e4udV0 (5.14)

and since e4u < e4α0 = 1
2|M| on M \At, then (5.14) implies

1

2
≤
∫

At

e4udV0

which together with (5.13) give

log
1

|At|
≤ Ce2k0T0 .

This achieves the proof Lemma 5.1. �

Lemma 5.1 allows us to prove the following estimates on the solution :
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Proposition 5.1. Let u ∈ C∞(M × [0, T ) be the solution of problem (1.15) defined on a maximal
interval [0, T ). For any L0 > 0, there exists a positive constant C0 depending on L0 and M such
that, for any T0 ∈ [0, T ), if

‖u0‖H2(M) ≤ L0 and inf
t∈[0,T0]

E(u(t)) ≥ −L0,

then we have
sup

t∈[0,T0]

‖u(t)‖H2(M) ≤ exp
(
C0e

2k0T0
)
. (5.15)

Moreover, for any k ∈ N, there exist a positive constant Ck depending on k, L0, T0 and M such that

sup
t∈[0,T0]

‖u(t)‖Hk(M) ≤ Ck. (5.16)

Proof. Through the proof of Proposition 5.1, C will denote a positive constant depending only on
L0 and M , whose value may change from line to line. For any measurable set A ⊂ M , we shall
denote its volume with respect to the metric g0 by |A|.

Since by (1.16) the volume of the conformal metric e2u(t)g0 remains constant, we may assume
without loss of generality that ∫

M

e4u(t)dV0 = 1. (5.17)

This implies by using the elementary inequality z ≤ ez, that∫

A

u(t)dV0 ≤ 1

4

∫

A

e4u(t)dV0 ≤ 1

4
(5.18)

for any A ⊂ M . Let T0 ∈ [0, T ) and L0 > 0 such that

inf
t∈[0,T0]

E(u(t)) ≥ −L0.

If we let A = At, where At is as in Lemma 5.1, then we have by using (5.18) and the definition of
the set At, for any t ∈ [0, T0],

∣∣∣∣
∫

M

u(t)dV0

∣∣∣∣ ≤
∣∣∣∣
∫

At

u(t)dV0

∣∣∣∣+
∣∣∣∣∣

∫

M\At

u(t)dV0

∣∣∣∣∣

≤ C +

∣∣∣∣∣

∫

M\At

u(t)dV0

∣∣∣∣∣ . (5.19)

But by the Cauchy-Schwarz inequality we have∣∣∣∣∣

∫

M\At

u(t)dV0

∣∣∣∣∣ ≤ |M \At|
1
2 ‖u‖L2(M),

and by replacing this inequality in (5.19), we get for any ε > 0,
(∫

M

u(t)dV0

)2

≤ (1 + ε) |M \At|‖u(t)‖2L2(M) + Cε−1 + C. (5.20)

Now, from Poincaré’s inequality we have

‖u(t)‖2L2(M) ≤
1

λ1

∫

M

P0u(t) · u(t) dV0 + |M | |u(t)|2, (5.21)



COMPACTNESS PROPERTIES FOR GEOMETRIC FOURTH ORDER ELLIPTIC EQUATIONS WITH APPLICATION TO THE Q-CURVATURE FLOW33

where λ1 is the first positive eigenvalue of P0, and u(t) =
1

|M |

∫

M

u(t)dV0 is the average of u(t).

Thus it follows from (5.20) and (5.21) that
(
1− (1 + ε)|M \At|

|M |

)
‖u(t)‖2L2(M) ≤

1

λ1

∫

M

P0u · u dV0 +
C

|M |ε
−1 +

C

|M |
that is

(|At| − ε|M \At|) ‖u(t)‖2L2(M) ≤
|M |
λ1

∫

M

P0u · u dV0 + Cε−1 + C. (5.22)

Since by Lemma 5.1 we have |At| ≥ exp
(
−C0e

2k0T0
)
, then by choosing ε = 1

2|M| exp
(
−C0e

2k0T0
)

in (5.22) and observing that |M \At| ≤ |M |, we obtain

‖u(t)‖2L2(M) ≤ C

(∫

M

P0u(t) · u(t) dV0 + 1

)
exp

(
C0e

2k0T0
)
. (5.23)

Since the functional E is decreasing along the flow by (1.17), then

1

2

∫

M

P0u(t) · u(t) dV0 +

∫

M

Q0u(t) dV0 = E(u(t)) ≤ E(u0),

hence ∫

M

P0u(t) · u(t) dV0 ≤ C‖u(t)‖L2(M) + C. (5.24)

It follows from (5.23) and (5.24) that

‖u‖2L2(M) ≤
(
‖u(t)‖L2(M) + 1

)
exp

(
Ce2k0T0

)
,

which implies that

‖u(t)‖L2(M) ≤ exp
(
Ce2k0T0

)
. (5.25)

Combining (5.24) and (5.25) we get (5.15). The higher order estimate (5.16) follows as in S.
Brendle [3].

�

Proof of Theorem 1.2. Step 1 Global existence of the flow. Let u ∈ C∞(M × [0, T )) be the
solution of problem (1.15) defined on a maximal interval [0, T ), satisfying (1.18), that is

L := inf
t∈[0,T )

E(u(t)) > −∞. (5.26)

Suppose by contradiction that T < +∞, then it follows from Proposition 5.1 by taking L0 =
‖u0‖H2(M) + |L| that

sup
t∈[0,T )

‖u(t)‖H2(M) < exp
(
C0e

2k0T
)
,

and for for any k ≥ 2 :

sup
t∈[0,T )

‖u(t)‖Hk(M) < +∞. (5.27)

It is clear that (5.27) implies that the solution u(t) would be extended beyond T giving thus a
contradiction. This proves Step 1.
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Step 2 Convergence of the flow. According to the first step, the solution u is defined on
[0,+∞), and (5.26) becomes

L := inf
t∈[0,+∞)

E(u(t)) > −∞. (5.28)

Since by (1.16) the volume of the conformal metric e2u(t)g0 remains constant, we may assume
without loss of generality that ∫

M

e4u(t)dV0 = 1. (5.29)

By using (1.17), we get for any T > 0,
∫ T

0

∫

M

e4u(t)|∂tu(t)|2dV0dt = E(u0)− E(u(T )) ≤ E(u0)− L,

which implies ∫ +∞

0

∫

M

e4u(t)|∂tu(t)|2dV0dt ≤ E(u0)− L. (5.30)

By using the mean value theorem, we obtain from (5.30), that for any n ∈ N, there exits
tn ∈ [n, n+ 1] such that

lim
n→+∞

∫

M

e4u(tn)|∂tu(tn)|2dV0 = 0. (5.31)

Now if we set

un = u(tn) and fn = 2e4un∂tu(tn) +Q0

then we have from (1.15)

P0un + fn = k0e
4un (5.32)

with ∫

M

e4undV0 = 1

and

‖fn −Q0‖L1(M) ≤ 2

(∫

M

e4undV0

)1/2(∫

M

e4un |∂tu(tn)|2dV0

)1/2

= 2

(∫

M

e4un |∂tu(tn)|2dV0

)1/2

−→
n→+∞

0.

Since we are supposing k0 6∈ 16π2
N

∗, then we can apply Corollary 1.1 to get, for any p ≥ 1
∫

M

ep|un|dV0 ≤ Cp, (5.33)

which implies by using (5.31) that for any q ∈ [1, 2)

‖fn‖Lq(M) ≤ Cq (5.34)

for some constant Cq depending on q. Thus it follows from the elliptic regularity theory applied to
equation (5.32) by using (5.33) and (5.34) that (un)n is bounded in W 4,q(M) for any q ∈ [1, 2). But
by Sobolev embedding theorem we have W 4,q(M) ⊂ Cα(M) for any α ∈ (0, 1), and by applying
the elliptic regularity theory again to equation (5.32), we obtain that (un)n is bounded in H4(M).
In particular we have that (un)n is bounded in H2(M), that is

‖un‖H2(M) ≤ C, (5.35)
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where C is a positive constant depending only on L, u0 and M . Now, let us define vn(t) := u(t+tn).
Then vn is a solution of problem (1.15) where u0 is replaced by un, that is




∂tvn = − 1
2e

−4vn (P0vn +Q0) +
k0

2

vn(0) = un.

(5.36)

We want to apply Proposition 5.1 to vn. We have

inf
t∈[0,1]

E(vn(t)) = inf
t∈[0,1]

E(u(t+ tn)) = inf
t∈[tn,tn+1]

E(u(t)) ≥ L,

where L is given by (5.28). Then by Proposition 5.1, where we choose T0 = 1 and L0 = |L| + C
with C as in (5.35), there exist a positive constant C0 depending on L, u0 and M , such that

sup
t∈[0,1]

‖vn(t)‖H2(M) ≤ exp
(
C0e

2k0
)
,

that is
sup

t∈[tn,tn+1]

‖u(t)‖H2(M) = sup
t∈[0,1]

‖vn(t)‖H2(M) ≤ exp
(
C0e

2k0
)
,

and since n ≤ tn ≤ n+ 1 for all n ∈ N, then we have

sup
t∈[0,+∞)

‖u(t)‖H2(M) ≤ exp
(
C0e

2k0
)
. (5.37)

Following the argument of S. Brendle[3], one gets from (5.37) that,

sup
t∈[0,+∞)

‖u(t)‖Hk(M) ≤ Ck

for any k ≥ 2, and the convergence of the flow follows as in S. Brendle [3]. �

Proof of Theorem 1.3. We proceed by contradiction. For u ∈ C∞(M), let Φ(t, u) be the solution
of (1.15) such that Φ(0, u) = u, that is,





∂tΦ = − 1
2e

−4Φ (P0Φ+Q0) +
1
2

k0∫
M

e4Φ dV0

Φ(0, u) = u.

(5.38)

Let [0, Tu) be the maximal existence interval of Φ and suppose by contradiction that

inf
t∈[0,Tu)

E(Φ(t, u)) = −∞ ∀u ∈ C∞(M). (5.39)

Let X := C∞(M) endowed with its natural C∞ topology , and let us introduce the sub-level set

X0 := { u ∈ X : E(u) ≤ −L }, (5.40)

where L > 0 is large enough. One fundamental property of X0 is its invariance under the flow Φ,
that is, if u ∈ X0, then Φ(t, u) ∈ X0 for all t ∈ [0, Tu), as it can be immediately checked by using
the fact that E is decreasing along the flow Φ(see formula 1.17))

Following Z. Djadli and A. Machioldi [8], one can prove that X0 is not contractible. Indeed, in
[8] the set X0 consists of H2- functions u satisfying E(u) ≤ −L, but by following the same proof
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as in [8], one can easily see that the same arguments work when considering C∞ functions and the
C∞ topology on X0. Then we shall use our flow Φ to construct a deformation retraction from X
onto X0, which would give a contradiction since X is contractible as a topological vector space.

By using (5.39) we can define for any u ∈ X

tu = min{ t ∈ [0, Tu) : E(Φ(t, u)) ≤ −L }. (5.41)

Thus we have by using the continuity of Φ that

E(Φ(tu, u)) = −L. (5.42)

We extend Φ on [0,+∞) by considering Φ̂ : [0,+∞)×X → X as follows

Φ̂(t, u) =





Φ(t, u) if t ∈ [0, tu]

Φ(tu, u) if t ≥ tu.

By using Proposition 5.1 and the fact that the functional E is decreasing along the flow Φ (see

formula (1.17)), one can prove that Φ̂ is continuous on [0,+∞)×X .

We define now the following homotopy map : H : [0, 1]×X → X by

H(t, u) =





Φ̂( t
1−t , u) if t ∈ [0, 1)

Φ̂(tu, u) if t = 1.

Then it is easy to see that we have




H(0, u) = u ∀ u ∈ X,

H(t, u) = u ∀ u ∈ X0, ∀ t ∈ [0, 1]

H(1, u) ∈ X0 ∀ u ∈ X.

This proves that X0 is a deformation retract of X which is impossible since X0 is non contractible.
The proof of Theorem 1.3 is then complete.

�

Proof of Theorem 1.4. Let S be the set of all solutions of the Q-curvature equation

P0u+Q0 = k0e
4u (5.43)

such that ∫

M

e4udV0 = 1

(we note here that by using (5.43), the last condition is automatically satisfied when k0 6= 0).

According to Corollary 1.1, we have for any k ∈ N

‖u‖Ck(M) ≤ Ck ∀u ∈ S (5.44)
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where Ck is a positive constant independent of u. It follows from (5.44) that the functional E
satisfies

E(u) ≥ L ∀u ∈ S (5.45)

for some constant L ∈ R independent of u.

Let λ < L, we shall prove that for any u0 ∈ C∞(M) with E(u0) ≤ λ, the solution u(t) of (1.15)
such that u(0) = u0, satisfies

lim
t→T

E(u(t)) = −∞, (5.46)

where [0, T ) is the maximal existence interval of u. Indeed, suppose by contradiction that (5.46)
does not hold. Then according to Theorem 1.2, we have T = +∞, and the solution u(t) converges
(as t → +∞) to a function u∞ ∈ C∞(M) satisfying

P0u∞ +Q0 =
k0∫

M
e4u∞dV0

e4u∞ . (5.47)

Moreover, since the functional E is decreasing along the flow, u∞ satisfies

E(u∞) ≤ E(u0) ≤ λ. (5.48)

On the other hand, since E is translation invariant, that is, E(u + c) = E(u) ∀c ∈ R, we may

assume by adding an appropriate constant to u∞, that

∫

M

e4u∞dV0 = 1. This implies by using

(5.47) that u∞ ∈ S. Thus it follows from (5.45) that

E(u∞) ≥ L

which contradicts (5.48) since λ < L. This achieves the proof of Theorem 1.4.
�
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Gorgeu, 29238 Brest Cedex 3 France

E-mail address: Rachid.Regbaoui@univ-brest.fr


	1. Introduction and statement of the results 
	2. Preliminaries and blow-up analysis
	3. Integral Harnack type inequality 
	4. Volume quantization and proof of Theorem 1.1 
	5. The flow
	References

