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ADEQUATE SUBGROUPS AND INDECOMPOSABLE MODULES

ROBERT GURALNICK, FLORIAN HERZIG, AND PHAM HUU TIEP

Abstract. The notion of adequate subgroups was introduced by Jack Thorne [59]. It
is a weakening of the notion of big subgroups used by Wiles and Taylor in proving auto-
morphy lifting theorems for certain Galois representations. Using this idea, Thorne was
able to strengthen many automorphy lifting theorems. It was shown in [22] and [23] that
if the dimension is smaller than the characteristic then almost all absolutely irreducible
representations are adequate. We extend the results by considering all absolutely irre-
ducible modules in characteristic p of dimension p. This relies on a modified definition
of adequacy, provided by Thorne in [60], which allows p to divide the dimension of the
module. We prove adequacy for almost all irreducible representations of SL2(p

a) in the
natural characteristic and for finite groups of Lie type as long as the field of definition
is sufficiently large. We also essentially classify indecomposable modules in characteris-
tic p of dimension less than 2p − 2 and answer a question of Serre concerning complete
reducibility of subgroups in classical groups of low dimension.
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1. Introduction

Throughout the paper, let k be a field of characteristic p and let V be a finite dimensional
vector space over k. Let ρ : G→ GL(V ) be an absolutely irreducible representation. Thorne
[59] called (G,V ) is adequate if the following conditions hold (we rephrase the conditions
slightly by combining two of the properties into one):

(i) p does not divide dimV ;
(ii) Ext1G(V, V ) = 0; and
(iii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

If G is a finite group of order prime to p, then it is well known that (G,V ) is adequate.
In this case, condition (iii) is often referred to as Burnside’s Lemma, and it is a trivial
consequence of the Artin-Wedderburn Theorem. Furthermore, if G is a connected algebraic
group over k and V is a faithful, absolutely irreducible rational G-module of dimension
coprime to p, then (G,V ) is adequate (cf. [21, Theorem 1.2] and Theorem 11.5).

These conditions are a weakening of the conditions used by Wiles and Taylor in study-
ing the automorphic lifts of certain Galois representations. See [9] for some applications.
Thorne [59] generalized various results assuming the weaker hypotheses for p odd. We
refer the reader to [59] for more references and details. See also [12] for further applica-
tions. Recently Thorne [60, Corollary 7.3] has shown that one can relax the condition that
p ∤ (dimV ), still with p odd. So more generally, we say that an absolutely irreducible
representation ρ : G→ GL(V ) is adequate if:

(i) H1(G, k) = 0;
(ii) H1(G, (V ∗ ⊗ V )/k) = 0;
(iii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

Note that we allow the case p = 2 in the definition. Thorne has used this extended notion
of adequacy to prove an automorphy lifting theorem for 2-adic Galois representations of
unitary type over imaginary CM fields, see [60, Theorem 5.1].

Observe that if p ∤ (dimV ), k is a direct summand of V ∗ ⊗ V . Thus, Ext1G(V, V ) = 0
implies that H1(G, k) = 0 in this case. Also note that, by the long exact sequence in
cohomology, if H2(G, k) = 0, then H1(G, (V ∗ ⊗ V )/k) = 0 follows from Ext1G(V, V ) = 0.
Thus, under the assumption that either p ∤ (dimV ) or H i(G, k) = 0 for i = 1, 2, adequacy
is equivalent to the two conditions:

(i) Ext1G(V, V ) = 0;
(ii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.
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Following [20], we say that the representation ρ : G → GL(V ), respectively the pair
(G,V ), is weakly adequate if End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

It was shown in [22, Theorem 9] that:

Theorem 1.1. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module. Let G+ denote the subgroup generated by the p-
elements of G. If dimW ≤ (p− 3)/2 for an absolutely irreducible kG+-submodule W of V ,
then (G,V ) is adequate.

The example G = SL2(p) with V irreducible of dimension (p − 1)/2 shows that the
previous theorem is best possible. However, the counterexamples are rare. In fact, as shown
in [23, Corollary 1.5], if dimV < p − 3, then the (p ± 1)/2-dimensional representations of
SL2(p) are the only two counterexamples. More precisely, in [23] we extend Theorem 1.1 to
the more general situation that dimW < p and show that almost always (G,V ) is adequate:

Theorem 1.2. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module, and let G+ denote the subgroup generated by the
p-elements of G. Suppose that the dimension d of any irreducible kG+-submodule in V is
less than p. Then the following statements hold.

(i) (G,V ) is weakly adequate.
(ii) Let W be an irreducible kG+-submodule of V ⊗kk. Then (G,V ) is adequate, unless

the group H < GL(W ) induced by the action of G+ on W is as described in one
of the exceptional cases (a), (b)(i)–(vi) listed in [23, Theorem 1.3]. In particular,
if d < p − 3 and (G,V ) is not adequate, then d = (p ± 1)/2 and H ∼= SL2(p) or
PSL2(p).

Above the threshold p−1 for dimW , there are lots of linear groups that are not adequate.
Still, if dimV = p, the situation is very much under control. In this paper, we extend
adequacy results to the case of linear groups of degree p and generalize the asymptotic
result [21, Theorem 1.2] to disconnected algebraic groups G (with p ∤ [G : G0]) allowing
at the same time that p divides the dimension of the G-module. Next, we show that, in
all cases considered in Theorem 1.2, under some additional mild condition (say, G is not
p-solvable if p is a Fermat prime, and p > 5), one in fact has dimExt1G(V, V ) ≤ 1 – a
result of interest in the deformation theory. An outgrowth of our results leads us to prove
an analogue of the first author’s result [19] and answer a question of Serre on complete
reducibility of finite subgroups of orthogonal and symplectic groups of small degree. In
fact, we essentially classify indecomposable modules in characteristic p of dimension less
than 2p− 2.

Note that if the kernel of ρ has order prime to p, then there is no harm in passing to
the quotient. So we will generally assume that either ρ is faithful or more generally has
kernel of order prime to p. Also, note that the dimension of cohomology groups and the
dimension of the span of the semisimple elements in G in End(V ) does not change under
extension of scalars. Hence, most of the time we will work over an algebraically closed field
k.

Our main results are the following. First we show that the condition that H1(G, k) = 0
in the definition of adequacy is not particularly constraining if dimV is small. In particular,
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the next result follows fairly easily from [19] (see [20, Theorem 4.1]). See Theorem 4.10 for
a slightly more general result.

Theorem 1.3. Let G be a finite irreducible subgroup of GLd(k) with k algebraically closed
of characteristic p. Assume that H1(G, k) 6= 0 and d < 2p−2. Then G is solvable, d = p−1,
p or p+ 1 and one of the following holds:

(i) d = p − 1, p = 2a + 1 is a Fermat prime, [G : Z(G)O2(G)] = p and O2(G) is a
group of symplectic type with O2(G)/Z(O2(G)) (elementary) abelian of order 22a;

(ii) d = p and G has a normal abelian p′-subgroup of index p;
(iii) d = p + 1, p = 2a − 1 is a Mersenne prime, and G contains a normal abelian

p′-subgroup N such that G/N is a Frobenius group of order dp with kernel of order
d.

The following curious corollary is immediate from Theorem 4.10. We suspect that there
is a proof of this that does not require the classification of finite simple groups.

Corollary 1.4. Let G be a finite irreducible subgroup of GLd(k) with k algebraically closed
of characteristic p and d < 2p − 2. Suppose that G has a composition factor of order p.
Then G is solvable. Moreover, either d = p, or d = 2a with p = d± 1 (and so p is either a
Mersenne prime or Fermat prime).

In the situation of Theorem 1.2, Ext1G(V, V ) may be nonzero and so G may fail to be
adequate. Nevertheless, we can prove the following two results, which were motivated
by discussions with Mazur and which are of interest in deformation theory. (Recall [47,
Section 1.2], for instance, that the inequality dimExt1G(V, V ) ≤ n implies that the universal
deformation ring over the ring O of integers of a sufficiently large finite extension of Qp is
a quotient of O[[x1, . . . , xn]]. See also [6, Theorem 2.4].)

Theorem 1.5. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module, and let G+ denote the subgroup generated by the
p-elements of G. Suppose that the dimension d of any irreducible kG+-submodule W in V
is less than p, and let H be the image of G+ in GL(W ).

(i) Suppose the following conditions hold:

(a) If p is a Fermat prime, then G is not p-solvable (equivalently, H is not solvable);
(b) If p = 3, then H 6∼= SL2(3

a) for all a ≥ 2;
(c) If p = 5 and dimkW = 4, then H 6∼= Ω+

4 (5).

Then dimk Ext
1
G(V, V ) ≤ 1 and dimk Ext

1
G(V, V

∗) ≤ 1. In particular, H1(G,Sym2(V )) and
H1(G,∧2(V )) are both at most 1-dimensional.

(ii) In the exceptional cases (p,dimkW,H) = (5, 4,Ω+
4 (5)) or (p,H) = (3,SL2(3

a)) with
a ≥ 2, Ext1G(V, V ) and Ext1G(V, V

∗) are at most 2-dimensional.

Note that one cannot remove the conditions (a)–(c) in Theorem 1.5(i). In fact, in the
case G is p-solvable of Theorem 1.5, Ext1G(V, V ) and Ext1G(V, V

∗) can be of arbitrarily large
dimension. See Example 5.9. On the other hand, if dimkW < (p − 1)/2 in Theorem 1.5,
then H1(G,Sym2(V )) = H1(G,∧2(V )) = 0, see Corollary 5.11.
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In fact, we can show that both Ext1G(V, V ) and Ext1G(V, V
∗) are at most 1-dimensional in

another situation, without any dimension condition, but instead with a condition on Sylow
p-subgroups.

Theorem 1.6. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module, and let G+ denote the subgroup generated by the p-
elements of G. Suppose that the image of G+ in GL(W ) for some irreducible G+-submodule
W of V has Sylow p-subgroups of order p, and that G has no composition factor of order
p. Then dimk Ext

1
G(V, V ) ≤ 1 and dimk Ext

1
G(V, V

∗) ≤ 1. In particular, H1(G,Sym2(V ))
and H1(G,∧2(V )) are both at most 1-dimensional.

Next we determine adequacy of linear groups of degree p:

Theorem 1.7. Let k be a field of characteristic p and G a finite group. Let V be an ab-
solutely irreducible faithful kG-module with dimV = p. Then precisely one of the following
holds:

(i) (G,V ) is adequate;
(ii) G contains a normal abelian subgroup of index p;
(iii) p = 3 and the image of G in PGL(V ) is PSL2(9).

Extending the results of [23, §3], we prove in Corollary 9.4 that, aside from some ex-
ceptions with p = 2, 3 and with (q,dim(V )) = (p, (p ± 1)/2), all nontrivial irreducible
representations of SL2(q) over Fq are adequate. This and other results on weak adequacy
and on Ext1, and the dearth of examples where weak adequacy fails suggest that quite a
lot of irreducible representations are indeed weakly adequate. (Currently, all but one coun-
terexample to weak adequacy are induced modules, and the only primitive counterexample
is given in [20].)

Finally, we classify all low dimensional self-dual indecomposable and non-irreducible kG-
modules V with k algebraically closed of characteristic p and G a finite subgroup of GL(V )
with Op(G) = 1.

First we recall one of the main results of [19] which settled a conjecture of Serre.

Theorem 1.8. Let k be a field of positive characteristic p. Let G be a subgroup of GLn(k) =
GL(V ) with no nontrivial normal unipotent subgroup and p ≥ n+2. Then V is completely
reducible.

Serre asked for an analogous result for the other classical groups. The example Ap <
SOp(k) shows that one cannot do too much better. We also see that there are reducible
indecomposable self-dual SL2(p)-modules of dimensions p and p ± 1 (contained in Sp for
the dimension p − 1 and SO in the other cases). Building on the methods used in com-
puting Ext1, we can essentially classify the self-dual reducible indecomposable modules of
dimension less than 2p− 2.

Theorem 1.9. Let k be an algebraically closed field of characteristic p. Let V be a vector
space over k with dimV ≤ 2p− 3. Suppose that G is a finite subgroup of GL(V ) such that
Op(G) = 1, and the kG-module V is indecomposable and self-dual but not irreducible. Then
p > 3, G+ is quasisimple, VG+ is uniserial, and one of the following statements holds for
some U ∼= U∗ ∈ IBrp(G

+).
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(i) VG+ = (k|U |k), and (G+, p,dimU) is (SL2(q), q−1, p+1), (Ap, p, p−2), (SLn(q), (q
n−

1)/(q − 1), p − 2), (M11, 11, 9), (M23, 23, 21), or (PSL2(p), p, p − 2).
(ii) VG+ = (U |U). Furthermore, (G+, p,dimU) = (SL2(q), q + 1, p − 2), (2A7, 7, 4),

(PSL2(p), p ≡ ǫ(mod 4), (p + ǫ)/2) or (SL2(p), p ≡ ǫ(mod 4), (p − ǫ)/2) with ǫ =
±1.

Moreover, V supports a non-degenerate G-invariant bilinear form that is either symmetric
or alternating. Furthermore, all such forms have the same type, which is symmetric in all
cases, except when (G+, p,dimU) = ((P) SL2(p), p, (p−1)/2) in which case it is alternating.
Conversely, all the listed cases give rise to reducible self-dual indecomposable modules of
dimension < 2p − 2.

In particular, this gives a classification of all finite non-G-cr subgroups for G = Sp(V ) or
SO(V ) with dimV < 2p − 2, see Proposition 8.8 (recall that the notion of G-cr subgroups
was introduced by Serre in [56]). It also yields the following variant of the main result of
[19]:

Corollary 1.10. Let k be an algebraically closed field of characteristic p and V a vector
space over k with d := dimV ≤ p − 1. Suppose G is a finite subgroup of GL(V ) such that
Op(G) = 1 and the kG-module V is self-dual. Then either the kG-module V is completely
reducible, or d = p − 1, G+ = (P) SL2(p), and any G-invariant non-degenerate bilinear
form on V must be alternating.

In Theorem 1.9 and Corollary 1.10, the notation (P) SL2(p) means SL2(p) if p ≡ 1(mod
4) and PSL2(p) if p ≡ 3(mod 4).

This paper is organized as follows. In §2, we describe the structure of quasisimple linear
groups of degree at most 2p. We collect various facts concerning extensions and self-
extensions of simple modules in §3 and prove Theorem 1.3 in §4. Theorems 1.5 and 1.6
are proved in §5. Adequacy of linear groups of degree p is discussed in §6; in particular,
we prove Theorem 1.7. In the next §7, we describe the PIMs for various simple modules
of simple groups. These data are used in §8 to classify reducible self-dual indecomposable
modules of dimension at most 2p − 3, cf. Theorem 1.9, and to classify the finite non-G-cr
subgroups of symplectic and orthogonal groups in dimensions at most 2p−3, cf. Proposition
8.8 and Corollary 1.10. §9 is devoted to proving weak adequacy of SL2(q)-representations,
cf. Proposition 9.1. In §10, we show that almost always the natural module for SLn(q) is
adequate. In §11, we prove Theorem 11.5 concerning adequacy of (possibly disconnected)
reductive algebraic groups and asymptotic adequacy.

Notation. If V is a kG-module and X ≤ G is a subgroup, then VX denote the restriction
of V to X. The containments X ⊂ Y (for sets) and X < Y (for groups) are strict.
Fix a prime p and an algebraically closed field k of characteristic p. Then for any finite
group G, IBrp(G) is the set of isomorphism classes of irreducible kG-representations (or
their Brauer characters, depending on the context), dp(G) denotes the smallest degree of
nontrivial ϕ ∈ IBrp(G), P(ϕ) is the principal indecomposable module (PIM) corresponding
to ϕ, and B0(G) denotes the principal p-block of G. Sometimes we use 1 to denote the
principal representation. Op(G) is the largest normal p-subgroup ofG, Op(G) is the smallest
normal subgroup N of G subject to G/N being a p-group, and similarly for Op′(G) and
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Op′(G) = G+. Furthermore, the Fitting subgroup F (G) is the largest nilpotent normal
subgroup of G, and E(G) is the product of all subnormal quasisimple subgroups of G,
so that F ∗(G) = F (G)E(G) is the generalized Fitting subgroup of G. Given a finite-
dimensional kG-representation Φ : G→ GL(V ), we denote by M the k-span

〈Φ(g) | Φ(g) semisimple〉k.

If M is a finite length module over a ring R, then define soci(M) by soc0(M) = 0 and
socj(M)/ socj−1(M) = soc(M/ socj−1(M)). If M = socj(M) with j minimal, we say that
j is the socle length of M . If V is a vector space endowed with a non-degenerate quadratic
form, then O(V ) denotes the full isometry group of the form. For a linear algebraic group
G, G0 denotes the connected component containing the identity.

2. Linear groups of low degree

First we recall the description of absolutely irreducible non-solvable linear groups of
degree less than p = char(k), relying on the main result of Blau and Zhang [5]:

Theorem 2.1. [23, Theorem 2.1]. Let W be a faithful, absolutely irreducible kH-module

for a finite group H with Op′(H) = H. Suppose that 1 < dimW < p. Then one of the
following cases holds, where P ∈ Sylp(H).

(a) p is a Fermat prime, |P | = p, H = Op′(H)P is solvable, dimW = p−1, and Op′(H)
is absolutely irreducible on W .

(b) |P | = p, dimW = p− 1, and one of the following conditions holds:
(b1) (H, p) = (SUn(q), (q

n + 1)/(q + 1)), (Sp2n(q), (q
n + 1)/2), (2A7, 5), (3J3, 19), or

(2Ru, 29).
(b2) p = 7 and H = 61 · PSL3(4), 61 · PSU4(3), 2J2, 3A7, or 6A7.
(b3) p = 11 and H =M11, 2M12, or 2M22.
(b4) p = 13 and H = 6 · Suz or 2G2(4).

(c) |P | = p, dimW = p − 2, and (H, p) = (PSLn(q), (q
n − 1)/(q − 1)), (Ap, p), (3A6, 5),

(3A7, 5), (M11, 11), or (M23, 23).

(d) (H, p,dimW ) = (2A7, 7, 4), (J1, 11, 7).

(e) Extraspecial case: |P | = p = 2n + 1 ≥ 5, dimW = 2n, Op′(H) = RZ(H),
R = [P,R]Z(R) ∈ Syl2(Op′(H)), [P,R] is an extraspecial 2-group of order 21+2n, V[P,R]

is absolutely irreducible. Furthermore, S := H/Op′(H) is simple non-abelian, and either

S = Sp2a(2
b)′ or Ω−

2a(2
b)′ with ab = n, or S = PSL2(17) and p = 17.

(f) Lie(p)-case: H/Z(H) is a direct product of simple groups of Lie type in characteristic
p.
Furthermore, in the cases (b)–(d), H is quasisimple with Z(H) a p′-group.

Now we prove the following result which extends Theorem 2.1 for quasisimple groups
and is of independent interest. Note that the complex analogue of this result is given by
[63, Theorem 8.1].

Theorem 2.2. Let p be a prime, H a finite quasisimple group of order divisible by p.
Suppose W is a faithful, absolutely irreducible kH-module of dimension d, where p ≤ d ≤ 2p.
Then one of the following statements holds.
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(i) H is a quasisimple group of Lie type in characteristic p.
(ii) (H,dim(W ), p) is as listed in Tables I, IIa, IIb, III, where the fourth column lists

the number of isomorphism classes of W for each choice of (H,dim(W ), p).

Proof. Let L be the universal covering group of S := H/Z(H) and let dp(L) denote the
smallest degree of nontrivial absolutely irreducible kL-representations. Then

(2.1) 2p ≥ dim(W ) ≥ dp(L).

This inequality will allow us to rule out the majority of the cases. We will assume that S
is not isomorphic to any finite simple group of Lie type in characteristic p.

First, let S be a sporadic group. Then dp(L) is listed in [33]. Furthermore, p ≤ 71 and
so dimW ≤ 142. Now the result follows from inspecting [31] and [34] (and also [49] for the
three Conway groups), and is listed in Table III.

Assume now that S = An. The cases 5 ≤ n ≤ 13 can be checked by inspecting [34],
and the result is listed in Table I. If 14 ≤ n ≤ 16, then p ≤ 13, dimW ≤ 26, and so the
statement follows by inspecting [31]. So we may assume n ≥ 17. In this case,

dimW ≤ 2p ≤ 2n < (n2 − 5n+ 2)/2.

Hence, by [27, Lemma 6.1], W is the heart of the natural permutation module of G = An,
yielding the first row of Table I.

Next suppose that S is an exceptional group of Lie type defined over Fq. The cases
S ∈ {2B2(8),G2(3),G2(4),

3D4(2),
2F4(2)

′,F4(2)} can be checked using [34] and lead to the
last six rows of Table IIb. For all other groups, dp(L) is bounded below by the Landazuri-
Seitz-Zalesskii bounds (see [61, Table II] for latest improvements) and one can check that
(2.1) cannot hold. For instance, if S = F4(q) with q ≥ 3, then p ≤ q4 + 1 whereas
dp(L) ≥ q8 + q4 − 2.

From now on we may assume that S is a finite classical group defined over Fq and p ∤ q.
Suppose first that S = PSL2(q). Using [34] we may assume that q ≥ 11. If q is even, then
L = SL2(q) and each ϕ ∈ IBrp(L) has degree q or q ± 1, whereas p | (q ± 1). If in addition
p 6= q ± 1 then 2p ≤ 2(q + 1)/3 < q − 1 ≤ dim(W ), violating (2.1). So p = q ± 1, and
inspecting [7] we arrive at the first multi-row of Table IIa. Assume that q is odd. Then
again L = SL2(q), and we also get additional possibilities ϕ(1) = (q±1)/2 for ϕ ∈ IBrp(L).
Note that p 6= (q ± 1), (q ± 1)/3 (as q ≥ 11 is odd) and (2.1) implies p > (q + 1)/5 as
dp(L) = (q − 1)/2. It follows that p = (q ± 1)/4 or p = (q ± 1)/2. A detailed analysis of
IBrp(L) leads to the 2nd and 3rd multi-rows of Table IIa.

Suppose now that S = PSLn(q) with n ≥ 3. Note that SL4(2) ∼= A8. If (n, q) = (6, 3),
then p ≤ 13 whereas dp(L) ≥ 362 by [26, Table III]. If (n, q) = (6, 2), then p ≤ 31,
so [26, Table III] implies (dimW,p) = (62, 31), as recorded in Table IIa (the 9th row).
The cases (n, q) = (3, q ≤ 7), (4, 3) can be checked using [34]. So we may assume that
(n, q) 6= (3, q ≤ 7), (4, 2), (4, 3), (6, 2), (6, 3). In this case,

dimW ≤ 2p ≤
2(qn − 1)

q − 1
<















(q2 − 1)(q − 1)/ gcd(3, q − 1), n = 3,
(q3 − 1)(q − 1)/ gcd(2, q − 1), n = 4,

(qn−1 − 1)

(

qn−2 − q

q − 1
− 1

)

, n ≥ 5.
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Applying [26, Theorem 1.1], we see that W is one of the Weil modules of L = SLn(q), of
dimension (qn − 1)/(q − 1)− a with a = 0, 1, 2. Note that

qn − 1

q − 1
− 2 > max

{

2(q + 1), 2 ·
qn−2 − 1

q − 1
,
qn−1 − 1

q − 1
,
2

3
·
qn − 1

q − 1

}

.

If q ≥ 3, then (qn − 1)/(q − 1)− 2 > 2(qn−1 − 1)/(q − 1). Recall that p |
∏n

i=1(q
i − 1) and

p ≤ dimW ≤ 2p. So we arrive at one of the following possibilities:
• q = 2, p = 2n−1 − 1, whence W is the unique Weil module of dimension 2p by [26,

Theorem 1.1], leading to the 9th row of Table IIa;
• p = (qn − 1)/(q − 1), whence n is an odd prime, S = L, and W is one of q − 2 Weil

modules of dimension p by [26, Theorem 1.1], leading to the 8th row of Table IIa;
• 2p = (qn − 1)/(q − 1). Here, q is odd and n must be even, but then

qn − 1

2(q − 1)
=
qn − 1

q2 − 1
·
q + 1

2

cannot be a prime.

Next suppose that S = PSUn(q) with n ≥ 3. The cases (n, q) = (3, q ≤ 5), (4, q ≤ 3),
(5, 2), (6, 2) can be checked using [34]. So we may assume that none of these cases occurs.
Now observe that if n = p = 3 | (q + 1) then 2p < (q − 1)(q2 + 3q + 2)/6, and furthermore

2p ≤
2(qn − (−1)n)

q + 1
<































(q − 1)(q2 − q + 1)/3, n = 3, p 6= 3 | (q + 1),
(2q3 − q2 + 2q − 3)/3, n = 3, 3 ∤ (q + 1)
(q2 + 1)(q2 − q + 1)

gcd(2, q − 1)
− 1, n = 4,

(qn − (−1)n)(qn−1 − q2)

(q + 1)(q2 − 1)
− 1, n ≥ 5.

Applying [30, Theorem 16] and [24, Theorem 2.7], we conclude that W is one of the Weil
modules of L = SUn(q), of dimension (qn − (−1)n)/(q + 1)− b with b = 0,±1. Note that

qn − (−1)n

q + 1
− 1 > max

{

2(q + 1),
2(qn−2 − (−1)n)

q + 1
,
qn−1 + (−1)n

q + 1
,
2(qn − (−1)n)

3(q + 1)

}

.

If q ≥ 3, then
qn − (−1)n

q + 1
− 1 > 2 ·

qn−1 − (−1)n−1

q + 1
.

Recall that p |
∏n

i=2(q
i − (−1)i) and p ≤ dimW ≤ 2p. So we arrive at one of the following

possibilities:
• q = 2, p = (2n−1 − (−1)n−1)/3; in particular, n− 1 ≥ 5 is a prime. Hence W is either

the unique Weil module of dimension 2p, or one of the two Weil modules of dimension
2p − 1, leading to the 11th and 12th rows of Table IIa;

• p = (qn − (−1)n)/(q + 1), whence n is an odd prime, S = L, and W is one of q Weil
modules of dimension p, yielding the 10th row of Table IIa;

• 2p = (qn − (−1)n)/(q + 1). Here, q is odd and n must be even, but then

qn − (−1)n

2(q + 1)
=
qn/2 − (−1)n/2

q + 1
·
qn/2 + (−1)n/2

2
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Table I. Quasisimple linear groups: Alternating groups

H dimW p Class number

An n−

{

2, p | n
1, p ∤ n

n− 1

2
≤ p ≤ n− 1 1

A5 3 3 2
2A5 6 3 1
A6 5, resp. 8, 10 5 2, resp. 1, 1
2A6 10 5 2
3A6 6 5 2
6A6 6 5 4
A7 4 2 2
A7 8, resp. 10 5 1, resp. 2
A7 10, resp. 14 7 1, resp. 2
2A7 4, resp. 6 3 2
2A7 14 7 2
3A7 6 5 2
3A7 9 7 2
6A7 6 5 4
A8 14 7 1
2A8 8 5, 7 1
2A9 8 5, 7 2
2A10 8 5 2
2A11 16 11 1

cannot be a prime.

Now let S = PSp2n(q) with n ≥ 2. Note that Sp4(2)
′ ∼= A6 and PSp4(3)

∼= SU4(2).
Also, the cases (n, q) = (2, 4), (3, 2) can be checked using [34]. So we will assume that
(n, q) 6= (2, q ≤ 4), (3, 2). In this case,

dimW ≤ 2p ≤
2(qn + 1)

gcd(2, q − 1)
<

(qn − 1)(qn − q)

2(q + 1)
.

Using the Landazuri-Seitz-Zalesskii bound for Sp2n(q) with 2 | q and applying [24, Theorem
2.1] to Sp2n(q) with q odd, we now see that q must be odd andW is one of the Weil modules
of L = Sp2n(q), of dimension (qn ± 1)/2. So we arrive at the 4th–7th rows of Table IIa.
Note in addition that if 2 < p = (qn − 1)/4 then q = 5 and n is an odd prime, and if
p = (qn + 1)/4 then q = 3 and n is again an odd prime. Similarly, if p = (qn − 1)/2 then
q = 3 and n is an odd prime, and if p = (qn + 1)/2 then n = 2m.

Now we may assume that S = Ω2n+1(q) with n ≥ 3, or PΩ±
2n(q) with n ≥ 4. Again, the

cases of Ω7(3) and Ω±
8 (2) can be checked directly using [34]. Aside from these cases, one

can verify that (2.1) cannot hold. �
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Table IIa. Quasisimple linear groups: Groups of Lie type. I

H dimW p Class number

SL2(q)
2 | q

p
p

p+ 1

q + 1
q − 1
q − 1

q/2− 1
q/2
1

PSL2(q)
2 ∤ q

p
2p− 2
2p− 1
2p
2p

(q ± 1)/2
(q + 1)/2
(q + 1)/4
(q − 1)/2
(q + 1)/2

2
1
2

(q − 3)/4
(q − 5)/4

SL2(q)
2 ∤ q

p+ 1
2p
2p
2p

(q − 1)/2
(q ± 1)/4
(q − 1)/2
(q + 1)/2

2
2

(q + 1)/4
(q − 1)/4

PSp2n(q), 2 ∤ q, n ≥ 2 p
p = (qn − 1)/2, q = 3
p = (qn + 1)/2, n = 2m

2

Sp2n(3), n odd prime p+ 1 (3n − 1)/2 2
PSp2n(3), n odd prime 2p− 1 (3n + 1)/4 2

Sp2n(q), n odd prime 2p
p = (qn − 1)/4, q = 3
p = (qn + 1)/4, q = 5

2

SLn(q)
n odd prime

p
qn − 1

q − 1
q − 2

SLn(2)
n− 1 ≥ 3 prime

2p 2n−1 − 1 1

SUn(q)
n odd prime

p
qn + 1

q + 1
q

PSUn(2)
n− 1 ≥ 5 prime

2p (2n−1 + 1)/3 1

SUn(2)
n− 1 ≥ 5 prime

2p− 1 (2n−1 + 1)/3 2

3. Extensions and self-extensions

First we recall a convenient criterion concerning self-extensions in blocks of cyclic defect:

Lemma 3.1. [23, Lemma 7.1]. Suppose that G is a finite group and that V is an irreducible
FpG-representation that belongs to a block of cyclic defect. Then Ext1G(V, V ) 6= 0 if and
only if V admits at least two non-isomorphic lifts to characteristic zero. In this case,
dimExt1G(V, V ) = 1.

The next observation is useful in various situations:

Lemma 3.2. Let H ≤ G be a subgroup of index coprime to p = char(k). Suppose that V
is a kG-module and VH = V1 ⊕ V2 is a direct sum of two nonzero H-submodules, at least
one of which is also stabilized by G. Then the G-module V is decomposable.
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Table IIb. Quasisimple linear groups: Groups of Lie type. II

H dimW p Class number

SL3(3) 16, resp. 26 13 1, resp. 3
2 · PSL3(4) 6 3 1
2 · PSL3(4) 10 5, resp. 7 2, resp. 1
41 · PSL3(4) 8 5, resp. 7 2, resp. 4
42 · PSL3(4) 4 3 2
6 · PSL3(4) 6 5 2
PSL4(3) 26 13 2
SU3(3) 14 7 1

SU4(2)
10
6

5
2
1

61 · PSU4(3) 6 5 2
SU5(2) 10 5 1
Sp4(4) 18, resp. 34 17 1, resp. 2
Sp6(2) 7 5, 7 1

2 · Sp6(2) 8 5, 7 1

2 · Ω+
8 (2) 8 5, 7 1

Ω−
8 (2) 34 17 1

2B2(8) 14 7, 13 2

2 · 2B2(8)
8

16, 24
5
13

1

G2(3) 14 7, 13 1
2 ·G2(4) 12 7 1
2F4(2)

′ 26 13 2
3D4(2) 26 13 1

Proof. Suppose for instance that V1 is stabilized by G, and consider the natural projection
π : V → V1 along V2. Write G = ⊔m

i=1giH where m := [G : H] is coprime to p, and let

π̃ =
1

m

m
∑

i=1

giπg
−1
i .

It is straightforward to check that π̃ is G-equivariant, π̃2 = π̃, and Im(π̃) = V1. Hence the
G-module V decomposes as V1 ⊕Ker(π̃). �

From now on we again assume that k is algebraically closed of characteristic p. First we
record the following consequence of the Künneth formula, cf. [4, 3.5.6].

Lemma 3.3. Let H be a finite group. Assume that H is a central product of subgroups
Hi, 1 ≤ i ≤ t, and that Z(H) is a p′-group. Let X and Y be irreducible kH-modules. Write
X = X1 ⊗ . . .⊗Xt and Y = Y1 ⊗ . . .⊗ Yt where Xi and Yi are irreducible kHi-modules.

(i) If Xi and Yi are not isomorphic for two distinct i, then Ext1H(X,Y ) = 0.
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Table III. Quasisimple linear groups: Sporadic groups

H dimW p Class number

M11 5 3 2
2M12 2p 3, 5 2
2J2 6 3, resp. 5 2, resp. 1
M11 10 5 3
2M22 10 5, resp. 7 2, resp. 1
M11 11, 16 11 1
M12 11, resp. 16 11 2, resp. 1
2M12 12 11 1
6Suz 12 7, 11, 13 2
J1 14 11 1
J1 22, 34 19 1
J2 14 7 2
2J2 14 7 1
3J3 18 17 4
M22 20 11 1
3M22 21 11 2
M23 22 11 1
HS 22 11 1
McL 22 11 1
M24 23, resp. 45 23 1, resp. 2
M23 45 23 2
Co3 23 23 1
Co2 23 23 1
2Co1 24 13, 23 1

(ii) If X1 and Y1 are not isomorphic but Xi
∼= Yi for i > 1, then Ext1H(X,Y ) ∼=

Ext1H1
(X1, Y1).

(iii) If Xi
∼= Yi for all i, then Ext1H(X,Y ) ∼= ⊕i Ext

1
Hi
(Xi, Yi).

Lemma 3.4. Let G be a finite group with a normal subgroup N = Op(N) and V be a
kG-module. Suppose that N acts trivially on V . Then H1(G,V ) ∼= H1(G/N, V ).

Proof. Since N acts trivially on V , we have that H1(N,V ) = Hom(N,V ). Furthermore,
Hom(N,V ) = 0 as Op(N) = N . Now the inflation-restriction sequence in cohomology
implies that the sequence

0 → H1(G/N, V ) → H1(G,V ) → 0

is exact, whence the claim follows. (Note that if N is a p′-group, then the Hochschild-Serre
spectral sequence degenerates, and so H i(G,V ) ∼= H i(G/N, V N ) for all i. Similarly, if G/N

is a p′-group, then H i(G,V ) = H i(N,V )G/N for all i.) �

Lemma 3.5. [23, Lemma 7.8]. Let V be a kG-module of finite length.
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(i) Suppose that X is a composition factor of V such that V has no indecomposable
subquotient of length 2 with X as a composition factor. Then V ∼= X ⊕ M for some
submodule M ⊂ X.

(ii) Suppose that Ext1G(X,Y ) = 0 for any two composition factors X, Y of V . Then V
is semisimple.

Lemma 3.6. [23, Lemma 7.9]. Let V be a kG-module. Suppose that U is a composition
factor of V of multiplicity 1, and that U occurs both in soc(V ) and head(V ). Then V ∼=
U ⊕M for some submodule M ⊂ V .

Lemma 3.7. Let G be group with a normal subgroup N of index coprime to p. Let k be
an algebraically closed field of characteristic p, and let V be a kG-module of finite length.

(i) V is semisimple if and only if VN is semisimple. In particular, if V is reducible
indecomposable, then VN cannot be semisimple.

(ii) Suppose V is reducible indecomposable. Then the N -module V has no simple direct
summand.

Proof. (i) The “only if” part is obvious. For the “if” part, suppose U is a G-submodule of
V . Since VN is semisimple, VN = U ⊕W for some N -submodule W . As U is G-stable, by
Lemma 3.2 there is a G-submodule W ′ such that V = U ⊕W ′.

(ii) Consider a decomposition VN = ⊕t
i=1Ui into indecomposable direct summands, and

write V = V1 ⊕ V2, where V2 is the sum of those Ui’s which are simple and V1 is the sum
of the non-simple Ui’s. Assume that V2 6= 0.

Note that if U is any reducible indecomposable N -module, then soc(U) ⊆ rad(U). In-
deed, suppose a maximal submodule M ⊂ U does not contain soc(U). Then soc(U) =
(M ∩ soc(U))⊕W for some N -submoduleW 6= 0, and U =M ⊕W is decomposable, a con-
tradiction. Applying this remark to the summands Ui in V1, we see that soc(V1) ⊆ rad(V1).
But V2 is semisimple, so

soc(V1) = soc(V1) ∩ rad(V1) = soc(V ) ∩ rad(V )

is G-stable. By Lemma 3.2, there is a G-submodule V ′
2 6= 0 such that soc(V ) = soc(V1)⊕V

′
2 .

In this case, VN = V1 ⊕ V ′
2 . Since V ′

2 is G-stable, again by Lemma 3.2 we have that
V = V ′

1 ⊕V
′
2 for some G-submodule V ′

1 . As V is indecomposable and V ′
2 6= 0, we must have

that V ′
1 = 0, whence V1 = 0, VN = V2 is semisimple, contradicting (i). �

Lemma 3.8. [23, Lemma 7.11]. Let V be an indecomposable kG-module.
(i) If the G+-module VG+ admits a composition factor L of dimension 1, then all com-

position factors of VG+ belong to B0(G
+).

(ii) Suppose a normal p′-subgroup N of G acts by scalars on a composition factor L of
the G-module V . Then N acts by scalars on V . If in addition V is faithful then N ≤ Z(G).

Corollary 3.9. Let V be an indecomposable kG-module of dimension ≤ 2p − 3. Suppose
that dp(G

+) ≥ p− 3. Then one of the following holds:
(i) The G+-module V is irreducible.
(ii) All composition factors of the G+-module V have dimension ≤ p.
(iii) All composition factors of the G+-module V belong to B0(G

+).
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Proof. Suppose that dimU > p for a composition factor U of the G+-module V but V |G+

is reducible. Since dim(V ) − dim(U) ≤ p − 4 < dp(G
+), the G+-module V must have a

composition factor L of dimension 1. Hence we are done by Lemma 3.8. �

Finally, self-dual indecomposable modules of SL2(q) (where q = pn) of low dimension are
described in the following statement:

Proposition 3.10. [23, Proposition 8.2]. Suppose that V is a reducible, self-dual, inde-
composable representation of SL2(Fq) over Fp, where q = pn. If dimV < 2p− 2, then q = p
and either of the following holds:

(i) dimV = p and V ∼= P(1).

(ii) dimV = p+ 1 and V is the unique nonsplit self-extension of L
(

p−1
2

)

.

(iii) dimV = p− 1 and V is the unique nonsplit self-extension of L
(

p−3
2

)

.

Conversely, all the listed cases give rise to examples.

4. Finite groups with indecomposable modules of dimension ≤ 2p − 2

Throughout this section, we assume that k is an algebraically closed field of characteristic
p > 3. First we recall several intermediate results proved in [23]:

Lemma 4.1. [23, Lemma 9.1]. Let G be a finite group, p > 3, and V be a faithful kG-
module of dimension < 2p. Suppose that Op(G) = 1 and Op′(G) ≤ Z(G). Then F (G) =
Op′(G) = Z(G), F ∗(G) = E(G)Z(G), and G+ = E(G) is either trivial or a central product
of quasisimple groups of order divisible by p. In particular, G has no composition factor
isomorphic to Cp and so H1(G, k) = 0.

Lemma 4.2. [23, Lemma 9.3]. Let V be a faithful indecomposable kG-module with two
composition factors V1, V2. Assume that Op(G) = 1 and dimV ≤ 2p−2. If J := Op′(G

+) 6≤
Z(G+), then the following hold:

(i) p = 2a + 1 is a Fermat prime,
(ii) dimV1 = dimV2 = p− 1,
(iii) J/Z(J) is elementary abelian of order 22a,
(iv) H1(G+, k) 6= 0.

Lemma 4.3. [23, Lemma 9.5]. Let H be a quasisimple finite group of Lie type in char
p > 3. Assume that V1, V2 ∈ IBrp(H) satisfy dimV1 + dimV2 < 2p.

(i) If H 6∼= SL2(q), PSL2(q), then Ext1H(V1, V2) = 0. In particular, there is no reducible
indecomposable kG-module V with G+ ∼= H and dimV < 2p.

(ii) Suppose H ∼= SL2(q) or PSL2(q), Ext1H(V1, V2) 6= 0, and dimV1 = dimV2. Then
q = p and V1 = L((p − 3)/2) or L((p − 1)/2).

Proposition 4.4. [23, Proposition 9.7]. Let p > 3 and let G be a finite group with a faithful,
reducible, indecomposable kG-module V of dimension ≤ 2p − 3. Suppose in addition that
Op(G) = 1. Then G+ = E(G+), G has no composition factor isomorphic to Cp, and one
of the following holds.

(i) G+ is quasisimple.
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(ii) G+ is a central product of two quasisimple groups and dimV = 2p−3. Furthermore,
V has one composition factor of dimension 1, and either one of dimension 2p − 4 or two
of dimension p− 2. In either case, V 6∼= V ∗.

Corollary 4.5. Let k be a field of characteristic p and let V be a faithful reducible inde-
composable kG-module of a finite group G with Op(G) = 1. If dimV ≤ 2p − 3, then VG+

is indecomposable.

Proof. Assume the contrary. Then we can pick an indecomposable direct summand U of
dimension ≤ p − 2 of VG+ and let H ≤ GL(U) be the image of G+ acting on U . By
Proposition 4.4, G has no composition factors isomorphic to Cp. Hence Op(H) = 1. Since
the kH-module U is faithful and indecomposable, U is simple by [19, Theorem A]. But this
contradicts Lemma 3.7(ii). �

Recall that a component of a finite group is any subnormal quasisimple subgroup. We
first note that:

Lemma 4.6. Let G be an irreducible subgroup of GL(V ) ∼= GLd(k) with k algebraically

closed of characteristic p. Assume that G = Op′(G) and that G has a component of order
coprime to p. Then d ≥ 2p.

Proof. Assume the contrary: d < 2p. Write E(G) = E1 ∗E2, where E1 is a central product
of all components of G of order coprime to p and E2 is the product of the remaining
components; in particular, 1 6= E1 ✁ G. Since G is generated by p-elements, there is a
p-element x not centralizing E1. Let W be an irreducible constituent of VE1

. Since d < 2p
and dimW ≥ 2, xW ∼=W .

Now write E1 = Q1∗. . .∗Qn as a central product of n components andW ∼=W1⊗. . .⊗Wn,
where Wi is an irreducible kQi-module. Note that x acts on the set {Q1, . . . , Qn}. If
this action is nontrivial, then dimW ≥ 2p. (Indeed, we may assume that x permutes
Q1, . . . , Qm cyclically for some p ≤ m ≤ n, and, replacing W by another E1-summand of V
if necessary, that Q1 acts nontrivially on W , i.e. dimW1 ≥ 2. Since xW ∼=W , this implies
that dimWi ≥ 2 for 1 ≤ i ≤ m, whence dimW ≥ 2m ≥ 2p ≥ 2p.) Thus we may assume
that x normalizes each Qi, but does not centralize Q1. It follows that Q1 is a quasisimple
p′-group with a nontrivial outer automorphism of p-power order; in particular, p > 2. If
p = 3, then Q1

∼= 2B2(2
2a+1) and dimW1 ≥ 14. So p > 3 and, using the description of outer

automorphisms of finite simple groups [18, Theorem 2.5.12], we see that Q1 is a quasisimple
group of Lie type over a field of size qp for some prime power q. Now applying [42], we see
that dimW1 ≥ 2p. �

The proof of Lemma 4.6 certainly depends on the classification of finite simple groups.
We note the following result which does not require the classification:

Lemma 4.7. Let k = k̄ be of characteristic p and let G be a finite irreducible p-solvable
subgroup of GL(V ) ∼= GLn(k) of order divisible by p. Then n ≥ p− 1.

Proof. We may assume that p > 2. By a result of Isaacs [50, Theorem 10.6], V has a
p-rational lift to characteristic 0. But then by [11], the Jordan blocks of any element g ∈ G
of order p acting on V have sizes 1, p− 1, or p. So if n < p− 1, then g acts trivially on V ,
a contradiction. �
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In what follows, we will slightly abuse the language by also considering Cp as a Frobenius
group with kernel of order p.

Lemma 4.8. Let p > 2 be a prime and let G be a transitive subgroup of Sn with n < 2p.
Assume that G has a composition factor of order p. Then one of the following holds.

(i) n = p and G is a Frobenius group of order pe for some e | (p − 1) with kernel of
order p.

(ii) p = 2a− 1 is a Mersenne prime and n = 2a = p+1. Moreover, soc(G) is a regular
elementary abelian subgroup of order n, G = soc(G) ⋊G1, and G1 is a Frobenius
group of order pe for some e | a, with kernel of order p. If H1(G, k) 6= 0, then
|G| = np.

Proof. Note that G is primitive and contains a p-cycle. Hence we can apply [65] and see
that either (i) holds, or n = 2a = p + 1 and G = soc(G) ⋊ G1, with soc(G) ∼= Ca

2 being
regular, and G1 ≤ GLa(2) has Cp as a composition factor. Applying [38] to G1, we arrive
at (ii). �

Lemma 4.9. Let S := Sp2a(2) with p = 2a ± 1 and let V = F2a
2 denote the natural module

for S. Let X ≤ S be a group with Cp as a composition factor and p > 3. Then there is a
normal elementary abelian 2-subgroup E < X such that X/E is a Frobenius group of order
pe with kernel of order p, where e | 2a. Furthermore, if E 6= 1 then p = 2a − 1. Moreover,
X acts reducibly on V precisely when p = 2a − 1 and either E 6= 1 or |X| is odd, in which
case X stabilizes a maximal totally isotropic subspace of V .

Proof. (a) It is easy to see that Y := Op′(X) can be reducible on V only when p = 2a − 1.
Let P ∈ Sylp(X) and consider the action of X on the natural module V = F2a

2 for S. If
P ✁X, then X is contained in NS(P ), a Frobenius group of order 2ap, in which case we
set E = 1. It follows that, if p = 2a − 1 in addition, then X is reducible on V precisely
when |X| is odd. So we will assume that P 5 X. It follows that P 5 Y := Op′(X).

Suppose that the Y -module V is reducible, and so p = 2a − 1 and a ≥ 3 is odd. Then
Y stabilizes a proper subspace U 6= 0 of V of dimension ≤ a. Choosing U minimal, we
see that U is irreducible over Y . If U ∩ U⊥ = 0, then Y is contained in the p′-subgroup
Sp(U) × Sp(U⊥), a contradiction. Hence U ⊆ U⊥. Now if dimU < a then Y is contained
in the p′-subgroup StabS(U), again a contradiction. Thus dimU = a and U is a maximal
totally isotropic subspace. Setting Q := O2(R) for R := StabS(U) and F := Q ∩ Y , we see
that F is an elementary abelian 2-subgroup and Y/F is a subgroup of R/Q ∼= GLa(2) with
Cp as a composition factor. By the main result of [38], Y/F is a Frobenius group of order
pb for some b | a. In particular, |Y/F | is odd and so F = O2(Y )✁X. Note that F 6= 1 as
otherwise P ✁ Y , a contradiction. Also, Y/F acts irreducibly on V/U . Since Y/F acts on
CV (F ) ⊇ U and F 6= 1, it follows that CV (F ) = U and so U is fixed by X. Thus X ≤ R
and we are done by setting E := Q ∩X ≥ F .

(b) From now on we may assume that VY is irreducible. Hence V is absolutely irreducible
over k0 := EndF2Y (V ). We will consider V as a b-dimensional vector space V ′ over k0 (for
some b | 2a). Thus W := V ′ ⊗k0 k is an irreducible kY -module for k := k̄0. Observe that
b ≤ 2a ≤ p− 1. Also, Z(Y ) is cyclic by Schur’s lemma.
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Note that if N ✁Y then the N -moduleW is homogeneous. Indeed, VN is the direct sum
of t ≤ b < p homogeneous N -components Vi. Hence any p-element 1 6= g ∈ Y stabilizes
each Vi, whence Vi is fixed by Y = Op′(Y ) and t = 1.

(c) Now we show E(Y ) = 1. Suppose E(Y ) 6= 1 and write E(Y ) = L1 ∗ . . .∗Ln, a central
product of n quasisimple groups. Since |S|p = p and Cp is a composition factor of Y , E(Y )
is a p′-group. By (b), WE(Y )

∼= e(W1 ⊗ . . . ⊗Wn), where Wi is an irreducible kLi-module
of dimension ≥ 2. Hence b ≥ 2n and so n < p. It follows that every p-element 1 6= g ∈ Y
normalizes each Li, and so does Y . On the other hand, if Y centralizes Li, then Li ≤ Z(Y ),
a contradiction. So some p-element 1 6= g ∈ Y normalizes but does not centralize L1. As
in the proof of Lemma 4.6, we see that L1 is a quasisimple group of Lie type defined over
Fq with q = rcp for some prime r and some integer c, and conclude that dimW1 > p when
r 6= 2. If r = 2, then by [66], |L1| is divisible by some prime divisor ℓ of 2p − 1 that does

not divide
∏p−1

i=1 (2
i − 1), whence ℓ ∤ |S|, again a contradiction.

Next we observe that every normal abelian subgroup A of Y must be central and so
cyclic. Indeed, A acts by scalars on W by (b), and so A ≤ Z(Y ).

(d) We have shown that F ∗(Y ) = F (Y ). Now if p divides |F (Y )|, then since |S|p = p, P =
Op(F (Y ))✁ Y , a contradiction. Also, if F (Y ) ≤ Z(Y ), then Y ≤ CY (F (Y )) ≤ F (Y ), and
so Y = F (Y ) is nilpotent, again a contradiction. So F (Y ) is a p′-group and moreover N :=
Or(F (Y )) is non-central in Y for some prime r 6= p. By (c), every characteristic abelian
subgroup of N is cyclic. Hence by Hall’s theorem, N = F ∗D, where F is an extraspecial
r-group, and either D is cyclic, or r = 2 and C is dihedral, generalized quaternion, or
semi-dihedral. Arguing as in part (3) of the proof of [25, Theorem 6.7], we can find a
characteristic subgroup L of N such that L = Z(L)E, where E is an extraspecial r-group
of order r2c+1 for some c ≥ 1 and Z(L) is cyclic. Note that Z(L) ≤ Z(Y ) by (c). It also
follows by (b) that rc | b and r 6= 2, whence a ≥ 3 must be odd (recall that p = 2a ± 1
is prime). As L 6≤ Z(Y ), some p-element 1 6= g ∈ Y normalizes but does not centralize
L, and centralizes Z(L). It follows that p divides the order of the group Outc(L) of outer
automorphisms of L that act trivially on Z(L). Since Outc(L) →֒ Sp2c(r), we get p | (r

d±1)
for some d ≤ c. Since p ≥ 2a − 1 and rc | a, we arrive at a contradiction. �

Now we can prove Theorem 1.3 in a slightly stronger version.

Theorem 4.10. Let G be a finite irreducible subgroup of GL(V ) ∼= GLd(k) with k alge-
braically closed of characteristic p > 3. Assume that G has a composition factor of order
p and d < 2p − 2. Then d = p − 1, p or p + 1, a Sylow p-subgroup of G has order p, G is
solvable and one of the following holds:

(i) d = p − 1, p = 2a + 1 is a Fermat prime, F ∗(G) = Z(G)O2(G), G/F
∗(G) is a

Frobenius group of order pe for some e | 2a with kernel of order p, and O2(G) is a
group of symplectic type with O2(G)/Z(O2(G)) ∼= C2a

2 ;
(ii) d = p and G has a normal abelian p′-subgroup N = F ∗(G) such that G/N is a

Frobenius group of order pe for some e | (p− 1) with kernel of order p;
(iii) d = p+ 1, p = 2a − 1 is a Mersenne prime and one of
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(a) G has an abelian normal p′-subgroup N , where the action of G/N on the d
distinct eigenspaces of N induces a subgroup of Sd as described in Lemma 4.8;
or

(b) F ∗(G) = Z(G)O2(G), G/F
∗(G) is a Frobenius group of order 2bp for some

b | a with kernel of order p, and O2(G) is a group of symplectic type with
O2(G)/Z(O2(G)) ∼= C2a

2 .

Moreover, H1(G, k) 6= 0 if and only if one of the conclusions of Theorem 1.3 holds.

Proof. (a) First we show that G+ is irreducible on V . To this end, let W be an irreducible
summand of VG+ . Also let K1 and K2 denote the kernel of the action of G+ on W and
on a G+-invariant complement V ′ to W in V . Then K1 ∩ K2 = 1 and so K1 embeds in
G+/K2 as a normal subgroup. Since Cp is a composition factor of G+, it follows that it
is a composition factor of G+/K1 or of G+/K2. Replacing W by another irreducible G+-
summand in V ′ if necessary, we may assume that G+/K1 has a composition factor of order
p. Then dimW ≥ p−1 by Theorem 2.1. This is true for all other irreducible G+-summands
in V and dimV < 2p− 2, whence the claim follows. In particular, Z(G+) = Z(G) ∩G+.

(b) By Lemma 4.1, we have that Q 6≤ Z(G+) and so Q 6≤ Z(G) for Q := Op′(G
+) ✁G.

Suppose that Q contains a non-central (in G) abelian subgroup K ✁ G. Decompose V =
⊕n

i=1Vi into K-eigenspaces. By Clifford’s theorem, G acts transitively on {V1, . . . , Vn}, with
kernel N , and G+ does as well. Note that n > 1 as K 6≤ Z(G). Since G+ is generated by
p-elements, n ≥ p. But d < 2p, so dimVi = 1 and N is an abelian p′-group. Now we can
apply Lemma 4.8 to G/N →֒ Sd. If d = p, we are in case (ii) and F ∗(G) = N . If d > p,
then d = p+ 1 = 2a and G/N has the prescribed structure, i.e. case (iii)(a) holds.

(c) Assume now that Q contains no abelian non-central (in G) subgroup K ✁ G. Let
N be minimal among subgroups of Q that are normal but non-central in G, so N is
non-abelian. By Lemma 4.6, Q contains no components of G. Hence E(N) = 1 and
F ∗(N) = F (N). If F (N) < N , the minimality of N implies that F (N) ≤ Z(G), but
then F (N) = F ∗(N) ≥ CN (F ∗(N)) = N , a contradiction. So N = F (N) is nilpotent,
and the minimality of N again implies that N is an r-group for some prime r 6= p. Let
A be any characteristic abelian subgroup of N . Then by the assumption, A ≤ Z(G) and
so it is cyclic. Thus every characteristic abelian subgroup of N is cyclic (and central in
G), and so Hall’s theorem applies to N . Arguing as in part (d) of the proof of Lemma
4.9 and using the minimality of N , we see that N = Z(N)E, where E is an extraspecial
r-group of order r2a+1 for some a and Z(N) ≤ Z(G) is cyclic; in particular, ra | d. Since
N 6≤ Z(G+), there is a p-element x that induces a nontrivial outer automorphism of N
acting trivially on Z(N). As Outc(N) ≤ Sp2a(r), we see that p divides r2b − 1 for some
1 ≤ b ≤ a. On the other hand, ra ≤ d ≤ 2p − 3. This implies that r = 2, p = 2a ± 1
is either a Mersenne or Fermat prime, d = 2a, and N acts irreducibly on V . The latter
then implies that CG(N) = Z(G) and X := G/Z(G)N is a subgroup of Outc(N) ≤ Sp2a(2)
with Cp as a composition factor. Now we can apply Lemma 4.9 to X. Note that if X
stabilizes a maximal totally isotropic subspace of N/Z(N), then its inverse image in N is
an abelian normal non-central subgroup of G, contrary to our assumptions. Hence either
p = 2a + 1 and we are in case (i), or p = 2a − 1 and we are in case (iii)(b). Also note that
F ∗(G) = Z(G)N in either case.
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(d) If G satisfies any of the conclusions of Theorem 1.3 then H1(G, k) 6= 0. Conversely,
suppose that H1(G, k) 6= 0. Then G possesses a normal subgroup L of index p. Thus we
can apply the above results to G. In particular, |G|p = p and so L = Op′(G). Now the
description of G in (i)–(iii) shows that G must satisfy one of the conclusions of Theorem
1.3. �

One can also consider an analogue of Theorem 4.10 for p = 3. In this case, d ≤ 3 and
the analogous result is straightforward by examining subgroups of GL2 and GL3.

5. Bounding Ext1G(V, V ) and Ext1G(V, V
∗)

The following result is well known:

Lemma 5.1. Let X be a finite group and let k be an algebraically closed field of charac-
teristic p. Let U and V be irreducible kX-modules belonging to a kX-block B with cyclic
defect subgroups. Then dimk Ext

1
X(U, V ) ≤ 1.

Proof. By [23, Lemma 7.1], we may assume U 6∼= V . It is known [53] that P(V ) has simple
head and simple socle, both isomorphic to V , and rad(P(V ))/V is a direct sum of at
most two uniserial submodules. Also, note that Ext1(U, V ) ∼= HomG(U,P(V )/V ). So if
dimk Ext

1
X(U, V ) ≥ 2, then at least two edges of the Brauer tree of B correspond to U ,

which is impossible. �

Lemma 5.2. Let H be a finite group with Sylow p-subgroups of order p. Suppose that
H = Op′(H) and H has no composition factor of order p. Then H/Op′(H) is a non-
abelian simple group.

Proof. Replacing H by H/Op′(H), we have that Op′(H) = 1. Together with the condition
that H has no composition factor of order p, this implies that F (H) = 1, and so

F ∗(H) = E(H) = S1 × . . .× Sn

is a product of non-abelian simple groups. It also follows that Op′(F
∗(H)) = 1, whence

n = 1 and F ∗(H) = S1 has order divisible by p. Now H/S1 is a p′-group and H = Op′(H).
It follows that H = S1. �

Proposition 5.3. Let G be a finite group with a faithful kG-module V . Suppose that
V = W1 ⊕ . . . ⊕Wt is a direct sum of kG+-submodules, and that for each i the subgroup
Hi ≤ GL(Wi) induced by the action of G+ on Wi has Sylow p-subgroups of order p. Suppose
in addition that G has no composition factor of order p. Then

G+/Op′(G
+) ∼= S1 × . . . × Sn

is a direct product of non-abelian simple groups Si, each of order divisible by p.

Proof. By assumption, Hi has no composition factor of order p, |Hi|p = p, and Op′(Hi) =
Hi. By Lemma 5.2, Hi/Op′(Hi) is simple non-abelian. Hence the claim follows by [23,
Lemma 2.3]. �
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Proposition 5.4. Let k = k be of characteristic p and let H be a finite group such that
H = Op′(H) and

H/J = S1 × . . .× Sn

is a direct product of non-abelian simple groups of order divisible by p, where J := Op′(H).
Suppose that W1 and W2 are irreducible kH-modules such that the image of H in GL(Wi)
has Sylow p-subgroups of order p for i = 1, 2, and that Ext1H(W1,W2) 6= 0. Then the actions
of H on W1 and W2 have the same kernel.

Proof. LetKi denote the kernel of the action ofH onWi, so that |H/Ki|p = p. Note thatH,
and soK1∩K2 as well, has no composition factor of order p, whenceK1∩K2 = Op(K1∩K2).
Hence by Lemma 3.4 there is no loss to assume that

(5.1) K1 ∩K2 = 1.

We aim to show in this case that K1 = K2 = 1. Note that the condition H = Op′(H)
implies that n ≥ 1.

(i) Suppose for instance that J1 := J ∩ K1 6= 1. This implies by (5.1) that J1 6≤ K2,
i.e. J1 does not act trivially on W2. Since J1 ✁H, we see that (W2)J1 is a direct sum of
nontrivial kJ1-modules. On the other hand, the p′-group J1 acts trivially on W1 and on
W ∗

1 . Setting M :=W ∗
1 ⊗k W2, we then have that MJ1 = 0 and so

Ext1H(W1,W2) ∼= H1(H,M) ∼= H1(H/J1,M
J1) = 0,

a contradiction.

(ii) We have shown that J ∩K1 = J ∩K2 = 1. Hence

K1
∼= K1J/J ✁H/J = S1 × . . . × Sn,

and so K1 is isomorphic to the direct product
∏

i∈I Si for some subset I ⊆ {1, 2, . . . , n}.
As |H/K1|p = p and p | |Si| for all i, we may assume that

(5.2) K1
∼= JK1/J = S2 × . . .× Sn.

In particular, if n = 1 then K1 = 1 and similarly K2 = 1, whence we are done.

(iii) Now we assume that n ≥ 2. Consider X := JK2 ∩K1. Then X ∩K2 ≤ K1 ∩K2 = 1
and so

X ∼= XK2/K2 ✁ JK2/K2
∼= J

is a p′-group. On the other hand, X ✁K1 and so by (5.2) we again have that X ∼=
∏

i∈I′ Si
for some subset I ′ ⊆ {2, . . . , n}. As p | |Si| for all i, we conclude that X = 1. Similarly
JK1 ∩K2 = 1. Together with (5.2), this implies that

K2 →֒ H/JK1
∼= (H/J)/(JK1/J) ∼= S1.

Furthermore, as shown in (ii), JK2/J ∼= K2
∼=

∏

i∈I′′ Si for some subset I ′′ ⊆ {1, 2, . . . , n}
of cardinality n− 1. It follows that n = 2, K2

∼= S1, K1
∼= S2, and

H = JK2K1
∼= JK2 ×K1 = (J ×K2)×K1

∼= J ×K1 ×K2.

Now we can write

W1
∼= A1 ⊗k k ⊗k B2, W2

∼= A2 ⊗k B1 ⊗k k,
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where A1, A2 ∈ IBrp(J) and Bi ∈ IBrp(Ki) for i = 1, 2. In this case, if B1 6∼= k and B2 6∼= k,
then Ext1H(W1,W2) = 0 by Lemma 3.3(i), a contradiction. So we may assume that B1

∼= k,
i.e. K1 acts trivially on W2. It then follows that K1 ≤ K1 ∩K2 = 1, contradicting (5.2)
and the equality n = 2. �

Proof of Theorem 1.6. We take the convention that V ǫ is V for ǫ = + and V ∗ if ǫ = −,
and the same holds for other modules. Assume that Ext1G(V, V

ǫ) 6= 0 for some ǫ = ±.
Decompose

VG+ = e

t
⊕

i=1

Wi, V
ǫ
G+ = e

t
⊕

i=1

W ǫ
i

where W1, . . . ,Wt are pairwise non-isomorphic and G-conjugate irreducible kG+-modules.
By assumption, the image of G+ in each GL(Wi) has Sylow p-subgroups of order p, and
G+ has no composition factor of order p. By Proposition 5.3,

(5.3) G+/Op′(G
+) = S1 × . . . × Sn

is a direct product of non-abelian simple groups of order divisible by p.

(i) First we consider the case k = k. Recall that G+ = Op′(G+). So by Proposition 5.4
we have that Ext1G+(Wi,W

ǫ
j ) = 0, unless G+ has the same kernel on Wi and W

ǫ
j .

Let Ki denote the kernel of G+ on Wi, and on W ǫ
i as well. Relabeling W1, . . . ,Wt, we

may assume that K1, . . . ,Ks are pairwise distinct, with s := |{K1, . . . ,Kt}|. Defining

Vi := e
⊕

j:Kj=Ki

Wj

for 1 ≤ i ≤ s, we then have that

V = V1 ⊕ . . .⊕ Vs, V
ǫ = V ǫ

1 ⊕ . . . ⊕ V ǫ
s .

Certainly, G acts transitively on {W1, . . . ,Wt}, {V1, . . . , Vs}, and on {K1, . . . ,Ks} via con-
jugation. Also, H := NG(K1) ✄ G+ stabilizes V1 and has index s in G. It follows that
H = StabG(V1), V ∼= IndGH(V1), and so V1 is an irreducible kH-module.

By the definition of Vi, we have that Ext1G+(V1, V
ǫ
i ) = 0 for all i > 1. As H/G+ is a

p′-group, it follows that Ext1H(V1,
⊕

i>1 V
ǫ
i ) = 0. Now by Frobenius’ reciprocity,

Ext1G(V, V
ǫ) = Ext1G(Ind

G
H(V1), V

ǫ) ∼= Ext1H(V1, (V
ǫ)H) = Ext1H(V1, V

ǫ
1 ).

Recall that K1 acts trivially on V1 and V ǫ
1 , and |H/K1|p = |G+/K1|p = p. Hence

dimk Ext
1
H/K1

(V1, V
ǫ
1 ) ≤ 1 by Lemma 5.1. Finally, K1 has no composition factor of or-

der p by (5.3). So Ext1H(V1, V
ǫ
1 )

∼= Ext1H/K1
(V1, V

ǫ
1 ) by Lemma 3.4, and so we are done.

(ii) Now we consider the general case. By [32, Theorem 9.21], W1 ⊗k k is a direct sum
of irreducible kG+-modules W11, . . . ,W1m, which form a Galois conjugacy class over k. By
assumption, |G+/K1|p = p, where K1 is the kernel of G

+ onW1. Certainly, K1 is contained
in the kernel K11 of the action of G+ on W11, whence |G+/K11|p ≤ p. If |G+/K11|p < p,

then the equality G+ = Op′(G+) implies that K11 = G+, whence G+ acts trivially on W11

and so on W1 and on V as well, contradicting the faithfulness of V and the assumption
Ext1G(V, V

ǫ) 6= 0. Hence we must have that |G+/K11|p = p. Since the dimension of
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Ext1G(V, V
ǫ) does not change under field extensions, we are done by replacing V by V ⊗k k

and applying the result of (i). �

A key ingredient of the proof of Theorem 1.5 is the following statement:

Proposition 5.5. Let X be a finite group with a normal subgroup Y ≥ Op′(X). Let A, B,
W , W ′ be kX-modules, where A and B are absolutely irreducible and Y acts via scalars on
both A and B. Suppose in addition that AY

∼= BY . Then

dimk Ext
1
X(A⊗k W,B ⊗k W

′) ≤ dimk Ext
1
Y (WY ,W

′
Y ).

Proof. Since the dimensions of Ext1-spaces do not change under field extensions, we may
assume that k is algebraically closed. By assumption, X/Y is a p′-group and Y acts trivially
on A∗ ⊗k B. Without loss we may assume that dimkB ≤ dimkA. Denoting

H := H1(Y, (WY )
∗ ⊗k W

′
Y )

∼= Ext1Y (WY ,W
′
Y )

we then have dimk B ⊗k H ≤ (dimkA)(dimkH) and so

dimk HomkX(A,B ⊗k H) ≤ dimkH = dimk Ext
1
Y (WY ,W

′
Y ).

Applying the inflation-restriction spectral sequence, we obtain

dimk Ext
1
X(A⊗k W,B ⊗k W

′) = dimk(H
1(Y,A∗ ⊗k B ⊗k W

∗ ⊗k W
′))X/Y

= dimk(A
∗ ⊗k B ⊗k H)X/Y

= dimk HomkX(A,B ⊗k H)
≤ dimk Ext

1
Y (WY ,W

′
Y ).

�

Proposition 5.6. Let k be an algebraically closed field of characteristic p. Assume the
hypothesis of Theorem 1.2 and write VG+ = ⊕t

i=1Vi, where Vi
∼= eWi and W1, . . . ,Wt are

pairwise non-isomorphic irreducible kG+-modules. Suppose that there is a unique j ≥ 1
such that Ext1G+(W1,Wj) 6= 0. Then

dimk Ext
1
G(V, V ) ≤ dimk Ext

1
G+(W1,Wj).

Proof. Let G1 := StabG(V1) be the inertia group ofW1 in G. Since G
+
✁G1, the uniqueness

of j implies that G1 = StabG(Vj) as well. Next, V ∼= IndGG1
((V1)G1

), and so

Ext1G(V, V ) = Ext1G(Ind
G
G1

((V1)G1
), V ) ∼= Ext1G1

((V1)G1
, VG1

)
∼= Ext1G1

((V1)G1
, (Vj)G1

)⊕ Ext1G1
((V1)G1

,
⊕

i 6=j(Vi)G1
).

Since G+ contains a Sylow p-subgroup of G1, Ext
1
G1

((V1)G1
,
⊕

i 6=j(Vi)G1
) injects in

Ext1G+((V1)G+ ,
⊕

i 6=j

(Vi)G+) ∼= e2
⊕

i 6=j

Ext1G+(W1,Wi) = 0

and so it is zero.

It remains therefore to show that

dimk Ext
1
G1

((V1)G1
, (Vj)G1

) ≤ dimk Ext
1
G+(W1,Wj).
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Let X denote a universal p′-cover of G1 (so that G1
∼= X/Z for some p′-subgroup Z ≤

Z(X) ∩ [X,X]), and let Y := Op′(X). Now we view V1 as an irreducible kX-module by
inflation and note that

dimk Ext
1
G1

((V1)G1
, (Vj)G1

) = dimk Ext
1
X((V1)X , (Vj)X)

as Z is a p′-group. Since Z acts trivially on V1, we also have that (V1)Y ∼= e(W1)Y and also
Y Z/Z ∼= G+. Hence (W1)Y is irreducible, and similarly for Wj. Also,

dimk Ext
1
Y ((W1)Y , (Wj)Y ) = dimk Ext

1
G+(W1,Wj).

Fix a basis of W1 and the corresponding representation Φ of Y on W1 in this basis. By
the Clifford theory, we can decompose the irreducible representation Θ of X on V1 as a
tensor product of an irreducible projective representation Λ of X/Y (of degree e) and an
irreducible projective representation Ψ of X, with

Ψ(y) = Φ(y)

for all y ∈ Y . Since X is p′-centrally closed, there is a function f : X → k× such that

Ψ′ : x 7→ f(x)Ψ(x)

is a linear representation. Note that fY ∈ Hom(Y, k×) since ΨY = Φ is a linear represen-

tation, and so fY = 1Y as Y = Op′(Y ). In particular, Ψ′(y) = Φ(y) for all y ∈ Y . Now we
inflate Λ to a projective representation of X and define

Λ′ : x 7→ f(x)−1Λ(x)

so that Θ(x) = Λ′(x) ⊗ Ψ′(x) for all x ∈ X. Then Λ′ is also a linear representation of X
and furthermore Λ′

Y is trivial (since fY = 1Y ). Thus we can decompose

(V1)X = A⊗k W,

where the kX-modules A and W are irreducible, Y acts trivially on A, and WY
∼= (W1)Y .

Similarly,

(Vj)X = B ⊗k W
′,

where the kX-modules B and W ′ are irreducible, Y acts trivially on B, and W ′
Y
∼= (Wj)Y .

Now our statement follows by applying Proposition 5.5. �

The same proof as above yields:

Proposition 5.7. Let k be an algebraically closed field of characteristic p. Assume the
hypothesis of Theorem 1.2 and write VG+ = ⊕t

i=1Vi, where Vi
∼= eWi and W1, . . . ,Wt are

pairwise non-isomorphic irreducible kG+-modules. Suppose that there is a unique j ≥ 1
such that Ext1G+(W1,W

∗
j ) 6= 0. Then

dimk Ext
1
G(V, V

∗) ≤ dimk Ext
1
G+(W1,W

∗
j ).

✷

Lemma 5.8. Given the assumption of Theorem 1.5, suppose that H is as in the extraspecial
case (e) of Theorem 2.1. Then

Ext1G(V, V
∗) = 0.
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Proof. Write VG+ = e
⊕t

i=1Wi as usual. It suffices to show that Ext1G+(Wi,W
∗
j ) = 0 for

all i, j. Recall that J := Op′(G) acts irreducibly on Wi and W
∗
j by [23, Theorem 2.4(ii)].

Since J is a p′-group, we have M = CM (J)⊕ [M,J ] for M :=W ∗
i ⊗W ∗

j . As J has no fixed

point on [M,J ], H1(G+, [M,J ]) = 0. Also,

CM (J) ∼= HomJ(Wi,W
∗
j )

is either 0 or k. Hence

Ext1G+(Wi,W
∗
j )

∼= H1(G+,M) ∼= H1(G+,CM (J)) →֒ H1(G+, k)

As G+ is perfect by [23, Theorem 2.4], H1(G+, k) = 0, and so we are done. �

Proof of Theorem 1.5. (i) Assume that (G,V ) satisfies all the hypotheses of Theorem 1.5.
We take the convention that V ǫ is V for ǫ = + and V ∗ if ǫ = −, and the same holds for other
modules. Since the dimension of Ext1G(V, V

ǫ) does not change under field extensions, we
will assume that k = k. Assume that Ext1G(V, V

ǫ) 6= 0 for some ǫ = ±. It suffices to show
that G then fulfills the conditions of Propositions 5.6 and 5.7 (with Ext1G+(W1,W

ǫ
j )

∼= k

for the index j indicated in these propositions). By [23, Lemma 7.2], there is some j such
that

(5.4) Ext1G+(W1,W
ǫ
j ) 6= 0.

Note that Ext1G(V, V
ǫ) = 0 in the extra special case (e) of Theorem 2.1, by [23, Proposition

10.4] and Lemma 5.8. So we may assume that the image H of G+ in GL(W ) is a central
product of quasisimple groups, whence, by [23, Theorem 2.4],

G+ = L1 ∗ . . . ∗ Ln

is also a central product of quasisimple groups Li. Moreover, if some Li is not a quasisim-
ple group of Lie type in characteristic p, then by [23, Theorem 2.4], the image of G+ in
each GL(Wi) has Sylow p-subgroups of order p, and so Theorem 1.6 applies. So in what
follows we may assume that all Li are quasisimple groups of Lie type in characteristic p.
Correspondingly, we can decompose

W1 = A1 ⊗ . . .⊗An, W
ǫ
j = B1 ⊗ . . .⊗Bn,

where Ai and Bi are irreducible kLi-modules and Li′ acts trivially on Ai and Bi whenever
i′ 6= i. By Lemma 3.3 and (5.4), we may assume that

Ai
∼= Bi

for i > 1, and furthermore Ext1L1
(A1, B1) 6= 0. Since dimkW1 = dimkWj, it follows that

dimk Ai = dimk Bi for all i.
Note that if dimk Ai = 1, then Ai

∼= k as Li is perfect, and similarly Bi
∼= k, whence

Ext1Li
(Ai, Bi) = 0. In fact, Ext1Li

(Ai, Bi) = 0 if dimk Ai ≤ (p − 3)/2 by the main result of
[19]. It follows that dimk A1 ≥ (p− 1)/2. Since dimkW1 ≤ p− 1, we arrive at two possible
cases:

(a) dimk Ai = 1 (and so Ai
∼= Bi

∼= k) for all i > 1; or
(b) p ≥ 5, dimk Ai = 1 (and so Ai

∼= Bi
∼= k) for all i > 2, and {dimk A1,dimk A2} =

{(p − 1)/2, 2}.
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(ii) Suppose we are in case (b). Then the quasisimple group Lm (for some m ∈ {1, 2}) is
acting irreducibly on Am

∼= k2. As Lm is a Lie-type group in characteristic p, we have that
Lm

∼= SL2(p
a) for some a ≥ 1. By Lemma 4.3, L1

∼= SL2(p) (modulo a central subgroup),
dimA1 = (p − 1)/2, Ext1L1

(A1, B1) ∼= k, and A1
∼= B1. We have shown that Ai

∼= Bi for

all i; in particular Wj
∼=W ǫ

1 . Now we have that m = 2, and dimk Ext
1
L2
(A2, B2) equals 0 if

pa > 5 and 1 if pa = 5, see [23, Lemma 8.1]. Again by Lemma 3.3,

dimk Ext
1
G+(W1,W

ǫ
j ) = 1 + dimk Ext

1
L2
(A2, B2).

In the case pa = 5, we have (dimW,H) = (4,Ω+
4 (5)) and conclude by Propositions 5.6 and

5.7 that Ext1G(V, V ) and Ext1G(V, V
∗) are at most 2-dimensional. Moreover, Example 5.9(i)

shows that the upper bound 2 can indeed be attained. If pa > 5, then Ext1G+(W1,W
ǫ
j )

∼= k

and Wj
∼=W ǫ

1 for any j satisfying (5.4).

(iii) Now we consider the case (a). Then

(5.5) Ext1L1
(A1, B1) ∼= Ext1G+(W1,W

ǫ
j ) 6= 0

by Lemma 3.3.
Suppose first that p = 3. Then L1

∼= SL2(3
a) for some a ≥ 2, and

W1 = A1 ⊗k k ⊗k . . .⊗k k,Wj = Bǫ
1 ⊗k k ⊗k . . .⊗k k.

We may also assume that A1 is the natural kL1-module. If a = 2, then by (5.5) and

[2, Corollary 4.5] we have that B1 is isomorphic to the Frobenius twist A
(3)
1 of A1, and

Ext1L1
(A1, B1) ∼= k2. Thus Wj is uniquely determined, and so dimk Ext

1
G(V, V

ǫ) ≤ 2 by
Propositions 5.6 and 5.7. Suppose now that a > 2. Since G1 := StabG(V1) stabilizes
the isomorphism class of W1, we see that G1 normalizes each of L1 and L2 ∗ . . . ∗ Ln,
and induces an inner-diagonal automorphism of L1. Next, by (5.5) and [2, Corollary 4.5]

we have that B1 is isomorphic to one of the Frobenius twists A
(3)
1 , A

(3a−1)
1 of A1, and

Ext1L1
(A1, B1) ∼= k. Thus there are at most two possibilities for Wj, each stabilized by G1.

If only one of them occurs among the submodules Wi, then we have dimk Ext
1
G(V, V

ǫ) ≤ 1
by Propositions 5.6 and 5.7. Suppose that both of them occur, say for j1 and j2. It follows
that G1 = StabG(Vj1) = StabG(Vj2) and furthermore both Vj1 and Vj2 are irreducible over
G1. Then, arguing as in the proof of Proposition 5.6 we have

Ext1G(V, V
ǫ) = Ext1G(Ind

G
G1

((V1)G1
), V ǫ) ∼= Ext1G1

((V1)G1
, V ǫ

G1
)

∼= Ext1G1
((V1)G1

, (V ǫ
j1
)G1

)⊕ Ext1G1
((V1)G1

, (V ǫ
j2
)G1

)

has dimension at most 2. In fact, Example 5.9 shows that the upper bound 2 can indeed
be attained.

Suppose now that p > 3. Then by Lemma 4.3, L1 = SL2(p) (modulo a central subgroup),
A1

∼= B1, Ext
1
L1
(A1, B1) ∼= k, Wj

∼=W ǫ
1 , and Ext1G+(W1,W

ǫ
j )

∼= k.

(iv) We have shown that in the case of Theorem 1.5(i), there is a unique j such that
Ext1G+(W1,W

ǫ
j ) 6= 0, in which case it has dimension 1. Hence we are done by Propositions

5.6 and 5.7. �

Example 5.9. (i) Let p = 5 and let S = L1 × L2, with Li
∼= SL2(5), be acting on V =

W1 ⊗W2, where Wi
∼= k2 is an irreducible kLi-module and Li acts trivially on W3−i. Note
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that the kernel of this action is the diagonal cyclic subgroup Z ∼= C2 of Z(L1)×Z(L2). Now
G = G+ := S/Z ∼= Ω+

4 (5) acts faithfully and irreducibly on V , and dimk Ext
1
G(V, V ) = 2

by Lemma 3.3. Also, V ∼= V ∗.

(ii) Let p = 3, S = SL2(3
a) for some a ≥ 2 coprime to 3, W1 = k2 be the natural

kS-module, and letWi+1 denote the Frobenius (W1)
(3i) twist of W1 for 1 ≤ i ≤ a−1. Then

G = S ⋊ 〈σ〉 (with σ being the field automorphism of S, of order a) acts irreducibly and
faithfully on V =W1 ⊕ . . .⊕Wa, G

+ = S, and

(5.6) Ext1G(V, V ) ∼=

a
⊕

i=1

Ext1S(W1,Wi) ∼= k2

by [2, Corollary 4.5]. (Indeed, if a = 2 then Ext1S(W1,W2) ∼= k2. If a ≥ 3, then
Ext1S(W1,W2) ∼= Ext1S(W1,Wa) ∼= k. All other summands in the middle term of (5.6)
are zero.) Also, V ∼= V ∗.

(iii) Let p = 2f + 1 be a Fermat prime and let H = Op′(H)P (with P ∼= Cp and

Op′(H) ∼= 21+2f
− ) acting faithfully and absolutely irreducibly on W1 = kp−1 as in case (i) of

Theorem 2.1. Note that the kH-module W1 is self-dual. Let n be coprime to p and let

G = H1 ≀ Cn = (H1 × . . .×Hn)⋊ Cn

with Hi
∼= H1 = H, so that G+ = H1× . . .×Hn. InflateW1 to a kG+-module and consider

V := IndGG+(W1). Note that J := Op′(G
+) acts absolutely irreducibly on W1, and

W ∗
1 ⊗W1 = CW ∗

1 ⊗W1
(J)⊕ [W ∗

1 ⊗W1, J ]

with CW ∗

1⊗W1
(J) ∼= k. Since G+/J ∼= Cn

p , it now follows that

Ext1G+(W1,W1) ∼= H1(G+,W ∗
1 ⊗W1) ∼= H1(G+/J, k) ∼= kn.

On the other hand, the actions of J on W1 and Wj have different kernels for any j > 1,
and so Ext1G+(W1,Wj) = 0. Hence V ∼= V ∗ and

Ext1G(V, V ) ∼= Ext1G+(W1, VG+) ∼= Ext1G+(W1,W1) ∼= kn.

Next we strengthen Theorem 1.5 in the case dimW is small.

Theorem 5.10. Let k be a field of characteristic p and let V and V ′ be absolutely irre-
ducible faithful kG-modules. Suppose that dimkW + dimkW

′ ≤ p − 2, where W and W ′

are irreducible kG+-submodules of V and V ′, respectively. Then H1(G,M) = 0 for any
subquotient M of the G-module V ⊗ V ′.

Proof. It suffices to prove H1(G+,M) = 0. Note that VG+ = ⊕t
i=1Wi and V

′
G+ = ⊕s

j=1W
′
j

with Wi,W
′
j ∈ IBrp(G

+), and Op(G
+) ≤ Op(G) = 1. Since

(5.7) dimkWi + dimkW
′
j ≤ p− 2,

by the main result of [19] we have Ext1G+(W ∗
i ,W

′
j) = 0. It follows that Ext1G+(V ∗

G+ , V
′
G+) =

0, i.e. H1(G+, (V ⊗ V ′)G+) = 0. By Corollary 1 to [55, Theorem 1], (5.7) also implies
that the G+-module V ⊗ V ′ is semisimple. Thus M is isomorphic to a direct summand of
(V ⊗ V ′)G+ , whence H1(G+,M) = 0, as desired. �
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Corollary 5.11. Let k be a field of characteristic p and let V be an absolutely irreducible
faithful kG-modules. Suppose that dimkW < (p− 1)/2 for any irreducible kG+-submodule
of V . Then H1(G,Sym2(V )) = H1(G,∧2(V )) = 0. ✷

6. Modules of dimension p

Let p be a prime and let k be algebraically closed of characteristic p. The aim of
this section is to show that if G is an irreducible subgroup of GLp(k) = GL(V ), then
almost always (G,V ) is adequate (using Thorne’s new definition). We begin with some
observations.

Remark 6.1. Suppose that G ≤ GL(V ) is a finite irreducible subgroup. Note that, to show
(G,V ) is adequate it suffices to show that G+ is adequate on V . Indeed, any subgroup
being weakly adequate implies that the spanning condition holds for G. Next, adequacy
for any subgroup containing a Sylow p-subgroup of G implies that necessary vanishing of
H1 for G.

Lemma 6.2. Let G be a finite group with a Sylow p-subgroup P of order p and let V ∈
IBrp(G) be such that p | (dimV ). Then V is projective.

Proof. Assume that V is non-projective and setN := NG(P ). By the Green correspondence
[29, Lemma 4.1.1], in this case we have VN = W ⊕ M , where W is a non-projective
indecomposable N -module and M is a projective N -module (or zero). Now W belongs to
an N -block b of defect 1. By [29, Lemma 4.2.14], W is a uniserial (non-projective) quotient
of P(U) where U := head(W ) ∈ IBrp(N). By [29, Lemma 4.2.13], P(U) has length p,
so W has length l < p. According to [29, Remark 4.2.11], all simple kN -modules in b
are of the same dimension d and have P in their kernel. It follows that d divides |N/P |
and so d is coprime to p. Hence p ∤ dl = dimW and so p ∤ (dimV ) (as p | (dimM)), a
contradiction. �

Lemma 6.3. Let G be a finite group with a cyclic Sylow p-subgroup P and p = char(k).
Suppose that G = Op(G). Then H1(G, k) = H2(G, k) = 0.

Proof. The vanishing of H1(G, k) is obvious. Suppose that H2(G, k) 6= 0. Since the dimen-
sion of H2 does not change under extension of scalars, we may assume that H2(G,Cp) 6= 0.
As moreover H1(G,Cp) = 0, it follows that p divides the order of the Schur multiplier of
G. It is well known that the latter then implies that Sylow p-subgroups of G are non-cyclic
(see e.g. [32, Corollary (11.21)]). �

Next we give an example showing that for modules of dimension 2p, we can satisfy all
conditions aside from the spanning condition.

Example 6.4. Assume that p > 2. Let C be a nontrivial cyclic group of order coprime to p,
with a faithful character λ : C → k×, and let G = C ≀D where D is a dihedral group of order
2p. Let V be the irreducible kG-module of dimension 2p induced from the 1-dimensional
representation with character

λ⊗ 1C ⊗ . . .⊗ 1C
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of the abelian normal subgroup A = C × C × . . . × C ∼= C2p of G. Let E be the unique
subgroup of D of order p. Note that V = V1 ⊕ V2, where the Vi are irreducible AE-
submodules of V (of dimension p). Then the following statements hold:

(i) H1(G, k) = H2(G, k) = 0 by Lemma 6.3;
(ii) Ext1G(V, V ) = 0 (indeed, V is projective by Lemma 6.2);
(iii) The span M of the p′-elements of G in End(V ) is precisely A ⊕ Hom(V1, V2) ⊕

Hom(V2, V1), where A is the image of kA in End(V1)⊕ End(V2).

Now we describe all irreducible linear groups of degree p:

Proposition 6.5. Let k be an algebraically closed field of characteristic p and let G <
GLp(k) be a finite irreducible subgroup. Then one of the following holds:

(i) G is imprimitive on W := kp, G < GL1(k) ≀Sp, and furthermore A := G∩GL1(k)
p

is non-central in G;
(ii) G is almost quasisimple. Furthermore, H := G(∞) is quasisimple of order divisible

by p acting irreducibly on W , and so (H,W ) is as described in Theorem 2.2.

Proof. By the hypothesis, G acts irreducibly onW = kp. Suppose the action is imprimitive.
Then G permutes transitively the p summands of a decomposition W = W1 ⊕ . . . ⊕Wp,
with kernel say A. If A 6≤ Z(G), we arrive at (i). Assume that A ≤ Z(G). Note that
S := G/A is a transitive subgroup of Sp, and so we can apply the main result of [65] to
S. In particular, if S is solvable, then S = P : C with P ∼= Cp and C ≤ Cp−1. Then AP
is a normal abelian subgroup of G, whence by Ito’s theorem the degree of any χ ∈ Irr(G)
divides [G : AP ] | (p − 1). On the other hand, G is solvable, and so by the Fong-Swan
theorem, W lifts to an irreducible complex module of dimension p, a contradiction. Thus
S is non-solvable, which implies by [65] that S is almost simple, G is almost quasisimple,
and H := G(∞) is a normal subgroup of index coprime to p. Since dimW = p, the last
condition also implies that H is irreducible on W and so we arrive at (ii).

We may now assume that the G-moduleW is primitive. Since dim(W ) = p is prime, this
module cannot be tensor decomposable nor tensor induced. Now we can apply Aschbacher’s
theorem in the version given in [28, Proposition 2.8] to (G,W ) to conclude that G is almost
quasisimple: S ✁ G/Z(G) ≤ Aut(S) for some non-abelian simple group S. In particular,

H = G(∞)
✁G is quasisimple, and moreover irreducible on W by [28, Lemma 2.5]. Hence

we can apply Theorem 2.2 to (H,W ). �

6.1. Imprimitive case.

Proposition 6.6. Suppose we are in case (i) of Proposition 6.5. Then (G,W ) is adequate
if and only if |G/A| 6= p.

Proof. Let P ∈ Sylp(G), so that |P | = p (if P = 1 then G cannot act irreducibly on W ). If
|G/A| = p, then G = AP , A = Op′(G) contains all the p′-elements of G but does not act
irreducibly on W (as A is a p′-group), whence G is not weakly adequate.

Now assume that |G/A| 6= p; in particular, p > 2. Suppose that G has a normal p-
complement K. Then K = Op′(G) > A (as otherwise G = AP and so |G/A| = p), and
H := G/A ≤ Sp has a normal p-complement K/A 6= 1. Thus H is a transitive subgroup of
Sp with Cp as a composition factor. But then Op′(H) = 1 by Lemma 4.8, a contradiction.
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Thus G cannot have a normal p-complement, and so H i(G, k) = 0 for i = 1, 2 by Lemma
6.3. Also, W is projective as a G-module by Lemma 6.2, whence Ext1G(W,W ) = 0.

Since A 6≤ Z(G), A has p distinct eigenspaces W1, . . . ,Wp on W permuted transitively
by P . Thus, it remains only to prove that

End(W ) ∼= ⊕1≤i,j≤pHom(Wi,Wj)

is spanned by the images of the p′-elements of G. Given 1 ≤ i 6= j ≤ p, we claim that there
exists a p′-element x ∈ G with xWi = Wj . Since P is transitive on {W1, . . . ,Wp}, we can
choose y ∈ P with yWi = Wj . Note that N acts on this set as the Frobenius subgroup
Cp⋊Cs of Sp, with kernel A∩N , and all the elements of (Cp⋊Cs)\Cp are p′-elements. So,
since s > 1, we can find z ∈ N \AP such that zWj =Wj and set x := zy. Then xWi =Wj

and x ∈ N \ AP , whence x is a p′-element.
Now B := 〈A, x〉 is a p′-group. Note that WA = ⊕p

a=1Wa is a direct sum of p non-
isomorphic simple A-submodules. Hence WB = ⊕t

b=1Ub is a direct sum of t ≥ 1 non-
isomorphic simple B-modules, with U1 ⊇ Wi ⊕Wj. By the Artin-Wedderburn theorem,
the image of kB in End(W ) is just ⊕t

b=1 End(Ub), and so it contains

End(U1) ⊇ End(Wi)⊕ End(Wj)⊕Hom(Wi,Wj)⊕Hom(Wj ,Wi),

and the result follows. �

6.2. Chevalley groups in characteristic p. We first point out the following:

Proposition 6.7. Let H be a quasisimple finite group of Lie type in characteristic p. Let k
be an algebraically closed field of characteristic p. Let W be a faithful irreducible kH-module
of prime dimension r ≤ p. Then one of the following statements holds:

(i) H = SL2(p
a) for r = 2 and H = PSL2(p

a) for r > 2;
(ii) H = SLr(p

a) or SUr(p
a), and r > 2;

(iii) H = Ωr(p
a) and r ≥ 5; or

(iv) r = 7 and H = G2(p
a).

Proof. Since char(k) = p and V is faithful, Op(H) = 1. Hence there is a simple simply
connected algebraic group G in characteristic p and a Frobenius endomorphism F : G → G
such that H ∼= G/Z for G := GF and Z ≤ Z(G). Inflate W to a kG-module. Since
r = dimW is prime, W is tensor indecomposable and in particular is a twist of a restricted
representation. So we may assume that W is restricted and extend W to a kG-module.
By [36], it follows that W = L(λ) where λ is a dominant weight, and dimW equals the
dimension of the Weyl module V (λ) labeled by λ. Thus, we can apply the same result for
characteristic 0 which was proved by Gabber [39, 1.6]. �

Proposition 6.8. Suppose we are in case (ii) of Proposition 6.5. Assume in addition that

H = G(∞) is a quasisimple group of Lie type in characteristic p > 3. Then (G,W ) is
adequate.

Proof. By the hypothesis, we have that H is quasisimple and irreducible on W . So we
can apply Proposition 6.7 to H; in particular we have that WH = L(λ) is a restricted
module (up to a Frobenius twist; in what follows we will ignore this twist). In the case
H = PSL2(p

a), we have that λ = (p − 1)̟1, where ̟1 is the fundamental weight. Since
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WH is G-invariant, we see that G cannot induce nontrivial field automorphisms on H; in
particular, G+ = H. In other cases, applying Propositions 5.4.11 and 5.4.12 of [40], we
see that WH

∼= N or N ∗ where N is the natural kH-module of dimension p (with highest
weight ̟1), and again G+ = H.

By Remark 6.1, without loss we may now assume G = H. Note that all the classical
groups given in the previous proposition when r = p contain an irreducible subgroup
L ∼= PSL2(p). Indeed, the irreducible kL-representation of degree p embeds L inM ∼= Ωp(p).
In turn, M embeds in SLp(q) and SUp(q) for any q = pa. The same is true for G2(p) with
p = 7: G2(7) > G2(2) > PSL2(7). (It is well known, see e.g. [41] that H = G2(7) contains
a maximal subgroup X ∼= G2(2) which acts irreducibly on the minimal 7-dimensional H-
module W . Next, X contains a maximal subgroup Y ∼= PSL2(7), cf. [10]. Using [34] one
can check that Y is irreducible on W .) Thus weak adequacy follows by [23, Proposition
3.1].

It is well known that H1(G, k) = H2(G, k) = 0 (since p > 3). Thus, it suffices to show
that Ext1G(W,W ) = 0. If G = PSL2(p

a), the result follows by [2]. If G = Ω5(5), one
computes directly that Ext1G(W,W ) = 0 (this was done by Klaus Lux). In all other cases,
Ext1G(W,W ) = 0 by the main result of [48]. �

6.3. Remaining cases.

Lemma 6.9. Let k = k̄, H = Ap+1 with p ≥ 5, and let W be an irreducible kH-module of
dimension p. Then (H,W ) is weakly adequate.

Proof. Note that W is irreducible over a subgroup L ∼= PSL2(p) of H. Hence the claim
follows by [23, Proposition 3.1]. �

We record the following useful observation:

Lemma 6.10. Let X be a finite p′-subgroup of G < GL(W ) where W is a finite dimensional
vector space over k. Suppose that WX is multiplicity-free. Then (End(W )/M)X = 0.

Proof. Note that the X-module End(W ) is semisimple. Furthermore, the multiplicity-free
assumption implies M ⊇ End(W )X by the Artin-Wedderburn theorem. Hence the claim
follows. �

Proposition 6.11. Let k = k̄, H = PSp2n(q) with 2 < p = (qn ± 1)/2, and let W be an
irreducible kH-module of dimension p. Then (H,W ) is weakly adequate.

Proof. (a) Note that W is a Weil module and restricts irreducibly to a subgroup PSL2(q
n)

of H. So without loss we may assume n = 1. We will inflate W to a kL-module for
L := SL2(q). Note that W is obtained by reducing modulo p one of the four complex
Weil modules of L, with characters ηi of degree (q− 1)/2 and ξi of degree (q+1)/2, where
i = 1, 2 and ξi+ηi is a reducible Weil character of L, see e.g. [24] and [64]. Let τ denote the
permutation character of L acting on the set of all vectors of the natural module N := F2

q.
Using the character table of L as given on [13, p. 155], we see that

(6.1) (ξi + ηi)(ξ̄i + η̄i) = τ.
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Let P := StabL(〈v〉Fq ) for some 0 6= v ∈ N with normal subgroup Q := StabL(v) of order
q, and let ϕ denote the Brauer character of W . Assume the contrary: M 6= End(W ), and
let ϑ denote the Brauer character of Q := End(W )/M.

(b) Consider the case p = (q + 1)/2, whence ϕ = ξ◦i and P is a p′-group. Inspecting
the values of ϕP , we see that WP = W1 ⊕W2 with W1,W2 ∈ Irr(P ) of dimension 1 and

(q−1)/2 > 1. Moreover, (W1)Q is trivial, andWQ
2 = 0. By the Artin-Wedderburn theorem

applied to P , M ⊇ End(W1) ⊕ End(W2); in particular, dimMP ≥ 2 = dimEnd(W )P .
Hence we conclude that for any composition factor Y of End(W )/M, Y Q = 0 and dimY ≤
q − 1.

Let ρ denote the permutation character of L acting on the 1-spaces of N . Then ρ =
1L + St, where St is the Steinberg character of L. Moreover, all irreducible constituents of
τ − ρ− 1L have degree q+1 or (q+1)/2 and thus have p-defect 0. Note that St◦ = 1L +ψ
with ψ ∈ IBrp(L) (see [7]), and ρ is the character of the PIM P(1L) of 1L. Since ϕ = ξ◦i has
degree p and (the projective module) End(W ) contains a trivial simple submodule, we see
that End(W ) is the direct sum of P(1L) and some p-defect 0 modules of dimension q + 1
or (q +1)/2. In particular, since ψ is the Brauer character of the heart of P(1L), it cannot
be afforded by a quotient of End(W ), and so ϑ 6= ψ. Since ϑ(1) ≤ q − 1, it follows that
all irreducible constituents of ϑ are of degree 1 (with multiplicity ≤ 2) and (q + 1)/2 (with
multiplicity ≤ 1). But the principal character and the Weil characters of degree (q + 1)/2
of L all contain 1Q when restricted to Q, a contradiction.

(c) Now assume that p = (q − 1)/2; in particular, ϕ = η◦i and q ≡ 3(mod 4). Consider a
cyclic subgroup C ∼= C(q+1)/2 of H. It is straightforward to check that for any χ ∈ Irr(H),
either [χQ, 1Q]Q 6= 0 or [χC , 1C ]C 6= 0. Since irreducible p-Brauer characters of H lift to
complex characters (cf. [7]), it follows that for any U ∈ IBrp(H), either UQ 6= 0, or UC 6= 0.

Now we may assume ϕ = η◦1 and observe that both ϕQ and ϕC are multiplicity-free.
Hence, each of Q, C has no nonzero fixed points on End(W )/M by Lemma 6.10. Conse-
quently, M = End(W ). �

Proposition 6.12. Let k = k̄ and let H = SLn(q), where either 3 < p = (qn − 1)/(q − 1)
or (n, p) = (2, q − 1). Let W be an irreducible kH-module of dimension p. Then (H,W ) is
weakly adequate.

Proof. Let N = 〈e1, . . . , en〉Fq denote the natural FqH-module, and let P := StabH(〈e1〉Fq).
Since SL2(4) ∼= PSL2(5) and SL3(2) ∼= PSL2(7), we may assume (n, q) 6= (2, 4), (3, 2). Also,
let ϕ denote the Brauer character of W .

(a) First we consider the case p = (qn − 1)/(q − 1). In this case, W is induced from a
one-dimensional kP -module with character say λ. So we can write W = ⊕ω∈PNWω as a
direct sum of one-dimensional subspaces Wω permuted transitively by H, where PN is the
set of 1-spaces in N .

(a1) Assume in addition that n ≥ 3. It suffices to show that, for any two distinct
ω1 = 〈e〉Fq , ω2 = 〈f〉Fq ∈ PN ,

(6.2) M ⊇ End(Wω1
)⊕Hom(Wω1

,Wω2
)⊕Hom(Wω2

,Wω1
).

Since H acts transitively on those pairs (ω1, ω2), we may assume that e = e1 and e = e2.
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Consider an opposite parabolic subgroup R := StabH(N1) for N1 := 〈e1, . . . , en−1〉Fq ,
which is a p′-subgroup. Then R stabilizes the subspace W1 := ⊕ω∈PN1

Wω of dimension
(qn−1 − 1)/(q − 1). Note that the unipotent radical Q of R acts trivially on W1. Indeed,
q ≥ 3 since we are assuming n ≥ 3 and (n, q) 6= (3, 2). Now the Levi subgroup L :=
StabH(N1, 〈en〉Fq) of R acts transitively on qn−1−1 > dimW1 nontrivial linear characters of

Q, whence the claim follows. Now we identify L with GLn−1(q) via diag(X,det(X)−1) 7→ X.
Then the L-character ofW1 is just induced from the character λP∩L 6= 1P∩L of the maximal
parabolic subgroup P ∩L (of index (qn−1−1)/(q−1)) of L. HenceW1 is an irreducible Weil
module of dimension (qn−1 − 1)/(q− 1) for L, and it is irreducible over R. Note that λ is a
linear character of order dividing q − 1 = |P/P ′| and so it takes value 1 on any unipotent
element of P . Using this, one can check that ϕ(t) = (qn−1 − 1)/(q − 1) for any 1 6= t ∈ Q.
In particular,

ϕQ =
qn−1 − 1

q − 1
· 1Q +

∑

ν∈Irr(Q)

ν = (dimW1 + 1) · 1Q +
∑

1Q 6=ν∈Irr(Q)

ν.

It now follows (by Clifford’s theorem) that WR =W1 ⊕W2 ⊕W3, where W2 has dimension
1, WQ = W1 ⊕ W2, and W3 is irreducible of dimension qn−1 − 1. Applying the Artin-
Wedderburn theorem, we see that M ⊇ End(W1). Since e1, e2 ∈ N1, (6.2) follows.

(a2) Assume now that n = 2, and so p = q + 1 ≥ 17. In this case, ϕ is real, and so W is
self-dual and supports a non-degenerate H-invariant symmetric bilinear form (·, ·). Write
P = QT where Q is elementary abelian of order q and T ∼= Cq−1. We also consider another

parabolic subgroup P ♯ = Q♯T := StabH(〈e2〉Fq ), with T = P ∩ P ♯. Letting ρ denote the
regular character of T and ν := λT , we see that

(6.3) ϕT = ρ+ ν + ν−1, ϕQ = 1Q +
∑

α∈Irr(Q)

α.

Next, using (6.3) one can see that WP = CW (Q) ⊥ [W,Q], a direct orthogonal sum of
two P -submodules. Here, C := CW (Q) is of dimension 2 and affords the T -character
ν + ν−1, [W,Q] is of dimension q − 1 and affords the Q-character

∑

1Q 6=α∈Irr(Q) α and the

T -character ρ (as T permutes cyclically and transitively the q− 1 non-principal irreducible
characters of Q). It also follows that these two subspaces are non-degenerate and self-dual
P -submodules. Next, we can further decompose:

[W,Q] = A ⊥ B

as an orthogonal sum of two self-dual T -modules, where A affords the T -character ρ− ν −
ν−1, and B affords the T -character ν + ν−1. Summarizing, we have that

WP = A ⊥ B ⊥ C,

where A ⊥ B is an irreducible P -module of dimension q − 1, and C is a sum of two
irreducible P -modules of dimension 1. Applying the Artin-Wedderburn theorem to (P,W ),
we obtain

(6.4) M ⊃ End(A⊕B) := {f ∈ End(W ) | f(A⊕B) ⊆ A⊕B, f(C) = 0}.
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Repeating the above argument for P ♯ instead of P , we have that

WP ♯ = A♯ ⊥ B♯ ⊥ C♯,

where A♯ affords the T -character ρ − ν − ν−1, B♯ affords the T -character ν + ν−1, and
C♯ = CW (Q♯) affords the T -character ν + ν−1, and

(6.5) M ⊃ End(A♯ ⊕B♯) := {f ∈ End(W ) | f(A♯ ⊕B♯) ⊆ A♯ ⊕B♯, f(C♯) = 0}.

Comparing with (6.3), we see that A♯ = A. Furthermore, C∩C♯ is centralized by 〈Q,Q♯〉 =
H, so C∩C♯ = 0. But both C and C♯ are of dimension 2 and orthogonal to A = A♯, whence
C ⊕ C♯ = A⊥. Next, B ∩ B♯ is a subspace of the non-degenerate subspace A⊥ which is
orthogonal to both C and C♯, so B∩B♯ = 0. Since dimB+dimB♯ = 4 = dimA⊥, we have
shown that

A♯ = A, A⊥ = B ⊕B♯ = C ⊕ C♯, W = A ⊥ (B ⊕B♯).

Suppose now that f ∈ End(W ) belongs to both End(A⊕B) and End(A⊕B♯) as identified
in (6.4) and (6.5). Then f = 0 on C ⊕C♯ = A⊥, i.e. f(A⊥) = 0. Next,

f(A) ⊆ (A⊕B) ∩ (A⊕B♯) = A.

It follows that

End(A⊕B) ∩ End(A⊕B♯) ⊆ End(A) := {f ∈ End(W ) | f(A) ⊆ A, f(A⊥) = 0},

and so by (6.4), (6.5) we have

dimM ≥ 2(q − 1)2 − (q − 3)2 = q2 + 2q − 7,

i.e. codimEnd(W )M ≤ 8.
On the other hand, all non-principal ψ ∈ IBrp(H) have degree ≥ q − 1 ≥ 15. So,

assuming M 6= End(W ), we see that all composition factors of the H-module Q :=
End(W )/M are trivial. Since H is perfect, it follows that H acts trivially on Q. But
dimHomkH(End(W ), 1H ) = 1, so M is contained in the unique submodule E0 := {f ∈
End(W ) | tr(f) = 0} of codimension 1 in End(W ). But this is a contradiction, since
by (6.4), M contains the map g which acts as identity on A ⊕ B and as 0 on C, with
tr(g) = q − 1 = p− 2 6= 0.

(b) Now we handle the case p = q − 1 (so 2 | q ≥ 8). Then for the unipotent radical Q
of P we have

WQ =
⊕

1Q 6=α∈Irr(Q)

Wα

with Wα affording the Q-character α. Next, let S ∼= Cq+1 be a non-split torus in H. Then
there is some 1S 6= γ ∈ Irr(S) such that

WS =
⊕

β∈Irr(S), β 6=γ,γ−1

Wβ

with Wβ affording the S-character β. Thus both Q and S are multiplicity-free on W . By

Lemma 6.10, we see that for any composition factor U of End(W )/M, UQ = US = 0. On
the other hand, inspecting the (Brauer) character table of H (see [7]), one sees that UQ 6= 0
if dimU = 1, q, q+1 and US 6= 0 if dimU = q−1, for any U ∈ IBrp(H). Hence we conclude
that M = End(W ). �
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Proposition 6.13. Let k = k̄ and let H = SUn(q) with 3 < p = (qn+1)/(q+1) and n ≥ 3.
Let W be an irreducible kH-module of dimension p. Then (H,W ) is weakly adequate.

Proof. Let ϕ denote the Brauer character of W and let N := Fn
q2 denote the natural Fq2H-

module. Recall that H possesses the so-called reducible Weil character

(6.6) ζn,q : g 7→ (−1)n(−q)
dimF

q2
Ker(g−1)

for all g ∈ H, which decomposes as the sum of q + 1 distinct irreducible Weil characters

ζn,q =

q
∑

i=0

ζ in

(of degree (qn− q)/(q+1) for i = 0 and (qn+1)/(q+1) for i > 0), see [64]. Then ϕ can be

obtained by restricting some ζjn with j > 0 to p′-elements of H. We also let P := StabH(U)
for a maximal totally singular subspace U of N , with unipotent radical Q (so P is a p′-
group), and let ρ denote the permutation character of H acting on the set Ω of singular
1-spaces of N .

(a) First we show that

• the only irreducible constituents of ζjnζ̄
j
n that are not of p-defect 0 are 1H and (possibly)

another one, σ, of degree

(6.7) σ(1) =
(qn − q)(qn + q2)

(q2 − 1)(q + 1)
;

• all p-defect 0 constituents of ζjnζ̄
j
n have degree > 2p if n > 3, and

• σ is the Steinberg character St of H if n = 3 and it is a constituent of ρ if n > 3.
Indeed, (6.6) implies that (ζn,q)

2 is just the permutation character of H acting on the point
set of N , and at the same time it equals the restriction to H of the reducible Weil character
ζ2n,q of SU2n(q), if we embed H diagonally into SU2n(q): X 7→ diag(X,X). Assume n > 3.
Then all irreducible constituents of the latter restriction are described by [44, Proposition
6.3], and their degrees are listed in [44, Table III]. It follows that (ζn,q)

2 has exactly two
non-p-defect 0 irreducible constituents, namely 1H (with multiplicity q + 1) and another
one σ of indicated degree (with multiplicity q). Certainly, the permutation representation
of H on (the point set of) N contains the permutation representation of G on Ω as a
subrepresentation (no matter if n > 3 or not). On the other hand, ρ contains an irreducible
constituent of degree as listed in (6.7) (see [57, Table 2]), so ρ = 1H+σ+ψ (and ψ ∈ Irr(H)
has p-defect 0). One also easily checks all defect 0 constituents of (ζn,q)

2 have degree > 2p.
Suppose that n = 3; in particular 3 ∤ (q + 1) and q > 2. Inspecting the character table

of H = SU3(q) as given in [17], we see that the only non-p-defect 0 irreducible characters
of H are 1H , the Weil character ζ03 of degree q2 − q, the Steinberg character St of degree

q3 matching (6.7), and (q2 − q)/3 characters χ
(u)
(q+1)2(q−1)

. Direct calculations show that

[ζj3 ζ̄
j
3 , χ

(u)
(q+1)2(q−1)

]H = 0. Next, observe that

(ζ3,q)
2 = 1H + 1HQ + (q − 1)1HL ,
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where Q = StabH(u) is the unipotent radical of P as above (if U = 〈u〉F
q2
) and L =

StabH(v) ∼= SU2(q) for some non-singular v ∈ N . Furthermore,

[(ζ03 )Q, 1Q]Q = 0, (ζ03 )L =

q
∑

i=1

ζ i2.

The former relation implies [ζ03 , 1
H
Q ]H = 0. On the other hand, by [64, Lemma 4.7(ii)],

each ζ i2 in the latter relation is obtained by restricting an irreducible character of degree
q− 1 ≥ 2 of GU2(q)✄L to L. It follows by Clifford’s theorem that [ζ03 , 1

H
L ]H = 0. Thus we

have shown that ζ03 is not a constituent of (ζ3,q)
2, as claimed.

(b) Now we show that, if β is an irreducible constituent of ϕϕ̄ and β 6= 1H , then either
β(1) ≥ 2p, or n = 3, β(1) = p, and [βQ, 1Q]Q > 0. Indeed, suppose that β(1) < 2p. Suppose
for the moment that n > 3. Then by the results of (a), β is a constituent of the Brauer
character σ◦. But according to [43], σ◦−1H ∈ IBrp(H), so β(1) = σ(1)−1 > 2p by (6.7), a
contradiction. Thus n = 3. If moreover β is in a block of p-defect 0, then using [17, Table
3.1] we see that β(1) = p, β = (ζ i3)

◦ for some i > 0 and so βQ contains 1Q. Otherwise, by
the results of (a), β is a constituent of St◦. In this case, according to [17, Theorem 4.2],
St

◦ − 1H ∈ IBrp(H) and so β(1) = St(1)− 1 = q3 − 1 > 2p, again a contradiction.

(c) When n ≥ 5, according to Lemmas 12.5 and 12.6 of [24], ϕZ(Q) contains a non-

principal linear character λ, whose P -orbit O has length (qn−1 − 1)/(q +1); moreover, any
irreducible character of Q above λ has degree q. Since ϕ(1) = (qn + 1)/(q + 1), it follows
that WP = A ⊕ B, where B := CW (Z(Q)) has dimension 1, A := [W,Z(Q)] ∈ Irr(P ) has
dimension (qn − q)/(q + 1) = p− 1 and affords the Z(Q)-character q

∑

α∈O α. The same is
also true for n = 3, see Tables 2.1 and 3.1 of [17]. Applying the Artin-Wedderburn theorem
to (P,W ), we see that

M ⊇ End(A)⊕ End(B).

In particular, ifM 6= End(W ), then any composition factorX of theH-module End(W )/M
has dimension ≤ 2p − 2 and moreover XQ ⊆ XZ(Q) = 0. But this is impossible by the
results of (b). �

Lemma 6.14. Let k = k̄ and let W be an irreducible kH-module of dimension p ≥ 3,
where H is quasisimple and (H,W ) is one of the non-serial examples listed in Tables I,IIa,
IIb, or III. Then (H,W ) is weakly adequate.

Proof. Let ϕ denote the Brauer character ofW . Note that the cases (H, p) = (A5, 3), (A6, 5)
are covered by Proposition 6.11 since A5

∼= PSp2(5) and A6
∼= PSL2(9).

Suppose that (H, p) = (Sp6(2), 7). Then H > L ∼= SL2(8), and ϕL is irreducible (see
[34]), so we are done by Proposition 6.12.

Assume that (H, p) = (M11, 11). Then H contains a p′-subgroup L = M10
∼= A6 · 23,

and using [16] we can check that ϕL = λ+ ψ, where λ, ψ ∈ Irr(L) are rational of degree 1
and 10 (and λ 6= 1L). It follows that WL = A ⊕ B, where A affords the character λ and
B affords the character ψ. Applying the Artin-Wedderburn theorem to (L,W ) we see that
M ⊇ End(A)⊕End(B). In particular, if M 6= End(M), then any composition factor U of
the H-module End(W )/M has dimension ≤ 20 and moreover all composition factors of UL

afford the character λψ = ψ. The latter condition also implies that dimU = 10 or 20. On
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the other hand, using [34] and [16] we see that any such U must be of dimension 10 and
its character restricted to L yields an irreducible non-rational character, different from ψ.
Hence M = End(W ).

Assume that (H, p) = (M12, 11). Then H contains a maximal subgroup L ∼= PSL2(11),
and using [16] we can check that ϕL is irreducible. So we are done by [23, Proposition 3.1].

Assume that (H, p) = (M24, 23). Then H contains a maximal subgroup L ∼= PSL2(23),
and using [16] we can check that ϕL is irreducible. So we are done by [23, Proposition 3.1].

Assume that (H, p) = (Co2, 23) or (Co3, 23). Then H contains a p′-subgroup L ∼=McL,
and using [10] we can check that ϕL = 1L+ψ, with ψ ∈ Irr(L). It follows thatWL = A⊕B,
where A := CW (L) has dimension 1 and B affords the character ψ. Applying the Artin-
Wedderburn theorem to (L,W ) we see that M ⊇ End(A) ⊕ End(B). In particular, if
M 6= End(M), then any composition factor U of the H-module End(W )/M has dimension
≤ 44 and moreover UL = 0. On the other hand, using [49] we see that the only irreducible
kH-modules of dimension ≤ 44 are k and W , and both have nonzero L-fixed points. Hence
we conclude that M = End(W ). �

Now we can prove Theorem 1.7 which we restate:

Theorem 6.15. Let k = k̄ be of characteristic p and let G be a finite group with a faithful
irreducible kG-module V of dimension p. Then precisely one of the following holds:

(i) G is adequate on V ;
(ii) G contains an abelian normal subgroup A of index p (and G permutes p one-

dimensional summands of V with kernel A); or
(iii) p = 3 and the image of G in PGL(V ) is PSL2(9).

Proof. First assume that p > 3. Apply Proposition 6.5 to G. In the case (i) of the propo-
sition, we are done by Proposition 6.6. So we may assume that G is almost quasisimple,
H := G(∞) is quasisimple, with simple quotient S, and H is irreducible on V . If S is of
Lie type in characteristic p, we can apply Proposition 6.8. Assume we are in the remaining
cases. In all these cases, observe that the outer automorphism group Out(S) is a p′-group
and the Schur multiplier Mult(S) is a p′-group as well (as p > 3). The first condition
implies that G+ = H, whence by Remark 6.1 without loss we may assume G = H and so
H1(G, k) = 0. The second condition implies that H2(G, k) = 0. Furthermore, in all cases
V lifts to a complex module of p-defect 0, whence V is projective and so Ext1G(V, V ) = 0.
Finally, H is weakly adequate on V by Propositions 6.11, 6.12, 6.13, and Lemmas 6.9, 6.14.

Now consider the cases when p = 2 or 3. If V is imprimitive the result follows as above.
So assume that V is primitive. Set H = G(∞).

Suppose that G = H = SL2(p
a) or PSL2(p

a). Then a ≥ 2 and the result follows by
Corollary 9.4. If G > H then as V g ∼= V as H-modules for all g ∈ G, G/H is a p′-group
and G is adequate on V whenever H is. Thus the last case to consider is H = PSL2(9) ∼=
A6. The normalizer of H in PGL(V ) is PGL2(9) (the normalizer is just the subgroup of
the automorphism group which fixes the isomorphism class of V ). If the image of G in
PGL(V ) is PGL2(9), H

1(G, k) = H2(G, k) = 0 (see the proof of Corollary 9.5) and since
Ext1G(V, V ) = 0, V is adequate in this case.

By Proposition 6.5 and Theorem 2.2, the remaining cases to consider are G almost
quasisimple, p = 3 and H ∈ {A5,PSL2(7),SL3(3

a),SU3(3
a)}. In the first two cases, the
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order of G is not divisible by 9, whence V is projective and so Ext1G(V, V ) = 0. Note also
that H1(G, k) = H2(G, k) = 0. In the first case, V ⊗ V ∗ is a direct sum of the projective
cover of k and a 3-dimensional module. Elements of order 5 have nonzero trace and 3-
dimensional fixed space. Since elements of order 5 have only a 2-dimensional fixed space
on the projective cover of k, it follows that the span of the elements of order 5 generate
V ⊗ V ∗. In the second case, V ⊗ V ∗ is the projective cover of k and since the trace of an
irreducible character cannot be identically 0, it follows that H is weakly adequate on V in
this case as well. Thus, (G,V ) is adequate.

In the last two cases, weak adequacy follows from the fact that V ⊗ V ∗ is a uniserial
module with trivial socle and head. It follows by the main result of [48] that Ext1G(V, V ) = 0
for a > 2. One computes directly that Ext1G(V, V ) = 0 in all other cases (Klaus Lux did
the computation; also see [37] for the case of SL3(3

a)). Since H1(G, k) = H2(G, k) = 0, the
result follows. �

7. Certain PIMs for simple groups

For a finite group X and a fixed prime p, let B0(X) denote the principal p-block of
X. We will sometimes use the same notation for an irreducible kX-module and its Brauer
character.

First we describe the submodule structure of the PIMs for some non-projective modular
representations of simple groups H described in Theorems 2.1 and 2.2.

Assume that H has a Sylow p-subgroup P of order p and furthermore that P = CH(P ).
In this case, P has a unique block b with defect group P and canonical character 1P , see
[46, Theorem 4.6.12]. According to Brauer’s theorem [46, Theorem 4.12.1], H has a unique
p-block B of defect d > 0 (hence d = 1), and B = bG. In particular, B = B0(H). Note
that the number of exceptional characters in B equals (p−1)/|NH(P )/P | in this situation,
and all of them are p-conjugate (and so non-rational if |NH(P )/P | < p − 1), cf. Theorem
4.12.1 and Corollary 4.12.2 of [46]. We will use [46, Theorem 4.12.1] to find PIMs P(ϕ) for
some ϕ ∈ IBrp(B).

7.1. The case H = PSLn(q) with p = (qn − 1)/(q − 1) and n ≥ 2. First suppose that
n ≥ 3. Then B contains unipotent characters χ0 = 1H , χ1, and χ2 labeled by the partitions
(n), (n− 1, 1), and (n− 2, 12), and Brauer characters ϕ0 = 1H , ϕ1 of degree p− 2 (afforded
by D), and ϕ2 of degree

(qn − 2q2 + 1)(qn − q)

(q2 − 1)(q − 1)
+ 1

(afforded by a kH-module say U) among others (see e.g. [26, Proposition 3.1]). More
precisely,

(7.1) χ◦
0 = ϕ0, χ

◦
1 = ϕ0 + ϕ1, χ

◦
2 = ϕ1 + ϕ2.

Note that

dim(U) = ϕ2(1) > 2p
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unless (n, q) = (3,≤ 3). Since χi are rational for i = 0, 1, 2, they are all non-exceptional.
Next, the character of any PIM in B is of the form ψ1 + ψ2, where ψ1 ∈ Irr(B) is non-
exceptional, and either ψ2 ∈ Irr(B), or ψ2 is the sum of all (p−1)/n exceptional characters
in B. Hence the relations (7.1) show that

• P(ϕ0) affords the character (χ0 + χ1)
◦ = 2ϕ0 + ϕ1. In fact, one can see that P(k) is

the uniserial module (k|D|k). In particular, this shows that Ext1H(k,U) = Ext1H(U , k) = 0;
• P(ϕ1) affords the character (χ1 + χ2)

◦ = ϕ0 +2ϕ1 +ϕ2. By [46, Corollary 4.12.5], the
module P(ϕ1) = P(D) has socle series (D|k ⊕ U|D). Since ϕ1 is real, P(D) is self-dual.
Furthermore, the only nonzero proper submodules of P(D) are

D = soc(P(D)), (D|k), (D|U), (D|k ⊕ U) = rad(P(D)),

(cf. [46, Figure 4.3]), and so none is of the form (D|k|D).

Next, let H = SL2(q) and p = q + 1. The decomposition numbers for B0(H) are given
in [7]. In particular, Irr(B) consists of χ0 = 1H , χ1 = St of degree q, and q/2 exceptional
characters θi, 1 ≤ i ≤ q/2, of degree q − 1, and IBrp(B) = {1H , ϕ1}, with ϕ1 afforded by
D. So as before, we have that P(k) = (k|D|k) is uniserial. Next, P(D) = P(ϕ1) affords the
character

(St+

q/2
∑

i=1

θi)
◦ = 1H + (

q

2
+ 1)ϕ1.

If we let Dj = (D|D| . . . |D) denote a uniserial module with Brauer character jϕ1, then
P(D) = (D|k ⊕ D(q−2)/2|D) (cf. [46, Corollary 4.12.5]). Furthermore, the only nonzero
proper submodules of P(D) are Dj or (D|k ⊕Dj−1) with 1 ≤ j ≤ q/2.

7.2. The case H = PSUn(q) with p = (qn + 1)/(q + 1), n ≥ 3, (n, q) 6= (3, 2). Note that

in this case H̃ ∼= Z(H̃)×H for H̃ := GUn(q); moreover, the unipotent characters of H̃ as

well as the characters in B0(H̃) are all trivial at Z(H̃). Hence without loss we may assume
H = GUn(q). We will consider the unipotent characters χ0 = 1H , χ1,2,3, labeled by the
partitions (n), (n− 1, 1), (n− 2, 12), and (n− 3, 13) (the latter being considered only when
n > 3). Using the description of Brauer trees for H given in [15, §6], we see that, when
n ≥ 5, there exist Brauer characters ϕ0 = 1H , ϕ1,2,3, such that

(7.2) χ◦
0 = ϕ0, χ

◦
1 = ϕ1, χ

◦
2 = ϕ0 + ϕ2, χ

◦
3 = ϕ1 + ϕ3.

In particular, ϕ0 = 1H , ϕ1 is a Weil character of degree p− 1,

ϕ2(1) = p
qn + q2 − q − 1

q2 − 1
− 2 > 8p, ϕ3(1) = p

(qn − q)(qn − q3 + q2 − 1)

(q2 − 1)(q3 − 1)
− 2p+ 2 > 28p.

Since χi are all rational, they are all non-exceptional, so as in §7.1, the relations (7.2) and
[46, Corollary 4.12.5] show that both P(ϕ0,1) are uniserial:

P(ϕ0) = (ϕ0|ϕ2|ϕ0), P(ϕ1) = (ϕ1|ϕ3|ϕ1),

where we have used the same notation for the module and its Brauer character.
Suppose now that n = 3 and q ≥ 3. Then we still have P(ϕ0) = (ϕ0|ϕ2|ϕ0) is uniserial

for ϕ0 = 1H and ϕ2(1) > 2p. For the Weil character ϕ1 of degree p− 1, now P(ϕ1) affords
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the character

(χ1 +

(p−1)/3
∑

i=1

θi)
◦ =

p+ 2

3
ϕ1 +

p− 1

3
ϕ2,

where θi are exceptional characters in B, of degree (q2−1)(q+1) > 2p, for 1 ≤ i ≤ (p−1)/3.
We claim that

P(ϕ1) = (ϕ1|ϕ2|ϕ1| . . . |ϕ2|ϕ1)

is self-dual, uniserial of length (2p+1)/3, with the composition factors ϕ1 and ϕ2 alternating.
The first statement follows since ϕ1 is real. The second one holds because in this case, both
the socle soc(P(ϕ1)) and head P(ϕ1)/rad(P(ϕ1)) are simple and rad(P(ϕ1))/ soc(P(ϕ1))
is uniserial. By [63, Theorem 1.1], H has a unique complex character of degree equal to
ϕ0(1) or ϕ1(1). Hence the last statement holds by Lemma 3.1 since ϕ0,1 each has a unique
lift to characteristic 0.

7.3. The case H = SL2(q) and p = q−1 ≥ 3. The decomposition numbers for B0(H) are
given in [7]. In particular, Irr(B) consists of χ0 = 1H , χ1 = St of degree q, and (q − 2)/2
exceptional characters θi, 1 ≤ i ≤ q/2, of degree q + 1, and IBrp(B) = {ϕ0 = 1H , ϕ1}, with
ϕ1 = St

◦ afforded by D. Clearly, both ϕ0,1 have a unique complex lift, so by Lemma 3.1
they have no self-extensions. Arguing as in §7.2 and using [46, Corollary 4.12.5], we see
that both

P(ϕ0) = (ϕ0|ϕ1|ϕ0| . . . |ϕ1|ϕ0), P(ϕ1) = (ϕ1|ϕ0|ϕ1| . . . |ϕ0|ϕ1)

are self-dual and uniserial of length p, and with the composition factors ϕ0 and ϕ1 alter-
nating.

7.4. The case H = Ap with p ≥ 7. Consider the irreducible complex characters χ0,1,2 of
Sp labeled by (p), (p− 1, 1), and (p− 2, 12). By Peel’s theorem [54],

(7.3) χ◦
0 = ϕ0, χ

◦
1 = ϕ0 + ϕ1, χ

◦
2 = ϕ1 + ϕ2,

where ϕ0,1,2 ∈ IBrp(Sp), ϕ0(1) = 1, ϕ1(1) = p−2, ϕ2(1) = (p−2)(p−3)/2. It is well known
that χ0,1,2 and ϕ0,1 are all irreducible over H. Restricting to Sp−1, it is easy to see that
ϕ2 is irreducible over H as well. We will use the same notation for the restrictions of these
characters to H. Since χ0,1,2 are rational, they are non-exceptional in B0(H). Hence, (7.3)
and [46, Theorem 4.12.1] imply that P(ϕ0) = (ϕ0|ϕ1|ϕ0) is uniserial and that P(ϕ1) has
socle series (ϕ1|ϕ0 ⊕ ϕ2|ϕ1). In particular, there is no kH-module of the form (ϕ1|ϕ0|ϕ1).

8. Indecomposable modules of dimension less than 2p− 2

First we record a simple observation

Lemma 8.1. Let b ∈ N and let V be a kG-module of dimension ≤ b with a G+-composition
factor U . Suppose that any quotient of length 2 of P(U) or P(U∗) has dimension > b. Then
U is a direct summand of the G+-module V . If moreover U has multiplicity 1, then the
G-module V is either irreducible of dimension dimU , or decomposable.
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Proof. Suppose that W is an indecomposable subquotient of length 2 of the G+-module
V with U as a composition factor. Replacing W by W ∗ if necessary, we may assume that
head(W ) ∼= U and so W is a quotient of P(U). But then by the hypothesis, dimW > b ≥
dimV , a contradiction. So U is a direct summand of the G+-module V by Lemma 3.5(i):
VG+ = U1 ⊕M with U1

∼= U . The last claim now follows from Lemma 3.7(ii). �

Given a nontrivial U ∈ IBrp(X), we call any kX-module V U -special, if V has U or U∗

as composition factors of total multiplicity ≤ 1, and moreover all other composition factors
of V are trivial.

Lemma 8.2. Let N = Op(N), b ∈ N, and let U ∈ IBrp(N) be a nontrivial module. Suppose
that the only U -special quotients of P(k), P(U), and P(U∗) of dimension ≤ b are uniserial
modules in the list

X := {k, Y, (k|Y ), (Y |k), (k|Y |k) | Y = U or U∗}.

Let V be any U -special kN -module of dimension ≤ b. Then V ∼= ⊕m
i=1Xi for some Xi ∈ X .

Proof. We induct on the length of V . Suppose V has length ≥ 2. If all composition factors
of V are trivial, then N acts trivially on V since N = Op(N), and we are done. Replacing
V by V ∗ if necessary, we may assume that V has U as a composition factor of multiplicity
1, and all other composition factors of V are k.

Suppose that U embeds in head(V ) := V/R, where R := rad(V ). Then all composition
factors of R are trivial, and so N acts trivially on R. Assume in addition that V/R is not
simple. Then V/R = M/R ⊕ Y/R for some submodules M,Y with Y/R ∼= k. Again, N
acts trivially on Y , so we can write Y = R ⊕ Z for some submodule Z ∼= k. It follows
that V = M ⊕ Z, and we are done by induction. Assume now that V/R ∼= U . Then the
surjection P(U) → V/R lifts to a surjection P(U) → V . Since dimV ≤ b, we must then
have that V ∈ X .

The case U →֒ soc(V ) now follows from the previous case by duality.
Now we may assume that U embeds neither in head(V ) nor in soc(V ). Letting W :=

[N,V ] and T := rad(W ), we see that W has no trivial quotient. But W/T is semisimple,
so W/T ∼= U . Applying the induction hypothesis to V/T and noting that U is in the socle
but not in the head of V/T , we see that V/T ∼= L/T ⊕ Y/T , where L/T ∼= (U |k) and N
acts trivially on Y/T . In this case, N acts trivially on Y as well. If moreover Y 6= T , then
we can decompose Y = T ⊕ Z for some submodule Z 6= 0, whence V = L⊕ Z and we are
done by induction. Thus we may assume V/T ∼= (U |k). Consider any maximal submodule
M of V . Since U 6 →֒ head(V ), V/M ∼= k and so M ⊇ W . It follows that R ⊇ T and
R/T = rad(V/T ) ∼= U . Hence V/R ∼= k. In this final case, the surjection P(k) → V/R lifts
to a surjection P(k) → V . Since dimV ≤ b, we must again have that V ∈ X . �

Corollary 8.3. Let G+ be perfect, b ∈ N, and let U ∈ IBrp(G
+) be a nontrivial module.

Suppose that the only U -special quotients of dimension ≤ b of P(k), P(U), and P(U∗) are
uniserial modules in the list

X := {k, Y, (k|Y ), (Y |k), (k|Y |k) | Y = U or U∗}.

Let V be any indecomposable kG-module of dimension ≤ b such that VG+ is U -special. Then
VG+ is also indecomposable and belongs to X .
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Proof. We may assume that exactly one indecomposable direct summand A of VG+ has U
as a composition factor, and so VG+ = A⊕B with G+ acting trivially on B. Hence B = 0
by Lemma 3.7(ii). �

Theorem 8.4. Let G be a finite group, k an algebraically closed field of characteristic
p, Op(G) = 1, and let V be a faithful, indecomposable kG-module of dimension less than
2p − 2. Assume in addition that G+ is quasisimple but not of Lie-type in characteristic p.
Then one of the following statements holds, where U,W ∈ IBrp(G

+).

(i) V is irreducible.
(ii) (G+, p,dimU) = (SL2(q), q−1, p+1), (Ap, p, p−2), (SLn(q), (q

n−1)/(q−1), p−2),
(M11, 11, 9), (M23, 23, 21). Furthermore, VG+ is uniserial of the form (k|U), (U |k),
or (k|U |k), and U ∼= U∗.

(iii) (G+, p,dimU) = (SL2(q), q + 1, p − 2), U ∼= U∗, and VG+ is indecomposable of the
form (U |U), (U |k ⊕ U), or (k ⊕ U |U).

(iv) (G+, p,dimU) = (2A7, 7, 4), VG+ = (U |U) is uniserial, and U ∼= U∗.
(v) (G+, p) = (M11, 11) and VG+ = (U |W ) is uniserial, {dimU,dimW} = {9, 10}.
(vi) (G+, p,dimU) = (3A6, 5, 3), VG+ = (U |U) is uniserial, and U 6∼= U∗.
(vii) (G+, p,dimU) = (2B2(8), 13, 14), VG+ is uniserial of the form (k|U) or (U∗|k) for

a fixed U 6∼= U∗.

Proof. (a) Note that the statement is vacuous for p = 2. Throughout the proof, we assume
that p > 2, V is reducible, and let U be a composition factor of the G+-module V of
largest dimension. Also set b := 2p − 3 whenever we apply Lemma 8.2 and Corollary
8.3. Note that VG+ is (reducible) indecomposable by Corollary 4.5. Next, G+ must act
irreducibly and non-trivially on some subquotient X of VG+. Applying Theorems 2.1 and
2.2 to the action of G+ on X, we see that Mult(G+/Z(G+)), and so Z(G+), has p′-order.
The indecomposability of VG+ then implies that Z(G+) acts via scalars on V and that G+

acts faithfully on U (and so we may identify G+ with its image in GL(U)). In particular, if
k is a composition factor of VG+ , then G+ is simple. This must be the case if dp(G

+) ≥ p−1.
Also, if Z(G+) 6= 1, then G+ acts faithfully on every composition factor of VG+ .

(b) Assume first that (G+, p) = (J1, 11). According to [34], the only ϕ ∈ IBrp(G
+) of

degree < 2p are ϕ1,7,14. Here we use the notation ϕj to denote the unique ϕ ∈ IBrp(G
+) of

degree j. Moreover, using [49] we see that

(8.1) P(ϕ1) = (ϕ1|ϕ119|ϕ1), P(ϕ7) = (ϕ7|ϕ49 ⊕ ϕ69|ϕ7), P(ϕ14) = (ϕ14|ϕ106 ⊕ ϕ119|ϕ14).

Since dimV < 2p, each composition factor X of the G+-module V must afford the Brauer
character ϕi for some i ∈ {1, 7, 14}. Now (8.1) shows that Ext1G+(X,Y ) = 0 for any two
such composition factors X and Y . Hence the G+-module V is semisimple by Lemma 3.5,
a contradiction.

From now one we may assume that G+ 6∼= J1 and so dp(G
+) ≥ p− 3 by Theorem 2.1. In

particular, dimU ≥ p− 3 and Corollary 3.9 applies.

(c) Here we consider the case where dimU > p. Since dimV ≤ 2p − 3 and VG+ is
reducible, it follows that k is a composition factor of VG+ , and so G+ is simple as noted in
(a). Also, all composition factors of VG+ other than U are trivial. Now we apply Theorem
2.2 to (G+, U).
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Suppose that G+ = An with n ≥ p as in the first row of Table I. Since p+ 1 ≤ dimU ≤
2p−3, we have that 5 ≤ p ∤ n and p+2 ≤ n ≤ 2p−2. By [51, Lemma 6.10], H1(An, U) = 0,
whence Ext1G+(k, U) = Ext1G+(U, k) = 0. Also, Ext1G+(k, k) = Ext1G+(U,U) = 0 by Lemma
3.1. It follows by Lemma 3.5 that VG+ is semisimple, a contradiction.

Next suppose that (G+, p,dimU) = (SL2(q), q−1, p+1) as in Table IIa. Then, as shown
in §7.3, (G+, U) satisfies the hypothesis of Corollary 8.3, and so we arrive at (ii).

In the cases where (G+, p,dimU) = (A7, 7, 10), (SL3(3), 13, 16), (SU4(2), 5, 6), (Sp4(4), 17, 18),
(G2(3), 13, 14), (J1, 11, 14), (J1, 19, 22 or 34), (M12, 11, 16), or (M11, 11, 16), using the in-
formation on decomposition numbers given in [49], one can check that U satisfies the
hypothesis of Lemma 8.1, and so V is decomposable, a contradiction.

Assume that (G+, p,dimU) = (2B2(8), 13, 14). Then V is U -special, and using [49] one
can check that the only quotients of dimension ≤ 23 of P(k), P(U), and P(U∗) are k, Y ,
(k|Y ), or (Y |k), with Y = U or U∗. Applying Corollary 8.3, we arrive at (vii).

(d) Next we consider the case dimU = p, and apply Theorem 2.2 to (G+, U). By Lemma
6.2, U is projective, and so it is a direct summand of VG+, a contradiction.

(e) Assume now that dimU = p − 1, and apply Theorem 2.1 to (G+, U). Note that U
has multiplicity 1 as dimV < 2p − 2. First we consider the case (G+, p) = (SUn(q), (q

n +
1)/(q+1)). In this case, G+ is simple, dp(G

+) = p− 1 and so all other composition factors
of the G+-module V are trivial. As shown in §7.2,

Ext1G+(k, U) = Ext1G+(U, k) = Ext1G+(k, k) = Ext1G+(U,U) = 0.

It follows by Lemma 3.5 that VG+ is semisimple, a contradiction.
Suppose now that (G+, p) = (Sp2n(q), (q

n+1)/2), (2Ru, 29, 28), (3J3, 19, 18), (2A7, 5, 4),
(3A7, 7, 6), (6A7, 7, 6), (2J2, 7, 6), (61·PSU4(3), 7, 6), (6·PSL3(4), 7, 6), (2M12, 11, 10), (2M22, 11, 10),
(6Suz, 13, 12), or (2G2(4), 13, 12). Since Z(G+) 6= 1, G+ acts faithfully on every composi-
tion factor X of VG+ as noted in (a), whence dimX ≥ p− 1 > (dimV )/2 by Theorem 2.1.
It follows that VG+ is irreducible, a contradiction.

Assume that (G+, p,dimU) = (M11, 11, 10). The Brauer tree of B0(G
+) is given in

[46, Example 4.12.11]. Using this information, we see that the only quotient of length 2 of
dimension ≤ 19 of P(U) is of form (W |U), whereW ∈ IBrp(M11) has dimension 9. Arguing
as in the proof of Lemma 8.1, we arrive at (v).

(f) Next we consider the case dimU = p− 2 and apply Theorem 2.1 to (G+, U). We can
exclude the subcase (G+, p) = (SL3(2) ∼= PSL2(7), 7).

(f1) First we assume that (G+, p) = (SLn(q), (q
n − 1)/(q − 1)) or (Ap, p), and moreover

U is a composition factor of V of multiplicity 2. Since dimV ≤ 2p− 3, we have two cases.
• dimV = 2p − 3 and so k is also a composition factor of the G+-module V . Suppose

that head(VG+) is not simple. Then VG+ contains two maximal submodules A,B of length
2 and A ∩ B ⊆ soc(VG+). On the other hand, the indecomposability of VG+ implies that
soc(VG+) ⊆ rad(VG+) ⊆ A ∩ B, whence soc(VG+) = A ∩ B is simple. So up to duality, we
may assume that head(VG+) is simple. It follows that VG+ is a quotient of P(U) or P(k).
The structure of PIMs described in §§7.1, 7.4 shows that (iii) holds.
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• dimV = 2p − 4 and so VG+ has exactly two composition factors, both isomorphic to
U . As VG+ is indecomposable, it is a quotient of P(U). Using the results of §§7.1, 7.4, we
again arrive at (iii).

(f2) Now we assume that (G+, p) = (SLn(q), (q
n − 1)/(q − 1)) or (Ap, p), and moreover

U is a composition factor of V of multiplicity 1. By Theorem 2.1, U is the only nontrivial
irreducible kG+-module of dimension ≤ p − 1. Since dimV ≤ 2p − 3, it follows that
all other composition factors of VG+ are trivial, i.e. VG+ is U -special. The structure of
PIMs described in §§7.1, 7.4 shows that the only U -special quotients of dimension at most
b = 2p − 3 of P(U) and P(k) all belong to {k, U, (U |k), (k|U), (k|U |k)}. Also, U ∼= U∗.
Hence we arrive at (ii) by Corollary 8.3.

(f3) Assume that (G+, p,dimU) = (M23, 23, 21). Then U ∼= U∗, P(k) = (k|U |k), and
the only quotient of length 2 of dimension ≤ 43 of P(U) is (k|U). Arguing as in the case
of Ap in (e1) and (e2), we arrive at (ii).

Consider the case (G+, p,dimU) = (M11, 11, 9). Then U ∼= U∗ and P(k) = (k|U |k).
Using [46, Example 4.12.11] as above, we see that P(U) has only two non-simple quotients
of dimension ≤ 19, namely (k|U) and (W |U) withW ∈ IBrp(G

+) of dimension 10. Arguing
as above we arrive at (ii).

Suppose now that (G+, p,dimU) = (3A7, 5, 3). Recall that U is a composition factor of
largest dimension of VG+ and Z(G+) acts via scalars on V . Using [34] one can then check
that all composition factors of VG+ are isomorphic to U . But Ext1G+(U,U) = 0 by Lemma
3.1. Hence VG+ is semisimple by Lemma 3.5(ii), a contradiction.

Suppose that (G+, p,dimU) = (3A6, 5, 3). As in the case of (3A7, 5, 3), we see that all
composition factors of VG+ are isomorphic to U . But dimV ≤ 7 and VG+ is indecomposable,
so head(VG+) ∼= U . Inspecting the structure of P(U) using [49], we conclude that VG+

∼=
(U |U) is uniserial, i.e (vi) holds.

(g) Finally, let dimU = p − 3. By Theorem 2.1, we have that (G+, p) = (2A7, 7). As
in the case of (3A7, 5, 3), we see that all composition factors of VG+ are isomorphic to
U . But dimV ≤ 11 and VG+ is indecomposable, so head(VG+) ∼= U . Note that P(U) =
(U |U⊕W |U), whereW ∈ IBrp(G

+) has dimension 16 (as one can see using [49]). It follows
that VG+

∼= (U |U), the unique quotient of dimension 8 of P(U), and we arrive at (iv). �

Lemma 8.5. Suppose that p = 3 and V is a reducible, faithful, indecomposable kG-module
of dimension ≤ 2p− 3. Then Op(G) 6= 1.

Proof. Suppose first that every G+-composition factor of V is of dimension 1 and so ∼= k
(as G+ = Op′(G+)). By faithfulness, G+ is a p-group; moreover G+ 6= 1 as otherwise G is
a p′-group. Thus 1 6= G+ = Op(G).

Since VG+ is reducible, it remains to consider the case where VG+ has exactly two com-
position factors, U of dimension 2 and W of dimension 1, and moreover Op(G) = 1. Let

K denote the kernel of the action of G+ on U . Again, G+ = Op′(G+) acts trivially on
W . It follows by faithfulness of G on V that K ≤ Op(G

+) ≤ Op(G) = 1. Next, since

G+ = Op′(G+), the image of G+ in GL(U) is contained in SL(U). Now if |G+| is odd, then
G+ is solvable and so by the Fong-Swan theorem cannot act irreducibly on U of dimension
2. So G+ contains an element of order 2 which must then act as −1U and belong to Z(G+).
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Thus U and W have different central characters and so VG+ is semisimple, contradicting
Lemma 3.7. �

Next we will prove some criteria to decide the type of a self-dual indecomposable module.

Lemma 8.6. Let k = k be of characteristic p > 2 and let V be a self-dual indecompos-
able kG-module with dimEndkG(V ) ≤ 2. Then V supports a non-degenerate G-invariant
bilinear form that is either symmetric or alternating. Furthermore, all such forms have the
same, symmetric or alternating, type.

Proof. Let Φ denote the matrix representation of G on V relative to a fixed basis (e1, . . . , en)
of V . Since V ∼= V ∗ as G-modules, we can find b ∈ GLn(k) such that tΦ(g)−1 = bΦ(g)b−1,
and so b yields a non-degenerate G-invariant bilinear form on V . Note that the map
π : X 7→ bX yields a k-space isomorphism between EndkG(V ) and the space B of G-
invariant bilinear forms on V . In particular, dimB ≤ 2, and, since p > 2, it is a direct
sum S ⊕ A of symmetric and alternating G-invariant forms. Hence the claims follow if
dimEndkG(V ) = 1. Assume dimEndkG(V ) = 2. Since V is indecomposable, EndkG(V )
is a local algebra, cf. [46, Corollary 1.6.5], and its unique maximal ideal J , which then
has dimension 1, consists of (nilpotent) non-units. Thus π(J) is contained in the subset
D of degenerate G-invariant bilinear forms on V . But π−1(D) is obviously contained in
J . It follows that D = π(J) is a subspace and dimD = 1. Hence we are also done if S
or A is zero. Assume S,A 6= 0, whence both of them are 1-dimensional. Now if Y ∈ D,
then tY ∈ B and it is degenerate. As p > 2 and dimD = 1, it follows that tY = ±Y .
Thus D is either S or A, and so the nonzero forms in the other subspace are precisely the
non-degenerate G-invariant forms on V that are either symmetric or alternating. �

Lemma 8.7. Suppose that G is a finite group with a Sylow p-subgroup P of order p > 2
such that NG(P )/P is abelian. Let V be a reducible self-dual indecomposable G-module
over k = k of characteristic p, of even dimension d < 2p. Then V is not orthogonal if
d < p and V is not symplectic if d > p.

Proof. For 1 ≤ i ≤ p, let Xi denote the unique indecomposable kP -module of dimension
i (so Xp is projective). By the Green correspondence (see e.g. [46, Theorem 4.9.2]),
VN = X⊕Y forN := NG(P ), whereX is non-projective indecomposable and Y is projective
(if nonzero). Let M denote any indecomposable kN -module. According to [1, p. 42], M
is uniserial. Also, Lemma 8 of [1, §5] says that the P -radical filtration agrees with the
N -radical filtration on M ; in particular, rad(M) = rad(MP ). As N/P is abelian, any
irreducible kN -module remains irreducible as over P . It follows thatMP is indecomposable.
Applying this to X and Y , we see that VP = Xd if d < p, respectively VP = Xd−p ⊕Xp if
d > p. Now suppose that V is equipped with a non-degenerate G-invariant bilinear form of
a fixed parity. The claim then follows by using the description of Jordan forms of unipotent
elements in classical groups, see e.g. [45, Theorem 3.1]. �

Proof of Theorem 1.9. There is nothing to prove for p = 2; furthermore p 6= 3 by
Lemma 8.5. So we may assume p > 3. By Proposition 4.4, the self-duality of V implies
that G+ is quasisimple. If furthermore G+ is not a Lie-type group in characteristic p, then
by Theorem 8.4 we arrive at (i) and (ii). Assume that G+ is of Lie-type in characteristic
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p. By Lemma 4.3(i), G+ ∼= SL2(q) or PSL2(q) for some q = pa. By Corollary 4.5, VG+ is
indecomposable of length ≥ 2. Applying Proposition 3.10, we arrive at (i) and (ii).

Note that in each of the listed cases, there is a unique (up to isomorphism) reducible
indecomposable G+-module V of the indicated shape (indeed, ifW := head(VG+) then there
is a unique quotient of P(W ) of this shape). Since W ∗ ∼= W ∼= soc(VG+), it follows that
VG+ is self-dual. Thus all the listed cases give rise to examples of reducible indecomposable
self-dual modules (at least for G+).

It remains to determine the type of each indecomposable module. Note that in all cases
dimEndkG+(V ) = 2, whence dimEndkG(V ) ≤ 2 and Lemma 8.6 applies to both G and G+.
Thus V supports a non-degenerate G-invariant form that is either symmetric or alternating.
If dimV is odd, then all such forms must be symmetric. Consider the case dimV is even.
Note that in all cases |P | = p and NG+(P )/P is abelian for P ∈ Sylp(G

+). So by Lemma
8.7, all such forms are symmetric when dimV > p, respectively alternating when dimV < p.
✷

Recall from [56] that for G a connected reductive group over an algebraically closed field k
and for G ≤ G a subgroup we say that G is G-cr if whenever G ≤ P for a parabolic subgroup
P of G, then G is contained in a Levi subgroup of P. If G = Sp(V ) or SO(V ) for some
finite-dimensional vector space equipped with a non-degenerate alternating or symmetric
bilinear form, then this is equivalent to saying that for any G-stable isotropic subspace
W ⊂ V there exists a G-stable isotropic subspace W ′ ⊂ V with W +W ′ non-degenerate.
For these G and provided p > 2, a subgroup G ≤ G is G-cr if and only if the kG-module V
is completely reducible [56, §3.2.2].

We can extend Serre’s notion to the disconnected group G = O(V ) by saying that a
subgroup G is O(V )-cr if for any G-stable isotropic subspace W ⊂ V there exists a G-
stable isotropic subspace W ′ ⊂ V with W +W ′ non-degenerate. We then see using the
same argument as in [56, §3.2.2] as well as Lemma 3.7(i), that for G ≤ O(V ) and p > 2 the
following are equivalent:

(i) G is O(V )-cr,
(ii) G ∩ SO(V ) is SO(V )-cr,
(iii) the kG-module V is completely reducible.

The next result shows that for G = Sp(V ) or O(V ), the finite non-G-cr subgroups of G
are made up from the groups with a nontrivial unipotent normal subgroup and the groups
described in Theorem 1.9.

Proposition 8.8. Let k = k be of characteristic p > 0 and let G be either Sp(V ) or O(V )
with dimk V ≤ 2p−3. Suppose that G < G is a finite subgroup such that the G-module V is
not completely reducible. Then there is a G-invariant decomposition V = V1⊕V2⊕V3 of V
into an orthogonal direct sum of three subspaces, where Vi is either zero or non-degenerate,
at least one of the Vi’s is zero and at least one of V1 and V2 is nonzero, and the following
conditions hold for the images Gi of G in GL(Vi).

(i) If V1 6= 0, then Op(G1) = 1, the kG-module V1 is reducible indecomposable, and
(G1, V1) is as described in Theorem 1.9.

(ii) If V2 6= 0, then Op(G2) 6= 1.
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(iii) If V3 6= 0, then V3 is an orthogonal direct sum of non-degenerate subspaces, each
being an irreducible G-module.

Proof. (a) First note that p > 2. Setting V2 = V when Op(G) 6= 1, we may assume
Op(G) = 1. Setting V1 = V when VG is indecomposable, we may assume that VG is
decomposable.

First we consider the case where no composition factor of G has order p. Choose a
decomposition VG = A ⊕ B with A,B 6= 0 being G-invariant and A of smallest possible
dimension. Then dimA ≤ p − 2 and the image X of G in GL(A) has Op(X) = 1. By
[19], the X-module A is completely reducible, whence it is irreducible by its choice. If A is
non-degenerate, then VG = A ⊕ A⊥. Consider the case A ∩ A⊥ 6= 0. By the irreducibility
of A, A ⊆ A⊥ and so A⊥ = A ⊕ C for C := B ∩ A⊥. It is easy to see that C ∩ C⊥ = 0
and so VG = C ⊕ C⊥. Note that C⊥ 6= 0. Also, C 6= 0 as otherwise A⊥ = A, B ∼= V/A =
V/A⊥ ∼= A∗ is an irreducible G-module and so VG is semisimple, a contradiction. Thus in
either case V is an orthogonal direct sum of nonzero non-degenerate G-invariant subspaces.
Repeating this process for the summands, we obtain an orthogonal direct sum V = ⊕n

i=1Ui,
where each Ui is non-degenerate and indecomposable as a kG-module, and n ≥ 2. Since
VG is not semisimple, we may assume that U1 is reducible. Again the image Yi of G in
GL(Ui) has Op(Yi) = 1. By Theorem 1.9, dimU1 ≥ p − 1, whence all Ui with i ≥ 2 must
be irreducible over G. Setting V1 = U1 and V3 = ⊕n

i=2Ui, we are done. Note that in this
case dimV > dimU1 ≥ p− 1.

(b) Let W1, . . . ,Wm denote all the composition factors of VG+ (with counting multiplic-
ities) and let J := Op′(G

+).
Consider the case p = 3. If dimWi = 1 for all i, then the first paragraph of the proof of

Lemma 8.5 shows that Op(G) 6= 1, contrary to our hypotheses. As VG is decomposable of
dimension ≤ 3, it follows that VG+ = W1 ⊕W2 with {dimW1,dimW2} = {1, 2} and this
decomposition is G-invariant. Thus VG is completely reducible, again a contradiction. So
we must have that p > 3.

Suppose that J acts by scalars on each of the Wi’s. Then, in a suitable basis of V ,
[J,G+] is represented by unitriangular matrices, and so it is a p-subgroup. But Op(G) = 1,
so J ≤ Z(G+). Applying Lemma 4.1 to G+, we see that G+, and so G as well, has no
composition factors of order p. Thus we are done by (a).

So we may now assume that J does not act by scalars on W1. It follows that the image
of G+ in GL(W1) contains a non-scalar normal p′-subgroup. Applying Theorem 2.1, we see
that dimW1 ≥ p − 1. Since dimV ≤ 2p − 3, it follows that J acts by scalars on each Wi

with i > 1, and m ≥ 2 as VG is reducible. Since J is a p′-group, VJ ∼=W1 ⊕ (⊕m
i=2Wi), and

this decomposition is G-invariant. It follows that G fixes a decomposition V = W1 ⊕ U
where UG+ has composition factors Wi, 2 ≤ i ≤ m. Since J acts by scalars on each Wi

with i > 1 but not on W1, it also follows that U = W⊥
1 , whence W1 is non-degenerate. If

Op(Y ) = 1 for the image Y of G in GL(U), then UG is semisimple by [19] (as dimU ≤
p − 2), a contradiction. So we can now set V2 = U and V3 = W1. Note that in this case
dimV > dimW1 ≥ p− 1. �
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Proof of Corollary 1.10. Suppose that the kG-module V is not completely reducible.
If VG is indecomposable, then we are done by Theorem 1.9. Otherwise, the proof of Propo-
sition 8.8 shows that dimV ≥ p. ✷

9. Adequacy for SL2(q)

The aim of this section is to prove the following statement which extends the results of
[23, §3]:

Proposition 9.1. Any nontrivial irreducible representation V of G := SL2(p
r) over Fp is

weakly adequate, except when q := pr ≤ 3.

By the Steinberg tensor product theorem we can write

V = L(a) := ⊗r−1
i=0L(ai)

(i)

for some a =
∑r−1

i=0 aip
i, 0 ≤ ai ≤ p − 1, where L(1) is the natural 2-dimensional FpG-

representation, L(b) = Symb(L(1)), and (i) denote the ith Frobenius twist. Also, G ∼= SL2

denotes the underlying algebraic group for G.

Lemma 9.2. We have that

headG(End(V )) ∼=
⊕

b0,...,br−1 : 0≤bi≤min(p−1

2
,ai)

⊗r−1
i=0L(2bi)

(i).

Moreover, if a < q − 1 then

headG(End(V )) = headG(End(V )),

whereas if a = q − 1, then

headG(End(V )) = headG(End(V ))⊕ L(q − 1).

Proof. As End(V ) is self-dual, we may replace “head” by ”socle”. By [14, Lemmas 1.1 and
1.3], we have for 0 ≤ b ≤ (p− 1)/2

L(b)⊗ L(b) ∼= ⊕b
i=0T (2i),

and for (p − 1)/2 ≤ b ≤ p− 1,

L(b)⊗ L(b) ∼= ⊕p−2−b
i=0 T (2i)⊕⊕

⌊(p−1)/2⌋
i=p−1−b T (2p − 2− 2i),

where T (λ) denotes the tilting module of G with highest weight λ ≥ 0. Recall that T (λ) =
L(λ) if λ ≤ p − 1, and that, when 0 ≤ λ ≤ p − 2, T (2p − 2 − λ) is uniserial of shape
(L(λ)|L(2p − 2− λ)|L(λ)) and T (2p − 2− λ) ∼= Q1(λ) in the notation of [2, §3].

The statement will follow if we can show for any 0 ≤ bi ≤ 2p−2 that (i) socG(⊗
r−1
i=0T (bi)

(i))

is simple, and (ii) socG(⊗
r−1
i=0T (bi)

(i)) is simple if bi < 2p−2 for at least one i and isomorphic

to L(0) ⊕ L(q − 1) otherwise. Let ci := min(bi, 2p − 2 − bi) ≤ p − 1 and c :=
∑r−1

i=0 cip
i.

Then

⊗r−1
i=0T (bi)

(i) →֒ ⊗r−1
i=0Q1(ci)

(i) = Qr(c)

in the notation of [2, §3]. By [2, Theorem 3.7], socG(Qr(c)) = L(c). Furthermore, by [2,
Lemma 4.1], socG(Qr(c)) = L(c) if c 6= 0 and socG(Qr(c)) = L(0)⊕ L(q − 1) if c = 0 (note
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that “⊗” should be “⊕” in [2, Lemma 4.1(b)]). Finally, if c = 0 then it is easy to check
that L(q − 1) does not occur in ⊗r−1

i=0T (bi)
(i), unless bi = 2p− 2 for all i. �

Proof of Proposition 9.1. By [23, Proposition 3.1] we may assume that r > 1. We will
follow the same strategy of proof. It suffices to show M = headG(End(V )), where M
denotes the span of the images of all p′-elements of G in headG(End(V )).

Suppose that k =
∑r−1

i=0 kip
i with 0 ≤ ki ≤ min((p − 1)/2, ai). By [23, Lemma 3.5], the

G-subrepresentation L(2k) in End(V ) is generated by the weight 0 element ∆k := ⊗r−1
i=0∆

(i)
ki
,

where ∆ki ∈ End(L(ai)) is defined in [23, Lemma 3.5]. Let δk := tr(− ◦∆k) ∈ (End(V ))∗.

For ℓ =
∑r−1

i=0 ℓip
i with 0 ≤ ℓi ≤ ai, let πℓ := ⊗r−1

i=0π
(i)
ℓi

∈ End(V ), where πℓi ∈ End(L(ai))

is the projection XjY ai−j 7→ δjℓiX
jY ai−j. For any other ℓ let πℓ := 0. Also let pk(ℓ) :=

δk(πℓ) ∈ Fp. Then pk(ℓ) =
∏r−1

i=0 pki(ℓi), where pki(ℓi) agrees with a polynomial of degree
ki for 0 ≤ ℓi ≤ ai. In particular, as ki ≤ ai, there exist 0 ≤ ℓi ≤ ai such that pki(ℓi) 6= 0 for
all i. Thus pk(ℓ) 6= 0 for some ℓ.

(a) Suppose a < q − 1 and p > 2. Also, suppose that there exists a k =
∑r−1

i=0 kip
i with

0 ≤ ki ≤ min((p − 1)/2, ai) such that M does not contain L(2k). Then δk(M) = 0, so the
action of the split Cartan subgroup gives

∑

ℓ≡ℓ′ (mod (q−1)/2)

pk(ℓ) = 0, ∀ℓ′.

As in [23, §3], the action of a non-split Cartan subgroup similarly gives
∑

ℓ≡ℓ′ (mod (q+1)/2)

pk(ℓ) = 0, ∀ℓ′.

Therefore, if 0 ≤ ℓ < (q− 1)/2, pk(ℓ) = −pk(ℓ+(q− 1)/2) = pk(ℓ− 1), and so by induction
pk(ℓ) = pk(ℓ − 1) = . . . = pk(−1) = 0. Similarly, pk(ℓ) = 0 for ℓ > a − (q − 1)/2, and so
pk(ℓ) = 0 for all ℓ, a contradiction.

(b) Now we consider the case a = q − 1 and p > 2.

(b1) Suppose thatM does not contain L(2k) for some k < (q−1)/2. The same argument
as in (a) shows that

pk(0) = pk(1) = . . . = pk((q − 3)/2) = −pk((q + 1)/2) = . . . = −pk(q − 1)

and pk((q − 1)/2) = 0. Hence pki((p − 1)/2) = 0 for some i. As r > 1 we deduce that
pk(ℓ) = 0 for some 0 ≤ ℓ < (q − 1)/2 (e.g. ℓ = pi(p − 1)/2), so pk(ℓ) = 0 for all ℓ, again a
contradiction.

(b2) Suppose that M does not contain L(q − 1)⊕2. By [23, §3], the G-representation

generated by v := ⊗r−1
i=0

[

(

X ∂
∂Y

)(p−1)/2
](i)

is the unique G-subrepresentation L(q − 1) in

End(V ). Note that the upper-triangular Borel subgroup B := ( ∗ ∗
∗ ) ⊂ G fixes v2 =

⊗r−1
i=0

[

(

X ∂
∂Y

)p−1
](i)

and that v and v2 are linearly independent. As v2 /∈ (End(V ))G = Fp,

the G-representation generated by v2 is isomorphic to L(q − 1) or to L(q − 1) ⊕ L(0) ∼=
IndGB(1). In particular, for some c ∈ Fp, v

2 + c generates the second copy of L(q − 1)
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in End(V ). A calculation as in [23, §3] shows that c = (−1)r. Now we can deduce that
pk(ℓ) = 0 for all ℓ exactly as in part (b2) of the proof of [23, Proposition 3.1].

(c) Suppose now that p = 2. Note that headG(End(V )) is multiplicity-free. IfM does not
contain L(0), then the argument in (a) (but using only a non-split Cartan subgroup) shows
that p0(ℓ) = 0 for all ℓ (as q + 1 > a), a contradiction. (In fact, we could alternatively
use only a split Cartan subgroup, even when a = q = 1.) Suppose that a = q − 1 and

that M does not contain L(q − 1). By (b2), ⊗r−1
i=0

(

X ∂
∂Y

)(i)
+ 1 generates the unique G-

subrepresentation L(q − 1) of End(V ). However, as in (b2) of the proof of [23, Proposition
3.1],

tr

((

α
α−1

)

◦ ⊗r−1
i=0 (X

∂

∂Y
)(i)

)

6= 0

for any α ∈ F×
q \ {1} 6= ∅, and this gives a final contradiction. �

Remark 9.3. The results of [2] play a key role in our analysis of SL2(q)-representations.
We should also point out some minor inaccuracies in [2, §4]. The first line of the displayed
formula right before [2, Corollary 4.5] should have the extra condition λ, µ 6= p − 1. Fur-
thermore, in the case n = 2 of [2, Corollary 4.5(b)], there are four (not just two as stated)
cases when dimExt1 = 2, namely when λ0, λ1 ∈ {(p− 3)/2, (p − 1)/2} and µi = p− 2− λi
for all i = 0, 1. (Also, the k and i in [2, Corollary 4.5(a)] satisfy 0 ≤ i, k ≤ n− 1.)

Corollary 9.4. Let V be nontrivial absolutely irreducible representation of G = SL2(p
r) in

characteristic p. Then either V is adequate, or one of the following holds:

(i) r = 1, 1 < dim(V ) = (p± 1)/2, and dimExt1G(V, V ) = 1.
(ii) pr = 2, 3, 4 and dimV = pr.
(iii) pr = 9 and dimV = 3, 6, 9.

Proof. The case r = 1 is already treated by [23, Corollary 1.4], so we will assume r > 1.
In this case, Ext1G(V, V ) = 0 by [2, Corollary 4.5(a)]. Suppose that pr 6= 4, 9. Then
H2(G, k) = 0, and furthermore H1(G, k) = 0 as G is perfect. It follows that V is adequate.
The same conclusion holds if p ∤ dim(V ).

Now we consider the case pr = 4, 9 and keep the notation of the proof of Proposition 9.1.
The proof of Lemma 9.2 shows that the one-dimensional subspace End(V )G is contained

in the direct summand W := T (b0)⊗ T (b1)
(1), where bi = 0 if ai < p− 1 and bi = 2p− 2 if

ai = p− 1. As H1(G,End(V )) = 0, we deduce that H1(G,End(V )/k) = H1(G,W/k).

(a) If a0 = a1 = p − 1, then W = Q2(0) ∼= P(1) ⊕ L(p2 − 1) by [2, Lemma 4.1]. Hence
H1(G,End(V )/k) ∼= H1(G,P(1)/k) ∼= H2(G, k), which is one-dimensional.

(b) Suppose that precisely one of a0, a1 is p − 1. Without loss we may assume that
a0 = p − 1 > a1. Then W ∼= T (2p − 2). Note that T (2p − 2) has composition factors

L(0) = 1 (twice) and L(p − 2) ⊕ L(1)(1). As T (2p − 2) is self-dual and injects into Q2(0),
we deduce that it is uniserial with trivial socle and head. Thus the sequence

0 → k → H1(G,L(p − 2)⊗ L(1)(1)) → H1(G,End(V )/k) → H1(G, k) = 0

is exact, whence

dimH1(G,End(V )/k) = dimExt1G(k, L(p − 2)⊗ L(1)(1))− 1 =

{

1, if p = 3,
0, if p = 2,
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by [2, Corollary 4.5]. �

If one replaces SL2(q) by GL2(q), then in fact there are no exceptions to adequacy for
q > 3 odd (if q = 3 and dimV = 3, then weak adequacy fails).

Corollary 9.5. Let G be a finite group and V be a faithful absolutely irreducible represen-
tation of G in odd characteristic p. If the image of G in PGL(V ) is PGL2(p

a) with pa > 3,
then (G,V ) is adequate.

Proof. Without loss we may assume that V is an irreducible kG-module with k = k. Let H
be the inverse image of PSL2(p

a) under the projection from G onto PGL2(p
a) < PGL(V ).

Then H/Z(H) ∼= PSL2(p
a) and Z(H) = Z(G) is a p′-group. Since the universal p′-cover

of PSL2(p
a) is SL2(p

a), it follows that H = Z(H)L, where L := [H,H] is the quotient of
SL2(p

a) by a central subgroup (of order 1 or 2). Moreover, G normalizes L and centralizes
Z(H), and in fact G induces the full subgroup of inner-diagonal automorphisms of L. It
is well known that any irreducible kL-representation is invariant under any inner-diagonal
automorphism. It follows that, ifW is an irreducible kH-summand of V |H , thenG preserves

the isomorphism class of W . But G/H ∼= C2, hence W extends to a kG-module W̃ (see

e.g. [50, Theorem 8.12]), and so by Frobenius’ reciprocity, V ∼= W̃ ⊗k A for some one-
dimensional k(G/H)-module A. We have shown that VH is irreducible. By Proposition
9.1, (H,V ) is weakly adequate, so is (G,V ). Also, as Op(H) = H and G/H ∼= C2, we
see that Op(G) = G and so H1(G, k) = 0. Moreover, since p 6= 2, the inflation-restriction
sequence in cohomology implies that adequacy of (H,V ) yields the same for (G,V ). So by
Corollary 9.4, it suffices to consider the following cases:

(a) a = 1 and dimV = (p± 1)/2;
(b) pa = 9 and dimV = 3, 6, 9.

In the first case, G has a cyclic Sylow p-subgroup P of order p. It follows that H2(G, k) = 0
and so it it suffices to show that Ext1G(V, V ) = 0. Note that V has no lifts to characteristic
0 (since NG(P ) acts transitively on the p − 1 nontrivial elements of P , an element g ∈ P
of order p would have at least p− 1 distinct eigenvalues in any characteristic 0 lift). Thus,
Ext1G(V, V ) = 0 by Lemma 3.1 and (G,V ) is adequate.

In the second case, note that H2(PGL2(9), k) = 0 [10]. Since G/Z(G) ∼= PGL2(9)
and Z(G) is a p′-group, it follows that H2(G, k) = 0. So again it suffices to show that
Ext1G(V, V ) = 0. Note that the p′-group Z(H) acts trivially on V ⊗k V

∗ and H1(L, V ⊗k

V ∗) = Ext1L(V, V ) = 0 by [23, Lemma 8.1]. Hence, H1(H,V ⊗k V
∗) = 0. Since G/H ∼= C2,

it follows that H1(G,V ⊗k V
∗) = 0, and so we are done. �

10. Adequacy for SLn(q)

In this section, we give another family of examples of modules that are adequate. The
result follows from [9, Lemma 2.5.6] if p > n. Also, recall that the case n = 2 was considered
in the previous section.

Theorem 10.1. Let p be a prime and q a power of p. Let k be an algebraically closed field
of characteristic p and V = kn with n > 2. Suppose that G < GL(V ) is a finite group that
contains a normal subgroup S ∼= SLn(q). Then (G,V ) is adequate.



52 R. GURALNICK, F. HERZIG, AND P. TIEP

Proof. By [40, Proposition 5.4.11], any nontrivial irreducible kS-representations of dimen-
sion ≤ n is quasi-equivalent to the natural n-dimensional kS-module U . It follows that the
kS-module V is irreducible and quasi-equivalent to U . Next, the only automorphisms of
S that preserve the isomorphism class of U (hence of V ) are the inner-diagonal automor-
phisms. Therefore, G induces only inner-diagonal automorphisms of S, and so p ∤ [G : S].
This implies that it is enough to prove the statement for S with V being the standard
representation.

Note that V ⊗ V ∗ = W ⊕ k with W irreducible if p ∤ n and that V ⊗ V ∗ is uniserial
(of length three) with trivial head and socle if p | n. Let W denote the unique nontrivial
irreducible composition factor of V ⊗ V ∗. Since there are semisimple elements in S with
nonzero trace on V and since not all semisimple elements of S are scalars, it follows that
End(V ) is spanned by the images of the semisimple elements of S.

By the table in [37] or by [62, Theorem 9], it follows that Ext1S(V, V ) = 0 whence the
result holds as long as p ∤ n. If p | n, then using the fact thatH1(S, k) = 0 andH0(S,W ) = 0
and the long exact sequence for cohomology we see that H1(S, V ⊗ V ∗/k) = 0 if and only
if dimH1(S,W ) = 1. By [37], this is the case and so the result follows (one can give an
alternate proof using [62] as well). �

A slight modification of the proof shows that if gcd(n, q) = 1, then (G,V ) is in fact
big. Indeed, we only need observe the obvious fact that there exists a semisimple regular
element g ∈ SLn(q) with nonzero trace.

11. Asymptotic adequacy

In this section, we extend [21, Theorem 1.2] to include disconnected groups as well as
to allow the possibility that p divides dimV . First we prove some statements relating
discrete cohomology (i.e. of abstract groups) and rational cohomology (i.e. in the category
of rational modules), of linear algebraic groups on the one side, and cohomology of finite
groups of Lie type on the other side. We use subscripts disc and rat to make distinction
between these two types of cohomology groups.

First we record the following result (which essentially is a special case of a result of van
der Kallen, cf. [52, p. 239]):

Lemma 11.1. Let k = Fp and let G be a linear algebraic group defined over Fq ⊂ k. Let
V be a finite-dimensional rational kG(k)-module. If H1(G(Fqf ), V ) = 0 for large enough f ,

then H1
disc(G(k), V ) = 0.

Proof. First we note that if U is any finite-dimensional kG(k)-module, then G(Fqf ) and G(k)
have the same subspace of fixed points on U when f is divisible by some integer N = N(U).
Indeed, let Uj denote the fixed point subspace for G(Fqj!) on U . Then U1 ⊇ U2 ⊇ . . ., and
so Uj stabilizes when j ≥ j0 for some j0. But each element of G(k) is contained in G(Fqj!)
for some j ≥ j0. It follows that CU(G(k)) = Uj0 = CU(G(Fqj!)) for all j ≥ j0. In particular,
we can choose N = j0!.

Consider any exact sequence 0 → V → W → k → 0 of kG(k)-modules. By assumption,
it is split over G(Fqf ) for f large enough. Hence CW (G(Fqf )) has dimension equal to
dimk CV (G(Fqf ))+1, which by our claim is equal to dimk CV (G(k))+1 whenN(U)|f . Again
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by our claim, CW (G(Fqf )) = CW (G(k)) for N(W )|f . It follows that dimk CW (G(k)) =

dimk CV (G(k)) + 1, whence W is split over G(k). Hence H1
disc(G(k), V ) = 0. �

Next we observe that the results of [35, Prop. II.2.14] and [8, Theorem 6.6] hold in more
generality than they were stated.

Proposition 11.2. Let k be an algebraically closed field of characteristic p and let G be
a (not necessarily connected) reductive algebraic group defined over k. Let V be a finite-
dimensional rational kG-module.

(i) Suppose that p ∤ [G : G0] and V is irreducible. Then Ext1G(V, V )rat = 0.
(ii) Suppose G is connected and defined over Fq ⊂ k. Then for e and f large enough

(depending on V and n),

Hn
rat(G, V (e)) ∼= Hn(G(Fqf ), V (e)) ∼= Hn(G(Fqf ), V ),

where V (e) is the e-th Frobenius twist of V .

Proof. (i) Since p ∤ [G : G0], it suffices to show that Ext1G0(X,Y )rat = 0 for any two

irreducible G0-submodules X, Y of V . Assume the contrary: Ext1G0(X,Y )rat 6= 0 for some
such X and Y . By Clifford’s theorem, Y ∼= g(X) for some g ∈ G. Given a pair (T ,B) of a
maximal torus T and a Borel subgroup B containing T of G0, we have that g−1(T ,B)g =
h−1(T ,B)h for a suitable h ∈ G0. Replacing g by gh−1, we get that g normalizes both T
and B, and Y ∼= g(X). Suppose that X = L(λ) for some dominant weight λ with respect to
T . Then τ(λ) is dominant and Y = L(τ(λ)), where τ is the outer automorphism (possibly
trivial) of G0 induced by g. By [35, Proposition II.2.14], Ext1G0(X,Y )rat 6= 0 implies that
λ 6= τ(λ) but λ and τ(λ) are comparable, say λ > τ(λ). Since τ fixes (T ,B), it fixes the set
of positive roots with respect to T , whence τ i(λ) > τ i+1(λ) for all i ≥ 0. Also, note that
the action of τ on the weight lattice X(T ) has finite order N . Thus we arrive at the chain

λ > τ(λ) > τ2(λ) > . . . > τN (λ) = λ,

a contradiction.

(ii) Consider the action of the central torus Z := Z(G)0 on V and decompose V =
V ′ ⊕ [Z, V ] with V ′ := CV (Z). Then Hn

rat(G, [Z, V ]) = 0, and so Hn
rat(G, V ) ∼= Hn

rat(G, V
′).

The same holds for Frobenius twists V (e) of V ; moreover, V ′(e) ∼= CV (e)(Z). Applying [8,
Theorem 6.6] to the semisimple group H := G/Z (and recalling that Z is a torus), we get
for e and f large enough that

Hn
rat(G, V

′(e)) ∼= Hn
rat(H, V

′(e)) ∼= Hn(H(Fqf ), V
′(e)) ∼= Hn(H(Fqf ), V

′).

On the other hand, H(Fqf ) is isomorphic to G(Fqf )/Z(Fqf ) (by the Lang-Steinberg theo-
rem). Moreover, for f large enough, Z and Z(Fqf ) have the same eigenspaces on V . It
follows that [Z, V ] = [Z(Fqf ), V ] and V ′ = CV (Z(Fqf )), whence

Hn(G(Fqf ), V ) = Hn(G(Fqf ), V
′) = Hn(H(Fqf ), V

′)

(as Z(Fqf ) is a p
′-group). The same holds for V (e), and so the statement follows. �
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Lemma 11.3. Let p be a prime and let k be an algebraically closed field of character-
istic p. Let G be a connected reductive algebraic group over k and V be a rational G-
module. If H1

rat(G, V (e)) = 0 for all Frobenius twists V (e) of V with e large enough, then
H1

disc(G(k), V ) = 0.

Proof. If the result fails, then there exists a (possibly non-rational) kG(k)-module W and
a non-split extension 0 → V →W → k → 0.

Let K be the algebraic closure of Fp in k. Note that G can be defined over Fq ⊂ k for
q sufficiently large (as it can be defined over K by the isomorphism theorem for reductive
groups). Also, let T (k) be a maximal torus of G(k) containing a maximal torus T (K) of
G(K). For e and f large enough, we have by assumption and by Proposition 11.2(ii) that
H1(G(Fqf ), V ) = H1

rat(G, V (e)) = 0. It follows by Lemma 11.1 that W is split over G(K),
whence

(11.1) dimk CW (G(K)) = dimk CV (G(K)) + 1, dimk CW (T (K)) = dimk CV (T (K)) + 1.

We claim that CW (T (K)) = CW (T (k)). Clearly, the fixed point subspace U := CW (T (K))
is T (k)-invariant. Also, since V is a rational kG(k)-module, T (k) acts trivially on U ∩V =
CV (T (K)), which has codimension 1 in U by (11.1). Thus, T (k) maps into a unipotent
subgroup of GL(U). Note that T (k) is p-divisible, and so is any homomorphic image of it.
It follows that T (k) acts trivially on U , as stated.

Thus, the fixed point subspace of 〈T (k),G(K)〉 on W is the fixed point subspace of
〈T (K),G(K)〉 = G(K) on W . Observe that G(k) = 〈T (k),G(K)〉. (Indeed, if Uα(k) ⊇
Uα(K) are root subgroups corresponding to a root α with respect to T , then T (k) acts
transitively on Uα(k) \ {1}. Since G(K) ⊃ Uα(K) and G(k) is generated by T (k) and all
the root subgroups Uα(k), the claim follows.) Hence, CW (G(k)) = CW (G(K)) and so

dimk CW (G(k)) ≥ dimk CV (G(k)) + 1

by (11.1). Hence W is split as a G(k)-module, a contradiction. �

Corollary 11.4. Let k be an algebraically closed field of characteristic p and let G be a
reductive algebraic group over k. Let V be an irreducible rational kG(k)-module. Assume
that p ∤ [G : G0]. Then

H1(H(k), k) = Ext1H(k)(V, V ) = H1(H(k), (V ∗ ⊗ V )/k) = 0,

both as rational and discrete cohomology groups, and for both H = G, G0.

Proof. Since p ∤ [G : G0], it suffices to prove the statement for G0. As shown in Proposition
11.2(i), Ext1G0(V, V )rat = 0. Also, H i

rat(G
0, k) = 0 for i > 0 by [35, Corollary II.4.11]. We

have therefore shown that H1
rat(G

0, k) = H1
rat(G

0, (V ∗ ⊗ V )/k) = 0. The same applies to
Frobenius twists. Hence Ext1G0(k)(V, V )disc = 0 and H1

disc(G
0(k), k) = H1

disc(G
0(k), (V ∗ ⊗

V )/k) = 0 by Lemma 11.3. �

We finally show that adequacy holds over a sufficiently large field and also for (not
necessarily connected) reductive algebraic groups (whether one uses rational cohomology
or discrete cohomology in the definition). Note that if p does divide [G : G0], then adequacy
may fail (the spanning may fail as well as the cohomological conditions even assuming that
p ∤ (dimV ) – one can construct examples precisely as in [20]).
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Theorem 11.5. Let k be an algebraically closed field k of characteristic p. Let G be a
reductive algebraic group defined over Fq ⊂ k such that p ∤ [G : G0], and let V be a finite-
dimensional faithful irreducible rational kG-module. Then the following statements hold.

(i) (G, V ) is adequate.
(ii) Assume that every coset of G0 in G is defined over Fq. Then (G(Fqf ), V ) is adequate

for f sufficiently large (with f possibly depending upon V ).

Proof. (a) Arguing precisely as in [22], we see that the set of semisimple elements in any
coset of G0 is Zariski dense in G. It follows that the linear span of semisimple elements of
G is Zariski dense in the linear span of G in End(V ). Thus, the span of the semisimple
elements in G is all of End(V ).

Let T ⊂ B be a maximal torus and a Borel subgroup of G0 that are defined over Fq.
Choose f large enough so that T (Fqf ) has exactly the same weight spaces on End(V ) and
V as does T . Let N := NG(T ,B) denote the simultaneous normalizer of (T ,B) in G. Then
N ∩ G0 = T , hence every element of N is semisimple (as p ∤ [G : G0]). Conversely, if
g ∈ G is semisimple, then by [58, 7.5] g normalizes some pair (T ′,B′) of a maximal torus
T ′ contained in a Borel subgroup B′. We deduce that

(11.2) Gss = ∪x∈GxNx−1,

where Gss denotes the set of semisimple elements in G.
Let W be the linear span of G(Fqf )ss := G(Fqf ) ∩ Gss in End(V ). Then W is G(Fqf )-

stable and hence in particular T -stable (as T and T (Fqf ) have the same eigenspaces on
End(V )). Arguing as in [21], we see that 〈T,G(Fqf )〉 is Zariski dense in G. It follows that

W is G-stable. Since N/T →֒ G/G0 and every coset of G0 is defined over Fq, we deduce
by Lang’s theorem that N = N (Fqf ) · T . Moreover, as T (Fqf ) and T have the same
eigenspaces on V , T (Fqf ) and T span the same subspace of End(V ). Now W contains the
span of N (Fqf ) ⊂ G(Fqf )ss, hence contains the span of N . Since W is G-stable, we deduce
from (11.2) that W contains the span of Gss. Thus for f sufficiently large we have that
W = End(V ); in particular, G(Fqf ) acts absolutely irreducibly on V .

(b) From Corollary 11.4 we get that H1
disc(G(k), k) = H1

disc(G(k), (V
∗ ⊗ V )/k) = 0.

Together with (a), this implies (i).

We also have that H1
rat(G

0, k) = H1
rat(G

0, (V ∗ ⊗ V )/k) = 0, and the same holds for
all Frobenius twists. Applying Proposition 11.2(ii) we obtain (for f large enough) that
H1(G0(Fqf ), k) = H1(G0(Fqf ), (V

∗⊗V )/k) = 0, whence H1(G(Fqf ), k) = H1(G(Fqf ), (V
∗⊗

V )/k) = 0 as well since p ∤ [G : G0]. Hence (ii) holds. �
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