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GLUING EGUCHI-HANSON METRICS AND A QUESTION

OF PAGE

SIMON BRENDLE AND NIKOLAOS KAPOULEAS

Abstract. In 1978, Gibbons-Pope and Page proposed a physical pic-
ture for the Ricci flat Kähler metrics on the K3 surface based on a
gluing construction. In this construction, one starts from a flat torus
with 16 orbifold points, and resolves the orbifold singularities by gluing
in 16 small Eguchi-Hanson manifolds which all have the same orienta-
tion. This construction was carried out rigorously by Topiwala, LeBrun-
Singer, and Donaldson.

In 1981, Page asked whether the above construction can be modified
by reversing the orientations of some of the Eguchi-Hanson manifolds.
This is a subtle question: if successful, this construction would produce
Einstein metrics which are neither Kähler nor self-dual.

In this paper, we focus on a configuration of maximal symmetry in-
volving 8 small Eguchi-Hanson manifolds of each orientation which are
arranged according to a chessboard pattern. By analyzing the interac-
tions between Eguchi-Hanson manifolds with opposite orientation, we
identify a non-vanishing obstruction to the gluing problem, thereby de-
stroying any hope of producing a metric of zero Ricci curvature in this
way. Using this obstruction, we are able to understand the dynamics of
such metrics under Ricci flow as long as the Eguchi-Hanson manifolds
remain small. In particular, for the configuration described above, we
obtain an ancient solution to the Ricci flow with the property that the

maximum of the Riemann curvature tensor blows up at a rate of (−t)
1

2 ,
while the maximum of the Ricci curvature converges to 0.

1. Introduction

Gluing techniques are a central tool for constructing solutions of nonlinear
partial differential equations. In a first step, one constructs an approximate
solution of the given partial differential equation by gluing together. In the
next step, one tries to deform this approximate solution to an exact solution
using the implicit function theorem. This method has been used to construct
solutions of many nonlinear elliptic equations arising in differential geometry
(see e.g. [2], [3], [6], [8], [19], [23], [24], [25], [26], [28], [27], [30], [31], [36],
[39], [40]).

In this paper, we consider a gluing problem for the Einstein equations and
their parabolic analogue, the Ricci flow (cf. [20], [21], [22]; see also [9]). Our
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starting point is the torus R
4/(2Z)4 equipped with the flat metric. After

identifying each point on R
4/(2Z)4 with its image under antipodal reflection,

we obtain a flat orbifold with 16 singular points. We may desingularize this
orbifold by gluing in an Eguchi-Hanson manifold at each of the 16 singular
points. Recall that the Eguchi-Hanson manifold is a smooth, Ricci flat
Kähler manifold. The Eguchi-Hanson metric on the complement of a two-
sphere can be written in coordinates as

geh,ε =
r2

(ε4 + r4)
1
2

(dr ⊗ dr + r2 α1 ⊗ α1) + (ε4 + r4)
1
2 (α2 ⊗ α2 + α3 ⊗ α3).

Here, r denotes the radial coordinate, α1, α2, α3 is a suitable set of one-forms
on S3, and ε is a scaling parameter. An important point is that the Eguchi-
Hanson manifold is asymptotic to R

4/Z2 near infinity. Thus, inserting an
Eguchi-Hanson at each orbifold point will result in a smooth manifold. Since
the torus and the Eguchi-Hanson are all Ricci flat, the resulting manifold
admits a metric which is almost Ricci flat.

The key issue is whether this approximate solution of the Einstein equa-
tion can be deformed to an exact one. It turns out that the choice of
orientation of the 16 Eguchi-Hanson manifolds plays a crucial role. In the
special case when the 16 Eguchi-Hanson manifolds all have the same ori-
entation, Gibbons and Pope [18] and Page [32] suggested that this gluing
construction should recover the Ricci flat Kähler metric on the K3 surface.
Rigorous proofs of this fact were given by Topiwala [41],[42], LeBrun and
Singer [29], and Donaldson [16]. An important point here is that one can
work within the class of Kähler manifolds. Thus, the problem of finding a
Ricci flat metric can be reduced to the solvability of a Monge-Ampère-type
equation. This construction also shares some common features with Joyce’s
construction of manifolds with exceptional holonomy (cf. [23]).

In the following, we consider a gluing construction involving Eguchi-
Hanson manifolds with different orientations. Such a construction was first
proposed by Page [33] in 1981. One major difficulty in this case is that the
resulting metric will not be Kähler, and it is necessary to work with the
full Einstein equations. For simplicity, we consider a particularly symmetric
configuration involving 8 Eguchi-Hanson manifolds with positive orientation
and 8 Eguchi-Hanson manifolds of negative orientation, where the orienta-
tions are assigned according to a checkboard pattern. It turns out that,
modulo symmetries, the approximate kernel of the linearized operator is
two-dimensional. From a geometric point of view, the approximate kernel
reflects the freedom to change the scaling parameter ε of the Eguchi-Hanson
metrics and the size of the flat metric on the torus. The crucial issue then
is to analyze the projection of the Ricci tensor to the approximate kernel.
It turns out that this projection is non-zero, due to interactions between
Eguchi-Hanson metrics with opposite orientations. These interactions have
the effect of increasing the size of the Eguchi-Hanson metrics when the met-
ric is evolved by the Ricci flow. In fact, a formal calculation suggests that,
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under the Ricci flow, the scale parameter ε should evolve according to the
equation d

dtε = 8ω ε5+o(ε5), where ω is a positive constant defined in Propo-
sition 4.2. This is reminiscent of the work of Struwe [37] on the heat flow
for the Nirenberg problem.

In light of this obstruction, we cannot expect to deform the metric to
one of zero Ricci curvature. Instead, we show that this setup leads to a
non-trivial ancient solution to the Ricci flow:

Theorem 1.1. There exists a compact ancient solution to the Ricci flow

in dimension 4 with the following property. For −t sufficiently large, the

manifold can be viewed as a desingularization of a flat torus with 16 orbifold

points. More precisely, we divide the 16 orbifold points into two classes ac-

cording to a checkboard pattern. Near 8 orbifold points, the metric is a small

perturbation of a positively-oriented near the remaining 8 orbifold points, the

metric is a small perturbation of a negatively-oriented Eguchi-Hanson met-

ric. As t → −∞, the size of the Eguchi-Hanson instantons shrinks to zero,

and we have sup |Rmg(t)|g(t) = (c+o(1)) (−t)
1
2 , where c is a positive constant.

Finally, the Ricci curvature of g(t) satisfies sup |Ricg(t)|g(t) = O((−t)−
1
2
+κ)

as t→ −∞, where κ > 0 can be chosen arbitrarily small.

Ancient solutions play a crucial role as singularity models for the Ricci
flow; see e.g. [22], [34], and [35]. It is an interesting question to classify
ancient solutions and Ricci solitons. We refer to [10], [11], [12], [14] for some
recent progress in this direction.

An interesting open question is what happens to our ancient solution
beyond the range of sufficiently large −t. Another interesting observation is
that if we consider less symmetric configurations we can construct metrics by
gluing 16 small Eguchi-Hanson metrics on the orbifold as before, which under
the Ricci flow evolve so that one of the Eguchi-Hanson metrics becomes
extinct by shrinking to zero size, while the rest stay close to fixed nonzero
sizes. This construction will appear elsewhere.

Theorem 1.1 is inspired in part by the remarkable recent work of Bi-
quard. In [5], Biquard glued an Eguchi-Hanson manifold to a given Einstein
orbifold. The resulting metric is an approximate solution of the Einstein
equation. Biquard found an obstruction involving the curvature of the back-
ground orbifold which, in general, prevents one from deforming this metric
to an exact solution of the Einstein equation. This result can be viewed
as converse of the compactness results of Anderson [1] and Bando, Kasue,
and Nakajima [4] (see also the survey paper [13]). We note that Biquard’s
obstruction vanishes in our situation, as the background orbifold is a flat
torus. For that reason, we need to perform a more precise calculation which
takes into account the interactions between different Eguchi-Hanson man-
ifolds. Note that the construction and proof are modelled after a gluing
construction for an elliptic problem: We first construct an approximate an-
cient solution and then we prove that it can be perturbed to an exact one by
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carefully estimating the error terms and applying the Schauder fixed point
theorem.

Theorem 1.1 also shares some common features with the beautiful work
of Daskalopoulos, del Pino, and Šešum [15] on the Yamabe flow. The main
result in [15] asserts that there exists a non-trivial ancient solution to the
Yamabe flow which is conformally flat and looks like two spheres joined by
a small neck when −t is large.

We also note that Takahashi [38] has recently constructed an ancient solu-
tion to the Ricci flat which converges smoothly to the Euclidean Schwarzschild
metric as t → −∞. In particular, this solution has uniformly bounded cur-
vature as t → −∞, whereas the solution in Theorem 1.1 has unbounded
curvature.

The authors are very grateful to Professors Olivier Biquard and András
Vasy for helpful discussions.

2. Basic properties of the Eguchi-Hanson metric

In this section, we review the definition of the Eguchi-Hanson metric (cf.
[5], [17]). As in [5], we define one-forms α1, α2, α3 on R

4 \ {0} by

α1 =
1

r2
(x1 dx2 − x2 dx1 + x3 dx4 − x4 dx3),

α2 =
1

r2
(x1 dx3 − x3 dx1 + x4 dx2 − x2 dx4),

α3 =
1

r2
(x1 dx4 − x4 dx1 + x2 dx3 − x3 dx2).

The Eguchi-Hanson metric with parameter ε > 0 is defined by

geh,ε =
r2

(ε4 + r4)
1
2

(dr ⊗ dr + r2 α1 ⊗ α1) + (ε4 + r4)
1
2 (α2 ⊗ α2 + α3 ⊗ α3).

This defines a Ricci flat metric on R
4 \ {0} which is invariant under an-

tipodal reflection. The induced metric on (R4 \ {0})/Z2 admits a smooth
compactification, where the origin is replaced by a two-dimensional sphere.
The parameter ε serves as a scaling parameter; that is, different choices of
ε result in metrics which are isometric up to scaling.

Let ĝeh,ε denote the pull-back of geh,ε under the map (x1, x2, x3, x4) 7→
(−x1, x2, x3, x4). Clearly, ĝeh,ε is a Ricci flat metric. Near infinity, we have
the asymptotic expansions

geh,ε = geucl +
1

2
ε4 T +O(ε8 r−8)

and

ĝeh,ε = geucl +
1

2
ε4 T̂ +O(ε8 r−8),
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where

T = −r−4 (dr ⊗ dr + r2 α1 ⊗ α1 − r2 α2 ⊗ α2 − r2 α3 ⊗ α3)

= −r−6
(

(x21 + x22 − x23 − x24) (dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4)

+ 2 (x1x3 + x2x4) (dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2)

+ 2 (x1x4 − x2x3) (dx1 ⊗ dx4 + dx4 ⊗ dx1 − dx2 ⊗ dx3 − dx3 ⊗ dx2)
)

and

T̂ = −r−6
(

(x21 + x22 − x23 − x24) (dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4)

+ 2 (x1x3 − x2x4) (dx1 ⊗ dx3 + dx3 ⊗ dx1 − dx2 ⊗ dx4 − dx4 ⊗ dx2)

+ 2 (x1x4 + x2x3) (dx1 ⊗ dx4 + dx4 ⊗ dx1 + dx2 ⊗ dx3 + dx3 ⊗ dx2)
)

.

We note that the metrics geh,ε and ĝeh,ε and the tensors T and T̂ are all
invariant under the maps

(x1, x2, x3, x4) 7→ (x2,−x1, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x4,−x3),

(x1, x2, x3, x4) 7→ (x3, x4, x1, x2),

(x1, x2, x3, x4) 7→ (−x3, x4,−x1, x2).

In the remainder of this section, we review some known results, due to
Biquard [5] and Page [32], concerning the Lichnerowicz Laplacian for the
Eguchi-Hanson manifold. Recall that the Lichnerowicz Laplacian is defined
by

∆Lhik = ∆hik + 2Rijklh
jl − Riclihkl − Riclkhil.

To analyze the kernel of ∆L,geh, we consider the vector fields

V1 = x1
∂

∂x2
− x2

∂

∂x1
+ x3

∂

∂x4
− x4

∂

∂x3
,

V2 = x1
∂

∂x3
− x3

∂

∂x1
+ x4

∂

∂x2
− x2

∂

∂x4
,

V3 = x1
∂

∂x4
− x4

∂

∂x1
+ x2

∂

∂x3
− x3

∂

∂x2
.

Note that the frame r ∂
∂r , V1, V2, V3 is dual to the co-frame 1

r dr, α1, α2, α3.
Moreover, [V1, V2] = −2V3, [V2, V3] = −2V1, and [V3, V1] = −2V2. This
implies LV1α2 = −LV2α1 = −2α3, LV2α3 = −LV3α2 = −2α1, and
LV3α1 = −LV1α3 = −2α2. We next define
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o1,ε = geh,ε −
1

2
Lr ∂

∂r
geh,ε,

o2,ε =
1

2
L r2V2√

ε4+r4

geh,ε,

o3,ε =
1

2
L r2V3√

ε4+r4

geh,ε.

Equivalently, we may write

o1,ε = −
ε4 r2

(ε4 + r4)
3
2

(dr ⊗ dr + r2 α1 ⊗ α1) +
ε4

(ε4 + r4)
1
2

(α2 ⊗ α2 + α3 ⊗ α3),

o2,ε =
ε4

ε4 + r4
(r dr ⊗ α2 + r α2 ⊗ dr − r2 α1 ⊗ α3 − r2 α3 ⊗ α1),

o3,ε =
ε4

ε4 + r4
(r dr ⊗ α3 + r α3 ⊗ dr + r2 α1 ⊗ α2 + r2 α2 ⊗ α1).

Finally, the tensor o1,ε can be rewritten as

o1,ε =
1

2
ε
∂

∂ε
geh,ε = ε4 T +O(ε8 r−8).

The main properties of o1,ε, o2,ε, o3,ε are summarized in the following propo-
sition.

Proposition 2.1 (O. Biquard [5]; D. Page [32]). For each i ∈ {1, 2, 3}, the
tensor oi,ε has the following properties:

(i) trgeh,εoi,ε = 0.
(ii) divgeh,εoi,ε = 0.
(iii) ∆L,geh,εoi,ε = 0.

(iv)
∫

R4\{0} |o1,ε|
2
geh,ε

dvolgeh,ε = 2π2 ε4.

Proof. (i) It is obvious that oi,ε is trace-free for each i ∈ {1, 2, 3}.

(ii) We first consider the vector field Y = r ∂
∂r . Since o1,ε = geh,ε −

1
2 LY geh,ε is trace-free, we have

∑

kDkY
k = 4 since o1,ε is trace-free. More-

over, DkYl−DlYk = 0 since Y is a gradient vector field. Differentiating this
identity gives

∑

kD
k(DkYl −DlYk) = 0. Therefore, we obtain

∑

k

Dk(DkYl +DlYk) =
∑

k

Dk(DkYl −DlYk) + 2
∑

k

DlD
kYk = 0.

Consequently, o1,ε = geh,ε −
1
2 LY geh,ε is divergence-free.

In the next step, we define Z = r2V2√
ε4+r4

. Since o2,ε = 1
2 LZgeh,ε is trace-

free, we have
∑

kDkZ
k = 0 since o2,ε. We next observe that d(r2 α2) =

2r dr ∧ α2 + 2r2 α3 ∧ α1 is a closed two-form which is self-dual with respect
to the metric geh,ε. Consequently, the two-form d(r2 α2) is divergence-free
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with respect to the metric geh,ε. Since geh,ε(Z, ·) = r2 α2, we conclude that
∑

kD
k(DkZl −DlZk) = 0. Putting these facts together, we obtain

∑

k

Dk(DkZl +DlZk) =
∑

k

Dk(DkZl −DlZk) + 2
∑

k

DlD
kZk = 0.

Thus, o2,ε = 1
2 LZgeh,ε is divergence-free. An analogous argument shows

that o3,ε is divergence-free.
(iii) Clearly, oi,ε lies in the kernel of the linearized Einstein operator for

each i ∈ {1, 2, 3}. Since oi,ε is trace-free and divergence-free, we conclude
that ∆L,geh,εoi,ε = 0 for each i ∈ {1, 2, 3}.

(iv) Note that

|o1,ε|
2
geh,ε

= 4
( ε4

ε4 + r4

)2
.

This implies
∫

R4\{0}
|o1,ε|

2
geh,ε

dvolgeh,ε =

∫ ∞

0
4
( ε4

ε4 + r4

)2
· 2π2 r3 dr = 2π2 ε4.

This completes the proof of Proposition 2.1. �

3. Attaching Eguchi-Hanson metrics to a torus with 16
orbifold points

In this section, we will attach Eguchi-Hanson metrics with different ori-
entations to a torus with 16 orbifold points. To fix notation, we denote by
C the collection of maps

(x1, x2, x3, x4) 7→ (x2,−x1, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x4,−x3),

(x1, x2, x3, x4) 7→ (x3, x4, x1, x2),

(x1, x2, x3, x4) 7→ (−x3, x4,−x1, x2),

(x1, x2, x3, x4) 7→ (1− x1, x2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, 1− x2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, 1− x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x3, 1− x4),

(x1, x2, x3, x4) 7→ (x1 + 2, x2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2 + 2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x3 + 2, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x3, x4 + 2),

and by G the group generated by C .
For each a ∈ Z

4, we denote by τa the translation x 7→ x − a. Moreover,
we put

Z
4
even = {(a1, a2, a3, a4) ∈ Z

4 : a1 + a2 + a3 + a4 is even}
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and

Z
4
odd = {(a1, a2, a3, a4) ∈ Z

4 : a1 + a2 + a3 + a4 is odd}.

Lemma 3.1. The limits
∑

a∈Z4
even

τ∗aT := lim
N→∞

∑

a∈Z4
even ,max{|a1|,|a2|,|a3|,|a4|}<N

τ∗aT

and
∑

a∈Z4
odd

τ∗a T̂ := lim
N→∞

∑

a∈Z4
odd,max{|a1|,|a2|,|a3|,|a4|}<N

τ∗a T̂

exist for x ∈ R
4 \ Z4. Neither series converges absolutely.

Proof. Fix a point x ∈ R
4 \ Z4. It is easy to see that

τ∗(a1,a2,a3,a4)T (x) + τ∗(a3,−a4,−a1,a2)
T (x) = O(|a|−5)

as |a| → ∞. Similarly, we have

τ∗(a1,a2,a3,a4)T̂ (x) + τ∗(a3,a4,−a1,−a2)
T̂ (x) = O(|a|−5)

as |a| → ∞ for each point x ∈ [−1
2 ,

1
2 ]

4 \ {0}. From this, we deduce that
∣

∣

∣

∣

∑

a∈Z4
even, N≤max{|a1|,|a2|,|a3|,|a4|}<2N

τ∗aT (x)

∣

∣

∣

∣

≤ O(N−1)

and
∣

∣

∣

∣

∑

a∈Z4
odd, N≤max{|a1|,|a2|,|a3|,|a4|}<2N

τ∗a T̂ (x)

∣

∣

∣

∣

≤ O(N−1)

for N < N ′. From this, the assertion follows. �

Lemma 3.2. The tensor
∑

a∈Z4
even

τ∗aT +
∑

a∈Z4
odd

τ∗a T̂

on R
4 \ Z4 is invariant under the group G defined above.

Proof. Consider the partial sums

S(N) :=
∑

a∈Z4
even ,max{|a1|,|a2|,|a3|,|a4|}<N

τ∗aT +
∑

a∈Z4
odd,max{|a1|,|a2|,|a3|,|a4|}<N

τ∗a T̂ .

If we fix a point x ∈ R
4\Z4 and a map ϕ ∈ C , then we have ϕ∗S(N)−S(N) =

O(N−1) at the point x. Hence, the limit limN→∞ S(N) is invariant under
each map ϕ ∈ C . �

Definition 3.3. Given two positive numbers ε and δ such that ε≪ δ4 ≪ 1,
we define a metric ḡε,δ on the cube [−1

2 ,
1
2 ]

4 \ {0} in the following way: For

|x| ≤ 1
2 δ, we define

ḡε,δ = geh,ε.
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Moreover, for |x| ≥ δ, we put

ḡε,δ = geucl +
1

2
ε4

∑

a∈Z4
even

τ∗aT +
1

2
ε4

∑

a∈Z4
odd

τ∗a T̂ .

Finally, in the intermediate region 1
2 δ ≤ |x| ≤ δ, we define

ḡε,δ = (1−χ(|x|/δ)) geh,ε+χ(|x|/δ)

(

geucl+
1

2
ε4

∑

a∈Z4
even

τ∗aT+
1

2
ε4

∑

a∈Z4
odd

τ∗aT

)

,

where χ is a cutoff function satisfying χ = 0 on (−∞, 23 ] and χ = 0 on

[56 ,∞).

We may extend ḡε,δ to a metric on R
4 \ Z4 which is invariant under the

group G defined above. Note that the resulting metric ḡε,δ on R
4 \ Z

4 is
singular at each lattice point. In fact, if a ∈ Z

4
even, then we have ḡε,δ = τ∗ageh,ε

in a neighborhood of a. Similarly, if a ∈ Z
4
odd, then we have ḡε,δ = τ∗a ĝeh,ε

in a neighborhood of a. Thus, if we take the quotient by translations and
antipodal reflection, then the metric ḡε,δ descends to a smooth metric on
the quotient manifold M .

We next estimate the Ricci curvature of ḡε,δ.

Proposition 3.4. We have

Ricḡε,δ = 0

for |x| ≤ 1
2 δ. Moreover, we have

|Ricḡε,δ | ≤ C ε4 δ−2

for 1
2 δ ≤ |x| ≤ δ and

|Ricḡε,δ | ≤ C ε8 |x|−10

for |x| ≥ δ. Analogous estimates hold for the derivatives of Ricḡε,δ .

Proof. Straightforward calculation. �

Finally, let us denote by ō1,ε,δ the trace-free part of the tensor 1
2 ε

∂
∂ε ḡε,δ

with respect to the metric ḡε,δ. Clearly, ō1,ε,δ = o1,ε for |x| ≤ 1
2 δ, so we can

think of ō1,ε,δ as an extension of o1,ε to the manifold M .

Proposition 3.5. We have

∆L,ḡε,δ ō1,ε,δ = 0

for |x| ≤ 1
2 δ. Moreover, we have

|∆L,ḡε,δ ō1,ε,δ| ≤ C ε4 δ−2

for 1
2 δ ≤ |x| ≤ δ and

|∆L,ḡε,δ ō1,ε,δ| ≤ C ε8 |x|−10

for |x| ≥ δ.

Proof. Again, this follows from a straightforward calculation. �
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4. The projection of the Ricci tensor to the approximate

kernel

Lemma 4.1. Fix a pair of indices i 6= j, and let u be a smooth harmonic

function which is defined on the Euclidean ball {|x| ≤ δ}. Then

∫

{|x|=δ}

[xi xj
r6

Dνu− uDν

(xi xj
r6

)]

dµgeucl =
1

2
π2DiDju(0)

and

∫

{|x|=δ}

[x2i − x2j
r6

Dνu−uDν

(x2i − x2j
r6

)]

dµgeucl =
1

2
π2 (DiDiu(0)−DjDju(0)).

Here, ν denotes the outward-pointing unit normal to the hypersurface {|x| =
δ} with respect to the Euclidean metric.

Proof. By the divergence theorem, the quantity

I(r) :=

∫

{|x|=r}

[xi xj
r6

Dνu− uDν

(xi xj
r6

)]

dµgeucl

is independent of r. Moreover, if we perform a Taylor expansion of u around
the origin, it is easy to see that I(r) → 1

2 π
2DiDju(0) as r → 0. Thus,

I(r) = 1
2 π

2DiDju(0) for all r > 0. This proves the first identity. The
second identity follows from an analogous argument. �

Proposition 4.2. We have

∫

{|x|=δ}
(〈o1,ε,Dν h̄〉geh,ε − 〈h̄,Dνo1,ε〉geh,ε) dµgeh,ε = 32π2ω ε8 +O(ε12 δ−10),

where h̄ = ḡε,δ − geh,ε and

ω :=
∑

a∈Z4
odd

|a|−10 (|a|4 − 6 (a21 + a22) (a
2
3 + a24)) ≈ 7.70.

Proof. For δ ≤ |x| ≤ 2δ, we have

h̄ = ḡε,δ − geh,ε =
1

2
ε4

∑

a∈Z4
even\{0}

τ∗aT +
1

2
ε4

∑

a∈Z4
odd

τ∗a T̂ +O(ε8 |x|−8)

and

o1,ε = ε4 T +O(ε8 |x|−8).
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Consequently,

∫

{|x|=δ}
(〈o1,ε,Dν h̄〉geh,ε − 〈h̄,Dνo1,ε〉geh,ε) dµgeh,ε

=
1

2
ε8

∑

a∈Z4
even\{0}

∫

{|x|=δ}
(〈T,Dν(τ

∗
aT )〉geucl − 〈τ∗aT,DνT 〉geucl) dµgeucl

+
1

2
ε8

∑

a∈Z4
odd

∫

{|x|=δ}
(〈T,Dν(τ

∗
a T̂ )〉geucl − 〈τ∗a T̂ ,DνT 〉geucl) dµgeucl

+O(ε12 δ−10).

Hence, it remains to evaluate the integrals

∫

{|x|=δ}
(〈T,Dν(τ

∗
aT )〉geucl − 〈τ∗aT,DνT 〉geucl) dµgeucl

and
∫

{|x|=δ}
(〈T,Dν(τ

∗
a T̂ )〉geucl − 〈τ∗a T̂ ,DνT 〉geucl) dµgeucl ,

where a ∈ Z
4 \ {0}. To that end, we use Lemma 4.1. Since the components

of τ∗aT are smooth harmonic functions near the origin, we obtain

∫

{|x|=δ}
(〈T,Dν(τ

∗
aT )〉geucl − 〈τ∗aT,DνT 〉geucl) dµgeucl

= −
1

2
π2 〈(D1D1 +D2D2 −D3D3 −D4D4)τ

∗
aT,

dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4〉
∣

∣

∣

x=0

− π2 〈(D1D3 +D2D4)τ
∗
aT, dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2〉

∣

∣

∣

x=0

− π2 〈(D1D4 −D2D3)τ
∗
aT, dx1 ⊗ dx4 + dx4 ⊗ dx1 − dx2 ⊗ dx3 − dx3 ⊗ dx2〉

∣

∣

∣

x=0

= 2π2 (D1D1 +D2D2 −D3D3 −D4D4)

(x1 − a1)
2 + (x2 − a2)

2 − (x3 − a3)
2 − (x4 − a4)

2

|x− a|6

∣

∣

∣

x=0

+ 8π2 (D1D3 +D2D4)
(x1 − a1)(x3 − a3) + (x2 − a2)(x4 − a4)

|x− a|6

∣

∣

∣

x=0

+ 8π2 (D1D4 −D2D3)
(x1 − a1)(x4 − a4)− (x2 − a2)(x3 − a3)

|x− a|6

∣

∣

∣

x=0

= 0.
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Moreover, since the components of τ∗a T̂ are smooth harmonic functions near
the origin, we obtain
∫

{|x|=δ}
(〈T,Dν(τ

∗
a T̂ )〉geucl − 〈τ∗a T̂ ,DνT 〉geucl) dµgeucl

= −
1

2
π2 〈(D1D1 +D2D2 −D3D3 −D4D4)τ

∗
a T̂ ,

dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4〉
∣

∣

∣

x=0

− π2 〈(D1D3 +D2D4)τ
∗
a T̂ , dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2〉

∣

∣

∣

x=0

− π2 〈(D1D4 −D2D3)τ
∗
a T̂ , dx1 ⊗ dx4 + dx4 ⊗ dx1 − dx2 ⊗ dx3 − dx3 ⊗ dx2〉

∣

∣

∣

x=0

= 2π2 (D1D1 +D2D2 −D3D3 −D4D4)

(x1 − a1)
2 + (x2 − a2)

2 − (x3 − a3)
2 − (x4 − a4)

2

|x− a|6

∣

∣

∣

x=0

= 64π2 |a|−10 (|a|4 − 6 (a21 + a22) (a
2
3 + a24)).

Putting these facts together, the assertion follows. �

Proposition 4.3. Let h̄ = ḡε,δ−geh,ε and Z = divgeh,ε h̄−
1
2 ∇trgeh,ε h̄. Then

∫

{|x|=δ}
o1,ε(Z, ν) dµgeh,ε = O(ε12 δ−10).

Proof. Recall that

h̄ = ḡε,δ − geh,ε =
1

2
ε4

∑

a∈Z4
even\{0}

τ∗aT +
1

2
ε4

∑

a∈Z4
odd

τ∗a T̂ +O(ε8 |x|−8)

for δ ≤ |x| ≤ 2δ. Both τ∗aT and τ∗a T̂ are trace-free and divergence-free with
respect to the Euclidean metric. This implies

∇trgeuclh̄ = O(ε8 |x|−9)

and
divgeucl h̄ = O(ε8 |x|−9)

for δ ≤ |x| ≤ 2δ. Since geh,ε − geucl = O(ε4 |x|−4), it follows that

∇trgeh,ε h̄ = O(ε8 |x|−9)

and
divgeh,εh̄ = O(ε8 |x|−9)

for δ ≤ |x| ≤ 2δ. In particular, Z = O(ε8 |x|−9), which implies o1,ε(Z, ν) =
O(ε12 δ−13). From this, the assertion follows easily. �

Corollary 4.4. We have

−2

∫

[− 1
2
, 1
2
]4\{0}

〈ō1,ε,δ,Ricḡε,δ〉ḡε,δ dvolḡε,δ = 32π2ω ε8 +O(ε8 δ2).
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Proof. As above, we write h̄ = ḡε,δ − geh,ε and Z = divgeh,ε h̄ − 1
2 ∇trgeh,ε h̄.

Note that h̄ is defined in the region {|x| ≤ δ} and vanishes identically in the
region {|x| ≤ 1

2 δ}. Moreover, we have |h̄| ≤ O(ε4), |∇h̄| ≤ O(ε4 δ−1), and

|∇2h̄| ≤ O(ε4 δ−2) in the annulus {1
2 δ ≤ |x| ≤ δ}.

Using the well-known formula for the linearization of the Ricci curvature,
we obtain

−2Ricḡε,δ = ∆L,geh,εh̄− LZgeh,ε +O(ε8 δ−2)

in the region {1
2 δ ≤ |x| ≤ δ}. Since ō1,ε,δ = o1,ε + O(ε4) and Ricḡε,δ =

O(ε4 δ−2) in the region {1
2 δ ≤ |x| ≤ δ}, we deduce that

− 2

∫

{ 1
2
δ≤|x|≤δ}

〈ō1,ε,δ,Ricḡε,δ〉ḡε,δ dvolḡε,δ

=

∫

{ 1
2
δ≤|x|≤δ}

〈o1,ε,∆L,geh,ε h̄− LZgeh,ε〉geh,ε dvolgeh,ε +O(ε8 δ2).

Since o1,ε satisfies the equation ∆L,geh,εo1,ε = 0, the divergence theorem
gives

∫

{ 1
2
δ≤|x|≤δ}

〈o1,ε,∆L,geh,εh̄〉geh,ε dvolgeh,ε

=

∫

{|x|≤δ}
(〈o1,ε,∆L,geh,εh̄〉geh,ε − 〈h̄,∆L,geh,εo1,ε〉geh,ε) dvolgeh,ε

=

∫

{|x|=δ}
(〈o1,ε,Dν h̄〉geh,ε − 〈h̄,Dνo1,ε〉geh,ε) dµgeh,ε

= 32π2ω ε8 +O(ε12 δ−10),

where in the last step we have used Proposition 4.2. Finally, since divgeh,εo1,ε =
0, the divergence theorem yields

∫

{ 1
2
δ≤|x|≤δ}

〈o1,ε,LZgeh,ε〉geh,ε dvolgeh,ε

=

∫

{|x|≤δ}
(〈o1,ε,LZgeh,ε〉geh,ε + 2 〈divgeh,εo1,ε, Z〉geh,ε) dvolgeh,ε

=

∫

{|x|=δ}
2 o1,ε(Z, ν) dµgeh,ε

= O(ε12 δ−10)

by Proposition 4.3. Putting these facts together, we conclude that

−2

∫

{ 1
2
δ≤|x|≤δ}

〈ō1,ε,δ,Ricḡε,δ〉ḡε,δ dvolḡε,δ = 32π2ω ε8 +O(ε8 δ2).

Since Ricḡε,δ = 0 in the region {|x| ≤ 1
2 δ} and |Ricḡε,δ | ≤ C ε8 |x|−10 in the

region [−1
2 ,

1
2 ]

4 \ {|x| ≤ δ}, the assertion follows. �
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Proposition 4.5. We have

−2

∫

[− 1
2
, 1
2
]4\{0}

〈ḡε,δ,Ricḡε,δ〉ḡε,δ dvolḡε,δ = O(ε8 δ−6).

Proof. Let h̃ = ḡε,δ − geucl. Clearly, h̃ is defined on [−1
2 ,

1
2 ]

4 \ {|x| ≤ 1
4 δ},

and we have |h̃| ≤ O(ε4 |x|−4), |∇h̃| ≤ O(ε4 |x|−5), and |∇2h̃| ≤ O(ε4 |x|−6).
Using the standard formula for the linearization of the scalar curvature, we
deduce that

〈ḡε,δ,Ricḡε,δ〉ḡε,δ = div div h̃−∆tr h̃+O(ε8 |x|−10)

in the region [−1
2 ,

1
2 ]

4 \ {|x| ≤ 1
2 δ}. Here, the divergence and the Laplacian

on the right hand side are taken with respect to the Euclidean metric. Using
the divergence theorem, we obtain

∫

[− 1
2
, 1
2
]4\{|x|≤ 1

2
δ}
〈ḡε,δ,Ricḡε,δ〉ḡε,δ dvolḡε,δ

=

∫

[− 1
2
, 1
2
]4\{|x|≤ 1

2
δ}
(div div h̃−∆tr h̃) dvolgeucl +O(ε8 δ−6)

= −

∫

{|x|= 1
2
δ}
(〈div h̃, ν〉geucl − 〈∇tr h̃, ν〉geucl) dµgeucl +O(ε8 δ−6).

As above, ν denotes the outward-pointing unit normal to the hypersurface
{|x| = 1

2 δ} with respect to the Euclidean metric. For 1
4 δ ≤ |x| ≤ 1

2 δ, we
have

h̃ = geh,ε − geucl =
1

2
ε4 T +O(ε8 δ−8).

Since T is trace-free and divergence-free with respect to the Euclidean met-
ric, it follows that

∇tr h̃ = O(ε8 δ−9)

and
div h̃ = O(ε8 δ−9).

Thus, we conclude that
∫

{|x|= 1
2
δ}
(〈div h̃, ν〉geucl − 〈∇tr h̃, ν〉geucl) dµgeucl = O(ε8 δ−6),

hence
∫

[− 1
2
, 1
2
]4\{|x|≤ 1

2
δ}
〈ḡε,δ,Ricḡε,δ〉ḡε,δ dvolḡε,δ = O(ε8 δ−6).

Since Ricḡε,δ = 0 in the region {|x| ≤ 1
2 δ}, the assertion follows. �

Finally, we compute the projection of ∂
∂ε ḡε,δ to the approximate kernel.

Proposition 4.6. We have
∫

[− 1
2
, 1
2
]4\{0}

〈ō1,ε,δ,
∂

∂ε
ḡε,δ〉ḡε,δ dvolḡε,δ = 4π2ε3 +O(ε7δ−4)
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and
∫

[− 1
2
, 1
2
]4\{0}

〈ḡε,δ,
∂

∂ε
ḡε,δ〉ḡε,δ dvolḡε,δ = O(ε3 log

1

δ
).

Proof. For |x| ≤ 1
2 δ, we have ḡε,δ = geh,ε,

∂
∂ε ḡε,δ = 2

ε o1,ε, and ō1,ε,δ = o1,ε.
From this, the assertion follows easily. �

5. Liouville-type theorems for the parabolic Lichnerowicz

equation

In this section, we establish Liouville-type theorems for the parabolic
Lichnerowicz equation on various model spaces. We first recall some basic
properties of the Lichnerowicz Laplacian on the Eguchi-Hanson manifold
which were established by Biquard [5] and Biquard and Rollin [7] (see also
[32]).

Proposition 5.1 (O. Biquard [5]; O. Biquard, Y. Rollin [7]). Let (Meh, geh)
denote the Eguchi-Hanson manifold with parameter ε = 1, and let oi := oi,1.
Then the following statements hold:

(i) Let h be a symmetric (0, 2)-tensor on the Eguchi-Hanson manifold

satisfying |h| ≤ (1 + r)−σ for some σ > 0 and ∆L,gehh = 0. Then

h ∈ span{o1, o2, o3}.
(ii) Let h be a symmetric (0, 2)-tensor on the Eguchi-Hanson manifold

satisfying |h| ≤ (1+ r)−σ−1 and |∇h| ≤ (1+ r)−σ−2 for some σ > 0.
Then

∫

Meh

〈∆L,gehh, h〉 dvolgeh ≤ 0.

Moreover, equality holds if and only if h ∈ span{o1, o2, o3}.

Proof. The first statement is contained in Proposition 1.1 in [5]. The second
statement follows from a Bochner formula from [7]. To explain this, let
h be a symmetric (0, 2)-tensor on the Eguchi-Hanson manifold satisfying
|h| ≤ C (1 + r)−σ−1 and |∇h| ≤ C (1 + r)−σ−2. Clearly,
∫

Meh

〈∆L,gehh, h〉 dvolgeh =

∫

Meh

〈∆L,gehk, k〉 dvolgeh+
1

4

∫

Meh

〈∆gehtrh, tr h〉 dvolgeh ,

where k denotes the trace-free part of h. We may view k as a section of
the vector bundle Λ2

− ⊗ Λ2
+. The Bochner formula (4.6) in [7] implies that

−1
2 ∆L,gehk = d−d∗−k, where d− : Γ(Λ1 ⊗ Λ2

+) → Γ(Λ2
− ⊗ Λ2

+) is the exterior
derivative (cf. [5], [7]). This gives

∫

Meh

〈∆L,gehk, k〉 dvolgeh = −2

∫

Meh

|d∗−k|
2 dvolgeh ,

hence
∫

Meh

〈∆L,gehh, h〉 dvolgeh = −2

∫

Meh

|d∗−k|
2 dvolgeh−

1

4

∫

Meh

|∇trh|2 dvolgeh ≤ 0.
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Moreover, if equality holds, then d∗−k = 0 and trh = 0. Results in [5] now
imply that h ∈ span{o1, o2, o3}. �

We next establish a Liouville-type theorem for the linear heat equation
on the Eguchi-Hanson manifold.

Proposition 5.2. Let (Meh, geh) denote the Eguchi-Hanson manifold with

parameter ε = 1, and let oi := oi,1. Let h be a solution of the heat equation
∂
∂th = ∆L,gehh on Meh × (−∞, 0] with the property that |h| ≤ (1 + r)−σ for

some σ > 0. If
∫

Meh
〈h(t), oi〉 = 0 for all i ∈ {1, 2, 3} and all t ∈ (−∞, 0],

then h vanishes identically.

Proof. Let us consider the tensor field k(t) := ∆L,gehh(t). It follows from
standard interior estimates for parabolic equations that |k| ≤ C (1+ r)−σ−2

and |∇k| ≤ C (1 + r)−σ−3. In particular,
∫

Meh
|k(t)|2 ≤ C for each t ∈

(−∞, 0]. Moreover, k satisfies the equation ∂
∂tk = ∆L,gehk, and we have

∫

Meh
〈k(t), oi〉 = 0 for all i ∈ {1, 2, 3} and all t ∈ (−∞, 0]. Using Proposition

5.1, we obtain

1

2

d

dt

(
∫

Meh

|k(t)|2 dvolgeh

)

=

∫

Meh

〈∆L,gehk(t), k(t)〉 dvolgeh ≤ 0.

Consequently, the function t 7→
∫

Meh
|k(t)|2 is monotone decreasing. In

particular, the limit A := limt→−∞
∫

Meh
|k(t)|2 exists.

We next pick an arbitrary sequence of times tj → −∞, and define k̃(j)(t) :=
k(tj + t). After passing to a subsequence if necessary, we may assume

that the sequence k̃(j) converges in C∞
loc to some tensor field k̂ which is

defined on Meh × R and satisfies the equation ∂
∂t k̂ = ∆L,geh k̂. Moreover,

|k̂| ≤ C (1 + r)−σ−2 and |∇k̂| ≤ C (1 + r)−σ−3. Using the dominated con-
vergence theorem, we obtain

∫

Meh

|k̂(t)|2 dvolgeh = lim
j→∞

∫

Meh

|k(tj + t)|2 dvolgeh = A

and
∫

Meh

〈k̂(t), oi〉 dvolgeh = lim
j→∞

∫

Meh

〈k(tj + t), oi〉 dvolgeh = 0

for all i ∈ {1, 2, 3} and all t ∈ R. Differentiating the first identity with
respect to t gives

0 =
1

2

d

dt

(
∫

Meh

|k̂(t)|2 dvolgeh

)

=

∫

Meh

〈∆L,geh k̂(t), k̂(t)〉 dvolgeh

for all t ∈ R. Hence, Proposition 5.1 implies that k̂(t) = 0 for all t ∈ R.
Consequently, A = 0. In other words, limt→−∞

∫

Meh
|k(t)|2 = 0. Since the

function t 7→
∫

Meh
|k(t)|2 is monotone decreasing, it follows that k(t) = 0 for

all t ∈ (−∞, 0]. Thus, we conclude that ∆L,gehh(t) = 0 for all t ∈ (−∞, 0].
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Since
∫

Meh
〈h(t), oi〉 = 0 for all i ∈ {1, 2, 3} and all t ∈ (−∞, 0], Proposition

5.1 implies that h(t) = 0 for all t ∈ (−∞, 0]. �

Proposition 5.3. Let h be a solution of the heat equation ∂
∂th = ∆geuclh on

(R4 \ {0}) × (−∞, 0] with the property that |h| ≤ r−σ for some σ ∈ (0, 2).
Then h vanishes identically.

Proof. Let us fix an arbitrary point (x0, t0) in spacetime. Since σ < 2, the
equation ∂

∂th = ∆geuclh is satisfied in the sense of distributions. Conse-
quently,

h(x0, t0) =

∫

R4\{0}

1

(4πt)2
e−

|x−x0|
2

4t h(x, t0 − t)

for all t > 0. Since |h(x, t0 − t)| ≤ |x|−σ, it follows that

|h(x0, t0)| ≤

∫

R4\{0}

1

(4πt)2
e−

|x−x0|
2

4t |x|−σ

≤ C t−2

∫

{|x|2≤t}
|x|−σ + C

∫

{|x|2≥t}
|x|−4−σ

≤ C t−
σ
2

for all t > 0. Sending t→ ∞ gives h(x0, t0) = 0. �

Proposition 5.4. Let h be a symmetric (0, 2)-tensor defined on (R4 \Z4)×
(−∞, 0] which evolves by the heat equation ∂

∂th = ∆geuclh and is invariant

under the maps

(x1, x2, x3, x4) 7→ (1− x1, x2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, 1− x2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, 1− x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x3, 1− x4),

(x1, x2, x3, x4) 7→ (x1 + 2, x2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2 + 2, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x3 + 2, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x3, x4 + 2).

Moreover, we assume that |h| ≤ r−σ for some σ ∈ (0, 2). If
∫

[− 1
2
, 1
2
]4\{0} hii =

0 for each i ∈ {1, 2, 3, 4}, then h vanishes identically.

Proof. Let us fix an arbitrary point (x0, t0) in spacetime. Moreover, let

Γ+(x, t) =
1

(4πt)2

(

∑

a∈Z4
even

e−
|x−x0−a|2

4t +
∑

a∈Z4
odd

e−
|x−x0−a|2

4t

)

and

Γ−(x, t) =
1

(4πt)2

(

∑

a∈Z4
even

e−
|x−x0−a|2

4t −
∑

a∈Z4
odd

e−
|x−x0−a|2

4t

)

.
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We first consider an index i ∈ {1, 2, 3, 4}. Since σ < 2, hii satisfies the heat
equation in the sense of distributions. Hence, we may write

hii(x0, t0) =

∫

[− 1
2
, 1
2
]4\{0}

Γ+(x, t)hii(x, t0−t) =

∫

[− 1
2
, 1
2
]4\{0}

(Γ+(x, t)−1)hii(x, t0−t)

for all t > 0. Since |hii(x, t0 − t)| ≤ |x|−σ, it follows that

|hii(x0, t0)| ≤ sup
x∈[− 1

2
, 1
2
]4
|Γ+(x, t)− 1|

∫

[− 1
2
, 1
2
]4\{0}

|x|−σ

for all t > 0. It is well known that the heat kernel on a torus converges to a
constant at an exponential rate. This means that supx∈[− 1

2
, 1
2
]4 |Γ+(x, t)− 1|

converges to 0 as t→ ∞. Consequently, hii(x0, t0) = 0.
We next consider a pair of indices i 6= j. Since σ < 2, hij satisfies the

heat equation in the sense of distributions. This gives

hij(x0, t0) =

∫

[− 1
2
, 1
2
]4\{0}

Γ−(x, t)hij(x, t0 − t)

for all t > 0. Since |hij(x, t0 − t)| ≤ |x|−σ , we obtain

|hij(x0, t0)| ≤ sup
x∈[− 1

2
, 1
2
]4
|Γ−(x, t)|

∫

[− 1
2
, 1
2
]4\{0}

|x|−σ

for all t > 0. Since supx∈[− 1
2
, 1
2
]4 |Γ−(x, t)| converges to 0 as t → ∞, we

conclude that hij(x0, t0) = 0. This completes the proof. �

6. Uniform estimates for the linearized equation

Throughout this section, we will fix a real number α ∈ (0, 1). Let M
denote the quotient manifold introduced in Section 3. We will consider a one-

parameter family of metrics ḡε(t),δ(t), t ∈ (−∞,−Λ], where δ(t) = (−t)−
1

400 .
Moreover, the parameter ε(t) is assumed to satisfy the following conditions:

Assumption 6.1. The function ε(t) satisfies (−64ωt)−
1
4 ≤ ε(t) ≤ (−16ωt)−

1
4 ,

∣

∣

dε
dt (t)

∣

∣ ≤ (−t)−
5
4 , and |t− t′|−α

∣

∣

dε
dt (t)−

dε
dt (t

′)
∣

∣ ≤ (−t)−
5
4
+α

2 for 0 < |t− t′| ≤

(−t)−
1
2 .

We first prove a weighted sup-estimate for solutions of the parabolic Lich-
nerowicz equation. As in [30], we use a blow-up argument together with the
Liouville-type theorems established in Section 5.

Proposition 6.2. Given real numbers γ > 0 and σ ∈ (0, 2), we can find real

numbers Λ > 0 and C > 0 with the following property. Suppose that ε(t) is a
function which is defined on the interval (−∞,−Λ] and satisfies Assumption

6.1, and let δ(t) = (−t)−
1

400 . Let h be a solution of the inhomogeneous heat

equation ∂
∂th(t) = ∆L,ḡε(t),δ(t)h(t) + ψ(t) which is defined on M × (−∞,−Λ]

and satisfies supM×(−∞,−Λ](−t)
γ (ε(t)+r)σ |h(t)|ḡε(t),δ(t) <∞. Moreover, we
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assume that h is invariant under the group G and satisfies the orthogonality

conditions
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

and
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

for all t ∈ (−∞,−Λ]. Then

sup
M×(−∞,−Λ]

(−t)γ ((−t)−
1
4 + r)σ |h(t)|ḡε(t),δ(t) ≤

≤ C sup
M×(−∞,−Λ]

(−t)γ ((−t)−
1
4 + r)σ+2 |ψ(t)|ḡε(t),δ(t) .

Proof. We argue by contradiction. If the assertion is false, we can find a
sequence of functions ε(j)(t) and sequences of tensor fields h(j) and ψ(j)

with the following properties:

• The functions ε(j)(t) are defined on the interval (−∞,−j] and satisfy
Assumption 6.1.

• The tensor fields h(j) and ψ(j) are defined on M × (−∞,−j] and
satisfy the equation

∂

∂t
h(j)(t) = ∆L,g(j)(t)h

(j)(t) + ψ(j)(t),

where g(j)(t) := ḡε(j)(t),δ(t).

• We have

sup
M×(−∞,−j]

(−t)γ ((−t)−
1
4 + r)σ |h(j)(t)|g(j)(t) = 1

and

sup
M×(−∞,−j]

(−t)γ ((−t)−
1
4 + r)σ+2 |ψ(j)(t)|g(j)(t) → 0

as j → ∞.
• The tensor h(j) satisfies the orthogonality conditions

∫

[− 1
2
, 1
2
]4\{0}

〈h(j)(t), ō1,ε(j)(t),δ(t)〉g(j)(t) dvolg(j)(t) = 0

and
∫

[− 1
2
, 1
2
]4\{0}

〈h(j)(t), g(j)(t)〉g(j)(t) dvolg(j)(t) = 0

for all t ∈ (−∞,−j].
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For each j, we can pick a point (xj , tj) ∈M×(−∞,−j] such that (−tj)
γ ((−tj)

− 1
4+

r)σ |h(j)(tj)|g(j)(t) ≥
1
2 at the point xj . After passing to a subsequence, we

are in one of the following three cases:

Case 1: Suppose limj→∞(−tj)
1
4 |xj | < ∞. Let us consider the rescaled

metrics
g̃(j)(t) := ε(j)(tj)

−2 ρ∗jg
(j)(tj + ε(j)(tj)

2 t),

where t ∈ (−∞, 0] and ρj : Meh → Meh denotes a dilation in space by the

factor ε(j)(tj). Moreover, we define

h̃(j)(t) := (−tj)
γ ε(j)(tj)

σ−2 ρ∗jh
(j)(tj + ε(j)(tj)

2 t)

and
ψ̃(j)(t) := (−tj)

γ ε(j)(tj)
σ ρ∗jψ

(j)(tj + ε(j)(tj)
2 t)

for t ∈ (−∞, 0]. Clearly, ∂
∂t h̃

(j)(t) = ∆L,g̃(j)(t)h̃
(j)(t) + ψ̃(j)(t). After passing

to a subsequence, the tensor fields h̃(j) converge in C0
loc to some tensor field

ĥ 6= 0. The limiting tensor field ĥ is defined on Meh × (−∞, 0], where Meh

denotes the Eguchi-Hanson manifold with parameter ε = 1. Moreover, ĥ

satisfies the heat equation ∂
∂t ĥ = ∆L,geh ĥ, and we have supMeh×(−∞,0](1 +

r)σ |ĥ(t)|geh ≤ 1.

In the next step, we show that ĥ(t) is orthogonal to o1 for each t ∈ (−∞, 0].
Indeed, if we fix a number t ∈ (−∞, 0], then we have

∫

[− 1
2
, 1
2
]4\{0}

〈h(j)(t′j), ō1,ε(j)(t′j),δ(t′j )〉ḡε(j)(t′
j
),δ(t′

j
)
dvolḡ

ε(j)(t′
j
),δ(t′

j
)
= 0,

where t′j := tj + ε(j)(tj)
2 t. Passing to the limit as j → ∞, we obtain
∫

Meh

〈ĥ(t), o1〉geh dvolgeh = 0

by the dominated convergence theorem.
Finally, since ĥ(t) is invariant under the map (x1, x2, x3, x4) 7→ (x3, x4, x1, x2),

we have
∫

Meh

〈ĥ(t), o2〉geh dvolgeh =

∫

Meh

〈ĥ(t), o3〉geh dvolgeh = 0

for each t ∈ (−∞, 0]. This contradicts Proposition 5.2.

Case 2: Suppose now that limj→∞(−tj)
1
4 |xj | = ∞ and limj→∞ |xj | = 0.

We consider the rescaled metrics

g̃(j)(t) := |xj |
−2 ρ∗jg

(j)(tj + |xj |
2 t),

where t ∈ (−∞, 0] and ρj denotes a dilation in space by the factor |xj |.
Moreover, we define

h̃(j)(t) := (−tj)
γ |xj |

σ−2 ρ∗jh(tj + |xj |
2 t)

and
ψ̃(j)(t) := (−tj)

γ |xj|
σ ρ∗jψ

(j)(tj + |xj |
2 t)
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for t ∈ (−∞, 0]. Clearly, ∂
∂t h̃

(j)(t) = ∆L,g̃(j)(t)h̃
(j)(t) + ψ̃(j)(t). After passing

to a subsequence, the tensors h̃(j) converge in C0
loc to a tensor field ĥ 6= 0.

The tensor field ĥ is defined on (R4\{0})/Z2×(−∞, 0] and satisfies the equa-

tion ∂
∂t ĥ = ∆geuclĥ. Moreover, we have sup(R4\{0})/Z2×(−∞,0] r

σ |ĥ(t)|geucl ≤

1. After lifting ĥ to a solution of the heat equation on (R4 \ {0})× (−∞, 0],
we obtain a contradiction with Proposition 5.3.

Case 3: Suppose finally that limj→∞ |xj | > 0. In this case, we define

h̃(j)(t) := (−tj)
γ h(tj + t)

for t ∈ (−∞, 0]. After passing to a subsequence, the tensor fields h̃(j) con-

verge in C0
loc to some tensor field ĥ 6= 0. After passing to a suitable covering,

we may view ĥ as a tensor field on (R4 \ Z
4) × (−∞, 0] which is invariant

under the group G . Moreover, ĥ satisfies the heat equation ∂
∂t ĥ = ∆geuclĥ,

and we have
sup([− 1

2
, 1
2
]4\{0})×(−∞,0] r

σ |ĥ(t)|geucl ≤ 1.

In the next step, we show that ĥ(t) is orthogonal to geucl for each t ∈
(−∞, 0]. Indeed, if we fix a number t ∈ (−∞, 0], then we have

∫

[− 1
2
, 1
2
]4\{0}

〈h(j)(t′j), ḡε(j)(t′j),δ(t′j )〉ḡε(j)(t′
j
),δ(t′

j
)
dvolḡ

ε(j)(t′
j
),δ(t′

j
)
= 0,

where t′j := tj + t. Taking the limit as j → ∞, we obtain
∫

[− 1
2
, 1
2
]4\{0}

〈ĥ(t), geucl〉geucl dvolgeucl

by the dominated convergence theorem.
Finally, since ĥ is invariant under the maps (x1, x2, x3, x4) 7→ (x2,−x1, x3, x4),

(x1, x2, x3, x4) 7→ (x1, x2, x4,−x3), and (x1, x2, x3, x4) 7→ (x3, x4, x1, x2), we

conclude that
∫

[− 1
2
, 1
2
]4\{0} ĥii(t) dvolgeucl = 0 for all i ∈ {1, 2, 3, 4}. This

contradicts Proposition 5.4. The proof of Theorem 6.2 is now complete. �

We next define suitable weighted Hölder spaces. To fix notation, we
denote by dt(x, x

′) the Riemannian distance with respect to the metric
ḡ
(−32ωt)−

1
4 ,(−t)−

1
400

from x to x′. Moreover, we denote by P t
x,x′ the paral-

lel transport along a minimizing geodesic from x to x′ with respect to the
metric ḡ

(−32ωt)−
1
4 ,(−t)−

1
400

.

Definition 6.3. Given real numbers α ∈ (0, 1), γ > 0, σ > 0, and Λ > 0,
we define ‖h‖X0,α

γ,σ,Λ
to be the supremum of the quantity

(−t)γ ((−t)−
1
4 + r)σ |h(x, t)|

+ (−t)γ ((−t)−
1
4 + r)σ+2α (dt(x, x

′)2 + |t− t′|)−α |P t
x,x′h(x, t) − h(x′, t′)|.
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Here, the supremum is taken over all numbers r ∈ (0, 10), all times t, t′ ∈

(−∞,−Λ] satisfying |t− t′| ≤ ((−t)−
1
4 + r)2, and all points x, x′ ∈ [−1

2 ,
1
2 ]

4

satisfying |x|, |x′| ∈ [12 r, (−t)
− 1

4 + r]. Moreover, the norm of h(x, t) is taken
with respect to the metric ḡ

(−32ωt)−
1
4 ,(−t)−

1
400

. We next define

‖h‖
Xl,α

γ,σ,Λ
:= ‖h‖X0,α

γ,σ,Λ
+ ‖Dh‖X0,α

γ,σ+1,Λ
+ ‖D2h‖X0,α

γ,σ+2,Λ
+ ‖

∂

∂t
h‖X0,α

γ,σ+2,Λ
,

whereD denotes the Riemannian connection with respect to ḡ
(−32ωt)−

1
4 ,(−t)−

1
400

.

Note that the space decay rates in the above definition are appropriately
adjusted for the derivatives so that they accommodate for the scaling in-
volved. This allows us to combine Proposition 6.2 with standard interior
estimates for parabolic equations to draw the following conclusion:

Corollary 6.4. Given real numbers γ > 0 and σ ∈ (0, 2), we can find

real numbers Λ > 0 and C > 0 with the following property. Suppose that

ε(t) is a function which is defined on the interval (−∞,−Λ] and satisfies

Assumption 6.1, and let δ(t) = (−t)−
1

400 . Let h ∈ X1,α
γ,σ,Λ be a solution of

the inhomogeneous heat equation ∂
∂th(t) = ∆L,ḡε(t),δ(t)h(t) + ψ(t) which is

defined on M × (−∞,−Λ]. Moreover, we assume that h is invariant under

the group G and satisfies the orthogonality conditions
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

and
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

for all t ∈ (−∞,−Λ]. Then

‖h‖
X1,α

γ,σ,Λ
≤ C ‖ψ‖

X0,α
γ,σ+2,Λ

.

The following result is the main result of this section:

Proposition 6.5. Given real numbers γ > 0 and σ ∈ (0, 2), we can find

real numbers Λ > 0 and C > 0 with the following property. Suppose that

ε(t) is a function which is defined on the interval (−∞,−Λ] and satisfies

Assumption 6.1, and let δ(t) = (−t)−
1

400 . Let h ∈ X1,α
γ,σ,Λ be a solution of the

inhomogeneous heat equation

∂

∂t
h(t) = ∆L,ḡε(t),δ(t)h(t) + ψ(t) + λ(t) ō1,ε(t),δ(t) + ν(t) ḡε(t),δ(t)

which is defined on M×(−∞,−Λ]. Moreover, we assume that h is invariant

under the group G and satisfies the orthogonality conditions
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0
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and
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

for all t ∈ (−∞,−Λ]. Then

‖h‖X1,α
γ,σ,Λ

≤ C ‖ψ‖X0,α
γ+α,σ+2,Λ

.

Moreover, the function

E(t) :=

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t) + λ(t) ō1,ε(t),δ(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

satisfies

|E(t)| ≤ C (−t)−1−γ−α δ(t)2−σ ‖ψ‖X0,α
γ+α,σ+2,Λ

and

|t− t′|−α |E(t) −E(t′)| ≤ C (−t)−1−γ−α
2 δ(t)2−σ ‖ψ‖

X0,α
γ+α,σ+2,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 . Finally, the function

F (t) :=

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t) + ν(t) ḡε(t),δ(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

satisfies

|F (t)| ≤ C (−t)−2−γ+σ
4 ‖ψ‖

X0,α
γ+α,σ+2,Λ

and

|t− t′|−α |F (t)− F (t′)| ≤ C (−t)−2−γ+σ
4
+α

2 ‖ψ‖
X0,α

γ+α,σ+2,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 .

Proof. Let us define

E0(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈
∂

∂t
h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t),

E1(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈h(t),∆L,ḡε(t),δ(t) ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t),

E2(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈ψ, ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) .

Differentiating the identity
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

with respect to t gives

|E0(t)| ≤ C (−t)−2−γ+σ
4 ‖h‖X0,α

γ,σ,Λ

and

|t− t′|−α |E0(t)− E0(t
′)| ≤ C (−t)−2−γ+σ

4
+α

2 ‖h‖X0,α
γ,σ,Λ
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for 0 < |t − t′| ≤ (−t)−
1
2 . Moreover, in view of Proposition 3.5, the error

term E1(t) satisfies

|E1(t)| ≤ C (−t)−1−γ δ(t)2−σ ‖h‖X0,α
γ,σ,Λ

and

|t− t′|−α |E1(t)− E1(t
′)| ≤ C (−t)−1−γ+α

2 δ(t)2−σ ‖h‖X0,α
γ,σ,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 . Finally, we have

|E2(t)| ≤ C (−t)−
1
2
−γ+σ

4
−α ‖ψ‖X0,α

γ+α,σ+2,Λ

and

|t− t′|−α |E2(t)− E2(t
′)| ≤ C (−t)−

1
2
−γ+σ

4
−α

2 ‖ψ‖X0,α
γ+α,σ+2,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 . Using the identity

λ(t)

∫

[− 1
2
, 1
2
]4\{0}

|ō1,ε(t),δ(t)|
2
ḡε(t),δ(t)

dvolḡε(t),δ(t) = E0(t)− E1(t)− E2(t),

we conclude that

|λ(t)| ≤ C (−t)−γ δ(t)2−σ ‖h‖X0,α
γ,σ,Λ

+ C (−t)
1
2
−γ+σ

4
−α ‖ψ‖X0,α

γ+α,σ+2,Λ

and

|t− t′|−α |λ(t)− λ(t′)| ≤ C (−t)−γ+α
2 δ(t)2−σ ‖h‖X0,α

γ,σ,Λ

+ C (−t)
1
2
−γ+σ

4
−α

2 ‖ψ‖X0,α
γ+α,σ+2,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 . From this, we deduce that

‖λ(·) ō1,ε(·),δ(·)‖X0,α
γ,σ+2,Λ

≤ o(1) ‖h‖X0,α
γ,σ,Λ

+ C ‖ψ‖X0,α
γ+α,σ+2,Λ

,

where o(1) represents a term that goes to 0 as Λ → ∞.
In the next step, we define

F0(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈
∂

∂t
h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t),

F1(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈ψ, ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t).

Differentiating the relation
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

with respect to t yields

|F0(t)| ≤ C (−t)−2−γ+σ
4 ‖h‖

X0,α
γ,σ,Λ

and
|t− t′|−α |F0(t)− F0(t

′)| ≤ C (−t)−2−γ+σ
4
+α

2 ‖h‖X0,α
γ,σ,Λ
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for 0 < |t− t′| ≤ (−t)−
1
2 . We next observe that

|F1(t)| ≤ C (−t)−γ−α ‖ψ‖
X0,α

γ+α,σ+2,Λ

and
|t− t′|−α |F1(t)− F1(t

′)| ≤ C (−t)−γ−α
2 ‖ψ‖

X0,α
γ+α,σ+2,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 . Using the identity

ν(t)

∫

[− 1
2
, 1
2
]4\{0}

4 dvolḡε(t),δ(t) = F0(t)− F1(t),

we conclude that

|ν(t)| ≤ C (−t)−2−γ+σ
4 ‖h‖

X0,α
γ,σ,Λ

+ C (−t)−γ−α ‖ψ‖
X0,α

γ+α,σ+2,Λ

and

|t−t′|−α |ν(t)−ν(t′)| ≤ C (−t)−2−γ+σ
4
+α

2 ‖h‖X0,α
γ,σ,Λ

+C (−t)−γ−α
2 ‖ψ‖X0,α

γ+α,σ+2,Λ

for 0 < |t− t′| ≤ (−t)−
1
2 . This gives

‖ν(·) ḡε(·),δ(·)‖X0,α
γ,σ+2,Λ

≤ o(1) ‖h‖X0,α
γ,σ,Λ

+ C ‖ψ‖X0,α
γ+α,σ+2,Λ

,

where again o(1) represents a term that converges to 0 as Λ → ∞.
After these preparations, we can now complete the proof. Using Corollary

6.4, we obtain

‖h‖
X1,α

γ,σ,Λ
≤ C ‖ψ‖

X0,α
γ,σ+2,Λ

+C ‖λ(·) ō1,ε(·),δ(·)‖X0,α
γ,σ+2,Λ

+C ‖ν(·) ḡε(·),δ(·)‖X0,α
γ,σ+2,Λ

,

hence
‖h‖

X1,α
γ,σ,Λ

≤ o(1) ‖h‖
X0,α

γ,σ,Λ
+C ‖ψ‖

X0,α
γ+α,σ+2,Λ

if Λ is sufficiently large. From this, the first statement follows. Finally, the
estimates for E(t) and F (t) follow from the fact that E(t) = E0(t)− E1(t)
and F (t) = F0(t). �

Corollary 6.6. Let γ > 0 and σ ∈ (0, 2) be arbitrary, and let Λ > 0 be

chosen as in Proposition 6.5. Then, given any tensor ψ ∈ X0,α
γ+α,σ+2,Λ, there

exists a unique tensor h ∈ X1,α
γ,σ,Λ and scalar functions λ : (−∞,−Λ] → R

and ν : (−∞,−Λ] → R such that

∂

∂t
h(t) = ∆L,ḡε(t),δ(t)h(t) + ψ(t) + λ(t) ō1,ε(t),δ(t) + ν(t) ḡε(t),δ(t).

Moreover, h is invariant under the group G , and satisfies the orthogonality

conditions
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

and
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0
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for all t ∈ (−∞,−Λ].

Proof. The uniqueness statement follows immediately from Proposition 6.5.
Hence, it remains to prove the existence statement. If ψ is compactly sup-
ported, standard results on linear parabolic equations imply that there exists
a compactly supported tensor h and scalar functions λ(·) and ν(·) with the
required properties. To prove the assertion in general, we approximate ψ by
compactly supported tensors, and use the a priori estimate in Proposition
6.5 to pass to the limit. �

7. Existence of a solution to the nonlinear problem

Throughout this section, we fix positive real numbers α, γ, σ ∈ (0, 1). We
assume that α and σ are very small, and γ is close to 1. Specifically, we may
choose α ∈ (0, 1

10000 ), γ ∈ (1 − 1
10000 , 1), and σ ∈ (0, 1

10000 ). In addition, we
require that γ + α < 1. Furthermore, Λ will denote a positive real number
which we will choose sufficiently large depending on α, γ, σ.

Given a metric g and a symmetric (0, 2)-tensor k satisfying |k|g ≤ 1
2 , we

define

Qg(k) = 2Ricg+k − 2Ricg +∆L,gk − LY (g + k),

where Y = divgk −
1
2 ∇trgk. Note that Qg(k) can be expanded as

Qg(k) = k ∗ ∇2k +∇k ∗ ∇k +Rmg ∗ k ∗ k + higher order terms.

Recall the definition of ḡε,δ from Section 3. Our goal is to perturb the
family of metrics ḡ

(−32ωt)−
1
4 ,(−t)−

1
400

to an exact solution to the Ricci flow

which is defined for t ∈ (−∞,−Λ]. This problem comes down to finding a
fixed point of a nonlinear mapping between Banach spaces. In the following,
we describe this mapping in detail. Let A α

γ,σ,Λ denote the set of all triplets

(k, η(·), β(·)) which satisfy the following conditions:

• The tensor k is invariant under G and satisfies ‖k‖X1,α
γ,σ,Λ

≤ 1.

• The function η : (−∞,−Λ] → R satisfies |η(t)| ≤ (−t)−
1

1000 ,

and |t− t′|−α |η(t) − η(t′)| ≤ (−t)−
1

1000 for 0 < |t− t′| ≤ (−t)−
1
2 .

• The function β : (−∞,−Λ] → R satisfies |β(t)| ≤ (−t)−1

and |t− t′|−α |β(t)− β(t′)| ≤ (−t)−1 for 0 < |t− t′| ≤ (−t)−
1
2 .

We can think of A α
γ,σ,Λ as the unit ball in a suitable Banach space. This

Banach space will be denoted by E α
γ,σ,Λ.

Given a triplet (k, η(·), β(·)) ∈ A α
γ,σ,Λ, we consider the family of metrics

ḡε(t),δ(t), where

ε(t) =

(

− 32ωt+

∫ −Λ

t
η(s) ds

)− 1
4

and δ(t) = (−t)−
1

400 for t ∈ (−∞,−Λ]. It is straightforward to verify that
the function ε(t) satisfies Assumption 6.1 provided that Λ is sufficiently
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large. By Corollary 6.6, there exists a unique tensor h ∈ X1,α
γ,σ,Λ and scalar

functions λ : (−∞,−Λ] → R and ν : (−∞,−Λ] → R such that

∂

∂t
h(t) = ∆L,ḡε(t),δ(t)h(t) + ψ(t) + λ(t) ō1,ε(t),δ(t) + ν(t) ḡε(t),δ(t),

where ψ(t) := −Qḡε(t),δ(t)(k(t)) + β(t) k(t) −
( ∂

∂t
ḡε(t),δ(t) + 2Ricḡε(t),δ(t)

)

,

and h(t) satisfies the orthogonality conditions
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

and
∫

[− 1
2
, 1
2
]4\{0}

〈h(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) = 0

for all t ∈ (−∞,−Λ].
Having solved this linear PDE for h, λ(·), ν(·), we next define a function

ξ : (−∞,−Λ] → R by

ξ(t) = η(t)− π−2 ε(t)−8 λ(t)

∫

[− 1
2
, 1
2
]4\{0}

|ō1,ε(t),δ(t)|
2
ḡε(t),δ(t)

dvolḡε(t),δ(t)

for t ∈ (−∞,−Λ].
In the remainder of this section, we will analyze the map J

which sends the triplet (k, η(·), β(·)) ∈ A α
γ,σ,Λ to the triplet (h, ξ(·), ν(·)).

In order to prove the existence of a fixed point, we need to show that J
maps the unit ball A α

γ,σ,Λ into itself. By combining Corollary 4.4, Proposi-
tion 4.5, and Proposition 4.6, we obtain the following result, which relates
the time derivative of ε(t) to the orthogonal projection of ψ to the approx-
imate kernel. This plays the role of a balancing condition; it serves as the
main motivation for the definition of ε(t) above.

Proposition 7.1. Consider a triplet (k, η(·), β(·)) ∈ A α
γ,σ,Λ, and let ψ(t)

and h(t) be as in the discussion above. Then ‖ψ‖X0,α
γ+α,σ+2,Λ

≤ o(1), where

o(1) represents a term that converges to 0 as Λ → ∞. Moreover, the function

G(t) := 4π2 ε(t)3
dε

dt
(t)− 32π2 ω ε(t)8

+

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

satisfies |G(t)| ≤ C (−t)−2− 1
400 and |t− t′|−α |G(t) −G(t′)| ≤ C (−t)−2− 1

400

for 0 < |t− t′| ≤ (−t)−
1
2 . Finally, the function

H(t) :=

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

satisfies |H(t)| ≤ C (−t)−
5
4 and |t − t′|−α |H(t) − H(t′)| ≤ C (−t)−

5
4 for

0 < |t− t′| ≤ (−t)−
1
2 .
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Proof. The inequality ‖k‖X1,α
γ,σ,Λ

≤ 1 implies ‖Qg(k)‖X0,α
γ+α,σ+2,Λ

≤ o(1) and

‖β k‖X0,α
γ+α,σ+2,Λ

≤ o(1). Moreover, since γ + α < 1, we have

∥

∥

∂

∂t
ḡε(t),δ(t) + 2Ricḡε(t),δ(t)

∥

∥

X0,α
γ+α,σ+2,Λ

≤ o(1).

Putting these facts together, we conclude that ‖ψ‖
X0,α

γ+α,σ+2,Λ
≤ o(1).

We next estimate the function G(t). Using the inequality ‖k‖X1,α
γ,σ,Λ

≤ 1,

we obtain |Qḡε(t),δ(t)(k(t))| ≤ C (−t)−2γ ((−t)−
1
4 + |x|)−2−2σ , hence

∣

∣

∣

∣

∫

[− 1
2
, 1
2
]4\{0}

〈Qḡε(t),δ(t)(k(t)), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

∣

∣

∣

∣

≤ C

∫

[− 1
2
, 1
2
]4\{0}

(−t)−1−2γ ((−t)−
1
4 + |x|)−6−2σ dvolḡε(t),δ(t)

≤ C (−t)−
1
2
−2γ+σ

2 .

Moreover, since |k| ≤ (−t)−γ ((−t)−
1
4+|x|)−σ and |β(t)| ≤ (−t)−1, we obtain

∣

∣

∣

∣

∫

[− 1
2
, 1
2
]4\{0}

〈β(t) k(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

∣

∣

∣

∣

≤ C

∫

[− 1
2
, 1
2
]4\{0}

(−t)−2−γ ((−t)−
1
4 + |x|)−4−σ dvolḡε(t),δ(t)

≤ C (−t)−2−γ+σ
4 .

Finally, using Corollary 4.4 and Proposition 4.6, we obtain
∣

∣

∣

∣

4π2 ε(t)3
dε

dt
(t)− 32π2 ω ε(t)8

−

∫

[− 1
2
, 1
2
]4\{0}

〈 ∂

∂t
ḡε(t),δ(t) + 2Ricḡε(t),δ(t) , ō1,ε(t),δ(t)

〉

ḡε(t),δ(t)
dvolḡε(t),δ(t)

∣

∣

∣

∣

≤ C ε(t)8 δ(t)2.

Putting these facts together, we obtain |G(t)| ≤ C (−t)−2− 1
400 , as claimed.

A similar argument gives |t − t′|−α |G(t) − G(t′)| ≤ C (−t)−2− 1
400 for 0 <

|t− t′| ≤ (−t)−
1
2 .

It remains to estimate the functionH(t). Using the inequality ‖k‖
X1,α

γ,σ,Λ
≤

1, we obtain
∣

∣

∣

∣

∫

[− 1
2
, 1
2
]4\{0}

〈Qḡε(t),δ(t)(k(t)), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

∣

∣

∣

∣

≤ C

∫

[− 1
2
, 1
2
]4\{0}

(−t)−2γ ((−t)−
1
4 + |x|)−2−2σ dvolḡε(t),δ(t)

≤ C (−t)−2γ
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and

∣

∣

∣

∣

∫

[− 1
2
, 1
2
]4\{0}

〈β(t) k(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t)

∣

∣

∣

∣

≤ C

∫

[− 1
2
, 1
2
]4\{0}

(−t)−1−γ ((−t)−
1
4 + |x|)−σ dvolḡε(t),δ(t)

≤ C (−t)−1−γ .

Moreover, it follows from Proposition 4.5 and Proposition 4.6 that

∣

∣

∣

∣

∫

[− 1
2
, 1
2
]4\{0}

〈 ∂

∂t
ḡε(t),δ(t) + 2Ricḡε(t),δ(t) , ḡε(t),δ(t)

〉

ḡε(t),δ(t)
dvolḡε(t),δ(t)

∣

∣

∣

∣

≤ C ε(t)8 δ(t)−6.

Putting these facts together, we obtain |H(t)| ≤ C (−t)−
5
4 . A similar argu-

ment gives |t − t′|−α |H(t) − H(t′)| ≤ C (−t)−
5
4 for 0 < |t − t′| ≤ (−t)−

1
2 .

This completes the proof. �

Combining Proposition 7.1 with Proposition 6.5, we can draw the follow-
ing conclusion:

Corollary 7.2. Consider a triplet (k, η(·), β(·)) ∈ A α
γ,σ,Λ. Then:

• The tensor h satisfies ‖h‖X1,α
γ,σ,Λ

≤ o(1).

• The function ξ(·) satisfies |ξ(t)| ≤ C (−t)−
1

400 and |t − t′|−α |ξ(t) −

ξ(t′)| ≤ C (−t)−
1

400 for 0 < |t− t′| ≤ (−t)−
1
2 .

• The function ν(·) satisfies |ν(t)| ≤ C (−t)−
5
4 and |t − t′|−α |ν(t) −

ν(t′)| ≤ C (−t)−
5
4 for 0 < |t− t′| ≤ (−t)−

1
2 .

Here, C is a positive constant which does not depend on Λ, and o(1) repre-

sents a quantity which converges to 0 as Λ → ∞.

Proof. For k and h as in the discussion preceding Proposition 7.1 we have by
Proposition 6.5 that ‖h‖X1,α

γ,σ,Λ
≤ C ‖ψ‖X0,α

γ+α,σ+2,Λ
. This implies by Proposi-

tion 7.1 that ‖h‖X1,α
γ,σ,Λ

≤ o(1) which proves the first statement.
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We next define

E(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t) + λ(t) ō1,ε(t),δ(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t),

F (t) =

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t) + ν(t) ḡε(t),δ(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t) ,

G(t) = 4π2 ε(t)3
dε

dt
(t)− 32π2 ω ε(t)8

+

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t), ō1,ε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t),

H(t) =

∫

[− 1
2
, 1
2
]4\{0}

〈ψ(t), ḡε(t),δ(t)〉ḡε(t),δ(t) dvolḡε(t),δ(t).

By definition of ξ(·), we have

ξ(t) = η(t)− π−2 ε(t)−8 λ(t)

∫

[− 1
2
, 1
2
]4\{0}

|ō1,ε(t),δ(t)|
2
ḡε(t),δ(t)

dvolḡε(t),δ(t)

= 4 ε(t)−5 dε

dt
(t)− 32ω

− π−2 ε(t)−8 λ(t)

∫

[− 1
2
, 1
2
]4\{0}

|ō1,ε(t),δ(t)|
2
ḡε(t),δ(t)

dvolḡε(t),δ(t)

= π−2 ε(t)−8 (G(t) − E(t)).

Using Proposition 6.5 and Proposition 7.1, we obtain |ξ(t)| ≤ C (−t)−
1

400

and |t − t′|−α |ξ(t) − ξ(t′)| ≤ C (−t)−
1

400 for 0 < |t − t′| ≤ (−t)−
1
2 . This

proves the second statement.
Finally, we have

ν(t)

∫

[− 1
2
, 1
2
]4\{0}

4 dvolḡε(t),δ(t) = F (t)−H(t).

Hence, it follows from Proposition 6.5 and Proposition 7.1 that |ν(t)| ≤

C (−t)−
5
4 and |t − t′|−α |ν(t) − ν(t′)| ≤ C (−t)−

5
4 for 0 < |t − t′| ≤ (−t)−

1
2 .

From this, the third statement follows. �

After these preparations, we now prove that J has a fixed point. In
addition to the original parameters γ, α, we will consider another pair of
parameters γ̃, α̃ such that γ̃ < γ and α̃ < α.

Proposition 7.3. The set A α
γ,σ,Λ is a compact subset of E α̃

γ̃,σ,Λ. Moreover,

if Λ is sufficiently large, then J maps the set A α
γ,σ,Λ into itself. Finally, the

map J : A α
γ,σ,Λ → A α

γ,σ,Λ is continuous with respect to the norm on E α̃
γ̃,σ,Λ.

Proof. The first statement is standard. The second statement follows di-
rectly from Corollary 7.2. In order to prove the third statement, we argue
by contradiction. Suppose that there exists a sequence of triplets u(j) ∈
A α

γ,σ,Λ and a triplet u ∈ A α
γ,σ,Λ such that lim supj→∞ ‖u(j) − u‖E α̃

γ̃,σ,Λ
= 0
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and lim infj→∞ ‖J (u(j)) − J (u)‖E α̃
γ̃,σ,Λ

> 0. Note that A α
γ,σ,Λ is a com-

pact subset of E α̃
γ̃,σ,Λ which contains the sequence J (u(j)). Hence, after

passing to a subsequence, we can find an element v ∈ A α
γ,σ,Λ such that

lim supj→∞ ‖J (u(j))− v‖E α̃
γ̃,σ,Λ

= 0. From the definition of J , it is easy to

see that v = J (u). This is a contradiction. �

Corollary 7.4. The map J : A α
γ,σ,Λ → A α

γ,σ,Λ has a fixed point.

Proof. This follows immediately from Proposition 7.3 and the Schauder fixed
point theorem. �

Proposition 7.5. Consider the map which sends a triplet (k, η(·), β(·)) to

the triplet (h, ξ(·), ν(·)). Every fixed point of this map corresponds to a

solution of the Ricci flow on M which is defined for t ∈ (−∞,−Λ].

Proof. Let us consider a triplet (k, η(·), β(·)) ∈ A α
γ,σ,Λ with the property that

h = k, ξ(·) = η(·), and ν(·) = β(·). As above, we define

ε(t) =

(

− 32ωt+

∫ −Λ

t
η(s) ds

)− 1
4

and δ(t) = (−t)−
1

400 for t ∈ (−∞,−Λ]. The relation ξ(·) = η(·) directly
implies λ(·) = 0. Moreover, since h = k and ν(·) = β(·), it follows that k is
a solution of the equation

∂

∂t
k(t) = ∆L,ḡε(t),δ(t)k(t)−Qḡε(t),δ(t)(k(t)) + β(t) k(t)

−
( ∂

∂t
ḡε(t),δ(t) + 2Ricḡε(t),δ(t)

)

+ β(t) ḡε(t),δ(t) .

Rearranging terms gives

∂

∂t
(ḡε(t),δ(t) + k(t))

= −2Ricḡε(t),δ(t) +∆L,ḡε(t),δ(t)k(t)−Qḡε(t),δ(t)(k(t)) + β(t) (ḡε(t),δ(t) + k(t))

= −2Ricḡε(t),δ(t)+k(t) + LY (ḡε(t),δ(t) + k(t)) + β(t) (ḡε(t),δ(t) + k(t)),

where Y = divḡε(t),δ(t)k −
1
2∇trḡε(t),δ(t)k. Hence, if we put

g(t) := e
∫ −Λ
t

β(s) ds (ḡε(t),δ(t) + k(t)),

then the metrics g(t) satisfy

∂

∂t
g(t) = −2Ricg(t) + LY g(t).

By pulling back the metrics g(t) under the flow of diffeomorphisms generated
by Y (t), we obtain a solution to the Ricci flow which is defined for t ∈
(−∞,−Λ]. �

Proof of Theorem 1.1. By Corollary 7.4, the map J has a fixed point. By
Proposition 7.5, this corresponds to an ancient solution of the Ricci flow. �
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[5] O. Biquard, Désingularisation de métriques d’Einstein, I, Invent. Math. 192, 197–252
(2013)

[6] O. Biquard and V. Minerbe, A Kummer construction for gravitational instantons,

Comm. Math. Phys. 308, 773–794 (2011)
[7] O. Biquard and Y. Rollin, Wormholes in ACH manifolds, Trans. Amer. Math. Soc.

361, 2021–2046 (2009)
[8] S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21,

951–979 (2008)
[9] S. Brendle, Ricci Flow and the Sphere Theorem, Graduate Studies in Mathematics,

vol. 111, American Mathematical Society (2010)
[10] S. Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, Invent.

Math. 194, 731–764 (2013)
[11] S. Brendle, Rotational symmetry of Ricci solitons in higher dimensions, J. Diff. Geom.

97, 191–214 (2014)
[12] S. Brendle, G. Huisken, and C. Sinestrari, Ancient solutions to the Ricci flow with

pinched curvature, Duke Math J. 158, 537–551 (2011)
[13] J. Cheeger, Degeneration of Einstein metrics and metrics with special holonomy,

Surveys in Differential Geometry, vol. VIII, 29–73, International Press, Somerville
MA (2003)

[14] P. Daskalopoulos, R. Hamilton, and N. Šešum, Classification of ancient compact
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