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Abstract

For each of the notions of hypergraph quasirandomness that have been studied,
we identify a large class of hypergraphs F so that every quasirandom hypergraph H

admits a perfect F -packing. An informal statement of a special case of our general
result for 3-uniform hypergraphs is as follows. Fix an integer r ≥ 4 and 0 < p < 1.
Suppose that H is an n-vertex triple system with r|n and the following two properties:

• for every graph G with V (G) = V (H), at least p proportion of the triangles in G

are also edges of H,

• for every vertex x of H, the link graph of x is a quasirandom graph with density
at least p.

Then H has a perfect K
(3)
r -packing. Moreover, we show that neither hypotheses above

can be weakened, so in this sense our result is tight. A similar conclusion for this
special case can be proved by Keevash’s hypergraph blowup lemma, with a slightly
stronger hypothesis on H.

1 Introduction

A k-uniform hypergraph H (k-graph for short) is a collection of k-element subsets (edges) of
a vertex set V (H). For a k-graph H and a subset S of vertices of size at most k − 1, define
the (k − |S|)-graph NH(S) := {T ⊆ V (H) − S : T ∪ S ∈ H}. Also, let dH(S) = |NH(S)|.
When S = {x}, we write NH(x) and dH(x). The minimum ℓ-degree of H , written δℓ(H),
is the minimum of dH(S) taken over all ℓ-sets S ∈

(

V (H)
ℓ

)

. The minimum codegree of H is
δk−1(H) and the minimum degree is δ(H) = δ1(H). The complete k-graph on r vertices,

denoted K
(k)
r (or sometimes just Kr) is the k-graph with vertex set [r] and all

(

r
k

)

edges.
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If H is a k-graph and x ∈ V (H), the link of x, written LH(x), is the (k − 1)-graph whose
vertex set is V (H)− {x} and whose edge set is NH(x). We write v(H) for |V (H)|.

Let G and F be k-graphs. We say that G has a perfect F -packing if the vertex set of
G can be partitioned into copies of F . Minimum degree conditions that force perfect F -
packings in graphs have a long history and have been well studied [1, 11, 21, 23]. In the past
decade there has been substantial interest in extending these result to k-graphs [9, 12, 15,
16, 17, 22, 24, 25, 30, 31, 32, 33, 34, 39, 40]. Despite this activity many basic questions in
this area remain open. For example, for k ≥ 5 the minimum degree threshold which forces
a perfect matching in k-graphs is not known.

A key ingredient in the proofs of most of the previously cited results are specially designed
random-like or quasirandom properties of k-graphs that imply the existence of perfect F -
packings. There is a rather well-defined notion of quasirandomness for graphs that originated
in early work of Thomason [36, 37] and Chung-Graham-Wilson [7]. These graph quasirandom
properties, when generalized to k-graphs, provide a rich structure of inequivalent hypergraph
quasirandom properties (see [29, 38]). In [28], the authors studied in detail the packing
problem for the simplest of these quasirandom properties, the so-called weak hypergraph
quasirandomness. A hypergraph is linear if every two edges share at most one vertex.
Results of [28] showed that weak hypergraph quasirandomness and an obvious minimum
degree condition suffices to obtain perfect F -packings for all linear F , but the result does
not hold for certain F that are very close to being linear.

In this paper, we address the packing problem for the other quasirandom properties.
A special case of our result identifies what hypergraph quasirandom property and what
condition on the link of each vertex is required in order to be able to guarantee a perfect
K

(k)
r -packing for all r (which implies a perfect F -packing for all F ). The quasirandom

property naturally has great resemblance to those used in the various (strong) hypergraph
regularity lemmas. Keevash’s hypergraph blowup lemma [14] has as a corollary that the
super-regularity of complexes implies the existence of perfect packings, but our main result
below (Theorem 1) shows that a weaker notion of quasirandomness is enough to obtain
perfect packings of complete hypergraphs. In fact, we are able to do more: for many of
the hypergraph quasirandom properties that have been studied previously in the literature,
we give a class of hypergraphs F for which we can find a perfect packing. Before stating
Theorem 1, we need to define these notions of hypergraph quasirandomness.

1.1 Notions of Hypergraph Quasirandomness

Our definitions are closely related to the definitions by Towsner [38], which gives the most
general treatment of hypergraph quasirandomness.

Definition. Let X be a finite set and let 2X = {A : A ⊆ X}. An antichain is an I ⊆ 2X

such that A ( B for all A,B ∈ I. A full antichain is an antichain I ⊆ 2X such that |I| ≥ 2
and for all x ∈ X, there exists I ∈ I with x ∈ I.

Definition. Let k ≥ 1, let I ⊆ 2[k] be an antichain, and let H be a k-graph. An I-layout
in H is a tuple of uniform hypergraphs Λ = (λI)I∈I where λI is an |I|-uniform hypergraph
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on vertex set V (H). If Λ is an I-layout, then the k-cliques of Λ, denoted Kk(Λ), is the
set of all vertex tuples (x1, . . . , xk) such that x1, . . . , xk are distinct vertices and for each
I ∈ I, {xi : i ∈ I} ∈ λI. In an abuse of notation, we will denote by H ∩Kk(Λ) the k-tuples
(x1, . . . , xk) such that (x1, . . . , xk) ∈ Kk(Λ) and {x1, . . . , xk} ∈ H.

We now are ready to define hypergraph quasirandomness.

Definition. Let 0 < µ, p < 1. A k-graph H satisfies Disc(k)(I, ≥p, µ) if for every I-layout
Λ,

|H ∩Kk(Λ)| ≥ p|Kk(Λ)| − µnk.

The stronger property Disc
(k)(I, p, µ) stipulates that for every I-layout Λ,

∣

∣

∣
|H ∩Kk(Λ)| − p|Kk(Λ)|

∣

∣

∣
≤ µnk.

Example. Let k = 3 and I = {{1, 2}, {2, 3}}. A 3-graph H satisfies Disc(3)(I, ≥p, µ) if
for every two graphs λ12 and λ23 with vertex set V (H), the number of tuples (x, y, z) with
{x, y, z} ∈ H , xy ∈ λ12, and yz ∈ λ23 is at least p|K3(λ12, λ23)| − µn3, where K3(λ12, λ23) is
the set of tuples (x, y, z) with xy ∈ λ12 and yz ∈ λ23.

Several special cases of this definition deserve mention, since essentially all previously
studied hypergraph quasirandomness properties are related to Disc(k)(I, ≥p, µ) for some I.

• When I = {{1}, . . . , {k}}, then Disc(k)(I, ≥p, µ) is exactly the property (p, µ
k!
)-dense

from [28] and is closely related to weak quasirandomness studied in [8, 10, 18, 35].

• More generally, when I is a partition the property Disc(k)(I, p, µ) is essentially the
property Expand[π] studied in [26, 27, 29]. In particular, when I = {{1, . . . , k −
1}, {k}}, then Disc(k)(I, ≥p, µ) is essentially equivalent to the property considered re-
cently by Keevash (the property called “typical” in [13]) in his recent proof of the
existence of designs.

• When I =
(

[k]
ℓ

)

, then Disc(k)(I, p, µ) is closely related to the property CliqueDisc[ℓ]
studied in [2, 3, 4, 5, 6, 19, 29].

• When I = {I ∈
(

[k]
k−1

)

: {1, . . . , ℓ} ⊆ I}, then Disc(k)(I, p, µ) is essentially the same as
the property Deviation[ℓ] studied in [4, 5, 3, 19, 29].

• Finally, note that Disc(k)({∅}, ≥p, µ) is equivalent to |H| ≥ p
(

v(H)
k

)

− µ
k!
nk, sinceKk({∅})

is the set of all ordered k-tuples of distinct vertices.

Definition. Let I ⊆ 2[k] be an antichain. A k-graph F is I-adapted if there exists an
ordering E1, . . . , Em of the edges of F and bijections φi : Ei → [k] such that for each
1 ≤ j < i ≤ m, the following holds: there exists an I ∈ I with {φi(x) : x ∈ Ej∩Ei} ⊆ I ∈ I.
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In words, F is I-adapted if the set of labels assigned to Ei which appear on Ej ∩ Ei is a
subset of a set in I.

Let I ⊆ 2[k] and J ⊆ 2[k−1] be antichains. A k-graph F is (I,J )-adapted if F is I-
adapted and there exists x ∈ V (F ), an ordering E1, . . . , Em of the edges of F , and bijections
ψi : Ei → [k] such that for all 1 ≤ j < i ≤ m, the following holds.

• If x /∈ Ei then there exists I ∈ I with {ψi(y) : y ∈ Ej ∩ Ei} ⊆ I.

• If x ∈ Ei then ψi(x) = k and there exists J ∈ J with {ψi(y) : y ∈ Ej ∩Ei, y 6= x} ⊆ J .

1.2 Our Results

The following is our main result.

Theorem 1. Let k ≥ 2, I ⊆ 2[k] be a full antichain, J ⊆ 2[k−1], and 0 < α, p < 1. For every
(I,J )-adapted k-graph F , there exists µ > 0 and n0 so that the following holds. Let H be an
n-vertex k-graph where n ≥ n0 and v(F )|n. Suppose that H satisfies Disc

(k)(I, ≥p, µ) and
that LH(x) satisfies Disc

(k−1)(J , ≥α, µ) for all x ∈ V (H). Then H has a perfect F -packing.

It is straightforward to see that if I and I ′ are such that for every I ′ ∈ I ′, there exists
I ∈ I with I ′ ⊆ I, then Disc(k)(I, ≥p, µ) ⇒ Disc(k)(I ′, ≥p, µ). Also, if I =

(

[k]
k−1

)

and

J =
(

[k−1]
k−2

)

, then every F is (I,J )-adapted. Thus to find the weakest quasirandom condition
to apply Theorem 1 to a given k-graph F , one should find the minimal I and J for which F
is (I,J )-adapted. For example, if C = {abc, bcd, def, aef}, then C is (I,J )-adapted where
I = {{1, 2}, {3}} and J = {∅} (let x = a and order the edges which contain a first).

As mentioned above, special cases of Disc(k)(I, ≥p, µ) correspond to previously studied
quasirandom properties so that Theorem 1 generalizes several previous results.

• Let k = 2. The only full antichain is I = {{1}, {2}}. For this I, all graphs F are (I,J )-
adapted if J = {∅}. To see this, pick x ∈ V (F ) and place all edges incident to x first
in the ordering for the definition of (I,J )-adapted. Now the property Disc(2)(I, ≥p, µ)
just states that G is quasirandom (in fact only “one-sided” quasirandom). Also, the
condition “LH(x) satisfies Disc

(1)({∅}, ≥α, µ) for every x ∈ V (H)” is equivalent to the
condition that δ(H) ≥ (α − µ)(n − 1). To see this, recall from before that if H ′ is
an r-graph the property “H ′ satisfies Disc(1)({∅}, ≥α, µ) is equivalent to the property
that |H ′| ≥ α

(

v(H′)
r

)

− µ
r!
v(H ′)r. Thus Theorem 1 for k = 2 states that if G is an

n-vertex quasirandom graph, v(F )|n, and δ(G) ≥ (α−µ)(n− 1), then G has a perfect
F -packing. This fact is a simple consequence of the blowup lemma of Komlós-Sárközy-
Szemerédi [20].

• For k ≥ 2 with I a partition into singletons, we obtain exactly [28, Theorem 3]. In this
case, Disc(k)(I, ≥p, µ) is equivalent to (p, µ

k!
)-dense from [28], an I-adapted k-graph is

a linear k-graph, and one can take J = {∅}. Similar to the previous paragraph, the
condition “LH(x) satisfies Disc(k−1)({∅}, ≥α, µ) for every x ∈ V (H)” is equivalent to
the condition that δ(H) ≥ α

(

v(H)−1
k−1

)

− µ
(k−1)!

v(H)k−1.
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• If I =
(

[k]
k−1

)

and J =
(

[k−1]
k−2

)

then every k-graph F is (I,J )-adapted. Thus Theorem 1
implies the following corollary.

Corollary 2. Fix 2 ≤ k ≤ r. For every 0 < α, p < 1, there exists µ > 0 and n0

such that the following holds. Let H be an n-vertex k-graph with n ≥ n0 and r|n. If
H satisfies Disc

(k)(
(

[k]
k−1

)

, ≥p, µ) and LH(x) satisfies Disc
(k−1)(

(

[k−1]
k−2

)

, ≥α, µ) for every

x ∈ V (H), then H has a perfect K
(k)
r -packing.

Keevash’s hypergraph blowup lemma [14] also guarantees perfect K
(k)
r -packings under

certain regularity conditions, however the hypotheses of Corollary 2 are slightly weaker.
Indeed, the main extra requirement that [14] places on H is [14, Definition 3.16 part
(iii)]; translated into our language, for 3-graphs this property says roughly that for
every x ∈ V (H), if W is a set of triples where each triple contains some pair from
LH(x), then |H ∩W | ≈ p|W |.

Next, we investigate if either of the conditions Disc(k)(I, ≥p, µ) or Disc(k−1)(J , ≥α, µ) in
the links from Theorem 1 can be weakened. This question was studied by the authors [28]
in detail when I is a partition, and it turns out that for certain non-linear F it is possible
to weaken the conditions (see [28] for details). Most likely, the constructions and results
from [28] can be generalized to all I. In this paper, we focus only on the case I =

(

[k]
k−1

)

and

J =
(

[k−1]
k−2

)

, which corresponds to the condition required for perfect K
(k)
r -packings. In this

case, neither condition can be weakened, so that Theorem 1 cannot be improved in general.

Proposition 3. For every k ≥ 3 there exists an r (depending only on k) such that the
following holds. Let α = p = k−1

k
and let I ⊆ 2[k] be a full antichain where I 6=

(

[k]
k−1

)

. For
every µ > 0, there exists n0 such that for all n ≥ n0 there exists an n-vertex k-graph H
which

• satisfies Disc(k)(I, ≥p, µ),

• fails Disc(k)(
(

[k]
k−1

)

, ≥p, µ),

• for every x ∈ V (H) the link LH(x) satisfies Disc
(k−1)(

(

[k−1]
k−2

)

, ≥α, µ),

• has no copy of Kr (so no perfect Kr-packing).

Proposition 4. For every k ≥ 3 there exists an r (depending only on k) such that the
following holds. Let α = p = k−1

k
and let J ⊆ 2[k−1] be a full antichain where J 6=

(

[k−1]
k−2

)

.
For every 0 < µ, p < 1, there exists n0 such that for all n ≥ n0 with r|n, there exists an
n-vertex k-graph H which

• satisfies Disc(k)(
(

[k]
k−1

)

, ≥p, µ),

• for every x ∈ V (H) the link LH(x) satisfies Disc
(k−1)(J , ≥α, µ),

• there exists x ∈ V (H) such that the link LH(x) fails Disc
(k−1)(

(

[k−1]
k−2

)

, ≥α, µ),
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• has no perfect Kr-packing.

The remainder of this paper is organized as follows. In Sections 2 and 3 we discuss the
two main tools needed for the proof of Theorem 1, in Section 4 we prove Theorem 1, and
finally in Section 5 we explain the constructions which prove Propositions 3 and 4.

2 Absorbing Sets

One of the main tools for our proof of Theorem 1 is the absorbing technique of Rödl-Ruciński-
Szemerédi [34]. We will use the following absorbing lemma from [28] without modification.

Definition. Let F and H be k-graphs and let A,B ⊆ V (H). We say that A F -absorbs B
or that A is an F -absorbing set for B if both H [A] and H [A ∪ B] have perfect F -packings.
When F is a single edge, we say that A edge-absorbs B.

Definition. Let F and H be k-graphs, ǫ > 0, and a and b be multiples of v(F ). We say that
H is (a, b, ǫ, F )-rich if for all B ∈

(

V (H)
b

)

there are at least ǫna sets in
(

V (H)
a

)

which F -absorb
B.

Lemma 5. (Absorbing Lemma, specialized version of [28, Lemma 10]) Let F be a k-graph,
ǫ > 0, and a and b be multiples of v(F ). There exists an n0 and ω > 0 such that for all
n-vertex k-graphs H with n ≥ n0, the following holds. If H is (a, b, ǫ, F )-rich, then there
exists an A ⊆ V (H) such that a||A| and A F -absorbs all sets C satisfying the following
conditions: C ⊆ V (H)− A, |C| ≤ ωn, and b||C|.

3 Embedding Lemma

Definition. Let k ≥ 2 and 0 ≤ m ≤ f . Let F and H be k-graphs with V (F ) = {w1, . . . , wf}.
A labeled copy of F in H is an edge-preserving injection from V (F ) to V (H). A degenerate
labeled copy of F inH is an edge-preserving map from V (F ) to V (H) that is not an injection.
Let 1 ≤ m ≤ f and let Z1, . . . , Zm ⊆ V (H). Set inj[F → H ;w1 → Z1, . . . , wm → Zm] to
be the number of edge-preserving injections ψ : V (F ) → V (H) such that ψ(wi) ∈ Zi for all
1 ≤ i ≤ m. If Zi = {zi}, we abbreviate wi → {zi} as wi → zi.

The embedding lemma (Lemma 6) proved in this section shows that if H satisfies
Disc(k)(I, ≥p, µ) and Disc(k−1)(J , ≥α, µ) in the links, then H contains many copies of F
if F is (I,J )-adapted. In fact, it says more: if m of the vertices of F are pre-specified and
F satisfies the following more technical condition, then there are many copies of F using the
m pre-specified vertices.

Definition. Let k ≥ 2, I ⊆ 2[k] and J ⊆ 2[k−1] be antichains, F a k-graph, and s1, . . . , sm ∈
V (F ). We say that F is (I,J )-adapted at s1, . . . , sm if there exists an ordering E1, . . . , Et

of the edges of F such that

6



• for every i, |Ei ∩ {s1, . . . , sm}| ≤ 1,

• for every Ei with Ei ∩ {s1, . . . , sm} = ∅, there exists a bijection φi : Ei → [k] such that
for all j < i, there exists I ∈ I with {φi(x) : x ∈ Ej ∩ Ei} ⊆ I,

• for every Ei with sℓ ∈ Ei, there exists a bijection ψi : Ei \ {sℓ} → [k − 1] such that for
all j < i, there exists J ∈ J with {ψi(x) : x ∈ Ej ∩ Ei, x 6= sℓ} ⊆ J .

Note that m = 0 is possible, in which case the definition is equivalent to I-adapted.

Lemma 6. Let k ≥ 2, 0 < α, γ, p < 1, and I ⊆ 2[k] and J ⊆ 2[k−1] be antichains. Let F
be an f -vertex k-graph with V (F ) = {s1, . . . , sm, tm+1, . . . , tf}. Suppose that F is (I,J )-
adapted at s1, . . . , sm. Then there exists an n0 and µ > 0 such that the following is true.

Let H be an n-vertex k-graph with n ≥ n0, where H satisfies Disc(k)(I, ≥p, µ). If m > 0,
then also assume that LH(x) satisfies Disc

(k−1)(J , ≥α, µ) for every vertex x ∈ V (H). Let
y1, . . . , ym ∈ V (H) be distinct and let Vm+1, . . . , Vf ⊆ V (H). Then

inj[F → H ; s1 → y1, . . . ,sm → ym, tm+1 → Vm+1, . . . , tf → Vf ]

≥ αdF (s1) · · ·αdF (sm)p|F |−
∑

dF (si)|Vm+1| · · · |Vf | − γnf−m.

Proof. We first prove the lemma under the additional assumption that the sets Vm+1, . . . , Vf
are pairwise disjoint. This is proved by induction on |F |. If |F | = 0, then

inj[F → H ; s1 → y1, . . . , sm → ym, tm+1 → Vm+1, . . . , tf → Vf ] ≥

f
∏

i=m+1

(|Vi| − f)

≥ α0p0
f
∏

i=m+1

|Vi| − γnf−m

for large n. So assume F has at least one edge and let E be the last edge in an ordering of
the edges of F which witness that F is (I,J )-adapted at s1, . . . , sm. (Recall that if m = 0
then (I,J )-adapted at s1, . . . , sm is equivalent to I-adapted.)

Let F∗ be the hypergraph formed by deleting all vertices of E from F . Let F− be the
hypergraph formed by removing the edge E from F but keeping the same vertex set. Let Q∗

be an injective edge-preserving map Q∗ : V (F∗) → V (H) where Q∗(si) = yi for 1 ≤ i ≤ m
and Q∗(tj) ∈ Vj for tj /∈ E. There are two cases.

Case 1: E ∩ {s1, . . . , sm} = ∅. Let φ : E → [k] be the bijection from the definition
of (I,J )-adapted at s1, . . . , sm and assume the vertices of F are labeled such that E =
{tm+1, . . . , tm+k}, where φ(tm+i) = i. For each I ∈ I, define an |I|-uniform hypergraph
λI,Q∗ with vertex set V (H) as follows. Let I = {i1, . . . , i|I|}. Make {zi1 , . . . , zi|I|} ∈

(

V (H)
|I|

)

a hyperedge of λI,Q∗ if zij ∈ Vm+ij for all j and when the map Q∗ is extended to map tij to
zij for all j, this extended map is an edge-preserving map from F−[V (F∗)∪ {ti1 , . . . , ti|I|}] to
H . More informally, λI,Q∗ consists of all |I|-sets to which Q∗ can be extended to produce a
copy of F∗ together with the vertices of E indexed by I. Let ΛQ∗ = (λI,Q∗)I∈I .

7



Now, if (zm+1, . . . , zm+k) is a k-tuple inKk(ΛQ∗), then the mapQ∗ can be extended to map
tj to zj for m+1 ≤ j ≤ m+k to produce an edge-preserving map from F− to H . To see this,
let E ′ be an edge of F−. Since E is the last edge in the ordering, if E ′∩E = {tj1, . . . , tjr} then
there exists some I ∈ I with {j1, . . . , jr} ⊆ I since F is I-adapted. Since (zm+1, . . . , zm+k)
is a k-clique, {zm+i : i ∈ I} ∈ λI,Q∗. This implies that there is some permutation η of I such
that extending Q∗ to map tm+i to zm+η(i) produces an edge-preserving map. Since the Vm+is
are pairwise disjoint and zm+i ∈ Vm+i for all i ∈ I, η must be the identity permutation, i.e.
extending the map Q∗ to map tm+i to zm+i for all i ∈ I produces an edge-preserving map.
Thus extending the map Q∗ to map tjp to zjp for all p is an edge-preserving map and E ′

is one of the preserved edges. Finally, since the Vjs are disjoint, each k-tuple in Kk(ΛQ∗)
corresponds to exactly one labeled copy of F− in H which extend Q∗ with tj mapped into Vj
for all j. Similarly, |H ∩Kk(ΛQ∗)| is exactly the number of labeled copies of F in H which
extend Q∗ with tj mapped into Vj for all j. Thus,

inj[F → H ; s1 → y1, . . . , sm → ym, tm+1 → Vm+1, . . . , tf → Vf ] =
∑

Q∗

|H ∩Kk(ΛQ∗)|

inj[F− → H ; s1 → y1, . . . , sm → ym, tm+1 → Vm+1, . . . , tf → Vf ] =
∑

Q∗

|Kk(ΛQ∗)|. (1)

Since H satisfies Disc(k)(I, ≥p, µ),

inj[F → H ; s1 → y1, . . . , sm → ym,tm+1 → Vm+1, . . . , tf → Vf ]

≥
∑

Q∗

(

p|Kk(ΛQ∗)| − µnk
)

≥ p
∑

Q∗

|Kk(ΛQ∗)| − µnf−m, (2)

where the last inequality is because there are at most nf−m−k maps Q∗, since F∗ has f − k
vertices and si ∈ V (F∗) must map to yi. Combining (1) and (2) and then applying induction,

inj[F → H ;s1 → y1, . . . , sm → ym, tm+1 → Vm+1, . . . , tf → Vf ]

≥ p inj[F− → H ; s1 → y1, . . . , sm → ym, tm+1 → Vm+1, . . . , tf → Vf ]− µnf−m

≥ p
(

α
∑

d(si)p|F |−1−
∑

d(si)|Vm+1| · · · |Vf | − γnf−m
)

− µnf−m.

Let µ = (1− p)γ so that the proof of this case complete.

Case 2: sℓ ∈ E. (Since F is (I,J )-adapted at s1, . . . , sm, at most one vertex sℓ can
be in E.) Let ψ : E \ {sℓ} → [k − 1] be the bijection from the definition of (I,J )-adapted
at s1, . . . , sm and assume the vertices of E are labeled such that E = {sℓ, tm+1, . . . , tm+k−1}
where ψ(tm+j) = j. This case is very similar to the previous case, except we will use
Disc(k−1)(J , ≥α, µ) in the link of yℓ. For each J ∈ J , define a |J |-uniform hypergraph λJ,Q∗

with vertex set V (H) as follows. Let J = {j1, . . . , j|J |}. Make {zj1, . . . , zj|J|
} a hyperedge

of λJ,Q∗ if zjr ∈ Vjr for all r and extending the map Q∗ to map sℓ to yℓ and mapping tjr
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to zjr for all r produces an edge-preserving map. Let ΛQ∗ = (λJ,Q∗)J∈J . Similar to before,
if (zm+1, . . . , zm+k−1) is a (k − 1)-tuple in Kk−1(ΛQ∗), then the map Q∗ can be extended to
map sℓ to yℓ and map ti to zi for m+1 ≤ i ≤ m+ k− 1 to produce an edge-preserving map
from F− to H . Thus |Kk−1(ΛQ∗)| is exactly the number of labeled copies of F− in H which
extend Q∗. Similarly, |LH(yℓ) ∩Kk−1(ΛQ∗)| is exactly the number of labeled copies of F in
H which extend Q∗.

Now formulas similar to (1) and (2) and the fact that LH(yℓ) satisfies Disc
(k−1)(J , ≥α, µ)

completes this case. This concludes the proof of the lemma if the sets Vm+1, . . . , Vf are
pairwise disjoint.

Now assume that the sets Vm+1, . . . , Vf are not necessarily pairwise disjoint. Let P =
{(Pm+1, . . . , Pf) : Pm+1, . . . , Pf is a partition of V (H)} so that |P| = (f −m)n. Now

inj[F → H ; s1 → y1, . . . , sm → ym, tm+1 →Vm+1, . . . , tf → Vf ]

=
1

(f −m)n−f+m

∑

(Pm+1,...,Pf )∈P

inj[F → H ;s1 → y1, . . . , sm → ym,

tm+1 → Vm+1 ∩ Pm+1, . . . , tf → Vf ∩ Pf ].

Indeed, each labeled copy of F of the right form will be counted exactly (f−m)n−f+m times by
the sum over all partitions, since the images of tm+1, . . . , tf must map into the cooresponding
part of the partition and all other vertices of H can be distributed to any of the parts of the
partition. Let δ = αdF (s1) · · ·αdF (sm)p|F |−

∑
dF (si). Since Vm+1∩Pm+1, . . . , Vf ∩Pf are pairwise

disjoint,

inj[F → H ;s1 → y1, . . . , sm → ym, tm+1 → Vm+1, . . . , tf → Vf ]

≥
1

(f −m)n−f+m

∑

(Pm+1,...,Pf )∈P

(

δ|Vm+1 ∩ Pm+1| · · · |Vf ∩ Pf | − γnf−m
)

= δ|Vm+1| · · · |Vf | −
γnf−m|P|

(f −m)n−f+m
≥ δ|Vm+1| · · · |Vf | − γnf−m.

4 Packing (I,J )-adapted hypergraphs

In this section we prove Theorem 1. The proof has several stages: we first prove that the
quasirandom conditions on H imply that H is rich, then we use Lemma 5 to set aside a
vertex set A which can absorb all reasonably sized sets, next we use the embedding lemma
(Lemma 6) to produce an almost perfect packing in H−A, and finally we use the properties
of A to absorb the remaining vertices.

4.1 Richness

In this subsection, we prove that the conditions on H in Theorem 1 imply that H is (f 2 −
f, f, ǫ, F )-rich, where f = v(F ).

9



Lemma 7. Let k ≥ 2, I ⊆ 2[k] be a full antichain, and J ⊆ 2[k−1] an antichain. Let F be
an (I,J )-adapted k-graph with f vertices. For every 0 < α, p < 1, there exists µ, ǫ > 0 and
n0 so that the following holds. Let H be an n-vertex k-graph where n ≥ n0. Also, assume
that H satisfies Disc(k)(I, ≥p, µ) and that LH(z) satisfies Disc

(k−1)(J , ≥α, µ) for every vertex
z ∈ V (H). Then H is (f 2 − f, f, ǫ, F )-rich.

Proof. Let a = f(f − 1) and b = f . Our task is to come up with an ǫ > 0 such that for
large n and all B ∈

(

V (H)
b

)

, there are at least ǫna vertex sets of size a which F -absorb B; we
will define ǫ and µ later. Let V (F ) = {w0, . . . , wf−1}, where w0 is the special vertex in the
definition that F is (I,J )-adapted.

Next, form the following k-graph F ′. Let

V (F ′) = {xi,j : 0 ≤ i, j ≤ f − 1}.

(We think of the vertices of F ′ as arranged in a grid with i as the row and j as the column.)
Form the edges of F ′ as follows: for each fixed 1 ≤ i ≤ f − 1, let {xi,0, . . . , xi,f−1} induce
a copy of F where xi,j is mapped to wj. Similarly, for each fixed 0 ≤ j ≤ f − 1, let
{x0,j , . . . , xf−1,j} induce a copy of F where xi,j is mapped to wi. Note that we therefore have
a copy of F in each column and a copy of F in each row besides the zeroth row.

Now fix B = {b0, . . . , bf−1} ⊆ V (H); we want to show that B is F -absorbed by many
a-sets. Note that any labeled copy of F ′ in H which maps x0,0 → b0, . . . , x0,f−1 → bf−1

produces an F -absorbing set for B as follows. Let Q : V (F ′) → V (H) be an edge-preserving
injection where Q(bj) = x0,j (so Q is a labeled copy of F ′ in H where the set B is the zeroth
row of F ′). Let A = {Q(xi,j) : 1 ≤ i ≤ f − 1, 0 ≤ j ≤ f − 1} consist of all vertices in rows
1 through f − 1. Then A has a perfect F -packing consisting of the copies of F on the rows,
and A∪B has a perfect F -packing consisting of the copies of F on the columns. Therefore,
A F -absorbs B.

To complete the proof, we therefore just need to use Lemma 6 where m = f and s1 =
x0,0, . . . , sf = x0,f−1 to show that there are many copies of F ′ with B as the zeroth row.
To do so, we need to show that F ′ is (I,J )-adapted at s1, . . . , sm. Indeed, consider the
following ordering of edges of F ′. First, list the edges of F ′ in the first column, then the
edges of F ′ in the second column, and so on until the kth column. Next, list the edges of F ′

in the first row, then the second row, and so on until the (k − 1)st row. Within each row or
column, list the edges in the ordering given in the definition of F being (I,J )-adapted. For
the bijections φ or ψ, use the same bijection as in the definition of F being (I,J )-adapted.
Now consider Ei, Ej ∈ F ′ in this ordering with j < i. If Ei and Ej are from the same row
or the same column, then since F is (I,J )-adapted the condition on Ei ∩ Ej is satisfied. If
Ei and Ej are in different rows or columns, the size of their intersection is at most one. If
Ei ∩Ej = ∅ then the condition is trivially satisfied. If Ei ∩Ej = {u}, then Ei must be from
a row since i > j. Then Ei does not contain any s1, . . . , sm, so we must show that there is
some I ∈ I so that φi(u) ∈ I. This is true because I is full. Thus F ′ is (I,J )-adapted at
s1, . . . , sm.

Now apply Lemma 6 to F ′ with m = f , s1 = x0,0, . . . , sf = x0,f−1, Vm+1 = · · · = Vf2 =
V (H) − B, and γ = 1

2
α
∑

d(x0,j)p|F |−
∑

d(x0,j ). Ensure that n0 is large enough and µ is small

10



enough apply Lemma 6 to show that

inj[F ′ → H ; x0,0 → b0, . . . , x0,f−1 → bf−1] ≥ γ
(n

2

)f2−f

=
γ

2f2−f
na.

Each labeled copy of F ′ produces a labeled F -absorbing set for B, so there are at least
γ

a!2f2−f
na F -absorbing sets for B. The proof is complete by letting ǫ = γ

a!2f2−f
.

4.2 Almost perfect packings

In this section we prove that the conditions in Theorem 1 imply that there exists a perfect
F -packing covering almost all the vertices of H .

Lemma 8. Let k ≥ 2 and I ⊆ 2[k] be a full antichain. Fix 0 < p < 1 and an I-adapted
k-graph F with f vertices. Fix an integer b with f |b. For any 0 < ω < 1, there exists n0 and
µ > 0 such that the following holds. Let H be an k-graph satisfying Disc

(k)(I, ≥p, µ) with
n ≥ n0 and f |n. Then there exists C ⊆ V (H) such that |C| ≤ ωn, b||C|, and H [C̄] has a
perfect F -packing.

Proof. First, select n0 large enough and µ small enough so that any vertex set C of size
⌈

ω
2

⌉

contains a copy of F . To see this, let γ = 1
2
p|F |(ω

2
)f and select n0 and µ > 0 according to

Lemma 6 with m = 0. (Recall that if m = 0 then the condition (I,J )-adapted on F at ∅
just reduces to the statement that F is I-adapted.) Now if C ⊆ V (H) with |C| ≥ ω

2
n, then

let V1 = · · · = Vf = C so that |Vi| ≥
ω
2
for all i. Then Lemma 6 implies there are at least

p|F |
∏

|Vi| − γnf ≥ p|F |
(

ω
2

)f
nf − γnf = γnf > 0 copies of F inside C.

Now let F1, . . . , Ft be a greedily constructed F -packing. That is, F1, . . . , Ft are disjoint
copies of F and C := V (H) − V (F1) − · · · − V (Ft) has no copy of F . By the previous
paragraph, |C| ≤ ω

2
n. Since f |n and H [C̄] has a perfect F -packing, f ||C|. Thus we can let

y ≡ − |C|
f

(mod b) with 0 ≤ y < b and take y of the copies of F in the F -packing of H [C̄]

and add their vertices into C so that b||C|.

4.3 Proof of Theorem 1

Proof of Theorem 1. First, apply Lemma 7 to produce ǫ > 0. Next, select ω > 0 according
to Lemma 5 and µ1 > 0 according to Lemma 8. Also, make n0 large enough so that both
Lemma 5 and 8 can be applied. Let µ = µ1ω

k. All the parameters have now been chosen.
By Lemmas 5 and 7, there exists a set A ⊆ V (H) such that A F -absorbs C for all

C ⊆ V (H) \ A with |C| ≤ ωn and b | |C|. If |A| ≥ (1 − ω)n, then A F -absorbs V (H) \ A
so that H has a perfect F -packing. Thus |A| ≤ (1 − ω)n. Next, let H ′ := H [Ā] and notice
that H ′ satisfies Disc(k)(I, ≥p, µ1) since v(H

′) ≥ ωn and

µnk ≤
µ

ωk
v(H ′)k = µ1v(H

′)k.

Therefore, by Lemma 8, there exists a vertex set C ⊆ V (H ′) = V (H)\A such that |C| ≤ ωn,
|C| is a multiple of b, and H ′[C̄] has a perfect F -packing. Now Lemma 5 implies that A
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F -absorbs C. The perfect F -packing of A∪C and the perfect F -packing of H ′[C̄] produces
a perfect F -packing of H .

5 Constructions

In this section, we prove Propositions 3 and 4 using the following construction.

Construction. Let k ≥ 2. Let A
(k)
n be the following probability distribution over n-vertex

k-graphs. Let f :
(

V (A
(k)
n )

k−1

)

→ {0, . . . , k−1} be a random k-coloring of the (k−1)-sets. Make

E ∈
(

V (A
(k)
n )
k

)

an edge of A
(k)
n if

∑

T⊆E
|T |=k−1

f(T ) 6= 0 (mod k).

Lemma 9. Let p = k−1
k

and ǫ > 0. Then with probability going to one as n goes to infinity,

∣

∣

∣

∣

|A(k)
n | − p

(

n

k

)
∣

∣

∣

∣

< ǫnk.

Proof. Each k-set is an edge with probability exactly p, so E[|A
(k)
n |] = p

(

n
k

)

. A simple second
moment argument then shows that with high probability the number of edges is concentrated
around p

(

n
k

)

.

Lemma 10. There exists a µ0 such that for all 0 < µ < µ0, with probability going to one as
n goes to infinity, A

(k)
n fails Disc(k)(

(

[k]
k−1

)

, ≥p, µ).

Proof. Let Z be the (k − 1)-graph whose edges are all the (k − 1)-sets colored zero. Let
Λ = (Z, . . . , Z) be the

(

[k]
k−1

)

-layout consisting of Z in every coordinate. Now any k-clique

(z1, . . . , zk) of Λ is not a hyperedge of A
(k)
n , since every (k−1)-subset of {z1, . . . , zk} has color

zero. This Λ will show that A
(k)
n fails Disc(k)(

(

[k]
k−1

)

, ≥p, µ) if |Kk(Λ)| is large enough. Each

k-tuple of vertices is a k-clique with probability ( 1
k
)k, so E[|Kk(Λ)|] = k−k(n)k. A simple

second moment computation shows that |Kk(Λ)| is concentrated around its expectation, so
with high probability for large n we have that |Kk(Λ)| ≥

1
10
k−knk. Thus if µ0 =

1
20

k−1
kk+1 , we

have that

0 = |H ∩Kk(Λ)| <
k − 1

k
|Kk(Λ)| − µnk.

Lemma 11. Let r = rk−1(K
(k−1)
k , . . . , K

(k−1)
k ) be the k-color Ramsey number, where the

(k − 1)-sets are colored and a monochromatic k-clique is forced. Then A
(k)
n has no copy of

K
(k)
r .
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Proof. Let X ⊆ V (A
(k)
n ) be such that |X| = r and A

(k)
n [X ] is a clique. Then by the property

of r, there exists a Y ⊆ X such that |Y | = k and all (k − 1)-subsets of Y have the same
color c. But now

∑

T⊆Y
|T |=k−1

f(T ) = ck = 0 (mod k).

Thus Y /∈ A
(k)
n , which contradicts that A

(k)
n [X ] is a clique.

To show that A
(k)
n satisfies Disc(k)(I, ≥p, µ) when I 6=

(

[k]
k−1

)

, we will use a theorem of
Towsner [38] that equates I-discrepency with counting I-adapted hypergraphs. Therefore,

we prove that the count of any I-adapted hypergraph F in A
(k)
n is correct with high proba-

bility.

Lemma 12. Let p = k−1
k

and let I ⊆ 2[k] be an antichain such that I 6=
(

[k]
k−1

)

. Let F be an
I-adapted k-graph. For every µ > 0, with probability going to one as n goes to infinity, the
number of labeled copies of F in A

(k)
n satisfies

∣

∣inj[F → A(k)
n ]− p|F |nv(F )

∣

∣ < µnv(F ).

Proof. Let E1, . . . , Em be the ordering of edges in the definition of F being I-adapted. First
we shows that if Q : V (F ) → V (A

(k)
n ) is any injection, then the probability that Q(Ei) ∈ A

(k)
n

is exactly p independently of if the edges Ej with j < i map to hyperedges or not. Indeed,

since I 6=
(

[k]
k−1

)

, let I ∈
(

[k]
k−1

)

− I. Now consider some Ei and let φi : Ei → [k] be the
bijection from the definition of F being I-adapted. Now since I /∈ I, there is no j < i such
that φi(Ei∩Ej) = I. Thus conditioning on if the edges Ej with j < i map to edges of A

(k)
n or

not potentially fixes the colors on (k−1)-subsets of Q(Ei) besides the (k−1)-subset indexed
by I. Since the color of {Q(x) : x ∈ Ei, φi(x) ∈ I} (which has size k − 1) has probability
exactly p to make the color sum of Q(Ei) once all other colors are fixed, with probability p
we have that Q(Ei) is an edge.

Therefore, the probability that Q is an edge-preserving map is p|F |. This implies that the
expected number of labeled copies of F in A

(k)
n is p|F |n(n − 1) · · · (n − v(F ) + 1). A simple

second moment calculation shows that with high probability the number of labeled copies
of F in A

(k)
n is p|F |nv(F ) ± µnv(F ) for large n.

Lastly, we need to show that A
(k)
n satisfies Disc(k−1)(J , ≥α, µ) in every link for every J .

We could do that similar to the previous lemma by showing that the count of J -adapted
k-graphs is correct, but instead are able to directly show that Disc(k−1)(J , ≥α, µ) holds.

Lemma 13. Let J ⊆ 2[k−1] be an antichain and α = k−1
k
. Then for every µ > 0, with

probability going to one as n goes to infinity, L(x) satisfies Disc
(k−1)(J , ≥α, µ) for each

x ∈ V (A
(k)
n ).
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Proof. Fix x ∈ V (A
(k)
n ) and view L

A
(k)
n
(x) as a probability distribution over (k − 1)-graphs

with vertex set V (A
(k)
n )−x. That is, an element from this probability distribution is generated

by first generating A
(k)
n and then outputting the link of x. We claim that the probability

distribution L(x) is isomorphic to the probability distribution G(k−1)(n− 1, α). To see this,

consider S ∈
(

V (A
(k)
n )−x
k−1

)

. Then S ∈ L(x) if

∑

T⊆S∪{x}
|T |=k−1

f(T ) 6= 0 (mod k).

We could rewrite this as

f(S) 6=
∑

T⊆S
|T |=k−2

f(T ∪ x) (mod k).

The sum on the left hand side is some integer wS between 0 and k − 1, so that S is a
hyperedge of L(x) if and only if the color of S is not wS. Since this is for every S and the
colors assigned to S are mutually independent, L(x) is isomorphic to G(k−1)(n− 1, α).

The proof is now complete, since for large n G(k−1)(n− 1, α) satisfies Disc(k−1)(J , ≥α, µ)
with very high probability as follows. Fix any J -layout Λ. Each (k − 1)-clique in Λ is
a hyperedge with probability α and two (k − 1)-cliques are independent unless one is a
permutation of the other. So divide Kk−1(Λ) up into at most (k − 1)! sets R1, . . . , R(k−1)!

such that within a single Ri there are no (k−1)-tuples which are permutations of each other.
Then the expected size of H ∩Ri is α|Ri| and by Chernoff’s inequality,

P
[
∣

∣

∣
|H ∩Ri| − α|Ri|

∣

∣

∣
> ǫnk−1

]

< 2e−ǫ2n2k−2/2|Ri|.

Since |Ri| ≤ nk−1, the probability is at most e−cnk−1
for some constant c. There are (k − 1)!

sets Ri and there are at most 2k−22n
k−2

J -layouts Λ, so with probability at most e−c′nk−1
,

the link of x fails Disc(k−1)(J , ≥α, µ). There are n vertices of A
(k)
n , so with probability at

most ne−c′nk−1
→ 0, there is some vertex x of A

(k)
n whose link fails Disc(k−1)(J , ≥α, µ).

Proof of Proposition 3. As mentioned previously, to show that A
(k)
n satisfies Disc(k)(I, ≥p, µ),

we combine Lemma 12 with a theorem of Towsner [38] which is stated in the language of

k-graph sequences. Converting from the probability distribution A
(k)
n to a k-graph sequence

is very similar to the proofs of [29, Lemmas 30 and 31] so we only briefly sketch the technique
here. By the previous lemmas and the probabilistic method, for every µ > 0 there exists
an n0 such that for every n ≥ n0 there exists some k-graph satisfying the properties in the
previous lemmas (has the right edge density, fails Disc(k)(

(

[k]
k−1

)

, ≥p, µ), no copy of Kr, has

the right count of all I-adapted hypergraphs, and satisfies Disc(k−1)(J , ≥α, µ) in the links).
Construct a k-graph sequence H = {Hn}n∈N by diagonalization by setting µ = 1

n
.

By Lemma 12, H satisfies the property that for every I-adapted F , limn→∞ tF (Hn) = p|F |

so by [38, Theorem 1.1] H is Discp[I] (where tF (Hn) and Discp[I] are defined in [38]). Thus
for large n, the k-graphs in the sequence H are the k-graphs which prove Proposition 3.
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Proof of Proposition 4. Let G = G(k)(n, p) be the random k-graph with density p. Modify
G by picking a single vertex x ∈ V (G), removing all edges which contain x, and adding

edges so that L(x) = A
(k−1)
n . Now the link of x has no copy of K

(k−1)
r so that G has

no perfect K
(k)
r+1-packing. Also, G satisfies Disc(k)(

(

[k]
k−1

)

, ≥p, µ) since the random k-graph

satisfies Disc(k)(
(

[k]
k−1

)

, ≥p, µ) (see the proof of Lemma 13) and we only modified at most nk−1

hyperedges. By the previous lemmas, the link of x fails Disc(k−1)(
(

[k−1]
k−2

)

, ≥α, µ) and satisfies

Disc(k−1)(J , ≥α, µ) for all J 6=
(

[k−1]
k−2

)

.
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[10] D. Dellamonica, Jr. and V. Rödl. Hereditary quasirandom properties of hypergraphs.
Combinatorica, 31(2):165–182, 2011.
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[22] D. Kühn and D. Osthus. Loose Hamilton cycles in 3-uniform hypergraphs of high
minimum degree. J. Combin. Theory Ser. B, 96(6):767–821, 2006.
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